
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Return Values

Web Services API Reference

4/13/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Return Values
This is part of the API Basics section of the Web Services API.

Contents

• 1 Return Values
• 1.1 Overview
• 1.2 All Methods
• 1.3 GET
• 1.4 POST to Create Resource
• 1.5 POST to Assign Resource
• 1.6 DELETE
• 1.7 DELETE to Unassign Resource
• 1.8 PUT
• 1.9 Asynchronous Operations
• 1.10 Hybrid Operations
• 1.11 Partial Success

Return Values

Web Services API Reference 2

Overview

All Web Services API methods return a result for each operation in addition to the HTTP status code.
The results are different depending on the type of operation.

All Methods

All methods always return the statusCode attribute . If an error occurs, that is, if the statusCode is
not 0, the response includes error details in the statusMessage attribute.

The following status codes are supported:

Code Description

0 The operation is successful. No statusMessage is
provided.

1 A required parameter is missing in the request.

2 A specified parameter is not valid for the current
state.

3 The operation is forbidden.

4

An internal error occurred. This could occur if an
internal error occurred with Web Services or with
one of the servers working with Web Services (for
example: Cassandra or a Genesys Framework
component).

5 The user does not have permission to perform this
operation.

6 The requested resource could not be found.

7
The operation was partially successful. Returned if
at least one action in a bulk operation succeeded.
More information is available in the Partial Success
section.

8 Change password demanded. Web Services
requested a password change for the user.

9 Processing incomplete

10 Input validation error - the provided value is not
within the range of valid values

11 User requested to change read-only property
12 Unable to retrieve resource error
13 Unable to create resource error
14 Unable to delete resource error
15 Unable to update resource error

Return Values

Web Services API Reference 3

Code Description
16 Unable to assign resource error
17 Unable to unassign resource error
18 Resource already exists
19 Resource already in use

20 User is not authenticated. Any subsequent request
should provide credentials

If an error occurs during an operation, the response includes statusCode and statusMessage to
clarify the error. No other attributes are included.

Note that if an error occurs during a request, you can assume that the request failed to modify the
data of the contact center.

GET

GET requests are used to retrieve a variety of information and the response body will depend on what
is being requested as well as the request parameters.

These are the possible scenarios:

1. If retrieving a collection of URIs, the response will include the array attribute uris which will hold the
requested collection and collection or relative uris with array attribute paths.

2. If retrieving a collection of resources, the response will include an array attribute named after the
requested resource (for example: GET /users?fields=* will contain "users":[{..user1..},
{...user2...}, and so forth]

3. If the URI is a singular resource (for example: GET /users/{id}) the response will include an attribute
named after the singular of the requested resource which will contain the requested value. (for
example: GET /users/{id} will return "user":{...user..})

Example
If retrieving a collection of URIs, the response will include the array attribute uris which will hold the
requested collection.

GET /skills
{

"statusCode": 0,
"uris": [

"http://../api/v2/skills/123",
"http://../api/v2/skills/456",
...

],
"paths":[

"/skills/123",
"/skills/456",
...

]

Return Values

Web Services API Reference 4

}

Example
If retrieving a collection of resources, the response will include an array attribute named after the
requested resource. For example, GET /users?fields=* will contain "users":[{..user1..},
{...user2...}, etc].

GET .../users?fields=*
{

"statusCode":0,
"users":[

{
"userName":"..",
"firstName":"...",
etc},

}
{
"userName":"..",
"firstName":"...",
etc

}
]

}

Example
If the URI is a "singular" resource such as GET /users/{id}, the response includes an attribute
named after the singular form of the requested resource. This attribute contains the requested value.
For example, GET /users/{id} will return "user":{...user..}.

GET /devices/{id}
{

"statusCode": 0,
"device": {

"vendor": "...",
"phoneNumber": "...",
...

}
}

POST to Create Resource

When a POST request is successful, the following extra attributes will be included:

1. id—the ID of the newly-created object.
2. uri—The URI to access the newly-created object.
3. path—The relative URI to access the newly created object.

Example
Request:

Return Values

Web Services API Reference 5

POST /users
{
... some user data

}

Response:

{
"statusCode":0
"id":"12345",
"uri":"http://...api/v2/users/12345"
"path": "/users/12345"

}

POST to Assign Resource

POST can also be used to assign one resource to another's collection, such as when assigning a skill
to a user. When this is the case, no extra attributes are returned and only statusCode:0 will be
returned on success.

DELETE

The DELETE operation does not have any extra attributes. Only statusCode:0 will be returned on
success.

DELETE to Unassign Resource

DELETE can also be used to unassign one resource from another's collection, such as when
unassigning a skill from a user. No extra attributes are returned and only statusCode:0 will be
returned on success.

PUT

The PUT operation does not have any extra attributes. Only statusCode:0 will be returned on
success.

Asynchronous Operations

Web Services supports many operations that are performed using POST on an existing resource and
the response for which is sent via CometD. When POST is used to perform one of these operations,
statusCode:0 will be returned on success.

Return Values

Web Services API Reference 6

Hybrid Operations

In order to increase API usability and minimize network traffic, multi-step operations are occasionally
implemented. For instance, it is possible to create a device and assign it to a user with one operation.
When hybrid operations are implemented, the methods will return all of the values required for each
operation being performed. For example, POST to create a resource requires a return value of "uri"
and "id" whereas POST to assign does not have any extra return values. Implementing a multi-step
"create and assign" POST returns "uri", "id", and "statusCode" on successful completion.

Partial Success

Some operations may be considered successful if they are able to perform some of their work. These
operations are considered "bulk" operations and are different from "transactions", which involve
multiple steps that possibly use multiple servers. An example of a transaction is "create user" which
involves creating some data in Cassandra as well as Configuration Server. If one of these actions fails,
Web Services considers the whole operation a failure. In contrast, an operation such as "assign
multiple skills to user" is a bulk operation which consists of a series of transactions (for example,
each individual skill assignment is a transaction). The general rule is that if a step of a transaction
fails, Web Services considers the whole operation a failure. If at least one transaction in a bulk
operation succeeds, Web Services considers this a "partial success." Note that for bulk GETs (for
example, GET /users) if the result is a partial list, the response includes statusCode:7 instead of 0.
The rest of the result looks the same. For POST, PUT, and DELETE, the partial success returns have
the following attributes:

Attribute Value
statusCode Always 7

succeeded
An array of resource descriptors (see below). Each
represents a resource for which the transaction was
successful.

failed
An array of failure descriptors (see below). Each
represents a resource for which the transaction
failed.

Attribute Value

uri
The URI of a resource from request parameters for
which the transaction succeeded. For example, if
assigning multiple skills to a user, this is the URI of
a skill).

path The relative path of the resource
id The unique identifier of the resource above.

Attribute Value

<uids>

The attributes which uniquely identify the resource
for which this transaction failed. For example, if
assigning skill uris, this will be "uri." If creating a
user this will be "userName." If a resource has
more than one identifying attribute all should be
present.

Return Values

Web Services API Reference 7

Attribute Value
statusCode The status code describing the reason for failure.
statusMessage The message describing the reason for failure.

Examples
Assign:

POST /users/{id}/skills
{

"uris":["uri1", "uri2"], "paths": ["uri3"]
}

{
"statusCode":7 (partial success)
"succeeded":[

{
"id":<id1>,
"uri":"uri1",
"path":"path1",

},
{

"id":<id2>,
"uri":"uri2",
"path":"path2"

}]
"failed":[

{
"statusCode":X,
"statusMessage":"msg",
"uri":"uri3",
"path": "path2"

}
]

}

Create:

POST /users
{

"users":[
{

"firstName":"..",
"lastName":"..",
"userName":"u1", etc

},
{

"firstName":"..",
"lastName":"..",
"userName":"u2", etc

},
{

"firstName":"..",
"lastName":"..",
"userName":"u3", etc

}

]
}

Return Values

Web Services API Reference 8

{
"statusCode":7 (partial success)
"succeeded":[

{
"id":<id>,
"uri":"uri1",
"path":"path"

},
{

"id":<id>,
"uri":"uri2",
"path":"path2"

}]

"failed":[
{

"statusCode":3,
"statusMessage":"Operation forbidden, username already exists",
"userName":"u3"

}]
}

Delete:

DELETE /users
{

"uris":["uri1", "uri2"],"paths": ["uri3"]
}

{
"statusCode":7 (partial success)
"succeeded":[

{
"id":<id1>,
"uri":"uri1",
"path":"path1"

},
{

"id":<id2>,
"uri":"uri2",
"path": "path2"

}]

"failed":[
{

"statusCode":X,
"statusMessage":"...",
"uri":"uri3",
"path": "path2"

}]
}

Return Values

Web Services API Reference 9

	Web Services API Reference
	Return Values

