
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Request Parameters

Web Services API Reference

4/13/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Request Parameters
This is part of the API Basics section of the Web Services API.

Contents

• 1 Request Parameters
• 1.1 Overview
• 1.2 Object Fields
• 1.3 Object Filtering
• 1.4 Pagination
• 1.5 Sorting
• 1.6 Subresources
• 1.7 Resolving URIs
• 1.8 User Authentication
• 1.9 Supported Requests

Request Parameters

Web Services API Reference 2

Overview

This outlines the request parameters for the Web Services API.

Object Fields

Requesting Devices
When making list requests for any kind of object, Web Services returns a list of the corresponding
object URIs.

[+] Requesting Devices - Example
Request:

GET .../api/v2/me/devices

Response:

{
"statusCode" : 0,
"uris" : [

"http://127.0.0.1:8080/api/v2/devices/ba0f987f-15b4-42c7-bed0-5f302259f9db"
]

}

Requesting a list of objects with their actual devices
In order to receive a list of objects with their actual fields, you will need to provide the fields
request parameter.

[+] Requesting a list of objects with their actual devices - Example
Request:

GET .../api/v2/me/devices?fields=*

Response:

Request Parameters

Web Services API Reference 3

{ "devices" : [{ "capabilities" : ["ForwardCallsOn",
"DoNotDisturbOn"

],
"deviceState" : "Active",
"doNotDisturb" : "Off",
"e164Number" : "5001",
"id" : "ba0f987f-15b4-42c7-bed0-5f302259f9db",
"phoneNumber" : "5001",
"telephonyNetwork" : "Private",
"userState" : { "displayName" : "Ready",

"id" : "9430250E-0A1B-421F-B372-F29E69366DED",
"state" : "Ready"

},
"voiceEnvironmentUri" : "http://127.0.0.1:8080/api/v2/voice-environments/a481cd8e-7b6a-4466-af88-db3471ac909e"

}],
"statusCode" : 0

}

Request Parameters

Web Services API Reference 4

Specify data fields when requesting an object
When requesting an object from the Web Services server, it is possible to specify which data fields
you receive by providing the fields request parameter.

[+] Specify data fields when requesting an object - Example
Request:

GET .../api/v2/queues/<queue_id>?fields=id,name

Response:

{
"id":<queue_id>,
"name":<queue_name>

}

Requesting all field of an object
To request all fields of an object, set the fields property to *.

[+] Requesting all field of an object - Example
Request:

GET .../api/v2/queues/<queue_id>?fields=*

Response:

{
"id":<queue_id>,
"name":<queue_name>,
"description":<queue_description>,
...

}

Requesting Queues
Note that when making "list" requests for any kind of object, Web Services returns a list of the
corresponding object URIs.

[+] Requesting Queues - Example
Request:

GET .../api/v2/queues

Response:

{
"statusCode":0,
"uris":[

Request Parameters

Web Services API Reference 5

"http://.../api/v2/queues/<queue_1_id>",
...
"http://.../api/v2/queues/<queue_N_id>"

]
}

Request a list of objects with their actual fields
In order to receive a list of objects with their actual fields, you need to provide the fields request
parameter and have it set either to *, or to a list of data fields of interest.

[+] Request a list of objects with their actual fields - Example
Request:

GET .../api/v2/queues?fields=id,name

Response:

{
"statusCode":0,
"queues":[{

"id":<queue_1_id>,
"name":<queue_1_name>

},
...
{

"id":<queue_N_id>,
"name":<queue_N_name>

}]
}

Object Filtering

It is possible to filter objects using request parameters when doing "list" requests.

For example:

Request:

GET .../api/v2/queues?fields=id,name,channel&channel=voice

Response:

{
"statusCode":0,
"queues":[{

"id":<queue_1_id>,
"name":<queue_1_name>,
"channel":"voice"

},
...
{

"id":<queue_N_id>,
"name":<queue_N_name>,

Request Parameters

Web Services API Reference 6

"channel":"voice"
}]

}

Important
Note that the filtering parameter must be exactly the same as the name of the
corresponding object field.

You can also combine several filtering parameters to make even more constraints:

Request:

GET .../api/v2/system/routing-templates?fields=*&channel=voice&version=1.0.0

Response:

{
"statusCode":0,
"routingTemplates":[{

"id":"00_RouteToSpecDestination",
"name":"Route Call to Specified Destination",
"description":"Routes calls to a skill or queue",
"version":"1.0.0",
"channel":"voice",
"dependencies":["media", "destination"],
"enabled":true,
"schema": [...]

},
...
{

"id":"07_SegmentCallerRouteToSpecDestination",
"name":"Play Greeting, Segment Caller, and Route To Specified Destination",
"description":"Plays a user-configured greeting, ...",
"version":"1.0.0",
"channel":"voice",
"dependencies":["media", "destination", "data_record_type"],
"enabled":false,
"schema": [...]

}]
}

Important
Note that some "list" requests may make some of the filtering parameters mandatory.

Pagination

The following pagination-related request parameters can be used with REST API requests.

Request Parameters

Web Services API Reference 7

Important
Pagination and sorting functionality is only enabled if Elastic Search indexing is
enabled.

Name Description Request Resources Example

offset

Specifies the index
of the first record
to be returned.

• Defaults to 0.
GET All "plural"

resources

The following
request will return
the first 100 users
in the contact
center:
GET /api/v2/
users?offset=0&limit=100

limit

Specifies the
number of records
to be returned.

• Maximum
allowed value
is 100.

• Default value is
10.

GET All "plural"
resources

The following
request will return
the second page of
25 users in the
contact center:
GET /api/v2/
users?offset=25&limit=25

Read requests with pagination return an extra field called totalCount containing the total count of
objects satisfying the request criteria.

{
"statusCode": 0,
"users": [...],
"totalCount": 2

}

The following API resources support sorting and pagination:

• users
• groups/<id>/users
• contacts

Sorting

The following sorting-related request parameters can be used with REST API requests.

Name Description Request Resources Example
sortBy Specifies a comma GET /api/v2/

Request Parameters

Web Services API Reference 8

Name Description Request Resources Example
separated list of
object properties
to be used for
sorting. GET All
"plural" resources
The following
request will sort
users by their last
names first and
then by their first
names:

users?sortBy=lastName,firstName&limit=100

order

Specifies sorting
order to be used,
can be either
"Ascending" or
"Descending",
defaults to
"Ascending".

GET All "plural"
resources

The following
request will return
users sorted by
their last names in
a descending
order:
GET /api/v2/
users?sortBy=lastNameℴ=Descending&limit=100

Subresources

The subresources feature allows you to read subresources of an object together with the object itself.
If you have a user object that has one or more skills and one or more devices, you can read all skills
and devices of that user with the following request:

Request:

GET .../api/v2/users/<user_id>?subresources=*

Response:

{
"id":<user_id>,
"firstName":<first_name>,
...
"skills":[{

"id":<skill_1_id>,
...

},
...
{

"id":<skill_N_id>,
...

}],
"devices":[{

"id":<device_1_id>,
...

},
...
{

"id":<device_M_id>,

Request Parameters

Web Services API Reference 9

...
}]

}

If you do not include the subresources parameter in the request, you will get everything except the
"skills" collection and "devices" collection.

Important
It is also possible to apply the subresources feature to object settings and request
both an object and its settings in one request.

Selecting Subresources
In the example above, "subresources=*" was specified in order to get all available subresources. If
the object you are interested in has several types of subresources, it is possible to choose whether
you want all subresources to be returned or just some of them. This can be achieved by specifying a
comma-separated list of subresources.

Example 1

To receive a list of skills and devices associated with an agent, use the following.

Request:

GET .../api/v2/users/<user_id>?subresources=skills,devices

Response:

{
"id":<user_id>,
"firstName":<first_name>,
...
"skills":[{

"id":<skill_1_id>,
...

},
...
{

"id":<skill_N_id>,
...

}],
"devices":[{

"id":<device_1_id>,
...

},
...
{

"id":<device_M_id>,
...

}]
}

Request Parameters

Web Services API Reference 10

Example 2

To receive a list of skills associated with an agent, use the following.

Request:

GET .../api/v2/users/<user_id>?subresources=skills

Response:

{
"id":<user_id>,
"firstName":<first_name>,
...
"skills":[{

"id":<skill_1_id>,
...

},
...
{

"id":<skill_N_id>,
...

}]
}

Resolving URIs

Introduction
This feature is called "resource link resolution", which allows you to read an object and all other
objects it is associated with in one request. For example, if we have a device object associated with a
phone number object and we want to read both of them in one request, we need to do the following:

Request:

GET .../api/v2/devices/<device_id>?resolveUris=*

Response:

{
"id":<device_id>,
"phoneNumberUri":"http://...",
...
"phoneNumber":{

"id":<phone_number_id>,
...

}
}

In comparison, if you do not include the "resolveUris" parameter in the request, you will get
everything except the "phoneNumber" object. In the example above, we specify "resolveUris=*" to
resolve all URIs. It is possible to choose whether you want all URIs to be resolved or just some of
them. This can be achieved by specifying a comma-separated list of property names referring to
URIs.

Request Parameters

Web Services API Reference 11

Examples
Example 1

To resolve all URIs, use "resolveUris=*" as shown below.

Request:

GET .../api/v2/queues/<queue_id>?resolveUris=*

Response:

{
"id":<queue_id>,
"name":<queue_name>,
...
"routingTemplateUri":"http://...",
"phoneNumberUri":"http://...",
...
"phoneNumber":{

"id":<phone_number_id>,
...

},
"routingTemplate":{

"id":<routing_template_id>,
...

}
}

Example 2

To resolve a specific URI, use "resolveUris=<uri>" as shown below

Request:

GET .../api/v2/queues/<queue_id>?resolveUris=phoneNumberUri

Response:

{
"id":<queue_id>,
"name":<queue_name>,
...
"routingTemplateUri":"http://...",
"phoneNumberUri":"http://...",
...
"phoneNumber":{

"id":<phone_number_id>,
...

}
}

Example 3

Request:

GET .../api/v2/queues/<queue_id>?resolveUris=phoneNumberUri,routingTemplateUri

Request Parameters

Web Services API Reference 12

Response:

{
"id":<queue_id>,
"name":<queue_name>,
...
"routingTemplateUri":"http://...",
"phoneNumberUri":"http://...",
...
"phoneNumber":{

"id":<phone_number_id>,
...

},
"routingTemplate":{

"id":<routing_template_id>,
...

}
}

User Authentication

Basic HTTP Authentication is used. Please see RFC 2617 Section 2 for reference.

Supported Requests

The following requests are supported at this time:

• /devices: fields=*
• /features: fields=*
• /me: subresources=*
• /me/calls: fields=*
• /me/devices: fields=*
• /me/skils: fields=*
• /skills: fields=*
• /system/features: fields=*
• /system/routing-templates: channel, version (these are query parameters), fields=*
• /users: fields=*, subresources=*
• /users/{id}: subresources=*
• /users/{id}/devices: fields=*
• /recordings: startTime, endTime, callerPhoneNumber, dialedPhoneNumber, userName, offset, limit

(query parameters)

Request Parameters

Web Services API Reference 13

	Web Services API Reference
	Request Parameters

