
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Interpreting a response

Web Services API Reference

5/4/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Interpreting a response

Contents

• 1 Interpreting a response
• 1.1 Determining your Web Services version
• 1.2 Web Services status codes
• 1.3 Getting user information
• 1.4 What's next?

Interpreting a response

Web Services API Reference 2

On the previous page, we showed you how to use cURL to make some basic requests. Now we will
show you how to interpret the response from the Web Services server.

Determining your Web Services version

The first request we sent asked for the current version of Web Services. It looked like this:

curl http://000.111.222.333/api/v2/diagnostics/version

The following response starts with a status code of 0, which indicates that our request was
successful. The version parameter, surprisingly enough, tells you what your current version of Web
Services is:

{"statusCode":0,"version":"8.5.200.50"}

Web Services status codes

When you are trying to figure out what happened with your request, you may find it helpful to
understand the status codes that have been returned by the Web Services server. These codes are
described in a table on the Return Values page.

Note in particular that a status code of 20 means that you have failed authentication, as we will show
in the next section.

Getting user information

The second request we sent on the previous page asked for information about user ksippo. This
request included authentication information, as shown here:

curl -u ksippo: http://000.111.222.333/api/v2/me

This request should receive a status code of 0, followed by user information about ksippo:

{
"statusCode":0,
"user":{

"id":"63630bbebf4840d7a0bffd6312bc29ff",
"userName":"ksippo",
"firstName":"Kristi",
"lastName":"Sippola",
"roles":["ROLE_AGENT"],
"enabled":true,
"changePasswordOnFirstLogin":false,
"uri":"http://127.0.0.1/cloud-web/api/v2/users/

63630bbebf4840d7a0bffd6312bc29ff",
"path":"/users/63630bbebf4840d7a0bffd6312bc29ff"

}
}

Interpreting a response

Web Services API Reference 3

https://docs.genesys.com/Documentation/GWS/latest/API/ReturnValues

Don't forget...
Note that if we send that request without including authentication information, we will receive an
error message. That is, if we send something like this:

curl http://000.111.222.333/api/v2/me

...the Web Services server won't let us in, and will send a response like this:

{"statusCode":20,"statusMessage":"Access denied"}

As mentioned above, the status code of 20 indicates that we have failed authentication and are
therefore denied access, as clarified by the status message.

[+] Click here to see other ways you can retrieve user information.
Instead of using cURL, you can also get user information using JavaScript or a REST client.

JavaScript
<!--

This sample improves on the version.html sample by making the server location
configurable

and also allowing credentials to be entered. To establish a session with Genesys Web
Services,

a Basic Authorization header must be included. Subsequent requests can also include
this header

or they can rely on the cookie established by the first request.

The sample request this time is to return basic information about 'me' (the user
making the request as

identified by the credentials).
-->
<!doctype html>
<html>

<head>
<script src='//ajax.googleapis.com/ajax/libs/jquery/1.11.1/

jquery.min.js'></script>
<script>

$(document).ready(function() {

$('#getMe')
.click(function() {

// Read the values from the input boxes
var username = $('#username').val();
var pw = $('#password').val();

var uri = $('#baseUri').val();
uri += 'api/v2/me';

// Create and configure the request
var request = {

url: uri,
type: 'GET',

crossDomain: true,
success: function (result) {

// Update the textarea with a string version of the
resulting JSON

Interpreting a response

Web Services API Reference 4

$('#result').text(JSON.stringify(result.user, null,
4));

},
error: function (result) {

alert('Failed to get my user info.');
}

};

// This adds the Authorization header. The call to btoa base
64 encodes the username and

// password separated by a ':'. For more info on Basic
authentication check the RFC.

request.beforeSend = function (xhr) {
xhr.setRequestHeader('Authorization', 'Basic

' + window.btoa(username + ':' + pw));
};

$.ajax(request);
});

});
</script>

</head>
<body>

<div>
<input id='baseUri' type='text' style='margin-bottom: 5px; width: 200px;'

placeholder='GWS Base Uri' value='http://localhost:8080/'>

<input id='username' type='text' style='margin-bottom: 5px; width: 200px;'

placeholder='Username' value='paveld@redwings.com'>

<input id='password' type='password' placeholder='Password' value='password'>

<button id='getMe'>Get Me</button>

<textarea id='result' rows='20' cols='100'></textarea>

</div>
</body>

</html>

REST client

To retrieve agent information, we must authenticate, as shown here (in our case, cspencer is the
user and there is no password associated with her account):

Interpreting a response

Web Services API Reference 5

Choose Set Header, and you should see something similar to the following:

Request Now that you've been authenticated, you can make the request:

Response

Interpreting a response

Web Services API Reference 6

What's next?

Next up, let's learn how to work with agents.

Interpreting a response

Web Services API Reference 7

	Web Services API Reference
	Interpreting a response

