
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Customizing the Engagement Strategy

Developer's Guide

4/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Customizing the Engagement Strategy

Contents

• 1 Customizing the Engagement Strategy
• 1.1 Main Interaction Process and Workflow
• 1.2 Engagement Policy (Decision Workflow)
• 1.3 Obtaining Data from the GWE Cassandra Database through REST Requests
• 1.4 Start Engagement as a Result of the Engagement Logic Strategy
• 1.5 Cancelling Engagement as a Result of the Engagement Logic Strategy
• 1.6 Cleaning Interaction Process
• 1.7 Propagating Data from Engagement Logic strategy into Chat Routing Strategy
• 1.8 Accessing Pacing Information from the Engagement Logic Strategy

Customizing the Engagement Strategy

Developer's Guide 2

When you create your Web Engagement application, Genesys Web Engagement also creates default
Engagement Logic and Chat Routing SCXML strategies in the
\apps\application_name\resources_composer-projects\ folder. Orchestration Server (ORS) uses
these strategies to decide whether and when to make a proactive offer and which channels to offer
(chat or other custom widget, for example - an advertisement).

The Engagement Logic strategy processes Genesys Web Engagement interactions, and consists of
sub-workflows to handle: general processing, decision making, obtaining additional information from
the Cassandra database through the REST API, and contacting the Web Engagement Server with
instructions according to the engagement (or non-engagement) process.

You can modify the Engagement Logic SCXML by importing the Composer project into Composer. The
project is located here: \apps\application name\resources_composer-projects\
WebEngagement_EngagementLogic\. Refer to the sections below for details about the
Engagement Logic strategy and how it can be modified.

Main Interaction Process and Workflow

When Genesys Web Engagement creates an engagement attempt, the Web Engagement Server
creates an Open Media interaction of type webengagement and places it into the interaction queue
specified by the queueQualified option. By default, this option is set to the Webengagement_Qualified
queue. Orchestration Server (ORS) monitors this queue and pulls the interaction to process it with the
Engagement Logic strategy.

The Interaction Queue

Customizing the Engagement Strategy

Developer's Guide 3

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/Composer/8.1.3/Help/ImportandExport#Importing_Composer_Projects_into_Your_Workspace
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified

Passing Parameters into the Engagement Logic Strategy
When Genesys Web Engagement creates an engagement attempt, the Web Engagement Server
creates an Open Media interaction of type webengagement and places it into the Interaction Queue
specified by the queueQualified option. By default, this option is set to the Webengagement_Qualified
queue. Orchestration Server (ORS) monitors this queue and pulls the interaction to process it with the
Engagement Logic strategy.

Since ORS does not connect to the Web Engagement Server(s), certain parameters must be passed
to the Engagement Logic strategy in order to provide ORS with the data it needs.

1. The address where the SCXML strategy is located. Note: The default Engagement Logic and Chat
Routing strategies are located as resources under the Web Engagement Server. Provisioning
automatically specifies this address in the related Configuration Server objects when GWE is installed.
Since you can host strategies in other places, you can manually update the parameters in the related
objects.

2. The address where the Web Engagement Server can be accessed (if a secure address is present, pass
this as well). This information is used to issue REST requests to the GWE Cassandra database and to
start or cancel the engagement procedure through the Web Engagement Server.

The parameters are passed to ORS through the Enhanced Routing script object
Webengagement_Qualified.Routing that is associated with the Webengagement_Qualified Interaction
Queue.

The Webengagement_Qualified.Routing Script Object

There are several parameters specified by default, as shown in the following image.

Customizing the Engagement Strategy

Developer's Guide 4

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified

The Webengagement_Qualified.Routing Parameters

The first set of parameters, (1) serverURL and serverURLSecure correspond to the (2)
BackendURL and BackendURLSecure parameters used in 8.1.2, and are not available anymore.
You can also set (3) the maximum number of engagement attempts and (4) the maximum number of
simultaneous engagements.

In cases where you need a separate address for chat processing, use the mediaServerURL
parameter. This parameter is similar to the serverURL parameter but is used to specify a separate
URL to be used only for chat processing. This can be useful in situations where:

• Event traffic uses a non-secure server (as specified by the serverURL parameter), but you need a
secure connection for your chat traffic (in which case mediaServerURL will specify an HTTPS
endpoint)

• Event traffic is processed on one port, but chat traffic needs to be processed on a second port on the
same host

The Engagement Logic strategy has two interaction processes:

Customizing the Engagement Strategy

Developer's Guide 5

• clean.ixnprocess — This process is explained in Cleaning Interaction Process
• queueBased.ixnprocess — This process features the major logic for the strategy.

In this section, we will consider the second one.

To access the above-mentioned parameters from within Composer, use the Composer Access
Project Variables button shown in the following image. Note: In order to access Project Variables,
your current tab in Composer must display Interaction Process (not Workflow).

This button opens a window containing the variables we are currently interested in:

Now let's take a look at queueBased.ixnprocess. Select it in the Package Explorer:

Customizing the Engagement Strategy

Developer's Guide 6

https://docs.genesys.com/Documentation/IW/8.5.2/Developer/CustomizeEngagement#Cleaning_Interaction_Process

The entry point Interaction Queue (Webengagement_Qualified) is shown here:

And its properties are here:

Customizing the Engagement Strategy

Developer's Guide 7

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified

After the interaction is taken into processing, it is placed into a set of workflows for processing. All
workflows have notes related to specific blocks, however, this document highlights the most
important items.

Preventing Interaction Termination into Sub-flows
For all workflows, you must make sure that the workflow is configured to not terminate the
interaction upon exiting. If this step is not followed, the entire interaction process will not be able to
finish due to termination of the interaction in one of the sub-flows.

Note: Out-of-the-box Engagement Logic strategies already have the correct specified value (0) for
the system.TerminateIxnOnExit variable.

You must perform the following steps to turn off the termination of the interaction at the end of the
sub-flow:

1. Open the workflow diagram in Composer (note that in the images, it is shown as default.workflow).

Customizing the Engagement Strategy

Developer's Guide 8

2. Select the Entry block.

3. Open the properties of this block and access the Global Settings > Variables.

Customizing the Engagement Strategy

Developer's Guide 9

4. Locate the variable system.TerminateIxnOnExit. In this case, we have filtered the variables so only
those that contain the string Terminate are showing. Set the value to 0.

Accessing User Data from the webengagement Interaction and Passing it into
Sub-flows
One of the most important features of the Engagement Logic is its ability to access User Data from
webengagement interactions. This data is populated by the Web Engagement Server and includes,
among other things, information provided by a pacing algorithm.

After data is parsed and assigned to variables, it can be propagated to sub-flows and used there. Sub-
flows are also able to pass output data in a backward direction.

In the following example, we show the TakeEngagementDecision subroutine:

Customizing the Engagement Strategy

Developer's Guide 10

Then, you can see its parameters, which are displayed in a Composer window below the workflow
diagram:

Let's consider the parameters we are passing into decision.workflow, including
event_chatChannelCapacity, as well as the parameters we are receiving from the workflow,
including,cancelCode, cancelDescription and decision:

Customizing the Engagement Strategy

Developer's Guide 11

Attached Data in Web Engagement 8.5
As specified in the following tables, Genesys Web Engagement 8.5 supports key-value pair–based
user data that is usable by Genesys Reporting.

Mandatory Actionable Event Fields

Key Contents Description

HotLead_eventID UUID eventID obtained from Actionable
event

HotLead_eventName String Actionable event name.

HotLead_visitID UUID visitID obtained from Actionable
event

HotLead_globalVisitID UUID globalVisitID obtained from
Actionable event

HotLead_pageID String browserPageID obtained from
Actionable event

HotLead_url String url obtained from Actionable
event

HotLead_languageCode String languageCode obtained from
Actionable event

HotLead_timestamp long timestamp obtained from
Actionable event

HotLead_category String category obtained from
Actionable event

HotLead_rule String rule obtained from Actionable
event

Customizing the Engagement Strategy

Developer's Guide 12

Web Engagement Server Data

Key Type Description

HotLead_engagementID UUID
ID of Engagement Profile
associated with
webengagement interaction

HotLead_engagementAttempts int
Count of engagement attempts
(accepted and rejected) that
happened already on this visit

HotLead_engagementsInProgress int Count of currently active
engagement attempts

pacing_chatCapacity int Actual capacity of chat channel,
predicted by pacing

pacing String
JSON object, which includes
detailed group-based pacing
information

Optional Fields

Key Type Description

HotLead_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of actionable
event.
List of fields should be specified
in the option
eventType.ACTIONABLE
([userData] section)
For example:
1) Actionable event has data
fields "myCustomField" and
"myAnotherCustomField":
"data": {"myCustomField":
"SomeValue",
"myAnotherCustomField":
"SomeAnotherValue"}
2) eventType.ACTIONABLE has
value "myCustomField"

GWE 8.5 will attach to the User
Data only the following pair:
"HotLead_myCustomField":
"SomeValue"

VisitStarted_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of VisitStarted
event.
List of fields should be specified
in the option
eventName.VisitStarted
([userData] section)
The following keys are available:
"userAgent",

Customizing the Engagement Strategy

Developer's Guide 13

https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventType.ACTIONABLE
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventName.VisitStarted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData

Key Type Description
"screenResolution",
"language", "timezoneOffset"

In OOB template option
eventName.VisitStarted has
value "timezoneOffset"
Correspondingly, GWE 8.5 will
attach to the User Data the
following pair:
"VisitStarted_timezoneOffset":
25200000 (value will depend on
visitor's timezone)

SignIn_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of SignIn
event.
List of fields should be specified
in the option eventName.SignIn
([userData] section)
List of available keys depends on
customer's workflow

UserInfo_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of UserInfo
event.
List of fields should be specified
in the option
eventName.UserInfo ([userData]
section)
List of available keys depends on
customer's workflow

Engagement Policy (Decision Workflow)

Engagement policy is the other name of decision workflow.

Consider the most important points provided by the out-of-the box strategy:

Count of Engagement Attempts
Check the count of engagement attempts already proposed to the current visitor.

To see where this check is executed open decision.workflow:

Customizing the Engagement Strategy

Developer's Guide 14

https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventName.SignIn
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventName.UserInfo
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData

Looking at the workflow, you can select the ApplyEngagementPolicy block:

Customizing the Engagement Strategy

Developer's Guide 15

In the properties for this block, select Branching > Conditions and open CorrespondsToPolicy:

CorrespondsToPolicy is an expression that uses application parameters from the
Webengagement_Qualified.Routing script object to determine how many engagement attempts
should be proposed for a particular visitor. Note: Engagement attempts in the current visit that were
closed with a timeout disposition code will not be taken into account, as there is no guarantee
whether the visitor has seen them. For example, the invitation may appear on a non-active browser
tab or window.

Customizing the Engagement Strategy

Developer's Guide 16

Pacing Information
Check pacing information. This is executed inside of the CheckPacingEngagementChannel block:

Customizing the Engagement Strategy

Developer's Guide 17

Note: The out-of-the-box strategy operates only on general information obtained from the pacing
algorithm: in particular, the event_chatChannelCapacity variable, which is passed from
default.workflow, contains the accumulated count of interactions that can be triggered at a
particular moment. You can also pass more detailed information provided by the pacing algorithm
into the decision workflow and build a more sophisticated decision maker. The images below show
the general idea: do not engage the visitor if the count of available "interactions to produce" is 0 for
both channels:

Customizing the Engagement Strategy

Developer's Guide 18

Obtaining Data from the GWE Cassandra Database through REST
Requests

Requesting data from Web Engagement Server through the REST
During the decision making process, it might be useful to access data from the Web Engagement
Cassandra database. For example, to check additional parameters that are collected there.

The out-of-the-box Engagement Strategy provides an example of accessing the Cassandra database
in order to get the TimezoneOffset of the visitor's browser, and correspondingly modify the
greetings good evening, good morning, and so on. Note: the SCXML State block that is used to
demonstrate these concepts is disabled by default in Web Engagement 8.5. It has only been retained
as a sample, because the GWE 8.5 server provides related information as a part of the User Data in
the webengagement open media interaction.

Consider how Engagement Strategy does this task.

1. Use the SCXML State block in order to make the REST request with specified parameters.

Customizing the Engagement Strategy

Developer's Guide 19

Use the State block to make REST requests

Note: The ServerURL and visitID parameters are passed from the parent workflow into this sub-flow.
2. Parse response to the REST request. After the response is successfully obtained, it should be parsed in

order to extract required data. In this example, the timezoneOffset parameter is obtained from the
data of the VisitStarted event:

Customizing the Engagement Strategy

Developer's Guide 20

Parse the response to the REST request

Note: Alternatively, instead of the SCXML State block, you can use a Web Request or Web Service
block. In this case, Composer requires this logic to be hosted as a web application, which means the
entire Composer project must be hosted outside of the Web Engagement application. With Composer,
you can export the project as a web application in WAR format. This approach is not used in out-of-the-
box strategies.

Customizing the Engagement Strategy

Developer's Guide 21

Configure Authentication in the out-of-the-box SCXML Strategy
Genesys Web Engagement provides basic access authentication on the base of providing username/
password pairs.

Username and password parameters, used in the SCXML State block, are passed into getRESTInfo
workflow from the parent workflow:

The username and password application variables in getRESTInfo.workflow.

The username and password parameters are specified in variables of the Entry block in
default.workflow:

Customizing the Engagement Strategy

Developer's Guide 22

The username and password application variables in the default.workflow.

You must check that these credentials are compliant with the credentials specified in the security
section of the Web Engagement Cluster or Web Engagement Server options:

Customizing the Engagement Strategy

Developer's Guide 23

The username and password are specified in the security section

See Configuring Authentication for details.

Start Engagement as a Result of the Engagement Logic Strategy

Sending the "start engage" Request to the Web Engagement Server
The special workflow engage.workflow notifies the Web Engagement Server about the start
engage command.

Notification of the Web Engagement Server is executed through the REST request using the SCXML
State block:

Customizing the Engagement Strategy

Developer's Guide 24

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Authentication
https://docs.genesys.com/Documentation/GWE/latest/API/EngagementAPI#Start_Engagement_Attempt

The REST request notifies the Web Engagement Server

Note: Authentication aspects shown here are the same in getRESTInfo.workflow.

Customizing the Engagement Strategy

Developer's Guide 25

Fulfilling IxnProfile for "start engage" Request
Take note of the IxnProfile structure, which is passed in REST request to the Web Engagement
Server. This structure is fulfilled in the ECMA Script block called FulfillEngagementProfile.

The following object is sent to the Browser:

ixnProfile = {
'data': data
}

Consider the structure of the data object:

var data = {
'profile': engageProfile,
'notification': notification_message

}

As you can see, there are two fields:

• profile — represented by the variable engagementProfile.
• The content of this variable will be considered below. You can change the content of this variable if

the SCXML strategy worked in the area of visitor identification.
• It is not recommended to change it if related items are not a part of your modified strategy.

• notification — represented by the variable notification_message.

The structure of the notification message is described in Chat Invitation Message.

Structure of the engagementProfile variable

Field name Field contents Description

engagementID UUID Auto-generated field which identifies
exactly one engagement attempt

visitID UUID
visitID of current session
(obtained from
HotLeadActionableEvent)

globalVisitID UUID
globalVisitID of current session
(obtained from
HotLeadActionableEvent)

webengagementInteractionID String
ID of "webengagement" OM
interaction associated with this
Engagement Profile

pageID String
PageID identified specific tab in
browser (obtained from
HotLeadActionableEvent)

category String List of categories specified in
HotLeadActionableEvent

Customizing the Engagement Strategy

Developer's Guide 26

https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Chat_Invitation_Message

Field name Field contents Description

rule String Name of rule, which triggered
this HotLeadActionableEvent

userID String

String, which allows to identify
authorized and recognized
visitors
For anonymous users it will be
null

userState String
State of current visit:
Anonymous, Recognized or
Authorized

firstName String First name of non-anonymous
user

lastName String Last name of non-anonymous
user

userData String

JSON string which represents
User Data, collected on
webengagement OM interaction
before submit and in the
Engagement Logic strategy

You can change the fields firstName, lastName and state in the case of additional work being
executed in the visitor identification area. In this case, the Web Engagement Server applies passed
values to the identity record of the specified engagementId.

Cancelling Engagement as a Result of the Engagement Logic
Strategy

Sending "cancel engagement" to Web Engagement Server
This is similar to sending start engage, request cancel engagement; it also uses the SCXML
State block to trigger a REST request to the Web Engagement Server:

Customizing the Engagement Strategy

Developer's Guide 27

https://docs.genesys.com/Documentation/GWE/latest/API/EngagementAPI#Cancel_Engagement_Attempt

The REST request cancels the engagement

Security (authentication) aspects are the same as described in the getRESTInfo.workflow.

Fulfilling "no engage" Data
no engage data is available in the script properties of the FulfillNoEngagementData block:

Customizing the Engagement Strategy

Developer's Guide 28

It contains six mandatory fields:

Customizing the Engagement Strategy

Developer's Guide 29

Cleaning Interaction Process

The cleaning process was responsible for removing stuck webengagement interactions. An
interaction can be stuck in one of the interaction queues for various reasons. For example:

• Visitor obtained engagement invitation. This means that the webengagement interaction was put into
the Webengagement_Accepted queue.

• Power-off appeared on visitor's host, so the answer (Accept, Reject, or Timeout) was not delivered to
Genesys Web Engagement.

In this case, you need to define the cleaning process, which is also built on the top of ORS strategies.

The cleaning interaction process also carries out some other important functions. It is responsible not
only for cleaning stuck interactions, but also for the entire life cycle of webengagement Open Media
interactions, including these functions:

• Detecting when an interaction should be moved into a specific Interaction Queue
• Moving an interaction through the Interaction Queues
• Detecting when an interaction should be terminated
• Terminating an interaction

The Cleaning process has 6 entry points:

• Webengagement_Engaged
• Webengagement_Accepted
• Webengagement_Missed
• Webengagement_Rejected
• Webengagement_Failed
• Webengagement_Timeout

Customizing the Engagement Strategy

Developer's Guide 30

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueEngaged
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueMissed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueRejected
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout

Note that the Webengagement_Qualified queue is no longer monitored by the cleaning process. It is
only used in the main process.

The cleaning process has two workflows:

• waitForDisposition.workflow
• clean.workflow

The waitForDisposition.workflow only works with the Webengagement_Engaged queue, while
clean.workflow works with all other queues and is extremely simple, as it only stops the interaction.

The "Wait for disposition" flow
This new workflow is dedicated to listening for User Data changes in webengagement interactions
and deciding which Interaction Queue the interaction should be moved to.

The interaction's disposition code (accept, reject, and so on) will be available in User Data as a key-
value pair with a key of dispositionCode. As soon as the dispositionCode key-value pair is
obtained, the result will be analyzed.

Customizing the Engagement Strategy

Developer's Guide 31

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueEngaged

Here are the valid values for dispositionCode and the queues their interactions are placed in:

Value Description Queue

accept The visitor has accepted the
engagement invite Webengagement_Accepted

cancel The visitor has cancelled the
engagement invite Webengagement_Rejected

timeout The engagement invite has timed
out Webengagement_Timeout

pageExit The visitor has exited the page Webengagement_Failed

Notes

• For all other disposition code values, the associated interaction will be placed in the
Webengagement_Failed queue.

• If the disposition code is not defined, the strategy will wait for the next User Data change or for a
timeout.

• Disposition codes values are case-sensitive. For example, on receiving a disposition code of Accept
(instead of accept) Web Engagement will place the associated interaction in the
Webengagement_Failed queue

• If a timeout occurs, the interaction will be placed in the Webengagement_Timeout queue.

Customizing the Engagement Strategy

Developer's Guide 32

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueRejected
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout

The "Cleaning" flow
The cleaning flow is quite simple: it stops the interaction. It operates with 5 terminal Interaction
Queues:

• Webengagement_Accepted
• Webengagement_Missed
• Webengagement_Rejected
• Webengagement_Failed
• Webengagement_Timeout

As soon as the interaction reaches one of these queues, it will be stopped by the strategy.

Propagating Data from Engagement Logic strategy into Chat
Routing Strategy

Use Case Description
In the routing process, it often makes sense to use business data from events that are produced on
the browser side. The Web Engagement Server automatically attaches this data to the User Data of
the webengagement interaction, so that it can be used in the Engagement Logic SCXML to make an
engagement decision. But you can also propagate it partially, or entirely, to the chat interactions, so
that it can be used in the chat routing strategies.

For example:

Customizing the Engagement Strategy

Developer's Guide 33

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueMissed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueRejected
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout

• Business data produced on the page provides information about language.
• This information is passed to the webengagement interaction as part of the User Data.
• During the execution of the Engagement Logic strategy, language information is extracted from the

User Data of the webengagement Open Media interaction and placed into the userData option of the
notification message.

• The notification message is processed by Genesys Widgets WebChat widget and userData is parsed
and attached to the chat media interaction initiated by Genesys Widgets.

• The Chat Routing strategy reads language information from the User Data of the chat interaction and
decides which group to route the chat interaction to.

The following are details of the described data propagation.

Attach UserData to the webengagement Interaction
All of the data contained in a data property of a triggered HotleadIdentifiedActionableEvent can
be attached to the User Data of a webengagement Open Media interaction and accessed by the
Engagement Logic SCXML strategy.

Fields attached to the User Data of a webengagement Open Media interaction are specified by the
different options in the [userData] section.

Control Copying UserData to the Chat Interaction
Starting from GWE 8.5.000.38, native GWE widgets are deprecated and Genesys Widgets are now the
primary integration point. This means that chat interactions are initiated by the WebChat widget. This
widget parses userData passed in the notification message from GWE and attaches it to the newly
created chat interaction.

The notification message is formed by the Engagement Logic SCXML Strategy or directly in the rules
file and then passed through the GWE Server to the browser. In addition, it is possible to implicitly
inject data available in the HotleadIdentifiedActionableEvent into the notification message. You
can control how HotleadIdentifiedActionableEvent data is injected into the notification message
by using the keysToPropagate option in the [userData] section of the Web Engagement Server
application.

This option has three modes:

• Copy all data into userData of the notification message
• Do not copy data
• Copy only specific keys from the data to the userData of notification message

The following table provides example values for the keysToPropagate option. In these examples, the
HotleadIdentifiedActionableEvent data contains the keys ORS Data, rule, strategy, some
data, key_N1, key_X.

Value of keysToPropagate Keys which will be injected into notification
message

all All keys are copied: ORS Data, rule, strategy, some
data, key_N1, key_X.

Customizing the Engagement Strategy

Developer's Guide 34

https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#scrollNav-6-2
https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatCommands#scrollNav-3
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChat
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#scrollNav-6-2
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#keysToPropagate
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#keysToPropagate

Value of keysToPropagate Keys which will be injected into notification
message

* All keys are copied: ORS Data, rule, strategy, some
data, key_N1, key_X.

key_* The key_N1, key_X keys are copied.
no No keys are copied.
rule, strategy The rule, strategy keys are copied.

blank or empty If the value of keysToPropagate is absent or has an
empty value, no keys are copied.

my_key1, ORS Data
The ORS Data key is copied. my_key1 is ignored
because it is not part of data of the
HotleadIdentifiedActionableEvent.

Accessing Pacing Information from the Engagement Logic
Strategy

In release 8.5, Web Engagement provides the Engagement Logic strategy with pacing data for the
chat channel. You can access pacing information in two ways:

• Through the consolidated channel capacity (measured in the number of "allowed" interactions).
• Through detailed information for each channel, which contains capacity (measured in the number of

"allowed" interactions) for each particular group in a channel.

Important
The pacing information available to the Engagement Logic strategy is different from
the information returned from the Pacing API. You should evaluate each type of pacing
information carefully before deciding how to use it.

Pacing information is added to the webengagement open media interaction User Data by the Web
Engagement Server. This information can then be read in the SCXML strategy — see Main Interaction
Process and Workflow for an example. The information is located (among other specific data, such as
the data provided in business events) in the User Data of the webengagement interaction, as
described above in the section on Accessing User Data from the webengagement Interaction and
Passing it into Sub-flows.

Understanding How the Pacing Algorithm Works
A dedicated pacing algorithm serves each particular group of agents, so if you have 2 chat-oriented
groups of agents, there will be 2 instance of the pacing algorithm (1 for each group).

The agent availability on the specific channel is calculated taking into account the following:

Customizing the Engagement Strategy

Developer's Guide 35

https://docs.genesys.com/Documentation/IW/8.5.2/Developer/CustomizeEngagement#Main_Interaction_Process_and_Workflow
https://docs.genesys.com/Documentation/IW/8.5.2/Developer/CustomizeEngagement#Main_Interaction_Process_and_Workflow
https://docs.genesys.com/Documentation/IW/8.5.2/Developer/CustomizeEngagement#acessinguserdata
https://docs.genesys.com/Documentation/IW/8.5.2/Developer/CustomizeEngagement#acessinguserdata

• The agent state on the particular media
• Capacity rules.

For example, consider an agent who has a capacity rule for 2 chat interactions. In this scenario, the
following statements are true:

• Agent is Ready and has no interactions in progress. In this case, the agent is treated as 2 Ready agents
with a capacity rule of 1.

• Agent is Ready and has one interaction in progress. In this case, the agent is treated as 1 Ready agent
with a capacity of 1.

• Agent is Ready and has two interactions in progress. In this case, the agent is treated as 0 Ready agents
with a capacity of 1.

• Agent is Not Ready (count of interactions in progress does not matter). In this case, agent is treated as
0 Ready agents with a capacity of 1.

The agent availability on the specific channel is also handled differently in the two main pacing
algorithm methods, SUPER_PROGRESSIVE and PREDICTIVE_B.

The SUPER_PROGRESSIVE method consumes the following major parameters:

• The number of Ready agents in the group.
• The number of pending (waiting for answer) interactions.
• HitRate - the percentage of accepted invitations compared to the general number of proposed

engagement invitations.

Important
It is important to remember that the values of these parameters are continuously
changing.

Consider the following example: There are 7 Ready agents (each with a capacity rule of 1), the
number of pending interactions is 5, and the HitRate is 0.05.

In this case, the pacing algorithm might predict the number of allowed interactions approximately as
(7 / 0.05 - 5) = 135.

Important
This example is intended to provide a basic idea of how the pacing algorithm works.
The finer details are more complex.

The PREDICTIVE_B method consumes the following major parameters:

• The number of logged in agents in the group.

Customizing the Engagement Strategy

Developer's Guide 36

• The Average handling time of interactions. For example, the average duration of a chat session with
visitors.

• HitRate - the percentage of accepted invitations compared to the general number of proposed
engagement invitations.

Important
It is important to remember that the values of these parameters are continuously
changing.

This algorithm is more complex than SUPER_PROGRESSIVE, but the general information described for
SUPER_PROGRESSIVE also applies to PREDICTIVE_B: The number of 'allowed' interactions will
significantly exceed the number of Logged In agents (depending, first of all, on the HitRate
parameter).

Consolidated Pacing Information by Channel
Capacity for the chat channel is available in the pacing_chatCapacity field.

For example:

pacing_chatCapacity:12
…

Detailed Pacing Information
Detailed pacing information is available as a nested JSON object with the following structure:

pacing: {
channels :
[

{
name: <name of this channel>,
groups:
[

{
name: <name of this group>,
capacity: <count of allowed interactions for this group>,
reactiveTrafficRatio: <portion of inbound chat traffic that should be 'left' in

the system>
},
...

],
capacity: <count of allowed interactions for this channel>

},
...

]
}

You can access detailed information in the Engagement Strategy SCXML as follows:

var pacingData = JSON.parse(_genesys.ixn.interactions[system.InteractionID].udata.pacing);
var currentChannel = undefined;

Customizing the Engagement Strategy

Developer's Guide 37

var channel = undefined;
var chatChannel = undefined;

for (channel in pacingData.channels) {
currentChannel = pacingData.channels[channel];
if (currentChannel.name=='chat') {

chatChannel = currentChannel;
break;

}
}

var englishChatGroupCapacity = undefined;
var group = undefined;
var currentGroup = undefined;

if (chatChannel != undefined) {
for (group in chatChannel.groups) {

currentGroup = chatChannel.groups[group];
if (currentGroup.name=='English Skill Group') {

englishChatGroupCapacity = currentGroup.capacity;
break;

}
}

}

Example of Using Pacing Information
Agents

Consider the following scenario where there are two chat groups with agents in each group:

• English Language Chat Group = Adam (logged in and ready) and Anna (logged in, not ready)
• Dutch Language Chat Group = Bart (NOT logged in) and Berta (NOT logged in)

The following group configuration options are set on the Web Engagement Cluster application:

• chatGroups = English Chat Group;Dutch Chat Group

Customers

On the customer-facing website, two events are triggered simultaneously:

• Chris triggers a Hot Lead event on an English page.
• Merijn triggers a Hot Lead event on a Dutch page.

Pacing information

When events are triggered simultaneously, pacing information is the same. In this scenario, the
SUPER_PROGRESSIVE algorithm is used and the following parameters were true at the moment the
events were triggered:

• English Chat Ready agents: 1
• Dutch Chat Ready agents: 0

Customizing the Engagement Strategy

Developer's Guide 38

https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#chatGroups

• HitRate: 0.2
• Pending engagement invites: 0
• Reactive traffic is turned off

In this case, the results might look like this:

...
chatChannelCapacity : 5,
pacing: {

channels :
[

{
name: "chat",
groups:
[

{
name: "English Language Chat Group",
capacity: 5,
reactiveTrafficRatio: 0

},
{

name: "Dutch Language Chat Group",
capacity: 0,
reactiveTrafficRatio: 0,

}
],
capacity: 5

}
]

}

Possible Engagement Logic SCXML flows

In this scenario, the following SCXML flows are possible for the two customers, Chris and Merijn:

• Chris
We can extract the capacity for the "English Language Chat Group" (5) from the pacing data.

In the decision workflow, it is possible to engage Chris on the chat channel. It is also possible to
show him a modified invitation, where he can explicitly choose chat or, for example, email.

• Merijn
We can extract the capacity for the "Dutch Language Chat Group" (0) from the pacing data.

In the decision workflow, it is not possible to engage Merijn on the chat channel.

Customizing the Engagement Strategy

Developer's Guide 39

	Developer's Guide
	Customizing the Engagement Strategy

