
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Controlling the Chat Session

API Reference

4/29/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Controlling the Chat Session

Commands
• About chat session

commands
• session.getTranscript
• session.sendMessage
• session.sendTyping
• session.leave

Events
• About chat session events
• session.onError
• session.onAgentConnected
• session.onAgentDisconnected
• session.onMessageReceived
• session.onAgentTyping
• session.onInterrupted
• session.onContinued
• session.onSessionEnded

Miscellaneous
• session.isAgentConnected

Chat session commands

Session commands are used for client-to-server communication: sending commands to chat server.
All commands receive their arguments as a single "options" object, similar to startSession and
restoreSession. For example,

session.getTranscript({fromIndex: 0});

// instead of
session.getTranscript(0);

All exceptions to this rule are documented here.

Returned Promises
All of the commands return a "promise" object with two properties: done and fail.

Some of the "done" callbacks can be used to obtain specific information provided as the result of
command execution. If that is the case, the information is specifically documented for particular
commands. Most of the time however these callbacks serve as a way to simply acknowledge that the
command was successfully executed. In this case, there is no specific documentation for the
corresponding command callback.

"fail" callbacks can be used to catch errors that happen during command execution and all receive an
object with exact same structure:

Controlling the Chat Session

API Reference 2



event.error.code Code specifying the particular error

event.error.description Description of the error (English is default
language).

There is no specific documentation for each command's "fail" callback.

Here is an example of general command usage:

chat.<ABSTRACT_CHAT_COMMAND>(<COMMAND_OPTIONS>).done(function(<POSSIBLE_RESULTS>) {
// Command executed successfully.

}).fail(function(event) {
// Something went wrong. See event.error.code and event.error.description.

});

session.getTranscript

Description

A low-level method used to obtain the transcript for the current session.

Important
No playback is assumed.

Options

Parameter Type Default value Mandatory Description

fromIndex number 0 No

0-based index to
retrieve chat
transcript from a
certain position.
0 means obtaining the
entire transcript.

"done" callback

Receives the transcript in serialized JS form.

Parameter Type Description

event.transcript Array

Array of JS objects representing
transcipt events.
Sample:

[
{

Controlling the Chat Session

API Reference 3



Parameter Type Description

type: 'AgentConnected',
party: {id: 2 /*ID of

this party unique for THIS
chat session*/, type:
'Agent', name: <name of an
agent>},

index: <index of THIS
message in chat transcript>,

timestamp: <UTC
Timestampt>

},
{

type: 'MessageReceived',
party: {id: 1, type:

<type of party which sent
message: 'Client' or 'Agent'
or 'External'>, name: <name
of party>},

content: {text: <text
which was sent>, type: <type
of text: 'text' or 'url'>},

index: <index of THIS
message in chat transcript>,

timestamp: <UTC
Timestampt>

},
{

type:
'AgentDisconnected',

party: {id: 2 /*ID of
this party unique for THIS
chat session*/, type:
'Agent', name: <name of an
agent>},

index: <index of THIS
message in chat transcript>,

timestamp: <UTC
Timestampt>

},
{

type: 'SessionEnded',
reason: {code: <code of

reason: 1: by leave request,
2 - by an agent, 3 - by
error>, description:
<default description>},

timestamp: <UTC
Timestampt>

}
]

session.getTranscript().done(function(event) {
console.log('Full transcript of current chat session: ', event.transcript);

});

Controlling the Chat Session

API Reference 4



session.sendMessage

Description

Send a message to Chat Server.

Options

Parameter Type Default value Mandatory Description

type string 'text' No

Type of message:
"text" or "url"
If absent, "text" will be
used.

message string undefined Yes Message to be
sent

Since sending a "text" message is a much more frequent operation than sending a "url", a shortcut is
available; you can pass a string with message contents directly to the method instead of the options
object.

// This
session.sendMessage({ type: 'text', message: 'foobar' });

// is equivalent to this:
session.sendMessage('foobar');

session.sendTyping

Description

Notify Chat Server that client started or stopped typing in chat session.

Options

Parameter Type Default value Mandatory Description

isTyping boolean true No

Boolean (true or
false) which
specifies exact
meaning of this
command

• true — visitor
started typing
(or continues
typing) in chat
session.

• false — visitor
stopped typing

Controlling the Chat Session

API Reference 5



Parameter Type Default value Mandatory Description

in chat session
(typically a
stop or pause
in typing for a
certain
duration, for
example — 5
seconds)

session.leave

Description

This command is used to complete chat session in Chat Server by request from the visitor side.

Options

This command does not take parameters.

Chat session events (callbacks)

You can pass callback functions into a chat session that will be called each time a chat context is
updated, or whenever other changes take place within the session (for example, agent joins/leaves,
Chat Server stops responding, and so on). Another use for session events is in a "playback" scenario,
when a chat session is restored in a new browser context (for example, after page reload/navigation).

To add a callback, pass the callback function directly to the corresponding event method. Most of the
callbacks receive an event object with properties containing event details. For example,

session.onError(function(event) {
// event.error.code
// event.error.description

});

session.onError

This event will be sent in reaction to an unexpected error occurring during the flow of the chat
session.

Additionally, this event is sent when the chat component needs to notify clients about unusual cases.
For example:

Controlling the Chat Session

API Reference 6



• Chat Server stops responding and the component tries to restore the session on another server.
• A chat session is restored on another instance of Chat Server.
• A channel to the Chat Server is opened, but the server is not yet ready to send/receive operations.

Another important scenario for this callback — it is triggered if an incorrect set of parameters (or
invalid parameter value) is detecing in an incoming "raw" event. For example, if the content of a
message in a received message event is not a string.

Event structure

Parameter Description
event.error.code Code specifying the particular error
event.error.description Default description of error

Tip
For a list of possible error codes, see Error Codes.

session.onAgentConnected

Executed when an agent joins a chat session.

Event structure

Parameter Description

event.party.name String that represents name of the agent joined to
the chat session

event.timestamp Number

event.party.id

Theoretically, the agent name and visitor name
could be the same (especially since the visitor
might be filling out the the visitor name). To handle
this scenario, this id is used to distinguish between
agent and visitor names.

event.index Index of this message in chat transcript

event.restored

Optional.
If present and true, it means that the event was restored during
session restoration (in other words, event was already reported
to the consumer previously).

Controlling the Chat Session

API Reference 7



session.onAgentDisconnected

Executed when agent leaves chat session, for any of these possible reasons:

• Session closes because of a logout request from the Chat Widget side.
• Agent leaves the conference.
• Agent transfers the session to another agent.
• agent's desktop stops responding.
• Chat server stops responding and session is restored on the new chat session.

Event structure

Parameter Description
event.timestamp Number

event.party.name String that represents the name of the agent
leaving chat session.

event.party.id String with ID of party in chat session.
event.index Index of this message in chat transcript

event.restored

Optional.
If present and true, it means that the event was restored during
session restoration (in other words, was already reported to the
consumer previously).

session.onMessageReceived

Executed when a new message appears in the chat transcript (or in the context of the "playback"
process during chat session restoration).

Important
Messages sent by session.sendMessage are "returned back" via this event as well.

Event structure

Parameter Description

event.index 0-based index of this message in chat session
transcript

event.timestamp Number
event.content.text String with message added to the chat context

Controlling the Chat Session

API Reference 8



Parameter Description

event.content.type.url

OR event.content.type.text

One of these is true depending on message type.
Usage example:
session.onMessageReceived(function(event) {

if (event.content.type.url) {
// this is "url" message

} else if (event.content.type.text) {
// this is "text" message

}
});

event.party.id

Theoretically, the agent name and visitor name
could be the same (especially since the visitor may
be the one filling out the visitor name). To handle
this scenario, this ID is used to distinguish between
agent and visitor.

event.party.type.agent

OR

event.party.type.client
OR

event.party.type.external OR

event.party.type.supervisor

One of these is set to true, depending on who
sends the message.

• agent — message is sent by the agent;
• client — message is sent by the visitor (in other

words, the actual user of this API via
session.sendMessage() )

• external — message is sent by the system (for
example, as configured in the routing strategy)

• supervisor — message is sent by the
supervisor

event.party.name String with name of party.

event.restored

Optional.
If present and true, it means that the event was restored during
session restoration (in other words, event was already reported
to the consumer).

session.onAgentTyping

Executed when agent starts, continues, or stops typing.

Event structure

Parameter Description
event.party.id ID of party in chat session.
event.party.name Name of agent.

event.isTyping • true — when agent starts (or continues) typing;

Controlling the Chat Session

API Reference 9



Parameter Description

• false — when agent stops typing.

session.onInterrupted

Executed when a connection to the server is interrupted (for example, a network interruption or
server is down). If default transport is used, chat tries to automatically reconnect and fires
session.onContinued when the connection is restored.

Callbacks receive no event object.

Important
This event duplicates the session.onError event with the "150" (network
interruption) Error code. Genesys recommends that you use
session.onInterrupted/onContinued if you want to track the connection status.
The "150" error code is deprecated and might be removed in future versions.

session.onContinued

Executed only after session.onInterrupted when the connection to the server is restored.

Callbacks receive no event object.

session.onSessionEnded

Executed when the client drops out of a chat session due to one of the following reasons:

• Logout request.
• Chat session is finished from the agent's side.
• Chat Server stops responding, resulting in a timeout during which the session is not restored.

Parameters

Parameter Description
event.reason.error

OR
event.reason.agent

One of these is set to true depending on the reason

• error — a major error occurs (for example, Chat

Controlling the Chat Session

API Reference 10



Parameter Description

OR event.reason.leaveRequest

Server stops responding)
• agent — agent ends the session;
• leaveRequest — visitor sends a session.leave

command and it was successful

Miscellaneous methods

session.isAgentConnected

Provides a convenient way to synchronously determine if at least one agent is present in the session.

Returns boolean (true or false).

Controlling the Chat Session

API Reference 11


	API Reference
	Controlling the Chat Session

