
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Chat Widget JS API

API Reference

4/28/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Chat Widget JS API
• 1.1 Deprecation notice
• 1.2 How the API is Structured
• 1.3 Browser Support and Cookies
• 1.4 Getting Access to Chat Session API
• 1.5 Customizing the User Interface
• 1.6 Localization

API Reference 2



Chat Widget JS API

Deprecation notice

• Starting with the 8.5.000.38 release of Genesys Web Engagement, Genesys is deprecating the Native Chat and
Callback Widgets—and the associated APIs (the Common Component Library)—in preparation for discontinuing
them.

This functionality is now available through a single set of consumer-facing digital channel APIs that are part of Genesys Mobile
Services (GMS), and through Genesys Widgets, a set of productized widgets that are optimized for use with desktop and mobile
web clients, and which are based on the GMS APIs.

Genesys Widgets provide for an easy integration with Web Engagement, allowing you to proactively serve these widgets to your
web-based customers.

Important
Although the deprecated APIs and widgets will be supported for the life of the 8.5 release of Web
Engagement, Genesys recommends that you move as soon as you can to the new APIs and to Genesys
Widgets to ensure that your functionality is not affected when you migrate to the 9.0 release.

• Note that this support for the Native Chat and Callback Widgets and the associated
APIs will not include the addition of new features and that bug fixes will be limited to
those that affect critical functionality.

How the API is Structured

The Chat Widget JS API is made up of the three main methods:

• startChat—Use this method as the entry point for starting a chat session.
• restoreChat—Use this method to restore the chat widget after page reload when working in "embedded"

mode (the chat window is rendered on a website's page, not in a separate brower window)
• startChatInThisWindow—Use this method for chat sessions appearing in a separate dedicated HTML

page. For cases where chat is started in "popup" mode (chat is rendered in a separate browser
window).

Additional methods are also available since chat version 850.6.0, see Additional Methods.

Chat Widget JS API

API Reference 3

https://docs.genesys.com/Documentation/GMS/latest/API/Welcome
https://docs.genesys.com/Documentation/GWE/latest/Developer/MediaIntegration


Browser Support and Cookies

Browser Support
Chat widget fully supports IE8+, Firefox, Safari and Chrome desktop browsers. On mobile, Safari on
iOS 7 and Google Chrome on latest Android are officially supported, though chat may properly
function in other browsers / OSes. Notes on IE7 support:

• Chat widget depends on JSON parsing functionality. To enable it in IE7, you have to use a third-party
library (for example, json2.js by JSON creator Douglas Crockford). Note that this kind of library might be
already included if you use chat as part of another product (like Web Engagement).

• Built-in UI uses data:uri technology for images, which is not supported by IE7. This is why the minimize
and close buttons and the Genesys logo are not visible in this browser. You have to customize the CSS if
you need chat support in IE7.

Note on cookies
The Chat Widget uses a few cookies that allow it to function properly across multiple pages / browser
windows. Also, to function properly across different subdomains, chat widget writes cookies to the
"root" domain of your site. For example, if your site's domain is www.example.com.au, the cookies
are written to the .example.com.au domain, which makes them available to all other subdomains of
your site.

Getting Access to Chat Session API

Embedded Mode

Getting access to the Chat Session API in embedded mode

If you want to ensure consistent access to theChat Session API in "embedded" mode, you need to
accommodate two done callbacks: one for startChat and restoreChat.

For example,

function handleChatSession(session) {
// Use session API here to send messages, subscribe to events etc.

}

chat.restoreChat(options).done(handleSession)
.fail(function() {

chat.startChat(options).done(handleSession);
});

// Example is artificial in that it starts new chat unconditionally, if it has not been
started yet.

Chat Widget JS API

API Reference 4



// See documentation below for more elaborate examples of working with chat start/restoration.

Popup Mode

Getting access to the Chat Session API in popup mode

To get access to the Chat Session API in "popup" mode, you have to accommodate the done callback
for the startChatInThisWindow method in the separate HTML page for the widget.

For example,

myChatWidget.html

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Genesys Chat</title>

</head>
<body>
<script src="js/chatWidget.js"></script>
<script>

chat.startChatInThisWindow().done(function(session) {
// Use session API here

});
</script>
</body>
</html>

...and then pass the URL of this HTML page to the startChat method on your website's page:

chat.startChat({
embedded: false,
widgetUrl: 'http://example.com/myChatWidget.html',
// ...

});

Customizing the User Interface

There are different options for customizing the chat widget UI — from style modifications via CSS to
complete disabling, with JavaScript-based customization in between.

Chat Widget JS API

API Reference 5



Template-based

Template-based Customization

Important
Make sure to read about the templates option first.

You can use a template-based customization approach, which boils down to editing plain HTML, if any
of the following are true:

• You want to modify the structure of the widget.
• You want to add content or CSS classes to the widget.
• You do not want to use JavaScript to work with the DOM.

The basic algorithm for template-based customization is to do the following:

1. Get the HTML with default templates. You can get the default templates from:
• Web Engagement Server 8.5.1 at http(s)://<WE_HOST>[:<WE_PORT>]/server/api/resources/

v1/chatTemplates.html.
• Web Engagement Server 8.5 at http(s)://<WE_HOST>[:<WE_PORT>]/server/resources/

chatTemplates.html.
• Web Engagement Frontend Server 8.1.3 at

http(s)://<FRONTEND_HOST>[:<FRONTEND_PORT>]/frontend/resources/chatTemplates.html.

2. Modify the templates.

Tip
All localization data is available inside your templates as a data.nls object.

Important
To keep all functionality intact, Genesys recommends you do not remove elements or CSS classes when
editing the chat templates.

3. Insert the modified template(s) into your page's HTML code somewhere between the <body> and
</body> tags.

Example HTML page:

Chat Widget JS API

API Reference 6



<!DOCTYPE html>
<html lang="en">
<head>

<title>My Page</title>
[GENESYS INSTRUMENTATION]

</head>
<body>
<h1>This is my page.</h1>
<p>It has some content.</p>

<script type="text/html" data-gwc-template="embeddedWindow">
[MODIFIED TEMPLATE CONTENT]

</script>
<script type="text/html" data-gwc-template="chatMessage">

[MODIFIED TEMPLATE CONTENT]
</script>
</body>

Starting with chat versions 850.6.0, chat automatically recognizes and uses the template from
the data-gwc-template attribute. If using an earlier version, see the next step.

4. Another option is to host the modified HTML templates somewhere accessible using HTTP. If you choose
to download templates over the network, configure chat to use downloaded templates by passing the
URL of your HTML file to the templates option of your chat configuration.

Important
If you use both in-page templates and downloaded templates, the downloaded templates take priority.

Tip
You can use the Web Engagement Server server to host static resources. This is especially useful for resources
like chat templates because the server is configured with JSONP support. For details, see Hosting Static
Resources - JSONP.

Chat Widget Template System
The chat widget templates are included in the chatTemplates.html file. This file is not a static HTML
file, but a collection of small client-side templates wrapped in <script>tags. To learn more about this
templating technique, see http://en.wikipedia.org/wiki/JavaScript_templating. The chat widget
template system is based on the popular lodash/underscore templates: http://lodash.com/
docs#template, http://underscorejs.org/#template.

The chat widget template uses 5 HTML-based templates:

• chatRegistration for the built-in registration form
• chatTyping for the "Agent is typing" message

Chat Widget JS API

API Reference 7

https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#JSONP
https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#JSONP


• chatMessage for all other messages in a chat
• chatView for the basic structure of the chat widget
• embeddedWindow for the "chat window" wrapper in "embedded" mode

These templates are included in the chatTemplates.html file, which has the following structure:

<!-- embeddedWindow.html -->
<script type="text/html" data-gwc-template="embeddedWindow">

...
</script>

<!-- chatRegistration.html -->
<script type="text/html" data-gwc-template="chatRegistration">

...
</script>

<!-- chatView.html -->
<script type="text/html" data-gwc-template="chatView">

...
</script>

<!-- chatMessage.html -->
<script type="text/html" data-gwc-template="chatMessage">

...
</script>

<!-- chatTyping.html -->
<script type="text/html" data-gwc-template="chatTyping">

...
</script>

Important
To keep all functionality intact, Genesys recommends that you do not remove
elements or CSS classes when editing the chat templates.

Customization Examples

• Substituting the Genesys Logo with a Custom Image
• Adding Extra Content to the Chat Widget
• Displaying a character counter in the message area
• Replace Skip Registration button with Exit button
• Automatically expand text area based on user input

CSS-based

Chat Widget JS API

API Reference 8



CSS-based Customization

The chat widget JavaScript contains all of the CSS needed to render chat, which is automatically
added to the <head> section of the web page when chat is initialized.

You can override any of the default styles by adding a <link> or <style> tag with CSS rules for the
chat widget (since the default CSS is added to the beginning of <head>, your custom styles will
always take higher priority).

Tip
To see exactly what you can override, use the developer tools native to most web
browsers. Currently, we do not document our CSS and do not guarantee backwards
compatibility for future versions of chat.

Important
To avoid potential CSS conflicts, all of chat widget's class names are prefixed with
"gwc-".

Customization Examples

• Modifying the Styling of the Chat Messages
• Adding Extra Content to the Chat Widget

JavaScript-based

JS-based Customization

In case you want to modify more than just the style (look and feel) of the chat, but also the logic of
the widget, you can use "hooks" for customizing the built-in UI. See the ui option for details.

Most of the time, you can make additions or modifications to the chat widget layout using the
template-based customization. You might choose JavaScript-based customization over template-
based if:

• The customization is small enough so that the DOM-related work can be easily done with JavaScript
(provided you are experienced with JavaScript).

• The customization impacts not only the layout, but also the logic (for example, if you need additional
event handlers).

Chat Widget JS API

API Reference 9



Complete override
It is possible to disable the built-in UI and implement your own based on the session API:

startChat({
//...
ui: false,

}).done(function(session, options) {
// Implement your own UI using session API

});

Customization Examples

• Using the ui.onBeforeMessage Hook to Add Desktop Modifications
• Displaying a confirmation alert when users close the chat widget
• Implementing a client-side chat session timer
• Inserting a line break with Shift+Enter
• Automatically opening a URL pushed by an agent
• Showing the number of unread messages in a minimized chat widget
• Showing an agent typing notification in the minimized chat widget
• Displaying a character counter in the message area
• Replace Skip Registration button with Exit button
• Automatically expand text area based on user input

Localization

The Chat Session API (startChat and restoreChat methods particularly) includes an optional
localization parameter that accepts one of the following:

• JavaScript object with localization data
• Function that returns an object with localization data
• Function that accepts a callback and calls that callback with an object containing localization data
• URL of and external JSON file with the localization data

Localization data is fetched or passed before chat initialization and merged with the default
localization.

Important
For security reasons, in "popup" mode (separate window) data is fetched via AJAX (not
JSONP), which means that the chat widget html file and the localization file
must be on the same domain. Otherwise (or in case of invalid URL) an error is

Chat Widget JS API

API Reference 10



thrown and the chat silently fails.
In "embedded" mode, the localization data is always fetched using JSONP. This lets you host the data on
another domain, separate from the site itself. You can use Web Engagement server to host the content for
you, as they both support JSONP out-of-the-box. See GWE Architecture—Hosting Static Resources.

// This will work: widget and l18n are on same domain: example.com
chat.startChat({

widgetUrl: 'http://example.com/chatWidget.html',
localization: 'http://example.com/chatLocalization.json',
embedded: false

});

// This won't work: they are on different domains
chat.startChat({

widgetUrl: 'http://example.com/chatWidget.html',
localization: 'http://another-domain.com/chatLocalization.json',
embedded: false

});

// This will work: files are on different domains, but chat is started in
embedded mode,
// so JSONP is used (here we use Genesys Web Engagement server for JSONP)
chat.startChat({

widgetUrl: 'http://example.com/chatWidget.html',
localization: 'http://<GWE_SERVER>/server/api/resources/v1/

chatLocalization.json',
embedded: true

});

The passed localization object or external JSON file may contain any of the fields listed below. Fields
that are not present will be taken from built-in default localization.

Built-in localization

{
"chatTitle": "Genesys Chat",
"chatWelcome": "Hello! Next available customer representative will be with you shortly.",
"defaultUsername": "User",
"defaultAgentName": "Representative",
"ownUsername": "You",
"chatEnded": "Chat session ended",
"agentJoined": "Representative {name} has joined the session",
"agentLeft": "Representative {name} has left the session",
"agentTyping": "{agentName} is typing...",
"serverStopped": "Connection to chat has been interrupted. Trying to restore...",
"serverUnreachable": "Chat is unavailable now. Please try again later.",
"networkInterrupted": "Connection to chat has been interrupted. Trying to restore...",
"networkRestored": "Connection restored.",
"unknownServerError": "Chat is unavailable now. Please try again later.",
"chatSessionExpired": "Chat session has expired.",
"regFirstName": "First Name:",
"regLastName": "Last Name:",
"regEmail": "Email:",
"regSubmit": "Start Chat",
"regSkip": "Skip Registration",

Chat Widget JS API

API Reference 11

https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#Hosting_Static_Resources


Built-in localization

"regWelcomePart1": "Please enter few details about you, and press Start Chat button.",
"regWelcomePart2": "Next available customer representative will be with you shortly.",
"regErrorRequiredField": "\"{field}\" is a required field",
"regErrorInvalidEmail": "Please enter a valid email address",
"leaveSessionPrompt": "You are going to leave chat session."

}

Procedure: Step-by-step instruction for using an external
localization file

Steps

1. Create a localization file with all / some of the fields overridden.
For example suppose you want to have chat title and welcome message in Russian:
{

"chatTitle": "Наш уютный чат",
"chatWelcome": "Здравствуйте! Наш представитель будет с вами в ближайшее время."

}

Copy and paste the code above (or craft your own) and save it as .json file.
2. We recommend that you check to make sure that the syntax of the JSON file is correct. You can

do this online, using this service: http://jsonlint.com/
3. Host the file on any server. If you want to support localization for chat in "embedded" mode, you

have to configure JSONP support on the server.

Important
Genesys Web Engagement supports serving JSONP. See GWE Architecture—Hosting Static Resources.

4. Use the URL for this file as the value of the localization option in startChat.
chat.startChat({

localization: 'http://my-server.com/my-chat-localization.json',
// other parameters

})

5. After starting the chat, you should see something like this (sample is in "embedded" mode):

Chat Widget JS API

API Reference 12

https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#Hosting_Static_Resources


6. Troubleshooting
If localization fails to load or parse, the chat will not start, signaling that something went wrong.
To see what went wrong you will have to:
• Enable "debug" mode:

chat.startChat({
localization: 'http://my-server.com/my-chat-localization.json',
debug: true,
// other parameters

});

• Enable browser developer tools (for example, in Chrome and most of other browser you can
press F12 to launch).

• You should see something like this:

Chat Widget JS API

API Reference 13



Here you can see that localization was not found on the server (response 404).

And here is another example of what you can see if JSON is either invalid or improperly configured:

Chat Widget JS API

API Reference 14


	API Reference
	Chat Widget JS API

