
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Business Events DSL

API Reference

5/6/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Business Events DSL

Contents

• 1 Business Events DSL
• 1.1 Description
• 1.2 <properties> (mandatory)
• 1.3 <events>
• 1.4 <event>
• 1.5 <trigger> (mandatory child element)
• 1.6 <val>

Business Events DSL

API Reference 2



Description

The monitoring rules for each Genesys Web Engagement application you create are defined in a
domain specific language (DSL). The DSL specifies the document elements to monitor, the events to
send to the Web Engagement Server, and the data to include with those events. For details about
how these events are structured, see Events Structure.

<?xmlversion="1.0"encoding="utf-8"?>
<properties>

<events>
<event name="AddToCart">

<trigger name="AddToCartTrigger" element="img.bdt-addToCart" action="click"
url="http://www.MySite.com/" count="1">

<val name="productName"
value="$(event.target).parents('div.hproduct').find('h3.name a').text()"/>

<val name="productModel"
value="$(event.target).parents('div.hproduct').find('span.model')"/>

<val name="productSKU"
value="$(event.target).parents('div.hproduct').find('span.sku').text()"/>

<val name="productPrice"
value="$(event.target).parents('div.hproduct').find('h4.price').text()"/>

</trigger>
</event>

<event name="Search">
<trigger name="GoSearchClick" element="td#gobutton input" action="click"

url="http://www.MySite.com" count="1"/>
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>
</events>

</properties>

The Business Events API includes all the DSL elements that you can use to define business events.
For example and details about how to implement these events, see Managing Business Events. When
you modify the DSL, Genesys recommends that you use InTools, an application included with Genesys
Web Engagement that helps you create, validate, and test your changes to the DSL.

<properties> (mandatory)

The <properties> element is the main root element of the DSL file. It has an optional debug attribute
and a mandatory <events> child.

debug (optional) - Deprecated in release 8.1.2

The debug attribute enables debugging in the browser by setting its value to the JavaScript Boolean
true. The debugging information opens a pop-up window and shows the JSON serialized event data
for the business events before they are sent to the Web Engagement Server.

Note: In some browsers, using the debug attribute can affect the performance of the Web
Engagement Server by delaying the event dispatch.

Business Events DSL

API Reference 3

https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/User/InTools


<events>

The <events> element contains a list of all the business events that can be generated during
monitoring. These business events are captured in the <event> child element.

<event>

The <event> element contains mandatory id and name attributes, and an optional condition
attribute. An <event> must also have one or more <trigger> children, which define the conditions
that must be matched to generate an event.

Note: If the <trigger> child is omitted, the event will never be generated.

name (mandatory)

The name is sent to the Web Engagement Server. A DSL file may contain several <event> elements
with identical values for name, but with different values for id. For example, if your website includes a
search form, you can submit this form by clicking on the 'search' button or by pressing the 'enter' key.
Inside the browser, the click and key press events are clearly distinct, but are not relevant for the
Web Engagement Server.

The following example shows how to create two business events which return the same event name
to the Web Engagement Server:

<?xmlversion="1.0"encoding="utf-8"?>
<properties>

<events>
<event name="Search">

…
</event>
<event name="Search">

…
</event>

</events>
</properties>

condition (optional)

The condition attribute is a JavaScript Boolean expression. If it is present, the event’s triggers will
be installed in the page if the condition evaluates to true.

The following example creates a business event with a timer which can be triggered only if the text
inside the <h1> tag on the page is "Compare":

<event name="InactivityTimeout4CompareProducts" condition="$('h1').text() == 'Compare'">
<trigger name="InactivityTimeout4CompareProductsTrigger" element="" action="timer:10000"

type="timeout"
url="http://www.MySite.com/site/olspage.jsp" count="1"/>

…
</event>

Since the event (in this case ‘InactivityTimeout4CompareProductsEvent’) will never be generated if

Business Events DSL

API Reference 4



its triggers are not installed, the condition attribute allows you to place conditions on any feature of
the environment that can be tested by a JavaScript Boolean expression, in order to monitor and
generate events.

postcondition (optional)

A postcondition attribute is similar to a condition except it is evaluated after the business event is
already generated. If it is present, the event will be sent to the Web Engagement Server if the
postcondition evaluates to true.

<event name="InactivityTimeout4CompareProducts" postcondition="$('h1').text() == 'Compare'">
<trigger name="InactivityTimeout4CompareProductsTrigger" element=""

action="timer:10000" type="timeout"
url="http://www.MySite.com/site/olspage.jsp" count="1"/>

…
</event>

<trigger> (mandatory child element)

The <trigger> element defines the conditions that must be matched to generate business events, as
well as the data to be included with the event. If several triggers are part of the event definition, they
must all match to raise the business event. If each trigger matches a different DOM event in the
browser, then the set of triggers specifies a series of web events that must occur before the parent
business event is submitted to the Web Engagement Server.

The <trigger> element has mandatory name, element, and action attributes, and optional url and
count attributes. It can have and 0 or more <val> children.

name (mandatory)

This attribute specifies the name of the trigger. It must be unique in the parent <event> element. If
an <event> element has multiple triggers, they must all have different names.

element (mandatory)

The element attribute specifies the document's DOM element to which the trigger should be
attached. The value of element should be a jQuery selector. For details on jQuery selectors, see
http://api.jquery.com/category/selectors/. The element can have an empty value.

action (mandatory)

The action specifies the DOM event to track. The trigger is matched if the DOM event specified by
the action is targeted at the DOM element specified by the element attribute. The value of action
can be set to any JavaScript event type, such as focus, mouseover, or resize. In addition to the
standard DOM events, the DSL supports the following two values: timer and enterpress.

timer

If you set action to timer, this allows triggers to be based on elapsed time. The amount of time is

Business Events DSL

API Reference 5



specified by appending the number of milliseconds to timer, separated by a colon (":"). For example,
action=timer:10000", specifies a 10-second timer.

When action="timer:nnn", you must provide an additional attribute, type, to specify how the timer
works. You can set type to either timeout, notyping, or nomove. If type="timeout", the timer
interval begins after the page is loaded.

In the following example, the "InactivityTimeout" event is generated once the user has been inactive
for 10 seconds:

<event name="InactivityTimeout">
<trigger name="InactivityTimeout" element="" action="timer:10000" type="nomove"

url="http://www.genesys.com" count="1"/>
<val name="products" value="…” />

</event>

If type="timeout" were specified instead, the event would be generated 10 seconds after the page
was loaded.

enterpress

If you set action to enterpress, this event signals that the user has pressed the "enter" key. This
action is more specific than the standard DOM keypress event, which is raised when any key is
pressed. In the following example, the user enters text in a search box and presses the "enter" key
(as opposed to clicking the "search" button).

<event name="Search">
<trigger name="SearchKeyDown" element="input.searchfield:text" action="enterpress"

url="http://www.MySite.com" count="1"/>
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>

type (mandatory when action="timer:nnn")

The type attribute is mandatory when action="timer:nnn". The type can have a value of either
timeout, notyping, or nomove, which specifies how the timer action works.

If type="timeout", the timer interval begins after the page is loaded. If type="nomove", the timer
resets each time the user moves the mouse. If type="notyping", the timer resets each time the
browser registers keyboard input for the element specified in the element property or for any
element on the page, if this property is not specified. (Note that for this type, moving the mouse will
not reset the timer.)

In the following example, the "InactivityTimeout" event is generated after the user has been inactive
for 10 seconds.

<event name="InactivityTimeout" condition="$('h1').text() == 'Compare'">
<trigger name="InactivityTimeout" element="" action="timer:10000" type="nomove"

url="http://www.MySite.com/site/olspage.jsp" count="1"/>
<val name="products" value="…" />

</event>

If type="timeout" was specified instead, the event would be generated 10 seconds after the page
was loaded.

Business Events DSL

API Reference 6



url (optional)

The url attribute defines the URL of the specific page that raises the business event. The business
event is not submitted if the current document's URL does not match the URL parameter. This
attribute can contain a JavaScript regular expression for complex use cases, as shown in the following
example:

<event name="ExampleEvent">
<trigger name="SimpleUrlTrigger" element="" action="timer:10000" type="timeout"

url="http://www.genesys.com/customer-experience" count="1"/>
<trigger name="RegexpUrlTrigger" element="" action="timer:10000" type="timeout"

url="solutions|platform-services" count="1"/>
</event>

Note: When the url attribute contains one or more ? characters, you must escape them by
preceding them with a backslash. For example, http://www.genesys.com/?page=customer-experience
would be escaped as http://www.genesys.com/\?page=customer-experience.

count (optional)

The count attribute specifies how many times the trigger needs to be matched before the event is
generated and sent to the Web Engagement Server.

after (optional)

You can use this attribute to specify the trigger sequence. Note that you can only use the name of the
trigger from the current event with this attribute. Trigger names from other events cannot be used.

<event name="MySequenceEvent">
<trigger name="buttonTrigger1" element="#button1" action="click" url="" count="2" />
<trigger name="buttonTrigger2" element="#button2" action="click" url="" count="1"

after="buttonTrigger1" />
<trigger name="buttonTrigger3" element="#button2" action="click" url="" count="1"

after="buttonTrigger1" />
</event>

In the current example, buttonTrigger2 and buttonTrigger3 are initiated only when a button with
an ID of button1 has been clicked twice (count=2).

MySequenceEvent will be generated only when all three triggers are executed.

The after attribute can be used with a timer trigger, as shown below.

<event name="MySequenceWithTimerEvent">
<trigger name="SelectPlan" element="#button1" action="click" url="" />
<trigger name="TimeoutTrigger" element="" action="timer:5000" type="timeout" url=""

after="SelectPlan" />
</event>

<val>

The <val> element can be used to add data to the business event. You can have 0 or more <val>
elements; each instance adds a field to the business event. If <val> is a child of <trigger>, it can

Business Events DSL

API Reference 7



also have access to the DOM event matched by the trigger.

name (mandatory)

The name attribute is the name of the value in the generated business event. The name of each val
must be unique inside a parent event. The name is added to the generated business event's data,
along with the corresponding value attribute.

The following example adds a value named "searchString" when the "Search" event is generated and
sent to the Web Engagement Server.

<event name="Search">
<trigger name="GoSearchClick" element="td#gobutton input" action="click" url=" "

count="1"/>
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>

The following output is an example of an event (in JSON format) submitted to the Web Engagement
Server when the visitor enters "my search string" in the search box and clicks the search button. The
"eventName" parameter is taken from the name attribute of the <event> element, and the <param>
element causes the "searchString" parameter to be added to the event's "data" field (this examples
assumes that the visitor entered "my search string" as the search text). The additional fields are
generated automatically by the DSL code:

{
"data":{

"searchString":"my search string"
},
"eventType":"BUSINESS",
"eventName":"Search",
"eventID":"D88B2FF5A9C24095837CF105FB6D5CF9",
"pageID":"A9D1E9265D444351876C13D6C5FA5FAD",
"timestamp":1309962580226,
"globalVisitID":"7E67BA9701124F738CAC80DDFEA1D705",
"visitID":"4608DD210B034AC18C65C2C2275CD8B6",
"userID":"",
"url":"http://www.bestbuy.com/site/",
"category":""

}

value (optional)

The value attribute specifies the value to associate with the name attribute in the field of the
generated event. Its value can be any JavaScript code which returns a serializable object.

The following example tracks search events and includes the search string in the event when it is
sent to the Web Engagement Server. In this example, since there is only one search input box on the
page, the following <param> definition captures the search text and includes it in the generated
event:

<event name="Search">
<trigger name="GoSearchClick" element="td#gobutton input" action="click"

url="http://www.MySite.com" count="1" />
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>

In the following example, the "AddToCart" event is tracked, including information about the product

Business Events DSL

API Reference 8



that was added: name, model, SKU, and price. Tracking by clicking on the "add to cart" button does
not provide information about which button was clicked and which product was added to the cart. To
get this information, you need to use the DOM event object: "event.target" identifies the clicked
button, which can provide information related to the product.

<?xml version="1.0" encoding="UTF-8"?>
<event name="AddToCart">

<trigger name="AddToCartTrigger" element="div.info-side img.bdt-addToCart" action="click"
url="http://www.MySite.com" count="1">

<val name="productName" value="$(event.target).parents('div.hproduct').find('h3.name
a').text()"/>

<val name="productModel"
value="$(event.target).parents('div.hproduct').find('span.model').text()"/>

<val name="productSKU"
value="$(event.target).parents('div.hproduct').find('span.sku').text()"/>

<val name="productPrice"
value="$(event.target).parents('div.hproduct').find('h4.price').text().replace('Sale:', )"/>

</trigger>
</event>

Business Events DSL

API Reference 9


	API Reference
	Business Events DSL

