
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

startChat(options)

API Reference

4/23/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

startChat(options)

Method
• Description
• Returned Promise

• done
• fail

Options
• serverURL
• embedded
• transport
• localization
• templates
• widgetUrl
• windowSize
• windowName
• windowOptions
• debug

Options (cont'd)
• logger
• registration
• Custom registration
• userData
• createContact
• ui
• hooks
• maxOfflineDuration
• disableWebSockets

Description
This is the main entry point for configuring and starting a chat session.

Returned Promise
startChat returns a "promise" object with two chainable methods: done and fail.

Important
Currently, the promise is resolved or rejected only if the chat is started in "embedded"
mode. If it is started in separate window ("popup" mode), you have to use promise
returned by startChatInThisWindow method to get access to the Chat Session API.

done

Use this method to get access to the chat session service API as resolved with an instance of the
session object.

chat.startChat(options).done(function(session) {
// session.sendMessage, session.onAgentConnected and all other method are at your disposal.

});

startChat(options)

API Reference 2

Tip
See Chat session commands for Chat Session API documentation . Note that if you
need to access the Chat Session API, you will probably want to get access not only in
cases when the session is started, but also when it is restored. You can use
restoreChat's "done" callback for that. See Getting Access to Chat Session API for
more info.

Important
The promise is never resolved before the chat session is created. This means that if
registration is enabled, the done callback will not fire until the registration is
complete and processed by the server.

fail

Resolved with an event containing an error describing what went wrong.

Event structure

Parameter Meaning
event.error.code Code of error

event.error.descpription Description of the error (English is default
language).

Tip
For a list of possible error codes, see Error Codes.

Chat widget error codes
In addition to the regular list of possible errors, the Chat Widget adds some of its own errors:

Error code Error description
Chat widget-specific error codes (range 200 -249)
200 Chat is already running on this page.
201 Chat is already running on another page.

For example,

chat.startChat(options).fail(function(event) {
if (event.error === 201) {

startChat(options)

API Reference 3

alert('Chat is already running on another page');
}

});

Options

serverUrl
Type Default Value Mandatory Description

string undefined
Yes (except when
transport options is
provided)

URL of the CometD chat
server for default (built-
in) CometD transport.

embedded
Type Default Value Mandatory Description

boolean false No

Sets chat mode of
operation: "embedded"
(chat widget is rendered
directly on a page) or
"popup" (chat opens in
a separate browser
window).
Default is "popup". Pass the
value true to switch to
"embedded" mode.

Important
If chat is configured for embedded mode, the chat widget will disappear as soon as the
user leaves the website or navigates to any non-instrumented web page. If the user
returns to the page before the timeout has expired, chat will automatically be
restored. To configure the timeout, use the maxOfflineDuration option. The
maxOfflineDuration options may be pre-configured when you use chat as part of a
particular solution such as the Integrated JavaScript Applicaiton

startChat(options)

API Reference 4

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

transport
Type Default Value Mandatory Description

Object undefined No (except when
serverUrl is omitted)

Custom transport
instance (for example,
REST-based).

localization
Type Default Value Mandatory Description

Object, string, or
function(function?) undefined No

Provider of customer
localization. This value
can be one of the
following:

• JavaScript object
with localization
data. Added in
850.0.0.

• Function that returns
an object with
localization data.
Added in 850.4.0.

• Function that accepts
a callback and calls
that callback with an
object containing
localization data.
Added in 850.4.0.

• URL of and external
JSON file with the
localization datav

If omitted, default English
localization will be used. See
Localization for more on how
to localize the chat widget.

Important
If you use Template-based
Customization, all
localization data is
available inside your
templates as a data.nls
object.

startChat(options)

API Reference 5

templates
Type Default Value Mandatory Description

string none No

The URL of the HTML file
containing templates
used to render the chat
widget.
The request is made using
either JSONP or AJAX, following
the same logic for localization
files (see Localization). Default
templates are included into
the JavaScript source so by
default, there are no requests
made to load them. For more
information, see Template-
based Customization.

Important
Since chat version
850.5.0 you do not
necessarily have to
download the custom
templates over the
network. See Template-
based Customization for
more.

widgetUrl
Type Default Value Mandatory Description

string undefined
No (except when
embedded is set to
false - "popup" mode)

URL of chat widget html
that will be open in
external window when
operating in "popup"
mode.

windowSize
Type Default Value Mandatory Description

Object
{width: number, height:
number}

{ width: 400, height:
500 } No

Size of external chat
window when operating
in "popup" mode.

Important
Note that windowOptions
can override windowSize.

startChat(options)

API Reference 6

windowName

startChat(options)

API Reference 7

Type Default Value Mandatory Description

string genesysChatWindow No

A string representing the new
window that is passed to the
window.open call when opening the
chat widget window.

Important
windowName does not specify the title
of the new window.

Tip
This option only works in "popup"
mode (embedded is either absent or set
to false)

For example,

chat.startChat({
windowName: 'myWindowName'
//...

});
// => window.open(<widgetUrl>,
'myWindowName', ...);

startChat(options)

API Reference 8

windowOptions

startChat(options)

API Reference 9

Type Default Value Mandatory Description

Object value of windowSize option No

An object containing the options that
will be passed window.open when
opening a chat widget window.

Important
This option only works in "popup"
mode (embedded is either absent or set
to false)

Use this object to pass any window options,
such as position (top, left), whether to
show browswer buttons (toolbar), location
bar (location), and so on. See Window.open
for the full list. All options are converted to a
string that is passed to window.open call. For
example,

chat.startChat({
// open chat widget in top

left corner of the screen
windowOptions: {

left: 0,
top: 0

},
// ...

});
// => window.open(<widgetUrl>,
<windowName>,
'left=0,top=0,...')

Note that windowOptions is merged with
windowSize, but has higher priority. For
example,

chat.startChat({
windowSize: {

width: 200,
height: 400

},
windowOptions: {

startChat(options)

API Reference 10

Type Default Value Mandatory Description

left: 0,
top: 0,
width: 300 //

this value will be used, and
height will be taken from
windowSize

},
// ...

});
// => window.open(<widgetUrl>,
<windowName>,
'left=0,top=0,width=300,height=400')

startChat(options)

API Reference 11

debug
Type Default Value Mandatory Description

boolean false No

Pass the value true to
enable chat debugging
logs (by default
standard console.log
is used, see the logger
option if you want to
override that).

logger
Pass a function that will be used for chat logging (if debug is set to true) instead of the default
console.log. The function has to support the interface of the console.log — it must accept an
arbitrary number of arguments and argument types.

Important
To use the custom logging function in a separate window, you have to pass it directly
on the widget page to the startChatInThisWindow method.

registration
Type Default Value Mandatory Description

(boolean|function) true No

By default chat starts
with a built-in
registration form (that
you can customize using
ui.onBeforeRegistration).
Pass the value false to
disable this default built-in
registration form.

Custom registration
Pass a function to customize registration workflow.

startChat(options)

API Reference 12

The function accepts one argument: a done function that must be called with an object containing the
data collected during registration.

This may sound complex but actually it is pretty straightforward:

chat.startChat({
registration: function(done) {

done({
EmailAddress: 'john.doe@example.com'

});
}
//...

});

In the example above, it is assumed that all data is known beforehand and so registration may be
completed synchronously and in a way that hides the operation from the end user. However, in reality
you may want to send an additional request to obtain the necessary data:

chat.startChat({
registration: function(done) {

// Suppose you have a special URL that returns current user's credentials that you want
to pass to chat session:

jQuery.get('/account/credentials', function(data) {
done(data);

});
}
//...

});

You may have noticed that both of these examples are artificial, in the sense that they do not provide
any UI but simply silently register the user with already available data. To provide a registration UI,
you will have to return the DOM object representing your UI from your custom registration function.
For example, like this:

chat.startChat({
// Simple jQuery-based example
registration: function(done) {

var $form = $('<form />'),
$email = $('<input type="email" name="email" placeholder="Enter your Email" />');

// bind done function to be called when the form is submitted
$form.on('submit', function() {

done({
EmailAddress: $email.val()

}};
});

$email.appendTo($form);

// return form DOM representation: it will be displayed in the chat widget
return $form.get(0);

}
//...

});

Although the example above may seem complicated, this approach is very powerful as it allows you
to reuse any JavaScript stack you use on your site, be it jQuery, client-side templating, more full-
featured frameworks like AngularJS or any other JS-based technology or their combinations.

startChat(options)

API Reference 13

userData
Can be used to directly attach necessary UserData to a chat session. See Custom Registration and
Extended API to support integrated solutions for other ways of working with UserData.

chatAPI.startChat({
userData: {

visitID: currentVisitID
}

});

createContact

startChat(options)

API Reference 14

Type Default Value Mandatory Description

boolean true No

Determines whether new contact
should be created from registration
data if it doesn't match any existing
contact. Only effective if registration
data is present (collected either by
built-in or custom registration
workflow).
// createContact is not
effective. Contact will not be
created.
chat.startChat({

registration: false
// ...

});

// Contact will be identified
and if doesn't exist, it will
be created.
chat.startChat({

createContact: true,
// ...

});

// Contact will be identified;
if doesn't exist, it won't be
created.
chat.startChat({

createContact: false,
// ...

});

Tip
Technically, this option controls the
lookup (and possibly the creation) of
client's record in the UCS database. By
default,

startChat(options)

API Reference 15

Type Default Value Mandatory Description

• If registration is disabled (or
provides no data, which can
be the case with custom
registration function), the
contact will not be looked
up in UCS;

• If registration is enabled and
provides some data (in fact
any data, since we do not
validate on the browser
side), the contact will be
looked up in UCS and if not
found, it will be created.
• However, if

createContact is set to
false, the contact will
be looked up in UCS
and if not found it will
not be created.

startChat(options)

API Reference 16

ui

startChat(options)

API Reference 17

Type Default Value Mandatory Description

(boolean|Object) true No

Pass the value false to disable the
chat widget UI completely. Or pass
an object with "hook" functions that
can modify the built-in UI.
All "hooks" receive an object: a DOM
representation of a particular UI part, which
you can then modify. The structure of these
objects can be determined using browser
developer tools (F12 in Chrome) and may be
modified in future versions of chat widget.

Important
Backward compatibility of the DOM
structure provided in the UI hooks is
NOT guaranteed.

function
makeEverythingRed(htmlElement) {

jQuery(htmlElement).find('*').css({
color: 'red' });
}
function
makeEverythingBold(htmlElement)
{

jQuery(htmlElement).find('*').css({
'font-weight': 'bold' });
}

chat.startChat({
ui: {

onBeforeChat:
makeEverythingRed,

onBeforeRegistration:
makeEverythingRed,

onBeforeMessage:
makeEverythingBold

startChat(options)

API Reference 18

Type Default Value Mandatory Description

},
// ...

});

Tip
See more examples in the Customizing
the User Interface section.

startChat(options)

API Reference 19

Available "hooks" are:

startChat(options)

API Reference 20

Hooks Description

onBeforeChat
Sent before the "main" chat UI is rendered (messages area and message
input field). Can be used to modify the layout / functionality of the chat
widget.

onBeforeRegistration Sent before the registration form is rendered (and only if it is enabled).

onBeforeMessage

Sent before every message that gets appended to the chat. For example,
messages from user, agent, system, typing, and so on are all included.
This hook has a special ability of "filtering out" certain messages in the chat. If the function
attached to it explicitly returns false, that particular message is not added to the UI. This is
useful for passing internal or system data using the the chat channel. To ease message analysis,
the hook function receives a second argument: the message text.

Tip
For example usage, see:

• Using the ui.onBeforeMessage Hook to Add Desktop
Modifications

startChat(options)

API Reference 21

maxOfflineDuration
Type Default Value Mandatory Description

number 5 No

Time (in seconds)
during which state
cookies are stored after
page reload/navigation.
If cookies expire, the
chat is not restored.
This option specifies how long
the chat session will live after
the user leaves the website. A
value of five seconds is
usually long enough for chat
to survive page reloads, but
the chat interaction is likely to
be lost if the user navigates to
another site during the chat
interaction (in embedded
mode) and comes back to
your site. To support this kind
of workflow, consider
increasing the value of this
option or use the Integrated
JavaScript Application, where
the option value is increased
to 600 seconds by default.

disableWebSockets
Type Default Value Mandatory Description

boolean false no

You may disable
WebSockets for chat by
passing true to this
option. By default, chat
attempts to use
WebSockets for
connections to the
server. When
WebSocket connections
are unavailable ,such as
when the load balancer
does not support
WebSockets, chat
switches to other HTTP-
based means of

startChat(options)

API Reference 22

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration
https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

Type Default Value Mandatory Description
communication.
Disabling WebSockets
can speed up the time it
takes for chat to switch
to another means of
communication.

Important
If you choose to disable
WebSockets, you should
also pass this option to
restoreChat(options). This
option is only effective
with the default (built-in)
transport.

startChat(options)

API Reference 23

	API Reference
	startChat(options)

