
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Web Engagement 8.5.1

API Reference

1/6/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Genesys Web Engagement API Reference 4
Monitoring JS API 6
Chat JS API 21

Chat Widget JS API 22
Additional Methods 34
Customization Examples 35
startChat(options) 72
restoreChat(options) 94
startChatInThisWindow(options) 96
onBeforeChatOptionsApplied(callback) 97
onSession(callback) 98
close() 99
toggle() 100
onMinimized(callback) 101
isMinimized() 102
VERSION 103

Chat Service JS API 104
Launching the Chat Session 108
Controlling the Chat Session 115

Error Codes 125
Notification Service REST API 127
Engagement REST API 137
History REST API 139

HTTP Response Codes and Errors 141
Authentication 143
Operations and Resources Index 144
Event Resource 145

Query event 149
Global Visit Resource 151

Query identities by globalVisitID 152
Identity Resource 153

Query events by identity 156
Query identity 159
Query identities 161
Query pages by identity 164

Query user agents by identity 166
Query visits by identity 167

Page Resource 169
Query events by page 171
Query page 172

Visit Resource 173
Create new event for visit 175
Create new visit 176
Query events by visit 177
Query identities by visit 179
Query pages by visit 181
Query visit 183

Pacing REST API 185
Business Events DSL 189

Genesys Web Engagement API Reference
Welcome to the Genesys Web Engagement 8.5.1 API Reference. This document provides you with the
information you need to use the Genesys Web Engagement REST and Javascript APIs. See the
summary of chapters below.

Monitoring JS API
Use this JavaScript API to submit events
to the Genesys Web Engagement Server.

Monitoring JS API

Chat JS API
Use this JavaScript API to control all
aspects of the chat session.

Chat Service JS API
Chat Widget JS API

Notification Service REST API
Use this REST API to send notifications to
your web pages.

Notification Service REST API

Engagement REST API
Use this REST API to start or cancel an
engagement attempt.

Engagement REST API

History REST API
Use this REST API to find the web history
stored by the Genesys Web Engagement
Server.

Pacing REST API
Use this REST API to access pacing
information.

Genesys Web Engagement API Reference

API Reference 4

History REST API Pacing REST API

Business Events DSL
Use this information to define business
events in the DSL.

Business Events DSL

Genesys Web Engagement API Reference

API Reference 5

Monitoring JS API

Description

You can use the Monitoring JS API in your web pages to send events (read more about how these
events are structured here) to the Genesys Web Engagement Server. This is independent from the set
of events and conditions that are defined in the DSL files that are loaded by the browser's Monitoring
Agents. The design model for the Monitoring JS API is highly flexible, and its use can be extended well
beyond the common model of user-triggered events — the design decision is up to you. You can
submit UserInfo, SignIn, SignOut, and your own custom business events using this API.

Important
All commands and options are case sensitive.

The entry point for this API is the global _gt (Genesys Tracker) object which implements the push()
method. The _gt.push() method takes an array as a parameter, which can contain any type of
information, so longs as it follows this format:

_gt.push(['<commandName>', <options>])

• <commandName> — name of the event command.
• <options> — options for the command.

_gt.push(['event', eventName, { data: options }])

Sends business events to the server.

Parameters
Parameter

name Type Mandatory Description

eventName string yes

The name of the event.
This field is equivalent
to the name attribute of
the DSL <event>
element.

options object no An object of any
properties you want to

Monitoring JS API

API Reference 6

https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure

Parameter
name Type Mandatory Description

track with the event.

Example with mandatory parameters
_gt.push(['event', 'AddToCart']);

Example with additional parameters
_gt.push(['event', 'AddToCart', { data: {

productName : 'Sony',
productModel: 'JVB72',
productPrice: '1000',
productCurrency:'USD'

}}]);

_gt.push(['event', 'UserInfo', { data: options }])

The Tracker application relies on your website to trigger transitions between visitor states (See Visitor
Identification). This method sends a UserInfo system event that includes customer information. You
should only send this event if your website has authenticated the user. You should also send this
event when an authenticated session has been ended and the user returns to the website. For more
information, see Recognized Visitors.

Parameters
Parameter

name Type Mandatory Description

options object yes
A set of key/value pairs
that represents event
information.

Possible key/value pairs in "options"

Parameter
name Type Mandatory Description

userID string yes
The user's ID. For
instance, the user
account name or email
address.

<customParameter> boolean / number /
string / object no

An object containing
additional key/value
pairs for sending with
the event.

Monitoring JS API

API Reference 7

https://docs.genesys.com/Documentation/GWE/latest/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/GWE/latest/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/GWE/latest/Developer/VisitorIdentification#Recognized_Visitors

Example with mandatory parameters
_gt.push(['event', 'UserInfo', { data: {

userID: 'user@genesyslab.com'
}}]);

Example with additional parameters
_gt.push(['event', 'UserInfo', { data: {

userID: 'user@genesyslab.com',
name: 'Bob',
sex: 'male',
age: 30

}}]);

_gt.push(['event', 'SignIn', { data: options }])

Creates and sends the SignIn event, which allows the system to identify the user. Send this event
when the user is authenticated by your website.

Parameters
Parameter

name Type Mandatory Description

options object yes
A set of key/value pairs
that represents event
information.

Possible key/value pairs in "options"

Parameter
name Type Mandatory Description

userID string yes
The user's ID. For
instance, the user
account name or email
address.

<customParameter> boolean / number /
string / object no

An object containing
additional key/value
pairs for sending with
the event.

Example with mandatory parameters
_gt.push(['event', 'SignIn', { data: {

userID: 'user@genesyslab.com'
}}]);

Monitoring JS API

API Reference 8

Example with additional parameters
_gt.push(['event', 'SignIn', { data: {

userID: 'user@genesyslab.com',
name: 'Bob',
sex: 'male',
age: 30

}}]);

_gt.push(['event', 'SignOut', { data: options }])

Creates and sends the SignOut event for the current user. This event should be sent at the time the
user logs out from your website or as soon as possible after logout.

Parameters
Parameter

name Type Mandatory Description

options object yes
A set of key/value pairs
that represents event
information.

Possible key/value pairs in "options"

Parameter
name Type Mandatory Description

userID string yes

The user's ID. For
instance, the user
account name or email
address.
Note: Genesys recommends
that you use this parameter,
even though it is not
mandatory.

Example without parameters
_gt.push(['event', 'SignOut']);

Example with additional parameters
_gt.push(['event', 'SignOut', { data: {

userID: 'user@genesyslab.com'
}}]);

Monitoring JS API

API Reference 9

_gt.push(['event', 'PageEntered', { data: options }])

Creates and sends the PageEntered event. The Tracker application sends a PageEntered event
automatically when a new page is loaded. This method should only be used with a Single Page
Application.

Notes

• The PageEntered event updates the current pageID.
• Make sure that a PageExited event is sent before sending a PageEntered event.
• The PageEntered event does not affect the DSL event sequence defined on initial page load. It also

does not lead to categorization or to reinitialization of the DSL.

Parameters
Parameter

name Type Mandatory Description

options object yes
A set of key/value pairs
that represents
PageEntered event
information.

Possible key/value pairs in "options"

Parameter
name Type Default Value Description

title string document.title The title of the current
page.

Example without parameters
_gt.push(['event', 'PageEntered']);

Example with additional parameters
_gt.push(['event', 'PageEntered', {

data: {
title: 'My Page Title'

}
}]);

_gt.push(['event', 'PageExited'])

Creates and sends the PageExited event. The Tracker application sends a PageExited event

Monitoring JS API

API Reference 10

https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure#pageentered
https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure#pageentered
https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure#pageexited

automatically on page unload. This method should only be used with a Single Page Application.

Example without parameters
_gt.push(['event', 'PageExited']);

_gt.push(['event', options]) (Deprecated)

Important
Deprecated in 8.5

Sends business events to the Web Engagement Server.

Parameters
Parameter

name Type Mandatory Description

options object yes
A set of key/value pairs
that represent event
information.

Possible key/value pairs in "options"

Parameter
name Type Mandatory Description

eventName string yes

The identification name
of the business event.
This field is equivalent
to the name attribute of
the DSL <event>
element.

<customParameter> object no
An object of additional
key/value pairs to send
along with the event.

Example with mandatory parameters
_gt.push(['event', {

eventName: 'AddToCart'
}])

Monitoring JS API

API Reference 11

Example with additional parameters
_gt.push(['event', { eventName: 'AddToCart',

productName : 'Sony',
productModel: 'JVB72',
productPrice: '1000$'

}])

_gt.push(['sendUserInfo', options]) (Deprecated)

Important
Deprecated in 8.5

Genesys Web Engagement relies on your website to trigger the transitions between visitor states
(see Visitor Identification).

This event sends the system "UserInfo" event with customer information. You should send this event
when a user visits your website after closing the browser window on an authenticated session. For
details, see Recognized Visitors.

Parameters
Parameter

name Type Mandatory Description

options object yes
A set of key/value pairs
that represents event
information.

Possible key/value pairs in "options"

Parameter
name Type Mandatory Description

userID string yes
The identification ID for
the user. For instance,
the user account name
or the email address.

<customParameter> object no
An object of additional
key/value pairs to send
along with event.

Example with mandatory parameters
_gt.push(['sendUserInfo', {

userID: 'user@genesyslab.com'

Monitoring JS API

API Reference 12

https://docs.genesys.com/Documentation/GWE/latest/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/GWE/latest/Developer/VisitorIdentification#Recognized_Visitors

}])

Example with additional parameters
_gt.push(['sendUserInfo', {

userID: 'user@genesyslab.com',
name: 'Bob',
sex: 'male',
age: 30

}])

_gt.push(['sendSignIn', options]) (Deprecated)

Important
Deprecated in 8.5

This event creates and sends the system "SignIn" event. Send this event when the user is
authenticated by the website. This allows the system to identify the user and creates a new "session"
with a sessionID that is unique to a visit and will last the duration of the visit. Only Authenticated
visitors have an associated sessionId.

Parameters
Parameter

name Type Mandatory Description

options object yes
A set of key/value pairs
that represents event
information.

Possible key/value pairs in "options"

Parameter
name Type Mandatory Description

userID string yes
The identification ID for
the user. For instance,
the user account name
or the email address.

<customParameter> object no
An object of additional
key/value pairs to send
along with event.

Example with mandatory parameters
_gt.push(['sendSignIn', {

Monitoring JS API

API Reference 13

userID: 'user@genesyslab.com'
}])

Example with additional parameters
_gt.push(['sendSignIn', {

userID: 'user@genesyslab.com',
name: 'Bob',
sex: 'male',
age: 30

}]);

_gt.push(['sendSignOut', options]) (Deprecated)

Important
Deprecated in 8.5

This event creates and sends the "SignOut" system event for the current user. This event should be
sent if the user performs a logout on the website or as soon as possible after the logout action was
done. Note: The sessionId lasts for the duration of the authenticated user's visit to your website. It
is stored in a cookie and sent with every event that occurs between "SignIn" and "SignOut", and is
changed automatically after every "SignIn" event.

Parameters
Parameter

name Type Mandatory Description

options object no
A set of key/value pairs
that represents event
information.

Possible key/value pairs in "options"

Parameter
name Type Mandatory Description

userID string no

The identification ID for
the user. For instance,
the user account name
or the email address.
Note: Genesys recommends
using this parameter even
though it is not mandatory.

<customParameter> object no An object of additional
key/value pairs to send

Monitoring JS API

API Reference 14

Parameter
name Type Mandatory Description

along with event.

Example with no parameter
_gt.push(['sendSignOut'])

Example with additional parameters
_gt.push(['sendSignOut', {

userID: 'user@genesyslab.com'
}])

_gt.push(['getIDs', callback])

Gets visit identification information from the Tracker application. The callback contains an object with
the visitID, globalVisitID, pageID, and alias fields.

Important
The alias field is deprecated in 8.5 and will be removed in 9.0

Parameters
Parameter

name Type Mandatory Description

callback function(IDs) yes
A function that is called
if the request succeeds.
The function is passed
one argument.

"IDs" parameter

Parameter
name Type Mandatory Description

IDs
object {
globalVisitID,
visitID, pageID, alias
}

yes
An object that contains
visit identification
information.

Monitoring JS API

API Reference 15

Example
_gt.push(['getIDs', function(IDs) {

console.log('IDs: ', IDs);
}])

_gt.push(['getConfig', callback])

Gets configuration information from the Tracker application. The callback contains an object with the
visitID, httpEndpoint, httpsEndpoint, and other fields.

Parameters
Parameter

name Type Mandatory Description

callback function(config) yes
A function that is called
if the request succeeds.
A single argument is
passed to the function.

"config" parameter

Parameter
name Type Mandatory Description

IDs object { httpEndpoint,
httpsEndpoint, ... } yes

An object that contains
configuration
information.

Example
_gt.push(['getConfig', function(config) {

console.log('config: ', config);
console.log('httpEndpoint: ' + config.httpEndpoint);
console.log('httpsEndpoint: ' + config.httpsEndpoint);

}]);

Events

You can use handler functions to register behaviors to take effect when the Tracker application is
generating events, and to further manipulate those registered behaviors.

Here is how to bind a handler function to a Tracker. The handler will be invoked whenever the event is
fired:

_gt.push(['on', eventName, handler]);

Monitoring JS API

API Reference 16

To remove a previously-bound handler function from an object:

_gt.push(['off', eventName, handler]);

beforeSendEvent
_gt.push(['on', 'beforeSendEvent', handler])

_gt.push(['off', 'beforeSendEvent', handler])

The beforeSendEvent event is triggered before sending an event to the server.

Handler Arguments

Argument
name Type Description

event object A set of key/value pairs that
represents event information.

Example
var myEventHandler = function (event) {

if (event.eventName === 'Search') {
// Send event to Google Analytics service
ga('send', 'event', 'search', event.eventName, event.data);

}
};

// subscribe
_gt.push(['on', 'beforeSendEvent', myEventHandler]);
// unsubscribe
_gt.push(['off', 'beforeSendEvent', myEventHandler]);

myEventHandler is a function that you can execute each time the event is triggered but before it is
sent to the server.

notificationMessage
_gt.push(['on', 'notificationMessage', handler]);

_gt.push(['off', 'notificationMessage', handler]);

The notificationMessage event is triggered when a message is received from the server.

Handler Arguments

Argument
name Type Description

message object
A set of key/value pairs that
represents one notification
message.

Monitoring JS API

API Reference 17

https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#notificationmessages
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#notificationmessages

Example

The following example shows how to subscribe to the default message for starting a chat:

var notificationMessageHandler = function (message) {
if (message.channel === 'gpe.setVariable' && message.data.value.type === 'chat') {

alert('Chat from notificationMessageHandler');
}

};

_gt.push(['on', 'notificationMessage', notificationMessageHandler]);

How To — Enable a trigger after another trigger

DSL is a great tool to create business events on your website without requiring programming
knowledge, but it's not a JavaScript representation in XML. There are some use cases when DSL is not
enough; instead, you should use the Monitoring JS API.

Let's look at this example use case:

You have a web page with a text field and a submit button. If a user starts typing in the text field and,
for example, 100 seconds pass with no "submit" — you want to make sure that is reported to Web
Engagement.

You can implement the functionality that's described in the use case with the following approach:

...
<p><input class="comment" type="text"></p>
<p><input class="submit" type="button" value="submit"></p>

<script>
var timeout;

$('.comment').focus(function() {
if (!timeout) {

console.log('timer started');
timeout = setTimeout(function () {

console.log('send event');
_gt.push(['event', {eventName: 'myEvent'}])

}, 100 * 1000)
}

});

$('.submit').click(function() {
if (timeout) {

console.log('clean timeout');
window.clearTimeout(timeout);
timeout = undefined;

}
});

</script>
...

Monitoring JS API

API Reference 18

Tracking Single Page Applications

A Single Page Application (SPA) is a web application or website that loads all of the resources required
to navigate throughout an entire site when the first page on that site is loaded.

As the user clicks links and interacts in other ways with the page, any new content is loaded
dynamically. The application may update the URL in the address bar to emulate traditional page
navigation, but it never requests another full page.

By default, the Tracker Application works well with traditional websites, because it sends a
PageEntered event every single time the user loads a new page. However, for an SPA where you're
loading new page content dynamically rather than as full page loads, the Tracker script only sends
the first PageEntered event—because all subsequent page entries are virtual. This means you have
to track these subsequent (virtual) PageEntered events manually, as each piece of new content is
loaded.

To track dynamically loaded content as a distinct page, you can use the Tracker API to send a
PageEntered event. To do this, you need to specify the URL and title, as shown here:

_gt.push(['event', 'PageEntered', {
url: 'http://example.com/my-page-url?id=1',
data: {

title: 'My Page Title'
}

}]);

If you specify a URL value in a PageEntered event, the app will only send that URL value to the
server—it will not update the URL value stored in the Tracker application itself.

This means that if you send other events and don't explicitly include the current URL value, the
Tracker application will associate those events with whatever URL was stored at the time of the initial
page load.

To avoid this issue, it's usually best to update the Tracker app configuration data with the URL and
page title from a newly loaded "page" before you send any other events for that "page." This will
ensure that these events are associated with the correct page data.

To update the Tracker configuration, use the config command:

_gt.push(['config', {
page: {

url: 'http://example.com/my-page-url?id=1',
title: 'My Page Title'

}
}]);

Once the Tracker configuration has been updated with the proper data for the new "page," you can
send a PageEntered event without overriding page-related parameters. For example:

_gt.push(['config', {
page: {

url: 'http://example.com/my-page-url?id=1',
title: 'My Page Title'

}
}]);

Monitoring JS API

API Reference 19

_gt.push(['event', 'PageEntered']);
/*

event.url - 'http://example.com/my-page-url?id=1'
event.data.title - 'My Page Title'

*/

Here is a more complex use case:

_gt.push(['config', {
page: {

url: 'http://example.com/my-page-url?id=1',
title: 'My Page Title'

}
}]);

_gt.push(['event', 'PageEntered']);
/*

event.url - 'http://example.com/my-page-url?id=1'
event.data.title - 'My Page Title'

*/

_gt.push(['event', 'PageEntered', {
url: 'http://example.com/new-url'

}]);
/*

event.url - 'http://example.com/new-url'
event.data.title - 'My Page Title'

*/

_gt.push(['event', 'MyCustomEvent']);
/*

event.url - 'http://example.com/my-page-url?id=1'
*/

Note: The second PageEntered event and all subsequent PageEntered events in a single-page
application do not reset the timer for timeout events defined in the DSL.

Monitoring JS API

API Reference 20

Chat JS API
The Genesys Chat API lets you control all aspects of the chat session, using either the Genesys Chat
Widget, or creating a chat widget of your own:

• Chat Widget JS API — Use this API to implement or customize the Genesys Chat Widget.
• Chat Service JS API — Use this API to control the chat session or create your own chat widget.

Chat JS API

API Reference 21

Chat Widget JS API

Deprecation notice

• Starting with the 8.5.000.38 release of Genesys Web Engagement, Genesys is deprecating the Native Chat and
Callback Widgets—and the associated APIs (the Common Component Library)—in preparation for discontinuing
them.

This functionality is now available through a single set of consumer-facing digital channel APIs that are part of Genesys Mobile
Services (GMS), and through Genesys Widgets, a set of productized widgets that are optimized for use with desktop and mobile
web clients, and which are based on the GMS APIs.

Genesys Widgets provide for an easy integration with Web Engagement, allowing you to proactively serve these widgets to your
web-based customers.

Important
Although the deprecated APIs and widgets will be supported for the life of the 8.5 release of Web
Engagement, Genesys recommends that you move as soon as you can to the new APIs and to Genesys
Widgets to ensure that your functionality is not affected when you migrate to the 9.0 release.

• Note that this support for the Native Chat and Callback Widgets and the associated
APIs will not include the addition of new features and that bug fixes will be limited to
those that affect critical functionality.

How the API is Structured

The Chat Widget JS API is made up of the three main methods:

• startChat—Use this method as the entry point for starting a chat session.
• restoreChat—Use this method to restore the chat widget after page reload when working in "embedded"

mode (the chat window is rendered on a website's page, not in a separate brower window)
• startChatInThisWindow—Use this method for chat sessions appearing in a separate dedicated HTML

page. For cases where chat is started in "popup" mode (chat is rendered in a separate browser
window).

Additional methods are also available since chat version 850.6.0, see Additional Methods.

Chat JS API Chat Widget JS API

API Reference 22

https://docs.genesys.com/Documentation/GMS/latest/API/Welcome
https://docs.genesys.com/Documentation/GWE/latest/Developer/MediaIntegration

Browser Support and Cookies

Browser Support
Chat widget fully supports IE8+, Firefox, Safari and Chrome desktop browsers. On mobile, Safari on
iOS 7 and Google Chrome on latest Android are officially supported, though chat may properly
function in other browsers / OSes. Notes on IE7 support:

• Chat widget depends on JSON parsing functionality. To enable it in IE7, you have to use a third-party
library (for example, json2.js by JSON creator Douglas Crockford). Note that this kind of library might be
already included if you use chat as part of another product (like Web Engagement).

• Built-in UI uses data:uri technology for images, which is not supported by IE7. This is why the minimize
and close buttons and the Genesys logo are not visible in this browser. You have to customize the CSS if
you need chat support in IE7.

Note on cookies
The Chat Widget uses a few cookies that allow it to function properly across multiple pages / browser
windows. Also, to function properly across different subdomains, chat widget writes cookies to the
"root" domain of your site. For example, if your site's domain is www.example.com.au, the cookies
are written to the .example.com.au domain, which makes them available to all other subdomains of
your site.

Getting Access to Chat Session API

Embedded Mode

Getting access to the Chat Session API in embedded mode

If you want to ensure consistent access to theChat Session API in "embedded" mode, you need to
accommodate two done callbacks: one for startChat and restoreChat.

For example,

function handleChatSession(session) {
// Use session API here to send messages, subscribe to events etc.

}

chat.restoreChat(options).done(handleSession)
.fail(function() {

chat.startChat(options).done(handleSession);
});

// Example is artificial in that it starts new chat unconditionally, if it has not been
started yet.

Chat JS API Chat Widget JS API

API Reference 23

// See documentation below for more elaborate examples of working with chat start/restoration.

Popup Mode

Getting access to the Chat Session API in popup mode

To get access to the Chat Session API in "popup" mode, you have to accommodate the done callback
for the startChatInThisWindow method in the separate HTML page for the widget.

For example,

myChatWidget.html

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Genesys Chat</title>

</head>
<body>
<script src="js/chatWidget.js"></script>
<script>

chat.startChatInThisWindow().done(function(session) {
// Use session API here

});
</script>
</body>
</html>

...and then pass the URL of this HTML page to the startChat method on your website's page:

chat.startChat({
embedded: false,
widgetUrl: 'http://example.com/myChatWidget.html',
// ...

});

Customizing the User Interface

There are different options for customizing the chat widget UI — from style modifications via CSS to
complete disabling, with JavaScript-based customization in between.

Chat JS API Chat Widget JS API

API Reference 24

Template-based

Template-based Customization

Important
Make sure to read about the templates option first.

You can use a template-based customization approach, which boils down to editing plain HTML, if any
of the following are true:

• You want to modify the structure of the widget.
• You want to add content or CSS classes to the widget.
• You do not want to use JavaScript to work with the DOM.

The basic algorithm for template-based customization is to do the following:

1. Get the HTML with default templates. You can get the default templates from:
• Web Engagement Server 8.5.1 at http(s)://<WE_HOST>[:<WE_PORT>]/server/api/resources/

v1/chatTemplates.html.
• Web Engagement Server 8.5 at http(s)://<WE_HOST>[:<WE_PORT>]/server/resources/

chatTemplates.html.
• Web Engagement Frontend Server 8.1.3 at

http(s)://<FRONTEND_HOST>[:<FRONTEND_PORT>]/frontend/resources/chatTemplates.html.

2. Modify the templates.

Tip
All localization data is available inside your templates as a data.nls object.

Important
To keep all functionality intact, Genesys recommends you do not remove elements or CSS classes when
editing the chat templates.

3. Insert the modified template(s) into your page's HTML code somewhere between the <body> and
</body> tags.

Example HTML page:

Chat JS API Chat Widget JS API

API Reference 25

<!DOCTYPE html>
<html lang="en">
<head>

<title>My Page</title>
[GENESYS INSTRUMENTATION]

</head>
<body>
<h1>This is my page.</h1>
<p>It has some content.</p>

<script type="text/html" data-gwc-template="embeddedWindow">
[MODIFIED TEMPLATE CONTENT]

</script>
<script type="text/html" data-gwc-template="chatMessage">

[MODIFIED TEMPLATE CONTENT]
</script>
</body>

Starting with chat versions 850.6.0, chat automatically recognizes and uses the template from
the data-gwc-template attribute. If using an earlier version, see the next step.

4. Another option is to host the modified HTML templates somewhere accessible using HTTP. If you choose
to download templates over the network, configure chat to use downloaded templates by passing the
URL of your HTML file to the templates option of your chat configuration.

Important
If you use both in-page templates and downloaded templates, the downloaded templates take priority.

Tip
You can use the Web Engagement Server server to host static resources. This is especially useful for resources
like chat templates because the server is configured with JSONP support. For details, see Hosting Static
Resources - JSONP.

Chat Widget Template System
The chat widget templates are included in the chatTemplates.html file. This file is not a static HTML
file, but a collection of small client-side templates wrapped in <script>tags. To learn more about this
templating technique, see http://en.wikipedia.org/wiki/JavaScript_templating. The chat widget
template system is based on the popular lodash/underscore templates: http://lodash.com/
docs#template, http://underscorejs.org/#template.

The chat widget template uses 5 HTML-based templates:

• chatRegistration for the built-in registration form
• chatTyping for the "Agent is typing" message

Chat JS API Chat Widget JS API

API Reference 26

https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#JSONP
https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#JSONP

• chatMessage for all other messages in a chat
• chatView for the basic structure of the chat widget
• embeddedWindow for the "chat window" wrapper in "embedded" mode

These templates are included in the chatTemplates.html file, which has the following structure:

<!-- embeddedWindow.html -->
<script type="text/html" data-gwc-template="embeddedWindow">

...
</script>

<!-- chatRegistration.html -->
<script type="text/html" data-gwc-template="chatRegistration">

...
</script>

<!-- chatView.html -->
<script type="text/html" data-gwc-template="chatView">

...
</script>

<!-- chatMessage.html -->
<script type="text/html" data-gwc-template="chatMessage">

...
</script>

<!-- chatTyping.html -->
<script type="text/html" data-gwc-template="chatTyping">

...
</script>

Important
To keep all functionality intact, Genesys recommends that you do not remove
elements or CSS classes when editing the chat templates.

Customization Examples

• Substituting the Genesys Logo with a Custom Image
• Adding Extra Content to the Chat Widget
• Displaying a character counter in the message area
• Replace Skip Registration button with Exit button
• Automatically expand text area based on user input

CSS-based

Chat JS API Chat Widget JS API

API Reference 27

CSS-based Customization

The chat widget JavaScript contains all of the CSS needed to render chat, which is automatically
added to the <head> section of the web page when chat is initialized.

You can override any of the default styles by adding a <link> or <style> tag with CSS rules for the
chat widget (since the default CSS is added to the beginning of <head>, your custom styles will
always take higher priority).

Tip
To see exactly what you can override, use the developer tools native to most web
browsers. Currently, we do not document our CSS and do not guarantee backwards
compatibility for future versions of chat.

Important
To avoid potential CSS conflicts, all of chat widget's class names are prefixed with
"gwc-".

Customization Examples

• Modifying the Styling of the Chat Messages
• Adding Extra Content to the Chat Widget

JavaScript-based

JS-based Customization

In case you want to modify more than just the style (look and feel) of the chat, but also the logic of
the widget, you can use "hooks" for customizing the built-in UI. See the ui option for details.

Most of the time, you can make additions or modifications to the chat widget layout using the
template-based customization. You might choose JavaScript-based customization over template-
based if:

• The customization is small enough so that the DOM-related work can be easily done with JavaScript
(provided you are experienced with JavaScript).

• The customization impacts not only the layout, but also the logic (for example, if you need additional
event handlers).

Chat JS API Chat Widget JS API

API Reference 28

Complete override
It is possible to disable the built-in UI and implement your own based on the session API:

startChat({
//...
ui: false,

}).done(function(session, options) {
// Implement your own UI using session API

});

Customization Examples

• Using the ui.onBeforeMessage Hook to Add Desktop Modifications
• Displaying a confirmation alert when users close the chat widget
• Implementing a client-side chat session timer
• Inserting a line break with Shift+Enter
• Automatically opening a URL pushed by an agent
• Showing the number of unread messages in a minimized chat widget
• Showing an agent typing notification in the minimized chat widget
• Displaying a character counter in the message area
• Replace Skip Registration button with Exit button
• Automatically expand text area based on user input

Localization

The Chat Session API (startChat and restoreChat methods particularly) includes an optional
localization parameter that accepts one of the following:

• JavaScript object with localization data
• Function that returns an object with localization data
• Function that accepts a callback and calls that callback with an object containing localization data
• URL of and external JSON file with the localization data

Localization data is fetched or passed before chat initialization and merged with the default
localization.

Important
For security reasons, in "popup" mode (separate window) data is fetched via AJAX (not
JSONP), which means that the chat widget html file and the localization file
must be on the same domain. Otherwise (or in case of invalid URL) an error is

Chat JS API Chat Widget JS API

API Reference 29

thrown and the chat silently fails.
In "embedded" mode, the localization data is always fetched using JSONP. This lets you host the data on
another domain, separate from the site itself. You can use Web Engagement server to host the content for
you, as they both support JSONP out-of-the-box. See GWE Architecture—Hosting Static Resources.

// This will work: widget and l18n are on same domain: example.com
chat.startChat({

widgetUrl: 'http://example.com/chatWidget.html',
localization: 'http://example.com/chatLocalization.json',
embedded: false

});

// This won't work: they are on different domains
chat.startChat({

widgetUrl: 'http://example.com/chatWidget.html',
localization: 'http://another-domain.com/chatLocalization.json',
embedded: false

});

// This will work: files are on different domains, but chat is started in
embedded mode,
// so JSONP is used (here we use Genesys Web Engagement server for JSONP)
chat.startChat({

widgetUrl: 'http://example.com/chatWidget.html',
localization: 'http://<GWE_SERVER>/server/api/resources/v1/

chatLocalization.json',
embedded: true

});

The passed localization object or external JSON file may contain any of the fields listed below. Fields
that are not present will be taken from built-in default localization.

Built-in localization

{
"chatTitle": "Genesys Chat",
"chatWelcome": "Hello! Next available customer representative will be with you shortly.",
"defaultUsername": "User",
"defaultAgentName": "Representative",
"ownUsername": "You",
"chatEnded": "Chat session ended",
"agentJoined": "Representative {name} has joined the session",
"agentLeft": "Representative {name} has left the session",
"agentTyping": "{agentName} is typing...",
"serverStopped": "Connection to chat has been interrupted. Trying to restore...",
"serverUnreachable": "Chat is unavailable now. Please try again later.",
"networkInterrupted": "Connection to chat has been interrupted. Trying to restore...",
"networkRestored": "Connection restored.",
"unknownServerError": "Chat is unavailable now. Please try again later.",
"chatSessionExpired": "Chat session has expired.",
"regFirstName": "First Name:",
"regLastName": "Last Name:",
"regEmail": "Email:",
"regSubmit": "Start Chat",
"regSkip": "Skip Registration",

Chat JS API Chat Widget JS API

API Reference 30

https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#Hosting_Static_Resources

Built-in localization

"regWelcomePart1": "Please enter few details about you, and press Start Chat button.",
"regWelcomePart2": "Next available customer representative will be with you shortly.",
"regErrorRequiredField": "\"{field}\" is a required field",
"regErrorInvalidEmail": "Please enter a valid email address",
"leaveSessionPrompt": "You are going to leave chat session."

}

Procedure: Step-by-step instruction for using an external
localization file

Steps

1. Create a localization file with all / some of the fields overridden.
For example suppose you want to have chat title and welcome message in Russian:
{

"chatTitle": "Наш уютный чат",
"chatWelcome": "Здравствуйте! Наш представитель будет с вами в ближайшее время."

}

Copy and paste the code above (or craft your own) and save it as .json file.
2. We recommend that you check to make sure that the syntax of the JSON file is correct. You can

do this online, using this service: http://jsonlint.com/
3. Host the file on any server. If you want to support localization for chat in "embedded" mode, you

have to configure JSONP support on the server.

Important
Genesys Web Engagement supports serving JSONP. See GWE Architecture—Hosting Static Resources.

4. Use the URL for this file as the value of the localization option in startChat.
chat.startChat({

localization: 'http://my-server.com/my-chat-localization.json',
// other parameters

})

5. After starting the chat, you should see something like this (sample is in "embedded" mode):

Chat JS API Chat Widget JS API

API Reference 31

https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#Hosting_Static_Resources

6. Troubleshooting
If localization fails to load or parse, the chat will not start, signaling that something went wrong.
To see what went wrong you will have to:
• Enable "debug" mode:

chat.startChat({
localization: 'http://my-server.com/my-chat-localization.json',
debug: true,
// other parameters

});

• Enable browser developer tools (for example, in Chrome and most of other browser you can
press F12 to launch).

• You should see something like this:

Chat JS API Chat Widget JS API

API Reference 32

Here you can see that localization was not found on the server (response 404).

And here is another example of what you can see if JSON is either invalid or improperly configured:

Chat JS API Chat Widget JS API

API Reference 33

Additional Methods
Besides the main API methods, the following methods are also available since chat version 850.6.0:

• onBeforeChatOptionsApplied(callback)—Use this method to modify options before the chat starts or
restores. This method may be useful if you do not control the startChat() call but still need to control
some of the options.

• onSession(callback)—This is an alternative method of accessing the Chat Service JS API. This method is
an alternative to accessing the Chat Service JS API through the done callbacks of the startChat and
restoreChat methods. This method may be useful if you do no control the startChat call.

• close()—Close the chat widget. Added in 850.5.0
• toggle() —Minimize or restore the chat widget. Added in 850.6.0.
• onMinimized(callback) —Add a callback when the chat widget is minimized or restored. Added in

850.6.0
• isMinimized()—Check if the chat widget is minimized. Added in 850.6.0
• VERSION—Returns current chat version. Added in 850.1.0

Chat JS API Chat Widget JS API

API Reference 34

Customization Examples
• Modifying the Styling of the Chat Messages
• Substituting the Genesys Logo with a Custom Image
• Setting the Ground to Create Your Own Chat Widget (popup mode)
• Adding Extra Content to the Chat Widget
• Using the ui.onBeforeMessage Hook to Add Desktop Notifications
• Displaying a confirmation alert when users close the chat widget
• Implementing a client-side chat session timer
• Inserting a new line with Shift+Enter
• Automatically opening a URL pushed by the agent
• Showing the number of unread messages in a minimized chat widget
• Showing an agent typing notification in the minimized chat widget
• Displaying a character counter in the message area
• Replace Skip Registration button with Exit button
• Automatically expand text area based on user input

In the examples below we use Google Chrome as the web browser, but you can find similar developer
features in any other modern browser.

Warning
The HTML structure and CSS classes in the chat widget are subject to change and
Genesys does not guarantee backwards compatibility in future versions. This means
that you might need to update your customizations when you update the chat widget.

Procedure: Modifying the Styling of the Chat Messages
Purpose: Customization Type: CSS-based

In this example we play with the styling of the messages that appear in the
chat widget. This should give you a taste of what a CSS-based

Chat JS API Chat Widget JS API

API Reference 35

customization might look like.
Prerequisites

• You must have basic knowledge of CSS and HTML.

Steps

1. Launch a web page that is instrumented with the chat widget.
2. Start a chat session and send a chat message. You will see something like this:

3. Right-click the message and choose "Inspect Element" to start the Chrome developer tools.

Chat JS API Chat Widget JS API

API Reference 36

We can see that the chat message consists of three elements, each with its own dedicated CSS class. We will use this
information to create new styling for these elements.

Chat JS API Chat Widget JS API

API Reference 37

4. Next, we create our custom CSS to modify the colors of some of the text and the font used for
the author name.
/* 1. Make the name stand out */
div.gwc-chat-message-author {

font-family: Georgia;
font-style: italic;
font-weight: bold;

}

/* 2. Make the date more subtle */
div.gwc-chat-message-time {

font-family: Georgia;
color: #bdc3c7;

}

/* Make the body of a message a bit less contrast */
div.gwc-chat-message-text {

color: #7f8c8d;
}

Chat JS API Chat Widget JS API

API Reference 38

5. Add this CSS to your web page.
6. Reload the page. The chat message has the new look and feel we defined in the CSS.

Tip
Here's a fun example of how to transform the chat message into an old-style
computer terminal:
.gwc-chat-message-container {

background: #000;
border-color: #0f0;

}
.gwc-chat-message > div {

font-family: monospace;
color: #0f0;

}

And the result:

Chat JS API Chat Widget JS API

API Reference 39

Procedure: Substituting the Genesys Logo with a Custom Image
Purpose: Customization Type: Template-based

In this example we customize the Genesys logo that appears in the chat
widget.
Prerequisites

• You must have basic knowledge of CSS and HTML.

Steps

1. Get the default chat templates HTML (see templates) and save it in a place where it is
convenient for you to edit.

2. Start a chat. You will see something like this:

Chat JS API Chat Widget JS API

API Reference 40

Or this, if registration is disabled:

Chat JS API Chat Widget JS API

API Reference 41

3. Right-click the Genesys logo and choose "Inspect Element". The Chrome developer tools open
and highlight the corresponding DOM element.

Chat JS API Chat Widget JS API

API Reference 42

Now that we know the CSS class of the element, we can look for it in the templates.
4. Open the templates HTML file in your favorite text editor and replace the <div> that has the

gwc-chat-logo class with an image element. In this example, we use the publicly available logo
of the GNU project:

Chat JS API Chat Widget JS API

API Reference 43

Important
There are two logo elements in the templates: one in the chatRegistration template and another in
the chatView template.

5. Save the modified templates file and "host" it somewhere that is accessible via HTTP.
6. Configure the chat to use the modified template file by providing the URL of the file to the

templates option:
<script>
var _genesys = {

chat: {
templates: 'http(s)://example.com/chatTemplates.html'

}
};
</script>
<INSTRUMENTATION_SNIPPET>

Important
This example uses the Integrated JavaScript Application to add chat to the page. See Configuring Chat
for instructions on configuring the chat widget using the Integrated Application.

7. Start a new chat. You will see something like this:

Chat JS API Chat Widget JS API

API Reference 44

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration
https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Configuring_Chat

Tip
For "popup" mode implementations, you can use the same algorithm except
instead of adding the CSS to your site, add it to the chat widget page.

Procedure: Setting the Ground to Create Your Own Chat Widget
(popup mode)
Purpose: To customize the chat UI in popup mode, you can create an HTML
page for the chat widget and then use the Chat Widget JS API to add
functionality.

Chat JS API Chat Widget JS API

API Reference 45

Prerequisites

• You must have basic knowledge of CSS and HTML.

Steps

1. Make the chat open the window using this calling code on your web page:
chat.startChat({

widgetUrl: <URL_OF_YOUR_HTML_PAGE_HERE>,
ui: false

});

2. Inside the widget HTML, start the chat and hook your UI to the API:
<!DOCTYPE html>
<html>
<head>

<title>My Custom Chat Widget</title>
</head>
<body>
<script src="<PATH_TO_chatWidget.js>"></script>
<script>

chat.startChatInThisWindow().done(function(session) {
// Implement your own UI using session API

});
</script>
</body>
</html>

Procedure: Adding Extra Content to the Chat Widget
Purpose: Customization Type: Template-based and CSS-based

In this example we add extra content to the chat widget: a "Copyright" notice at the bottom of
the widget. We use the templates for this because they are a great fit for adding anything
extra to the widget. We will also need to to adjust the CSS to make our changes look good.

Here is a look at the end result we are trying to achieve:

Chat JS API Chat Widget JS API

API Reference 46

Tip
You can use the algorithm in this example to add, remove, or modify any part of
the widget.

Prerequisites

• You must have basic knowledge of CSS and HTML.
• Some experience with web browser developer tools would be helpful.
• You have read the templates section.

Steps

1. Get the default chat templates HTML (see templates) and save it in a place where it is
convenient for you to edit.

2. Open the file in your favorite text editor and find the chatView template. This template is
responsible for the general structure of the widget (the area that displays the messages and the
input area) and this is where we will add our new content.

Chat JS API Chat Widget JS API

API Reference 47

3. Add the new content to the template. In this example, we add it to the <form> below the input
area. This is not semantic, but makes further CSS-related work a bit easier.

4. Save the modified templates file and "host" it somewhere that is accessible via HTTP.
5. Configure the chat to use the modified template file by providing the URL of the file to the

templates option:
<script>
var _genesys = {

chat: {
templates: 'http(s)://example.com/chatTemplates.html'

}
};
</script>
<INSTRUMENTATION_SNIPPET>

Chat JS API Chat Widget JS API

API Reference 48

Important
This example uses the Integrated JavaScript Application to add chat to the page. See Configuring Chat
for instructions on configuring the chat widget using the Integrated Application.

6. Start a new chat. You will see something like this:

The content is there, but the layout looks a bit broken. To fix it, we're going to use some CSS.
7. Follow the same algorithm that is used for every CSS customization:

a. Inspect an element with your browser's developer tools.
b. See if it has the styling you need.
c. If no, try its parents or children until you find the right element.
d. Modify the CSS rules for the element until you're satisfied with the results.
e. Save all your modifications as separate CSS.
f. Add this CSS to your page; it will override the initial CSS of the widget.

For this particular example, we can use the following simple CSS rule:

.gwc-chat-message-form {
bottom: 3px;

}

Chat JS API Chat Widget JS API

API Reference 49

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration
https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Configuring_Chat

Essentially, we are moving the form a bit closer to the bottom edge because it now contains an additional <div> that
occupies the space that was previously occupied by the margin.

8. Add the CSS to your web page.

Procedure: Using the ui.onBeforeMessage Hook to Add Desktop
Notifications
Purpose: Customization Type: JavaScript-based

In this example we use the browser Notification API and Page Visibility API to show a
notification when a user receives a chat message while on another browser tab.

The purpose of the example is to show how you can use the UI hooks to add the functionality
to the chat widget.

Important
The browser APIs used in this example are an experimental technology.
This technology's specification has not stabilized, so you should check the linked
pages above for details about usage in various browsers. Also note that the
syntax and behavior of an experimental technology is subject to change in
future versions of browsers as the spec changes. At the time this example was
created (October 2014), it worked successfully on the desktop version of
Chrome.

Prerequisites

• You must have basic knowledge of JavaScript.

Steps

1. Create a function that shows a notification in the browser (if the browser supports the APIs) and
add it to our instrumentation:
var _genesys = {

chat: {

Chat JS API Chat Widget JS API

API Reference 50

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Instrumentation_Snippet

ui: {
onBeforeMessage: function(messageEl, messageText) {

// If page is in focus or page visibility API is not supported,
quit.

if (!document.hidden) {
return;

}

// If notification API is not supported, quit.
if (!Notification) {

return;
}

if (Notification.permission === 'granted') {
var notification = new Notification(document.location.host + '

representative says:', {
icon: 'http://placekitten.com/51/50', // add an avatar
body: messageText // include text entered by agent

});
// When notification is clicked, bring the tab with chat into

focus.
notification.onclick = function() {

window.focus();
}

}
}

}
}

}

// When page is loaded, ask the user permission to show notifications
if (Notification) {

Notification.requestPermission();
}

Important
This example uses the Integrated JavaScript Application to add chat to the page. The Integrated
Application makes sure that the option is passed to the startChat() and restoreChat() methods.
This means the modification is applied whether the chat is started on the current page or restored
after the navigation/page reload See Configuring Chat for instructions on configuring the chat widget
using the Integrated Application.

2. Load a page on your site. You should see a request to allow the notifications (see the last line of
the code snippet in Step 1). For example, in Chrome the request might look like this:

Chat JS API Chat Widget JS API

API Reference 51

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration
https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Configuring_Chat

3. Click Allow.
4. Start a chat session and join as an agent (or wait for the agent to join if you do not control the

environment).
5. Switch to another tab in the browser
6. Send a message from the agent (or wait for the agent to send the message).
7. A notification appears on your desktop:

8. Click the message. The page with the chat widget gets the focus.

Procedure: Displaying a confirmation alert when users close
the chat widget
Purpose: In this example we make users confirm they want to close the chat widget. The
example applies to embedded mode as popup mode does this out-of-the-box.

Customization Type: JavaScript-based
Prerequisites

You must have basic knowledge of JavaScript.

Steps

1. Write a javascript function that asks user to confirm they want to close the chat. This function
should return true if users answer "Yes" and false otherwise. For example:

Chat JS API Chat Widget JS API

API Reference 52

function() { return confirm('Do you really want to close the chat?'); }

2. Add your function as a click handler for the element with class gwc-chat-control-close. This element is the close
button of the chat widget. You must add your function only after the element exists on the page.

If registration is enabled, add your functions to the ui.onBeforeRegistration handler. You must also wrap your
functions in setTimeout so your function executes after the chat renders. Your instrumentation should look like this:

var _genesys = {
debug: true,
chat: {

ui: {
onBeforeRegistration: function () {

setTimeout(function() {
document.querySelectorAll('.gwc-chat-control-close')

.addEventListener('click', function() {
return confirm('Do you really want to close the

chat?');
}, false);

}, 0);
}

}
};

3. If registration is not enabled, add your function to ui.onBeforeChat instead of
ui.onBeforeRegistration:
var _genesys = {

debug: true,
chat: {

ui: {
onBeforeChat: function () {

setTimeout(function() {
document.querySelectorAll('.gwc-chat-control-close')[0]

.addEventListener('click', function() {
return confirm('Do you really want to close the

chat?');
}, false);

}, 0);
}

}
};

Now, when users try to close chat, they see a standard notification:

Chat JS API Chat Widget JS API

API Reference 53

If they click OK the chat closes but persists otherwise.

Procedure: Implementing a client-side chat session timer
Purpose: In this example we implement a simple code snippet that ends the chat if the user
has not sent or received any messages for a period of time.

Customization Type: JavaScript-based
Prerequisites

You must have basic knowledge of JavaScript.

Steps

1. Add a hook to your instrumentation to access the Chat APIs:
var _genesys = {

chat: {
onReady: function(chat) {

}
}

};

Important
This example uses the integrated javascript application to add chat to the page.

2. After you access the Chat Widget API, add an onSession handler to access the Chat Service API:
var _genesys = {

chat: {
onReady: function(chat) {

chat.onSession(function(session) {

});
}

}
}

Chat JS API Chat Widget JS API

API Reference 54

3. Implement a function that triggers the timer. For example:
chat.onSession(function(session) {

var timeout = 30000, // 30 seconds
sessionTimeout;
function startCountdown() {

sessionTimeout = setTimeout(function() {
// session timed out
}, timeout);

}
});

4. Now, connect the timing functionality to the onMessageReceived chat event. We restart the
countdown as soon as the user receives a message. When the countdown ends, we leave the
session. A user's own messages also trigger onMessageReceived. The timer expires when
neither the user or agent send any messages in the time period.
chat.onSession(function(session) {

var timeout = 30000, // 30 seconds
sessionTimeout;

function startCountdown() {
sessionTimeout = setTimeout(function() {

session.leave();
}, timeout);

}

session.onMessageReceived(function(event) {
clearTimeout(sessionTimeout);
startCountdown();

});
});

The whole example now looks like this:

var _genesys = {
chat: {

onReady: function(chat) {

chat.onSession(function(session) {
var timeout = 30000, // 30 seconds

sessionTimeout;

function startCountdown() {
sessionTimeout = setTimeout(function() {

session.leave();
}, timeout);

}

session.onMessageReceived(function(event) {
clearTimeout(sessionTimeout);
startCountdown();

});
});

}
}

};

Chat JS API Chat Widget JS API

API Reference 55

Procedure: Inserting a line break with Shift+Enter
Purpose: By default, the chat widget sends a message with Enter and Ctrl+Enter inserts a
line break. In this example, we make Shift+Enter also insert a line break.

Customization Type: JavaScript-based
Prerequisites

• You must have basic knowledge of JavaScript.
• This examples uses the jQuery library.

Steps

1. Use the ui.onBeforeChat hook to access the textarea element used to enter messages.
var _genesys = {

chat: {
ui: {

onBeforeChat: function(chatElement) {
var textarea = jQuery(chatElement).find('.gwc-chat-message-input');

}
}

}

};

2. Bind a handler to the keypress event of the textarea:
var textarea = jQuery(chatElement).find('.gwc-chat-message-input');
textarea.keypress(function (e) {

});

3. In the event handler, insert a line break at the current textarea value when the user presses the
Enter and Shift keys. Return false to prevent default behavior of sending the message. If the
user does not press the Shift and Enter keys, the handler passes through and triggers default
behavior.
var textarea = jQuery(chatElement).find('.gwc-chat-message-input');
textarea.keypress(function (e) {

// Enter key was pressed
if (e.which === 13 || e.which === 10) {

// If Shift was pressed, break line.
if (e.shiftKey) {

textarea.val(textarea.val() + '\\n');

Chat JS API Chat Widget JS API

API Reference 56

return false;
}

}
});

The complete configuration looks like this:

var _genesys = {
chat: {

ui: {
onBeforeChat: function(chatElement) {

var textarea = jQuery(chatElement).find('.gwc-chat-message-input');
textarea.keypress(function (e) {

// Enter key pressed
if (e.which === 13 || e.which === 10) {

// If Shift key pressed, insert break line and prevent
default behavior

if (e.shiftKey) {
textarea.val(textarea.val() + '\\n');
return false;

}
}

});
}

}
}

};

Procedure: Automatically opening a URL pushed by an agent
Purpose: In some desktops, the agent can push a URL instead of sending plain text. By
default, the chat widget renders a pushed URL using the a tag, making it a link. In this
example, we make links pushed by the agent open automatically.

Customization Type: JavaScript-based
Prerequisites

• You must have basic knowledge of JavaScript.
• This example requires Integrated JavaScript Application version 850 and above.

Chat JS API Chat Widget JS API

API Reference 57

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

Steps

1. In your instrumentation, configure anytime access to the Chat Widget API:
<script>
var _genesys = {

chat: {
onReady: []

}
};

Learn more about his snippet here, Integrated JavaScript Application—Obtaining Chat and Co-browse APIs

2. Somewhere in your code, access the Chat Widget API:
_genesys.chat.onReady.push(function(chatWidgetApi) {

});

3. Use the Chat Widget API to subscribe to the chat session. The chat session object implements
the Chat Service API:
_genesys.chat.onReady.push(function(chatWidgetApi) {

chatWidgetApi.onSession(function(chatSession) {

});

});

4. Use the chat session to subscribe to the onMessageReceived event:
_genesys.chat.onReady.push(function(chatWidgetApi) {

chatWidgetApi.onSession(function(chatSession) {

chatSession.onMessageReceived(function(event) {

});

});

});

5. If the incoming event is of type URL, open the URL in the current window:
_genesys.chat.onReady.push(function(chatWidgetApi) {

chatWidgetApi.onSession(function(chatSession) {

chatSession.onMessageReceived(function(event) {
if (event.content.type === 'url') {

window.location = event.content.text;
}

});

});

Chat JS API Chat Widget JS API

API Reference 58

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Obtaining_Chat_and_Co-browse_APIs

});

6. If you use chat in pop-up mode where the chat widget opens in a separate browser window, you
must modify the code to open the URL in the parent window instead of the chat widget window.
You must also place the code in the chatWidget.html file linked in the widgetUrl option.

chatWidget.html

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Genesys Chat</title>

</head>
<body>
<script src="js/chatWidget.js"></script>
<script>

chat.startChatInThisWindow().done(function(session) {
session.onMessageReceived(function(event) {

if (event.content.type === 'url') {
window.opener.location = event.content.text;

}
})

});
</script>
</body>
</html>

Procedure: Showing the number of unread messages in a
minimized chat widget
Purpose: In this example, we add a simple counter that notifies the user of any unread
messages. This example applies to embedded mode where the widget is rendered on the web
page directly.

Counter example:

Chat JS API Chat Widget JS API

API Reference 59

Customization Type: JavaScript-based
Prerequisites

• You must have basic knowledge of JavaScript.
• This example assumes you are using chat as part of the Integrated JavaScript Application.
• The example uses the jQuery library.

Steps

1. Add an HTML element to the ebeddedWindow template. to use as our counter. For example, below
we add . See Template-based Customization for
more details.
<script type="text/html" data-gwc-template="embeddedWindow">

<div class="gwc-chat-embedded-window">
<div class="gwc-chat">

<div class="gwc-chat-head gwc-drag-handle">
<div class="gwc-chat-window-controls">

<div class="gwc-chat-control gwc-chat-control-minimize">
<div class="gwc-chat-icon gwc-chat-icon-minimize"></div>

</div>
<div class="gwc-chat-control gwc-chat-control-close">

<div class="gwc-chat-icon gwc-chat-icon-close"></div>
</div>

</div>
<div class="gwc-chat-title"> <%=

data.chatTitle %></div>
</div>
<div class="gwc-chat-body"></div>

</div>
</div>

</script>

2. Configure you instrumentation for anytime access to the Chat Widget API:
<script>
var _genesys = {

chat: {
onReady: []

}
};

Learn more about his snippet here, Integrated JavaScript Application—Obtaining Chat and Co-browse APIs

3. Somewhere in your code, access the Chat Widget API:
_genesys.chat.onReady.push(function(chatWidget) {

});

Chat JS API Chat Widget JS API

API Reference 60

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration
https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Obtaining_Chat_and_Co-browse_APIs

4. Create a variable to hold the number of unread messages and set it to 0. Use the Chat Widget
API to subscribe to the chat session. The chat session object implements the Chat Service API.
_genesys.chat.onReady.push(function(chatWidgetApi) {

var messageCount = 0;

chatWidgetApi.onSession(function(chatSession) {

});

});

5. In the session API, use the onMessageReceived method to subscribe to new messages. When a
message comes in, increment the counter and update your counter. Use the isMinimized()
method from the Chat Widget API to check if the widget is minimized.
_genesys.chat.onReady.push(function(chatWidgetApi) {

var messageCount = 0;

chatWidgetApi.onSession(function(chatSession) {
session.onMessageReceived(function(event) {

if (chat.isMinimized()) {
messageCount++;
$('.gwc-chat-counter').text('(' + messageCount + ')');

}
});

});

});

6. Use the onMiminized method from the Chat Widget API to reset the counter when the user
restores the chat widget.
_genesys.chat.onReady.push(function(chatWidgetApi) {

var messageCount = 0;

chatWidgetApi.onSession(function(chatSession) {
session.onMessageReceived(function(event) {

if (chat.isMinimized()) {
messageCount++;
$('.gwc-chat-counter').text('(' + messageCount + ')');

}
});

});
chatWidgetApi.onMinimized(function(isMinimized) {

if (!isMinimized) {
messageCount = 0;
$('.gwc-chat-counter').text('');

}
});

});

Chat JS API Chat Widget JS API

API Reference 61

Tip
This example does not properly support page reloads. To add support for page
reloads:

• Use the restored property in the onMessageReceived callback to determine if the
message is new or replayed.

• Use browser storage (for example, sessionStorage) to save and restore the
counter value.

Procedure: Showing an agent typing notification in the
minimized chat widget
Purpose: Building on the previous example, in this example we show a notification in the
minimized widget when the agent is typing. This example only applies to embedded mode.

Customization Type: JavaScript-based
Prerequisites

• You must have basic knowledge of JavaScript.
• You completed the previous example, Showing the number of unread messages in a minimized

chat widget.

Steps

1. Use the onAgentTyping method in the session API to subscribe to the agent typing event.
session.onAgentTyping(function(event) {

});

2. Create new content for your counter element. When the agent starts typing, append ... to the

Chat JS API Chat Widget JS API

API Reference 62

unread messages counter. If there are no unread messages, display When the agents stops
typing, just show the number of unread messages, if any.
session.onAgentTyping(function(event) {

var text;
if (event.isTyping) {

text = messageCount ? '(' + messageCount + '...)' : '(...)';
} else {

text = messageCount ? '(' + messageCount + ')' : '';
}

});

3. Add the content to the counter only when the chat is minimized:
session.onAgentTyping(function(event) {

var text;
if (!chat.isMinimized()) {

return;
}
if (event.isTyping) {

text = messageCount ? '(' + messageCount + '...)' : '(...)';
} else {

text = messageCount ? '(' + messageCount + ')' : '';
}
$('.gwc-chat-counter').text(text);

});

The whole snippet, including code from the previous example:

_genesys.chat.onReady.push(function(chatWidgetApi) {
var messageCount = 0;

chatWidgetApi.onSession(function(chatSession) {
session.onMessageReceived(function(event) {

if (chat.isMinimized()) {
messageCount++;
$('.gwc-chat-counter').text('(' + messageCount + ')');

}
});
session.onAgentTyping(function(event) {

var text;
if (!chat.isMinimized()) {

return;
}
if (event.isTyping) {

text = messageCount ? '(' + messageCount + '...)' : '(...)';
} else {

text = messageCount ? '(' + messageCount + ')' : '';
}
$('.gwc-chat-counter').text(text);

});
});
chatWidgetApi.onMinimized(function(isMinimized) {

if (!isMinimized) {
messageCount = 0;
$('.gwc-chat-counter').text('');

}

Chat JS API Chat Widget JS API

API Reference 63

});
});

Now, when the agent begins to type the user sees:

or

Procedure: Displaying a character counter in the message area
Purpose: This example adds a 140 character message limit and displays the number of
remaining characters.

Character Counter:

Customization Type: JavaScript-based, template-based

Chat JS API Chat Widget JS API

API Reference 64

Prerequisites

• You must have basic knowledge of JavaScript.
• This example assumes you are using chat as part of the Integrated JavaScript Application.
• The example uses the jQuery library.

Steps

1. Access the default chatView template. See Template-based Customization
2. Modify the template to set a limit on the text area and add a counter element. We use the class

name gwc-input-counter.
<script type="text/html" data-gwc-template="embeddedWindow">
<div>

<div class="gwc-chat-branding"><div class="gwc-chat-logo"></div></div>
<div class="gwc-chat-content-area">

<div class="gwc-chat-message-container">
<div class="gwc-persistent-chat-messages"></div>

</div>
<form class="gwc-chat-message-form" action="javascript:">

<textarea class="gwc-chat-input gwc-chat-message-input" maxlength="140"><%=
data.message %></textarea>

</form>
<div class="gwc-input-counter">140</div>

</div>
</div>
</script>

Important
We use the maxlength property to limit the input on the <textarea>. The maxlength property is part
of the HTML5 spec and may be unavailable in older browsers such as IE9 and below. For older
browsers, you must use a JavaScript solution like the one described here, http://stackoverflow.com/a/
12131507/697388.

3. At this point, the character counter is not visible in the chat widget. To make the counter visible,
add we the following CSS:
<style>
.gwc-input-counter {

position: absolute;
bottom: 16px;
right: 14px;
color: #999;
font-weight: bold;
text-shadow: 1px 1px 1px lightgrey;

}
</style>

Chat JS API Chat Widget JS API

API Reference 65

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

4. Now we add an event listener to the text area. Use the ui.onBeforeChat hook to access the text
area element within chat:
var _genesys = {

chat: {
ui: {

onBeforeChat: function(chatHtml) {
$(html).find('textarea'); // our textarea

}
}

}
};

Use the event listener to calculate the number of characters remaining and update the counter element:

var _genesys = {
chat: {

ui: {
onBeforeChat: function(chatHtml) {

$(html).find('textarea').on('input', function () {
var charsLeft = this.maxLength - this.value.length;
$('.gwc-input-counter').text(charsLeft);

});
}

}
}

};

Important
This example uses the input event which may be unavailable in older browsers.
You may want to use keyup or another event instead.

Procedure: Replace Skip Registration button with Exit button
Purpose: In this example we replace the Skip Registration button with an Exit button.
Clicking Exit closes the chat widget.

Exit button:

Chat JS API Chat Widget JS API

API Reference 66

Customization Type: JavaScript-based, template-based
Prerequisites

• You must have basic knowledge of JavaScript.
• This example assumes you are using chat as part of the Integrated JavaScript Application.
• The example uses the jQuery library.

Steps

1. Add the Exit string to the localization bundle. You can do this in different ways, see Chat Widget
API—Localization. In this example, we create a regExit key with value Exit and pass the key-
value pair to the localization option. By doing so, we extend the built-in localization with our
new key:
<script>
var _genesys = {

chat: {
localization: {

'regExit': 'Exit'
}

}
};
<script>

Chat JS API Chat Widget JS API

API Reference 67

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

2. Modify the template to render our new text instead of Skip Registration. Copy and paste the
default chatRegistration template into your page, see more about templates in Chat Widget
API—Template-based Cusomization. Substitute <%= data.nls.regSkip %> with <%=
data.nls.regExit %>. The updated template looks like this:
<script type="text/html" data-gwc-template="chatRegistration">

<div>
<div class="gwc-chat-branding"><div class="gwc-chat-logo"></div></div>
<div class="gwc-chat-content-area">

<div class="gwc-chat-registration-intro">
<p class="gwc-chat-registration-intro-p">

<%= data.nls.regWelcomePart1 %></p>
<p class="gwc-chat-registration-intro-p">

<%= data.nls.regWelcomePart2 %></p>
</div>
<form>

<div class="gwc-chat-controls-container">
<div class="gwc-chat-control-group gwc-chat-control-group-required">

<label for="gcbChatFirstName"
class="gwc-chat-label">

*<%= data.nls.regFirstName %>
</label>
<div class="gwc-chat-controls">

<input id="gcbChatFirstName" name="FirstName"
class="gwc-chat-registration-input"
type="text"/>

<div class="gwc-chat-validation-error"></div>
</div>

</div>
<div class="gwc-chat-control-group">

<label for="gcbChatLastName" class="gwc-chat-label">
<%= data.nls.regLastName %>

</label>
<div class="gwc-chat-controls">

<input id="gcbChatLastName" name="LastName"
class="gwc-chat-registration-input"
type="text"/>

<div class="gwc-chat-validation-error"></div>
</div>

</div>
<div class="gwc-chat-control-group gwc-chat-control-group-required">

<label for="gcbChatEmail" class="gwc-chat-label">
*<%= data.nls.regEmail %>

</label>
<div class="gwc-chat-controls">

<input id="gcbChatEmail" name="EmailAddress"
class="gwc-chat-registration-input"
type="email"/>

<div class="gwc-chat-validation-error"></div>
</div>

</div>
</div>
<div class="gwc-chat-registration-buttons">

<div class="gwc-chat-registration-skip">
<button class="gwc-chat-button gwc-chat-button-light"

id="gcbChatSkipRegistration" type="button">
<%= data.nls.regExit %>

Chat JS API Chat Widget JS API

API Reference 68

</button>
</div>
<div class="gwc-chat-registration-submit">

<button class="gwc-chat-button" id="gcbChatRegister" type="submit">
<%= data.nls.regSubmit %>

</button>
</div>

</div>
</form>

</div>
</div>

</script>

3. Use the ui.onBeforeRegistration hook along with jQuery and the close() method to add the
button's behavior:
<script>
var _genesys = {

chat: {
localization: {

'regExit': 'Exit'
},
ui: {

onBeforeRegistration: function(regForm) {
var $skipBtn = jQuery(regForm).find('#gcbChatSkipRegistration');
$skipBtn.on('click', function() {

chat.close();
return false; // prevent default behavior

});
}

}
}

};
<script>

Now, when the user clicks on the Exit button, the chat widget closes.

Procedure: Automatically expand text area based on user input
Purpose: In this example we automatically expand the text input area in the chat widget as
the user enters text.

Customization Type: JavaScript-based, template-based

Chat JS API Chat Widget JS API

API Reference 69

Prerequisites

• You must have basic knowledge of JavaScript.
• This example assumes you are using chat as part of the Integrated JavaScript Application.
• The example uses the jQuery library.

Steps

1. Access the textarea element using the ui.onBeforeChat hook:
<script>
var _genesys = {

chat: {
ui: {

onBeforeChat: function(html) {
var $textarea = jQuery(html).find('textarea');

}
}

}
};
</script>

2. Add a listener to the textarea. When the textarea receives input, the listener checks the
textarea size and increases the size as needed:
//...
var $textarea = jQuery(html).find('textarea');
$textarea.on('input', function () {

if (this.clientHeight < this.scrollHeight) {
this.style.height = this.scrollHeight + 'px';

}
});

Important
This example uses the input event which may be unavailable in older browsers. You may want to use
keyup or another event instead.

3. At this point, when the textarea grows it covers the message area. We fix this by shrinking the
messages as we expand the textarea:
//...
if (this.clientHeight < this.scrollHeight) {

this.style.height = this.scrollHeight + 'px';
$('.gwc-chat-message-container').css({

bottom: this.scrollHeight + 25
});

}

Chat JS API Chat Widget JS API

API Reference 70

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

4. As a final adustment, we limit how large the textarea can grow. We set a height limit of 150 px:
if (this.clientHeight < this.scrollHeight && this.scrollHeight < 150) {

//...

The full code snippet now looks like this:

<script>
var _genesys = {

chat: {
ui: {

onBeforeChat: function(html) {
var $textarea = jQuery(html).find('textarea');
$textarea.on('input', function () {

if (this.clientHeight < this.scrollHeight && this.scrollHeight
< 150) {

this.style.height = this.scrollHeight + 'px';
$('.gwc-chat-message-container').css({

bottom: this.scrollHeight + 25
});

}
});

}
}

}
};
</script>

Chat JS API Chat Widget JS API

API Reference 71

startChat(options)

Method
• Description
• Returned Promise

• done
• fail

Options
• serverURL
• embedded
• transport
• localization
• templates
• widgetUrl
• windowSize
• windowName
• windowOptions
• debug

Options (cont'd)
• logger
• registration
• Custom registration
• userData
• createContact
• ui
• hooks
• maxOfflineDuration
• disableWebSockets

Description
This is the main entry point for configuring and starting a chat session.

Returned Promise
startChat returns a "promise" object with two chainable methods: done and fail.

Important
Currently, the promise is resolved or rejected only if the chat is started in "embedded"
mode. If it is started in separate window ("popup" mode), you have to use promise
returned by startChatInThisWindow method to get access to the Chat Session API.

done

Use this method to get access to the chat session service API as resolved with an instance of the
session object.

chat.startChat(options).done(function(session) {
// session.sendMessage, session.onAgentConnected and all other method are at your disposal.

});

Chat JS API Chat Widget JS API

API Reference 72

Tip
See Chat session commands for Chat Session API documentation . Note that if you
need to access the Chat Session API, you will probably want to get access not only in
cases when the session is started, but also when it is restored. You can use
restoreChat's "done" callback for that. See Getting Access to Chat Session API for
more info.

Important
The promise is never resolved before the chat session is created. This means that if
registration is enabled, the done callback will not fire until the registration is
complete and processed by the server.

fail

Resolved with an event containing an error describing what went wrong.

Event structure

Parameter Meaning
event.error.code Code of error

event.error.descpription Description of the error (English is default
language).

Tip
For a list of possible error codes, see Error Codes.

Chat widget error codes
In addition to the regular list of possible errors, the Chat Widget adds some of its own errors:

Error code Error description
Chat widget-specific error codes (range 200 -249)
200 Chat is already running on this page.
201 Chat is already running on another page.

For example,

chat.startChat(options).fail(function(event) {
if (event.error === 201) {

Chat JS API Chat Widget JS API

API Reference 73

alert('Chat is already running on another page');
}

});

Options

serverUrl
Type Default Value Mandatory Description

string undefined
Yes (except when
transport options is
provided)

URL of the CometD chat
server for default (built-
in) CometD transport.

embedded
Type Default Value Mandatory Description

boolean false No

Sets chat mode of
operation: "embedded"
(chat widget is rendered
directly on a page) or
"popup" (chat opens in
a separate browser
window).
Default is "popup". Pass the
value true to switch to
"embedded" mode.

Important
If chat is configured for embedded mode, the chat widget will disappear as soon as the
user leaves the website or navigates to any non-instrumented web page. If the user
returns to the page before the timeout has expired, chat will automatically be
restored. To configure the timeout, use the maxOfflineDuration option. The
maxOfflineDuration options may be pre-configured when you use chat as part of a
particular solution such as the Integrated JavaScript Applicaiton

Chat JS API Chat Widget JS API

API Reference 74

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

transport
Type Default Value Mandatory Description

Object undefined No (except when
serverUrl is omitted)

Custom transport
instance (for example,
REST-based).

localization
Type Default Value Mandatory Description

Object, string, or
function(function?) undefined No

Provider of customer
localization. This value
can be one of the
following:

• JavaScript object
with localization
data. Added in
850.0.0.

• Function that returns
an object with
localization data.
Added in 850.4.0.

• Function that accepts
a callback and calls
that callback with an
object containing
localization data.
Added in 850.4.0.

• URL of and external
JSON file with the
localization datav

If omitted, default English
localization will be used. See
Localization for more on how
to localize the chat widget.

Important
If you use Template-based
Customization, all
localization data is
available inside your
templates as a data.nls
object.

Chat JS API Chat Widget JS API

API Reference 75

templates
Type Default Value Mandatory Description

string none No

The URL of the HTML file
containing templates
used to render the chat
widget.
The request is made using
either JSONP or AJAX, following
the same logic for localization
files (see Localization). Default
templates are included into
the JavaScript source so by
default, there are no requests
made to load them. For more
information, see Template-
based Customization.

Important
Since chat version
850.5.0 you do not
necessarily have to
download the custom
templates over the
network. See Template-
based Customization for
more.

widgetUrl
Type Default Value Mandatory Description

string undefined
No (except when
embedded is set to
false - "popup" mode)

URL of chat widget html
that will be open in
external window when
operating in "popup"
mode.

windowSize
Type Default Value Mandatory Description

Object
{width: number, height:
number}

{ width: 400, height:
500 } No

Size of external chat
window when operating
in "popup" mode.

Important
Note that windowOptions
can override windowSize.

Chat JS API Chat Widget JS API

API Reference 76

windowName

Chat JS API Chat Widget JS API

API Reference 77

Type Default Value Mandatory Description

string genesysChatWindow No

A string representing the new
window that is passed to the
window.open call when opening the
chat widget window.

Important
windowName does not specify the title
of the new window.

Tip
This option only works in "popup"
mode (embedded is either absent or set
to false)

For example,

chat.startChat({
windowName: 'myWindowName'
//...

});
// => window.open(<widgetUrl>,
'myWindowName', ...);

Chat JS API Chat Widget JS API

API Reference 78

windowOptions

Chat JS API Chat Widget JS API

API Reference 79

Type Default Value Mandatory Description

Object value of windowSize option No

An object containing the options that
will be passed window.open when
opening a chat widget window.

Important
This option only works in "popup"
mode (embedded is either absent or set
to false)

Use this object to pass any window options,
such as position (top, left), whether to
show browswer buttons (toolbar), location
bar (location), and so on. See Window.open
for the full list. All options are converted to a
string that is passed to window.open call. For
example,

chat.startChat({
// open chat widget in top

left corner of the screen
windowOptions: {

left: 0,
top: 0

},
// ...

});
// => window.open(<widgetUrl>,
<windowName>,
'left=0,top=0,...')

Note that windowOptions is merged with
windowSize, but has higher priority. For
example,

chat.startChat({
windowSize: {

width: 200,
height: 400

},
windowOptions: {

Chat JS API Chat Widget JS API

API Reference 80

Type Default Value Mandatory Description

left: 0,
top: 0,
width: 300 //

this value will be used, and
height will be taken from
windowSize

},
// ...

});
// => window.open(<widgetUrl>,
<windowName>,
'left=0,top=0,width=300,height=400')

Chat JS API Chat Widget JS API

API Reference 81

debug
Type Default Value Mandatory Description

boolean false No

Pass the value true to
enable chat debugging
logs (by default
standard console.log
is used, see the logger
option if you want to
override that).

logger
Pass a function that will be used for chat logging (if debug is set to true) instead of the default
console.log. The function has to support the interface of the console.log — it must accept an
arbitrary number of arguments and argument types.

Important
To use the custom logging function in a separate window, you have to pass it directly
on the widget page to the startChatInThisWindow method.

registration
Type Default Value Mandatory Description

(boolean|function) true No

By default chat starts
with a built-in
registration form (that
you can customize using
ui.onBeforeRegistration).
Pass the value false to
disable this default built-in
registration form.

Custom registration
Pass a function to customize registration workflow.

Chat JS API Chat Widget JS API

API Reference 82

The function accepts one argument: a done function that must be called with an object containing the
data collected during registration.

This may sound complex but actually it is pretty straightforward:

chat.startChat({
registration: function(done) {

done({
EmailAddress: 'john.doe@example.com'

});
}
//...

});

In the example above, it is assumed that all data is known beforehand and so registration may be
completed synchronously and in a way that hides the operation from the end user. However, in reality
you may want to send an additional request to obtain the necessary data:

chat.startChat({
registration: function(done) {

// Suppose you have a special URL that returns current user's credentials that you want
to pass to chat session:

jQuery.get('/account/credentials', function(data) {
done(data);

});
}
//...

});

You may have noticed that both of these examples are artificial, in the sense that they do not provide
any UI but simply silently register the user with already available data. To provide a registration UI,
you will have to return the DOM object representing your UI from your custom registration function.
For example, like this:

chat.startChat({
// Simple jQuery-based example
registration: function(done) {

var $form = $('<form />'),
$email = $('<input type="email" name="email" placeholder="Enter your Email" />');

// bind done function to be called when the form is submitted
$form.on('submit', function() {

done({
EmailAddress: $email.val()

}};
});

$email.appendTo($form);

// return form DOM representation: it will be displayed in the chat widget
return $form.get(0);

}
//...

});

Although the example above may seem complicated, this approach is very powerful as it allows you
to reuse any JavaScript stack you use on your site, be it jQuery, client-side templating, more full-
featured frameworks like AngularJS or any other JS-based technology or their combinations.

Chat JS API Chat Widget JS API

API Reference 83

userData
Can be used to directly attach necessary UserData to a chat session. See Custom Registration and
Extended API to support integrated solutions for other ways of working with UserData.

chatAPI.startChat({
userData: {

visitID: currentVisitID
}

});

createContact

Chat JS API Chat Widget JS API

API Reference 84

Type Default Value Mandatory Description

boolean true No

Determines whether new contact
should be created from registration
data if it doesn't match any existing
contact. Only effective if registration
data is present (collected either by
built-in or custom registration
workflow).
// createContact is not
effective. Contact will not be
created.
chat.startChat({

registration: false
// ...

});

// Contact will be identified
and if doesn't exist, it will
be created.
chat.startChat({

createContact: true,
// ...

});

// Contact will be identified;
if doesn't exist, it won't be
created.
chat.startChat({

createContact: false,
// ...

});

Tip
Technically, this option controls the
lookup (and possibly the creation) of
client's record in the UCS database. By
default,

Chat JS API Chat Widget JS API

API Reference 85

Type Default Value Mandatory Description

• If registration is disabled (or
provides no data, which can
be the case with custom
registration function), the
contact will not be looked
up in UCS;

• If registration is enabled and
provides some data (in fact
any data, since we do not
validate on the browser
side), the contact will be
looked up in UCS and if not
found, it will be created.
• However, if

createContact is set to
false, the contact will
be looked up in UCS
and if not found it will
not be created.

Chat JS API Chat Widget JS API

API Reference 86

ui

Chat JS API Chat Widget JS API

API Reference 87

Type Default Value Mandatory Description

(boolean|Object) true No

Pass the value false to disable the
chat widget UI completely. Or pass
an object with "hook" functions that
can modify the built-in UI.
All "hooks" receive an object: a DOM
representation of a particular UI part, which
you can then modify. The structure of these
objects can be determined using browser
developer tools (F12 in Chrome) and may be
modified in future versions of chat widget.

Important
Backward compatibility of the DOM
structure provided in the UI hooks is
NOT guaranteed.

function
makeEverythingRed(htmlElement) {

jQuery(htmlElement).find('*').css({
color: 'red' });
}
function
makeEverythingBold(htmlElement)
{

jQuery(htmlElement).find('*').css({
'font-weight': 'bold' });
}

chat.startChat({
ui: {

onBeforeChat:
makeEverythingRed,

onBeforeRegistration:
makeEverythingRed,

onBeforeMessage:
makeEverythingBold

Chat JS API Chat Widget JS API

API Reference 88

Type Default Value Mandatory Description

},
// ...

});

Tip
See more examples in the Customizing
the User Interface section.

Chat JS API Chat Widget JS API

API Reference 89

Available "hooks" are:

Chat JS API Chat Widget JS API

API Reference 90

Hooks Description

onBeforeChat
Sent before the "main" chat UI is rendered (messages area and message
input field). Can be used to modify the layout / functionality of the chat
widget.

onBeforeRegistration Sent before the registration form is rendered (and only if it is enabled).

onBeforeMessage

Sent before every message that gets appended to the chat. For example,
messages from user, agent, system, typing, and so on are all included.
This hook has a special ability of "filtering out" certain messages in the chat. If the function
attached to it explicitly returns false, that particular message is not added to the UI. This is
useful for passing internal or system data using the the chat channel. To ease message analysis,
the hook function receives a second argument: the message text.

Tip
For example usage, see:

• Using the ui.onBeforeMessage Hook to Add Desktop
Modifications

Chat JS API Chat Widget JS API

API Reference 91

maxOfflineDuration
Type Default Value Mandatory Description

number 5 No

Time (in seconds)
during which state
cookies are stored after
page reload/navigation.
If cookies expire, the
chat is not restored.
This option specifies how long
the chat session will live after
the user leaves the website. A
value of five seconds is
usually long enough for chat
to survive page reloads, but
the chat interaction is likely to
be lost if the user navigates to
another site during the chat
interaction (in embedded
mode) and comes back to
your site. To support this kind
of workflow, consider
increasing the value of this
option or use the Integrated
JavaScript Application, where
the option value is increased
to 600 seconds by default.

disableWebSockets
Type Default Value Mandatory Description

boolean false no

You may disable
WebSockets for chat by
passing true to this
option. By default, chat
attempts to use
WebSockets for
connections to the
server. When
WebSocket connections
are unavailable ,such as
when the load balancer
does not support
WebSockets, chat
switches to other HTTP-
based means of

Chat JS API Chat Widget JS API

API Reference 92

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration
https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

Type Default Value Mandatory Description
communication.
Disabling WebSockets
can speed up the time it
takes for chat to switch
to another means of
communication.

Important
If you choose to disable
WebSockets, you should
also pass this option to
restoreChat(options). This
option is only effective
with the default (built-in)
transport.

Chat JS API Chat Widget JS API

API Reference 93

restoreChat(options)

Description

Use this method to restore the chat widget after page reload/navigation.

Important
Currently, this method only works for "embedded" mode.

If the previous page was unloaded during the registration phase, restoreChat will try to restore the
chat widget with the registration form.

Returned promise

restoreChat returns a "promise" object with two chainable methods: done and fail.

done

This method can be used to get access to chat session service API.

chat.restoreChat(options).done(function(session) {
// session.sendMessage, session.onAgentConnected and all other methods are at your disposal.

});

See Chat Service JS API for documentation about using the session API. If you need to access Chat
Session API, you will probably want to get the access not only in cases when session is restored, but
also when it is started fresh. You can use startChat's "done" callback for this. See Getting access to
Chat Session API for more info.

Important
The promise is not resolved before the chat session is created. This means that if the
chat widget is restored during the registration phase (the registration form is
displayed to the user), the done callback is not sent until the registration is complete
and processed by server.

fail

If chat restoration fails because of an error (and not because the chat session does not exist), the fail

Chat JS API Chat Widget JS API

API Reference 94

callback receives an event argument with an error property, similar to the startChat().fail
callback.

chat.restoreChat(options)
.fail(function(event) {

// If there was chat session, but restoration fails, signal failure.
if (event.error) {

alert('chat restoration failed');
return;

}
// If there was no chat session, bind start chat to "start chat" button
jQuery('#myChatButton').on('click', function() {

chat.startChat(startChatOptions);
}

})
.done(function(session) {

// session.sendMessage, session.onAgentConnected and all other method are at your
disposal.

});

Tip
For a list of possible error codes, see Error Codes.

Options

Some chat states are restored automatically after page reload/navigation. However, most options
must be passed to restoreChat directly. Supported options are:

• embedded — Must be explictly passed as true. Otherwise an error occurs.
• transport — Include if providing a custom transport.
• registration — If you are using a custom function for registration and you want this registration to be

restored, you must pass this option to both startChat and restoreChat.
• ui — If you want to customize/disable the chat UI, pass this option to both startChat and restoreChat.
• localization — For localization, pass the custom localization URL to both startChat and restoreChat.
• debug — If you want logs enabled, you must pass this option to restoreChat explicitly.
• logger
• maxOfflineDuration
• disableWebSockets

Chat JS API Chat Widget JS API

API Reference 95

startChatInThisWindow(options)

Description

Use this method in a separate window ("popup" mode) to render a chat widget that occupies the
whole page. Normally, if you use default provided chatWidget.html, you never have to use this
method.

Returned promise

This method returns a promise similar to the one returned by startChat.

Options

Most of the options are extracted from the URL, which is formed by the startChat method, if called
to create a chat in "popup" mode. However, some options cannot be passed in the URL but must be
passed directly. These include:

• ui — Use to pass an object with "hooks" to customize the built-in UI.
• registration — Use to pass a function with custom registration workflow.
• transport — Use in case you provide a custom transport.
• logger

Chat JS API Chat Widget JS API

API Reference 96

https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#ui
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#registration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#transport
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#logger

onBeforeChatOptionsApplied(callback)

Description

Important
This method may not be available in older versions of chat shipped with Genesys Web
Engagement 8.1.

Use this method to modify options before the chat starts or restores. This method may be useful if
you do not control the startChat() call but still need to control some of the options. For example,
you can use this method when you use chat as part of the Integrated JavaScript Application.

Example
_genesys.chat.onReady.push(function(chat) {

chat.onBeforeChatOptionsApplied(function(options) {
// you can modify options object here, for example:
if (userIsAuthorized) {

options.registration = false;
}

});
});

Chat JS API Chat Widget JS API

API Reference 97

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

onSession(callback)

Description

Important
This method may not be available in older versions of chat shipped with Genesys Co-
browse 8.1 and Genesys Web Engagement 8.1.

This is an alternative method of accessing the Chat Service JS API. This method is an alternative to
accessing the Chat Service JS API through the done callbacks of the startChat and restoreChat
methods. This method may be useful if you do not control the startChat call, for example, when you
use chat as part of the Integrated JavaScript Application.

Example
_genesys.chat.onReady.push(function(chat) {

chat.onSession(function(session) {
session.sendMessage('Automatically sent chat message');

});

});

Chat JS API Chat Widget JS API

API Reference 98

https://docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration

close()
This method is called if you programmatically close the chat widget. Only works for "embedded"
mode.

Important
Added in 850.5.0.

Chat JS API Chat Widget JS API

API Reference 99

toggle()
Use this method to minimize/restore the chat widget. Only works for "embedded" mode.

Important
Added in 850.6.0.

Chat JS API Chat Widget JS API

API Reference 100

onMinimized(callback)
Use this method to track when chat widget is minimized or restored. The callback is called with true
when chat is minimized, and with false when chat is restored. Only works for "embedded" mode.

chat.onMinimized(function(isMinimized) {
if (isMinimized) {

// chat was minimized
} else {

// chat was restored
}

});

Important
Added in 850.6.0.

Chat JS API Chat Widget JS API

API Reference 101

isMinimized()
Use this method to check if the chat widget is minimized. Returns true if the chat widget is rendered
and minimized, false otherwise. For example, false is returned if the chat widget is not rendered at
all or if the chat widget is rendered but not minimized. Only works for embedded mode.

if (chat.isMinimized()) {
// do something

}

Important
Added in 850.6.0.

Chat JS API Chat Widget JS API

API Reference 102

VERSION
This method returns the current chat version, for example, 850.1.0.

Version consists of three parts:

1. The first part, 850 in the example, matches the general Genesys version. For example, chat shipped
with Web Engagement 8.5.0 will always have version 850.X.X.

2. The second part, 1 in the example, is incremented after each major API change such as when a method
is added.

3. The third part, 0 in the example, is incremented after minor changes and bug fixes.

Important
Added in 850.1.0.

Chat JS API Chat Widget JS API

API Reference 103

Chat Service JS API

Deprecation notice

• Starting with the 8.5.000.38 release of Genesys Web Engagement, Genesys is deprecating the Native Chat and
Callback Widgets—and the associated APIs (the Common Component Library)—in preparation for discontinuing
them.

This functionality is now available through a single set of consumer-facing digital channel APIs that are part of Genesys Mobile
Services (GMS), and through Genesys Widgets, a set of productized widgets that are optimized for use with desktop and mobile
web clients, and which are based on the GMS APIs.

Genesys Widgets provide for an easy integration with Web Engagement, allowing you to proactively serve these widgets to your
web-based customers.

Important
Although the deprecated APIs and widgets will be supported for the life of the 8.5 release of Web
Engagement, Genesys recommends that you move as soon as you can to the new APIs and to Genesys
Widgets to ensure that your functionality is not affected when you migrate to the 9.0 release.

• Note that this support for the Native Chat and Callback Widgets and the associated
APIs will not include the addition of new features and that bug fixes will be limited to
those that affect critical functionality.

Use the Genesys Chat Service JS API to create your own chat widget and modify all the parameters
used to control chat sessions.

Tip
You can use Genesys Chat Widget if you are not building your own widget user
interface from scratch. This widget is highly customizable and provides access to this
API as well. See Chat Widget JS API.

How The API Is Structured

The Chat Service JS API is divided into two parts:

Chat JS API Chat Service JS API

API Reference 104

https://docs.genesys.com/Documentation/GMS/latest/API/Welcome
https://docs.genesys.com/Documentation/GWE/latest/Developer/MediaIntegration

• Launching the chat session — Describes a set of commands and callbacks for creating a chat session.
• Controlling the chat session — Describes a set of commands and callbacks for manipulating an ongoing

chat session (sending messages, receiving updates, and so on).

Example of how to start a chat session
Take a look at how you can start a chat session in this example:

// Example assumes API is publicly exported to chat global variable

function handleSession(session) {
// Add callbacks, for example:
// session.onAgentConnected(function(event) {...});
// session.onMessageReceived(function(event) {...});
// ...
// Use commands, for example:
// session.sendTyping();
// session.sendMessage('Hi there');

}

chat.restoreSession()
.done(handleSession)
.fail(function (event) {

if (event.error) {
// Session has been started on previous page, but failed to restore.
// event.error.code and event.error.description may contain some information.

} else {
// If there is no session to continue, start a new chat session.
chat.startChat({

serverUrl: 'http://www.example.com/server/cometd/'
})
.done(handleSession)
.fail(function (event) {

// See event.error.code and event.error.description for details of the failure
});

}
});

The session object (initiated by startSession() or restoreSession()) provides a set of
commands and callbacks. The commands (which can be used to specify callback functions for
successful or unsuccessful flows) are used to send messages to the server side. The set of callbacks
handle the messages sent back from the server.

Using a third-party mechanism for chat session state persistence

If for whatever reason you don't want to use the default chat state persistence mechanism, you can
provide your own.

Here is an example of how that might work:

// For example (abstract):
myStateStorage = {

write: function(state) {
// save state here

setCookie('chatSessionState', JSON.stringify(state));

Chat JS API Chat Service JS API

API Reference 105

},
read: function() {

// return state here
return JSON.parse($.cookie('chatSessionState'));

}
}
chat.startSession({

serverUrl: '...',
stateStorage: myStateStorage

});

Extended API to support integrated solutions

When using the chat session to send extra information needed for integrated solutions, it is helpful to
have a separate mechanism for exchanging notifications, outside of the chat session transcript. The
Extended API provides this mechanism, as well as a way of accessing interaction User Data.

Tip
Only data that was set by this application (or was set specially for this application) will
be accessible.

Use Cases

1. You need to pass CoBrowseSessionId parameter from the chat widget (browser side) to the agent's
party (IWS plugin) in order to automatically start co-browse session.

2. You need to pass information from the routing strategy URL for an "after-chat" survey.

Here is a description of the extended API:

// Extended API is available through session object
session.setUserData(userData)

.done(function (event) { /* */ })

.fail(function (event) { /* event.error.code, event.error.description */ });
session.getUserData(userDataKey)

.done(function (event) { /* event.userData */ })

.fail(function (event) { /* event.error.code, event.error.description */ });
session.deleteUserData(userDataKey)

.done(function (event) { /* event.timestamp */ })

.fail(function (event) { /* event.error.code, event.error.description */ });

Let's look at the details of this extended API.

session.setUserData
Provides a way to specify a list of key-value pairs that you can use as UserData in chat interaction.

Use-case

1. During chat session, you need to transmit data to the agent's party. For example, the ID of a

Chat JS API Chat Service JS API

API Reference 106

conversation running in a parallel media (Co-browse, WebRTC and so on) This method accepts a single
argument: an object with key-value pairs for setting the UserData. This method returns a "promise"
object similar to all other session methods.

For example,

session.setUserData({
FirstName: 'John',
LastName: 'Doe',
MySpecialProperty: 'foobar'

}).done(function() {
// Data correctly set

}).fail(function(event) {
// Examine event to find out information on what went wrong

});

session.getUserData
Provides a way to read specified keys from User Data.

Important
The client's code can only obtain data that was specified by this code previously, or
data that was added to the interaction specifically for this code (for example, this data
can be attached by a related routing strategy).

Accepts a single argument: the key as a string.

Returns a "promise" object similar to all other session methods.

"done" callback

For this method, the callback provides a way to access the required data: it is resolved with an event
object that contains the UserData property:

session.getUserData('FirstName').done(function(event) {
// event.userData.FirstName is the required value

}).fail(function(event) {
// See event.error.code, event.error.description

})

session.deleteUserData
Provides possibility to remove specified keys from User Data.

Accepts a single argument: the key as a string.

session.deleteUserData('FirstName').done(function(event) {
// data successfully deleted

}).fail(function(event) {
// Something went wrong. See event.error.code, event.error.description

});

Chat JS API Chat Service JS API

API Reference 107

Launching the Chat Session
There are two methods you can use to launch chat session:

• startSession — Use this entry-point method to start a new chat session, with various options for
controlling the shape of that session.

• restoreSession — Use this entry-point method to launch an existing chat session. For example, in cases
where a browser page with a chat window is reloaded.

startSession

Description

Entry-point method for creating new chat session.

Returned Promise

startSession (as well as all session commands) returns a "promise" object with two chainable
methods: done and fail.

done

This method should be used to get access to the
chat session object.
chat.startSession(options).done(function(session)
{

// session.sendMessage,
session.onAgentConnected and all other
method are at your disposal.
});

fail

Resolved with an event containing an error
message describing what went wrong.
Event structure:

Parameter Meaning

event.error.code Code specifying the
particular error

event.error.description Description of error (English
is default language).

Tip
For a list of possible error codes, see Error Codes.

Options

Chat JS API Chat Service JS API

API Reference 108

Options are expected as a single object with named properties. For example:

chat.startSession({
serverUrl: '...',
username: 'Anonymous'

});

Option Type Default Value Mandatory Description

serverUrl string undefined
Yes (except when
transport option is
provided)

URL of the CometD
chat backend if
built-in CometD
transport is to be
used.

username string 'User' No

Optional
parameter. Name
(nickname) of the
visitor who
initiated the chat
session. If absent,
and chat user is
anonymous,
default value is
used.

subject string undefined No
Subject of the chat
session. If option is
absent, parameter
is left empty.

userData Object undefined No

Represents a set of
parameters that
can\should be
specified when
creating the chat
session.
Typical use-case:
providing data obtained
from a registration
form.

chat.startChat({
// Passed

data will be
used to
identify and/or
create user
contact.

userData: {

FirstName:
'John',

LastName: 'Doe',

EmailAddress:
'johndoe@example.com'

}
});

Chat JS API Chat Service JS API

API Reference 109

Option Type Default Value Mandatory Description

Important
Data you pass to userData is
always merged with the
default values of userData.
userData contains the
following keys:

• source with value
web

• pageTitle with
value set to current
page's title,
document.title

• url with value set to
the current page's
URL,
document.location

• referrer with value
set to the previous
page's URL,
document.referrer

If you need to override and of these
values, pass the values along with
other userData. For example, the
following sets source to null and
leaves startPage as is:

chat.startChat({
userData: {

FirstName:
'John',

LastName:
'Doe',

EmailAddress:
'johndoe@example.com',

source: null
}

});

transport Object [built-in CometD
transport]

Only if serverURL
is absent

Pass custom
transport instance
here, if needed
(for example,
REST-based). By
default, built-in
CometD chat
transport is used.

stateStorage {{read: function():
Object, write:

[internal built-in
stateStorage] No Provides a method

for dealing with

Chat JS API Chat Service JS API

API Reference 110

Option Type Default Value Mandatory Description

function(Object|null)}}

session state
persistence across
page reloads. By
default, built-in
cookie-based state
storage is used.
Note that in certain
cases, the
stateStorage.write
method is called with a
special argument, null,
which means that all
existing state has to be
cleared. For details, see
Using a third-party
mechanism for chat
session state
persistence.

maxOfflineDurationnumber 5 No

Time (in seconds)
during which
session state
cookies are stored
after page reload/
navigation. Default
is 5 seconds. If
cookies expire, the
chat session will
not be restored via
restoreSession().
This option only
takes effect on
default (built-in_
state storage. If
custom state
storage is passed,
this option does
not take effect.

disableWebSockets boolean false No

Disable
WebSockets for
connections to the
server. Only
effective if the
default transport is
used. If you
disable
WebSockets, you
should also pass
this option to
restoreSession().

logger function
[internal
console.log-based
logger]

No

A function
responsible for
logging. If you
pass a custom
logging function to
this option, the

Chat JS API Chat Service JS API

API Reference 111

Option Type Default Value Mandatory Description
function should
accept an arbitrary
number of
different argument
types (similar to
console.log).

restoreSession

Description

Entry-point method for launching an already existing chat session (for example, when a browser page
with a chat window was reloaded).

Returned Promise

restoreSession returns a "promise" object with two chainable methods: done and fail.

done

This method should be used to get access to chat
session object.
chat.restoreSession(options).done(function(session)
{

// session.sendMessage,
session.onAgentConnected and all other
methods are at your disposal.
});

fail

If the restore chat operation fails because of an
error (and not because the chat doesn't exist), the
fail callback receives an event argument with an
error property similar to startSession().fail
callback.
chat.restoreSession(options)

.fail(function(event) {
// If there was a chat session, but

restoration fails, signal failure.
if (event.error) {

alert('chat restoration failed');
return;

}
// If there was no chat session, bind

start chat to "start chat" button
jQuery('#myChatButton').on('click',

function() {
chat.startChat(startChatOptions);

}
})
.done(function(session) {

// session.sendMessage,
session.onAgentConnected and all other
method are at your disposal.

Chat JS API Chat Service JS API

API Reference 112

});

Tip
For a list of possible error codes, see Error Codes.

Options

Options are expected as a single object with named properties. For example:

chat.restoreSession({
maxOfflineDuration: 60

});

Option Type Default Value Mandatory Description

transport Object [built-in CometD
transport]

Yes, if custom
transport was
passed in
startSession

Pass custom
transport here if
needed (for
example, REST-
based). By default
built-in CometD
chat transport will
be used.

stateStorage
{{read: function():
Object, write:
function(Object|null)}}

[internal built-in
stateStorage] No

Provides a method
for dealing with
session state
persistence across
page reloads. By
default, built-in
cookie-based state
storage is used.
Note that in certain
cases, the
stateStorage.write
method is called with a
special argument, null,
which means that all
existing state has to be
cleared. For details, see
Using a third-party
mechanism for chat
session state
persistence.

maxOfflineDurationnumber 5 No

Time (in seconds)
during which
session state
cookies are stored
after page reload/
navigation. Default
is 5 seconds. If
cookies expire, the
chat session will
not be restored via
restoreSession().
This option has no

Chat JS API Chat Service JS API

API Reference 113

Option Type Default Value Mandatory Description
effect on whether
custom
stateStorage is
passed.

disableWebSockets boolean false No

Disable
WebSockets for
connections to the
server. Only
effective if the
default transport is
used. If you
disable
WebSockets, you
should also pass
this option to
startSession().

logger function
[internal
console.log-based
logger]

No

A function
responsible for
logging. You can
pass an arbitrary
number of
different argument
types (similar to
console.log). For
example:
console.log.bind(console).

Tip
To find out how to control the chat session once it is started, see Controlling the chat
session.

Chat JS API Chat Service JS API

API Reference 114

Controlling the Chat Session

Commands
• About chat session

commands
• session.getTranscript
• session.sendMessage
• session.sendTyping
• session.leave

Events
• About chat session events
• session.onError
• session.onAgentConnected
• session.onAgentDisconnected
• session.onMessageReceived
• session.onAgentTyping
• session.onInterrupted
• session.onContinued
• session.onSessionEnded

Miscellaneous
• session.isAgentConnected

Chat session commands

Session commands are used for client-to-server communication: sending commands to chat server.
All commands receive their arguments as a single "options" object, similar to startSession and
restoreSession. For example,

session.getTranscript({fromIndex: 0});

// instead of
session.getTranscript(0);

All exceptions to this rule are documented here.

Returned Promises
All of the commands return a "promise" object with two properties: done and fail.

Some of the "done" callbacks can be used to obtain specific information provided as the result of
command execution. If that is the case, the information is specifically documented for particular
commands. Most of the time however these callbacks serve as a way to simply acknowledge that the
command was successfully executed. In this case, there is no specific documentation for the
corresponding command callback.

"fail" callbacks can be used to catch errors that happen during command execution and all receive an
object with exact same structure:

Chat JS API Chat Service JS API

API Reference 115

event.error.code Code specifying the particular error

event.error.description Description of the error (English is default
language).

There is no specific documentation for each command's "fail" callback.

Here is an example of general command usage:

chat.<ABSTRACT_CHAT_COMMAND>(<COMMAND_OPTIONS>).done(function(<POSSIBLE_RESULTS>) {
// Command executed successfully.

}).fail(function(event) {
// Something went wrong. See event.error.code and event.error.description.

});

session.getTranscript

Description

A low-level method used to obtain the transcript for the current session.

Important
No playback is assumed.

Options

Parameter Type Default value Mandatory Description

fromIndex number 0 No

0-based index to
retrieve chat
transcript from a
certain position.
0 means obtaining the
entire transcript.

"done" callback

Receives the transcript in serialized JS form.

Parameter Type Description

event.transcript Array

Array of JS objects representing
transcipt events.
Sample:

[
{

Chat JS API Chat Service JS API

API Reference 116

Parameter Type Description

type: 'AgentConnected',
party: {id: 2 /*ID of

this party unique for THIS
chat session*/, type:
'Agent', name: <name of an
agent>},

index: <index of THIS
message in chat transcript>,

timestamp: <UTC
Timestampt>

},
{

type: 'MessageReceived',
party: {id: 1, type:

<type of party which sent
message: 'Client' or 'Agent'
or 'External'>, name: <name
of party>},

content: {text: <text
which was sent>, type: <type
of text: 'text' or 'url'>},

index: <index of THIS
message in chat transcript>,

timestamp: <UTC
Timestampt>

},
{

type:
'AgentDisconnected',

party: {id: 2 /*ID of
this party unique for THIS
chat session*/, type:
'Agent', name: <name of an
agent>},

index: <index of THIS
message in chat transcript>,

timestamp: <UTC
Timestampt>

},
{

type: 'SessionEnded',
reason: {code: <code of

reason: 1: by leave request,
2 - by an agent, 3 - by
error>, description:
<default description>},

timestamp: <UTC
Timestampt>

}
]

session.getTranscript().done(function(event) {
console.log('Full transcript of current chat session: ', event.transcript);

});

Chat JS API Chat Service JS API

API Reference 117

session.sendMessage

Description

Send a message to Chat Server.

Options

Parameter Type Default value Mandatory Description

type string 'text' No

Type of message:
"text" or "url"
If absent, "text" will be
used.

message string undefined Yes Message to be
sent

Since sending a "text" message is a much more frequent operation than sending a "url", a shortcut is
available; you can pass a string with message contents directly to the method instead of the options
object.

// This
session.sendMessage({ type: 'text', message: 'foobar' });

// is equivalent to this:
session.sendMessage('foobar');

session.sendTyping

Description

Notify Chat Server that client started or stopped typing in chat session.

Options

Parameter Type Default value Mandatory Description

isTyping boolean true No

Boolean (true or
false) which
specifies exact
meaning of this
command

• true — visitor
started typing
(or continues
typing) in chat
session.

• false — visitor
stopped typing

Chat JS API Chat Service JS API

API Reference 118

Parameter Type Default value Mandatory Description

in chat session
(typically a
stop or pause
in typing for a
certain
duration, for
example — 5
seconds)

session.leave

Description

This command is used to complete chat session in Chat Server by request from the visitor side.

Options

This command does not take parameters.

Chat session events (callbacks)

You can pass callback functions into a chat session that will be called each time a chat context is
updated, or whenever other changes take place within the session (for example, agent joins/leaves,
Chat Server stops responding, and so on). Another use for session events is in a "playback" scenario,
when a chat session is restored in a new browser context (for example, after page reload/navigation).

To add a callback, pass the callback function directly to the corresponding event method. Most of the
callbacks receive an event object with properties containing event details. For example,

session.onError(function(event) {
// event.error.code
// event.error.description

});

session.onError

This event will be sent in reaction to an unexpected error occurring during the flow of the chat
session.

Additionally, this event is sent when the chat component needs to notify clients about unusual cases.
For example:

Chat JS API Chat Service JS API

API Reference 119

• Chat Server stops responding and the component tries to restore the session on another server.
• A chat session is restored on another instance of Chat Server.
• A channel to the Chat Server is opened, but the server is not yet ready to send/receive operations.

Another important scenario for this callback — it is triggered if an incorrect set of parameters (or
invalid parameter value) is detecing in an incoming "raw" event. For example, if the content of a
message in a received message event is not a string.

Event structure

Parameter Description
event.error.code Code specifying the particular error
event.error.description Default description of error

Tip
For a list of possible error codes, see Error Codes.

session.onAgentConnected

Executed when an agent joins a chat session.

Event structure

Parameter Description

event.party.name String that represents name of the agent joined to
the chat session

event.timestamp Number

event.party.id

Theoretically, the agent name and visitor name
could be the same (especially since the visitor
might be filling out the the visitor name). To handle
this scenario, this id is used to distinguish between
agent and visitor names.

event.index Index of this message in chat transcript

event.restored

Optional.
If present and true, it means that the event was restored during
session restoration (in other words, event was already reported
to the consumer previously).

Chat JS API Chat Service JS API

API Reference 120

session.onAgentDisconnected

Executed when agent leaves chat session, for any of these possible reasons:

• Session closes because of a logout request from the Chat Widget side.
• Agent leaves the conference.
• Agent transfers the session to another agent.
• agent's desktop stops responding.
• Chat server stops responding and session is restored on the new chat session.

Event structure

Parameter Description
event.timestamp Number

event.party.name String that represents the name of the agent
leaving chat session.

event.party.id String with ID of party in chat session.
event.index Index of this message in chat transcript

event.restored

Optional.
If present and true, it means that the event was restored during
session restoration (in other words, was already reported to the
consumer previously).

session.onMessageReceived

Executed when a new message appears in the chat transcript (or in the context of the "playback"
process during chat session restoration).

Important
Messages sent by session.sendMessage are "returned back" via this event as well.

Event structure

Parameter Description

event.index 0-based index of this message in chat session
transcript

event.timestamp Number
event.content.text String with message added to the chat context

Chat JS API Chat Service JS API

API Reference 121

Parameter Description

event.content.type.url

OR event.content.type.text

One of these is true depending on message type.
Usage example:
session.onMessageReceived(function(event) {

if (event.content.type.url) {
// this is "url" message

} else if (event.content.type.text) {
// this is "text" message

}
});

event.party.id

Theoretically, the agent name and visitor name
could be the same (especially since the visitor may
be the one filling out the visitor name). To handle
this scenario, this ID is used to distinguish between
agent and visitor.

event.party.type.agent

OR

event.party.type.client
OR

event.party.type.external OR

event.party.type.supervisor

One of these is set to true, depending on who
sends the message.

• agent — message is sent by the agent;
• client — message is sent by the visitor (in other

words, the actual user of this API via
session.sendMessage())

• external — message is sent by the system (for
example, as configured in the routing strategy)

• supervisor — message is sent by the
supervisor

event.party.name String with name of party.

event.restored

Optional.
If present and true, it means that the event was restored during
session restoration (in other words, event was already reported
to the consumer).

session.onAgentTyping

Executed when agent starts, continues, or stops typing.

Event structure

Parameter Description
event.party.id ID of party in chat session.
event.party.name Name of agent.

event.isTyping • true — when agent starts (or continues) typing;

Chat JS API Chat Service JS API

API Reference 122

Parameter Description

• false — when agent stops typing.

session.onInterrupted

Executed when a connection to the server is interrupted (for example, a network interruption or
server is down). If default transport is used, chat tries to automatically reconnect and fires
session.onContinued when the connection is restored.

Callbacks receive no event object.

Important
This event duplicates the session.onError event with the "150" (network
interruption) Error code. Genesys recommends that you use
session.onInterrupted/onContinued if you want to track the connection status.
The "150" error code is deprecated and might be removed in future versions.

session.onContinued

Executed only after session.onInterrupted when the connection to the server is restored.

Callbacks receive no event object.

session.onSessionEnded

Executed when the client drops out of a chat session due to one of the following reasons:

• Logout request.
• Chat session is finished from the agent's side.
• Chat Server stops responding, resulting in a timeout during which the session is not restored.

Parameters

Parameter Description
event.reason.error

OR
event.reason.agent

One of these is set to true depending on the reason

• error — a major error occurs (for example, Chat

Chat JS API Chat Service JS API

API Reference 123

Parameter Description

OR event.reason.leaveRequest

Server stops responding)
• agent — agent ends the session;
• leaveRequest — visitor sends a session.leave

command and it was successful

Miscellaneous methods

session.isAgentConnected

Provides a convenient way to synchronously determine if at least one agent is present in the session.

Returns boolean (true or false).

Chat JS API Chat Service JS API

API Reference 124

Error Codes
The Chat API provides stable error codes, which can come from either the server or browser side.
These error codes are used in EventError events.

This table lists the possible error codes and their descriptions

Error code Error Description
Chat command syntactical error codes (range 1 - 49)
1 Unknown chat command

2 One or more mandatory parameters are missed in
chat command

3 Value of chat command parameter is incorrect
Chat session run-time error codes (range 50-99)
50 Chat session ID is unknown
51 Chat command is stopped by decorator
52 Error during chat command execution
Chat server-related error codes (100-149)
100 Chat Server is not available
101 Login to Chat Server was failed
Chat transport error codes (150-199) (generated on browser side)
Chat widget error codes (200-249) (generated on browser side)

Chat Transport Error Messages

This event will be sent in reaction to an unexpected error occurring during the flow of the chat
session.

Additionally, this event is sent when the chat component needs to notify clients about unusual cases.
For example:

• Chat Server stops responding and the component tries to restore the session on another server.
• A chat session is restored on another instance of Chat Server.
• A channel to the Chat Server is opened, but the server is not yet ready to send/receive operations.

The server generates most of these errors, which the JS transport then passes to the calling code as
is. However, there are cases when the JavaScript is responsible for generating an error event — for
example, when the connection with server is completely lost.

Here is a list of this kind of JS-generated error:

Chat JS API Error Codes

API Reference 125

Error code Error Description Comments
Chat transport errors (range 150-199)

150 Network connection interrupted

Important
This error is deprecated and might
be removed in future versions. Use
session.onInterrupted/
onContinued events instead.

The transport should report this error
when the connection is lost for a period of
time. For the default CometD transport,
this is a configurable interval with a
default value of 3 seconds. Other
transports might want to keep to this
default.

151 Invalid server response.

This error is not reported by the
transport itself, but by upper-
level code that validates server
responses. You do not need need
to reimplement this if you are
developing custom transport.

152 Session restoration failed.

This error happens when a chat
session is restored from client
state (cookie or another), but the
session has already expired on
the server.

Chat JS API Error Codes

API Reference 126

Notification Service REST API

Description

The Notification Service REST API is enables you to keep users of your website engaged and
informed. You can reach your entire user base quickly and effectively with notifications that are
delivered to your web pages. The Notification Service is responsible for delivering the push messages
(events) to the Browser Tier. On the Browser Tier, each message is handled by the Notification Agent
(a module of the Tracker Application). The Notification Agent provides a list of predefined messages
that can be used in engagement scenarios. Each message uses the "gpe." prefix in the channel
name.

The Notification Service REST API has two methods:

• Notify by Visit ID — delivers notifications from the GWE Server to the browser tier based on the visit ID
(through CometD).

• Send Disposition Code for Invitation from Browser to GWE Server — delivers notification disposition
(result) from the browser tier to the GWE Server (through HTTP GET).

Notify by Visit ID

Description
This method performs an engagement notification through the Web Engagement Server by visit ID. If
the request is performed correctly, then the Web Engagement Server creates and sends a notification
message to the CometD /notification/{visitID} channel.

Request

Method POST
Body JSON array of Notification Messages

URL
http://<gwe_server_host:gwe_server_port>/server/data/notification/
notify/{visitID}
The HTTPS schema is also allowed, if configured.

Parameters
Name Value Mandatory Description

visitID string yes
The visit ID for the
engagement
notification.

Notification Service REST API Error Codes

API Reference 127

https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring
https://docs.genesys.com/Documentation/GWE/latest/Deployment/SSL

Response

Response Standard HTTP Responses

Response Type none

Example
Request

curl -X POST \
-H "Content-Type: application/json" \
-d '[{"page": "654E0122924F42EA82B5C581A394555D", "channel":

"gpe.appendContent", "data": { "url": "http://www.genesys.com/invite.html",
"method": "GET", "container": "body" }}]' \

http://server:port/server/data/notification/notify/654E0122924F42EA82B5C581A394555D

Notification Messages

The notification request body is represented by an array of JSON objects, one object for each
notification message:

[
{

// message 1
},
{

// message 2
},
...

]

Message Structure
Notification messages should follow this format:

{
"page":"yyy",
"channel":"any-string",
"data":{

"someKey":"someValue"
...

}
}

Option Type Mandatory Default Value Description

page string yes undefined
The page attribute
can have the
following values:

Notification Service REST API Error Codes

API Reference 128

Option Type Mandatory Default Value Description

• <pageID> —
The notification
message is
only received
by the page
with the unique
page ID. For
example,
654E0122924F42EA82B5C581A394555D

• all — The
notification
message is
received by all
pages.

• active — The
notification
message is
received only
by the page
with focus in
the browser.

channel string yes undefined
The channel name.
See Standard
Messages for
details.

data object no undefined
Channel-specific
data. See Standard
Messages for
details.

Standard Messages

The following messages are standard in Genesys Web Engagement.

gpe.appendContent
With this message, you can append content retrieved by url to the container element.

Options

Option Type Mandatory Default Value Description

url string yes undefined

The path of the
resource to load.
This option can
have either an
absolute

Notification Service REST API Error Codes

API Reference 129

Option Type Mandatory Default Value Description
(http://www.genesys.com/
invite.html) or
relative value
(/invite.html).
Note: The relative
value is relative to
the Web
Engagement
Server.

method string no "JSONP"

Specifies the type
of request to
make:

• GET — You
should only use
the GET
method if the
resource is
located on the
same server, in
order to avoid
issues with
cross-origin
resource
sharing.

• JSONP — For
the JSONP
method, the
server you
point to in the
url option
must support
the JSONP
protocol.

container string no "body"

The jQuery
selector for the
loaded content
container. The
loaded content is
appended to the
current element.

Example

The following message uses the AJAX GET request to load data from the server.

{
"page": "654E0122924F42EA82B5C581A394555D",
"channel": "gpe.appendContent",
"data": {

"url": "http://www.genesys.com/invite.html",
"method": "GET",
"container": "body"

}

Notification Service REST API Error Codes

API Reference 130

}

gpe.setVariable
You can use this message to set the variable on the page in the window context.

Options

Option Type Mandatory Default Value Description

variable string yes undefined

The global variable
name. The
variable name
could contain a
namespace, for
example:
com.service.param
— this object will
be available by
window.com.service.param.

value string no undefined The variable value.

Example

This example sets the variable window.serviceData to the object { 'name': 'Pat', 'message':
'Hello world!' }. If the variable is already defined, then it is extended.

{
"page": "654E0122924F42EA82B5C581A394555D",
"channel": "gpe.setVariable",
"data": {

"variable": "serviceData",
"value": {

"name": "Pat",
"message": "Hello world!"

}
}

}

gpe.callFunction
This message calls the corresponding function on the page.

Options

Option Type Mandatory Default Value Description

function string yes undefined

The name of the
function. The
name can contain
the namespace of
the function. For
example,
com.service.alert
— this means that

Notification Service REST API Error Codes

API Reference 131

Option Type Mandatory Default Value Description
window.com.service.alert()
will be called.

arguments array no undefined

The arguments to
pass to the
function. This
should always be
an array.

Example

This example calls the window.reactToServerMessage('Hello world!', 1) function.

{
"page": "654E0122924F42EA82B5C581A394555D",
"channel": "gpe.callFunction",
"data": {

"function": "reactToServerMessage",
"arguments": ["Hello world!", 1]

}
}

Using the API to Customize Widgets

Deprecation notice

• Starting with the 8.5.000.38 release of Genesys Web Engagement, Genesys is deprecating the Native Widgets—and
the associated APIs (the Common Component Library)—in preparation for discontinuing them.

This functionality is now available through a single set of consumer-facing digital channel APIs that are part of Genesys Mobile
Services (GMS), and through Genesys Widgets, a set of productized widgets that are optimized for use with desktop and mobile
web clients, and which are based on the GMS APIs.

Genesys Widgets provide for an easy integration with Web Engagement, allowing you to proactively serve these widgets to your
web-based customers.

Important
Although the deprecated APIs and widgets will be supported for the life of the 8.5 release of Web
Engagement, Genesys recommends that you move as soon as you can to the new APIs and to Genesys
Widgets to ensure that your functionality is not affected when you migrate to the 9.0 release.

• Note that this support for the Native Widgets and the associated APIs will not include
the addition of new features and that bug fixes will be limited to those that affect
critical functionality.

Notification Service REST API Error Codes

API Reference 132

https://docs.genesys.com/Documentation/GMS/latest/API/Welcome
https://docs.genesys.com/Documentation/GWE/latest/Developer/MediaIntegration

You can also use the Notification Service REST API to customize the out-of-the-box Genesys Web
Engagement invitation widgets. See the following sections for details:

• Chat Invitation Message
• Ads Message

Chat Invitation Message
The chat invitation message is a JSON object that is sent by Orchestration Server to the browser. The
chat invitation is represented by two serial messages: gpe.setVariable and gpe.appendContent.

For example:

[
{

"page":"654E0122924F42EA82B5C581A394555D",
"channel":"gpe.setVariable",
"data":{

"variable":"com.genesyslab.gpe.invite.data",
"value": {

"type":"chat",
"engagementID":"21def142-5ba9-4d64-8cd4-83d3c9d78ba9",
"subject":"Chat",
"message":"Good evening! Would you like some help with the selection? Our

technical experts are available to answer questions.",
"acceptBtnCaption":"Chat",
"cancelBtnCaption":"No Thanks",
"inviteTimeout":30,
"modal":false,
"chatOptions": {

"serverUrl": "http://demosrv.genesyslab.com:9081/server/cometd",
"widgetUrl": "/server/api/resources/v1/chatWidget.html",
"registration":true,
"embedded": false,
"userData": {

"visitID":"3ea3efab-ca33-4383-acbd-90720db72288"
}

}
}

}
},
{

"page":"654E0122924F42EA82B5C581A394555D",
"channel": "gpe.appendContent",
"data": {

"url": "/server/api/resources/v1/invite.html",
}

}
]

You can use the Notification Service REST API to modify the chat invitation, which uses
gpe.setVariable to set the com.genesyslab.gpe.invite.data variable to a list of options. You can
update these options to customize the chat invitation. See the table below for details.

Notification Service REST API Error Codes

API Reference 133

Field Type Mandatory Default Value Description

type string yes undefined
The type of
engagement
(typically, "chat").

engagementID string no undefined

The unique
identifier of the
proactive
engagement offer
(part of the
notification
message).

subject string no "Chat", if the type
is set to "chat".

The invitation
widget title.

message string no

"Hello! Would you
like some help
with the selection?
Our technical
experts are
available to
answer questions."

The main message
in the invitation
widget.

acceptBtnCaption string no "Chat", if the type
is set to "chat".

The title of the
accept invitation
button.

cancelBtnCaption string no "No Thanks"
The title of the
cancel invitation
button.

inviteTimeout Number no 30

The timeout (in
seconds) for the
invitation widget.
After this time
interval, the
invitation widget is
automatically
closed.

modal Boolean no false
Specifies whether
to show the
invitation widget
as a modal dialog.

chatOptions object yes undefined

This object is
passed to the chat
application in the
startChat
method. See Chat
JS Application API
for details.

Ads Message
You can use the gpe.appendContent message to load the ads.html file.

[
{

Notification Service REST API Error Codes

API Reference 134

https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#Chat_JS_Application_API
https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#Chat_JS_Application_API

"page": "654E0122924F42EA82B5C581A394555D",
"channel": "gpe.appendContent",
"data": {

"url": "/server/api/resources/v1/ads.html"
}

}
]

Send Disposition Code for Invitation from Browser to GWE Server

Description
The disposition code lets Web Engagement know the status of the invitation: whether it was
accepted, rejected, or ignored. Based on this status, GWE decides what it should do with the
invitation. The browser side (invitation widget) sends the disposition code to the Web Engagement
Server with a GET request.

Request

Method GET

URL

http://<gwe_server.host:gwe_server.port>/server/data/invites/?result=<result
code>ŋagementID=<ID of proactive engagement offer>&pageID=<ID of
page where invite appeared>&visitID=<current visit ID>[&media=<selected
media>]
The HTTPS schema is also allowed.

Parameters
Name Value Mandatory Description

result string yes

A string that describes the
result type. The following
values are allowed:

• accept
• timeout
• pageExit
• cancel

engagementID string no

The unique identifier of
the proactive
engagement offer (part
of the notification
message). If this
parameter is not
specified, Web
Engagement will only be
able to process one
engagement request for

Notification Service REST API Error Codes

API Reference 135

Method GET
the current page
instance.

pageID string yes
The ID of the page
where the invitation
widget appeared.

visitID string yes The current visit ID.

media string no The media for which the
invitation was applied.

Response

Response
Standard HTTP Responses
200 - OK
400 - FAULT

Response Type none

Example
The code below shows an example of how to send the disposition code from the browser to GWE.

_gt.push(['getIDs', function(IDs) {
$.ajax({

type: "GET",
url: "http://server:port/server/data/invites",
data: { result: "accept",

engagementID: "21def142-5ba9-4d64-8cd4-83d3c9d78ba9",
media: "chat",
visitID: IDs.visitID,
pageID: IDs.pageID

}
})

.done(function(msg) {
// Data has been saved

});
}]);

Tip
You can use the Monitoring JS API to access the visitID and pageID parameters.

Notification Service REST API Error Codes

API Reference 136

Engagement REST API

Description

The Engagement REST API describes the rules for communication between an external source
(typically the SCXML strategy) and the Web Engagement Server in order to start or cancel an
engagement.

Start Engagement Attempt

Description
This request notifies the Web Engagement Server that is should start the engagement attempt. The
notification is transferred to the Web Engagement Server and then to the visitor's browser.

Request

Method POST

URL
http://<gwe_server_host:gwe_server_port>/server/data/gateway/engage
The HTTPS schema is also allowed, if configured.

Parameters
Name Value Mandatory Description

ixnProfile JSON object yes

This object describes
the notification
parameters. For details
about the structure of
this JSON object, see
Start Engagement as a
Result of the
Engagement Logic
Strategy

Response

Response
Standard HTTP Responses
200 - OK
400 - FAULT

Response Type JSON

Engagement REST API Error Codes

API Reference 137

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Security#t-0
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy

Cancel Engagement Attempt

Description
This request notifies the Web Engagement Server that the current engagement attempt should be
cancelled and the invitation should not be shown to the visitor.

Request

Method POST

URL
http://<gwe_server_host:gwe_server_port>/server/data/gateway/noengage
The HTTPS schema is also allowed, if configured.

Parameters
Name Value Mandatory Description

cancelData JSON object yes

This object describes
the parameters for the
cancelled engagement
attempt. For details
about the structure of
this JSON object, see
Cancelling Engagement
as a Result of the
Engagement Logic
Strategy

Response

Response
Standard HTTP Responses
200 - OK
400 - FAULT

Response Type JSON

Engagement REST API Error Codes

API Reference 138

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Security#t-0
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Cancelling_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Cancelling_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Cancelling_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Cancelling_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy

History REST API
The Web Engagement History REST API reference lists all the RESTful elements that you can use to
access the web history stored by the Genesys Web Engagement Server.

Resource Access Template

To access resources, you must respect the following syntax:

Method <schema>://<server>:<port>/server/data/<resourceName>[/<resourceId>[/<sub-
resourceName>]]

• <method> is GET or POST.
• <schema> is http or https.
• <server> is the hostname or the IP address of the Web Engagement Server.
• <port> is the port of the Web Engagement Server.
• <resourceName> is the name of the requested resource.
• <resourceId> is the identifier of the requested resource.
• <sub-resourceName> is the name of a sub-resource.

For instance, to retrieve the list of identities on MyHostname, you can use the following request:

GET http://MyHostname:9081/server/data/identities

To retrieve a given identity, you need its identifier:

GET http://MyHostname:9081/server/data/identities/pat.thompsom@genesys.com

To retrieve the pages of user pat.thompsom@genesys.com, you can use the following request:

GET http://MyHostname:9081/server/data/identities/pat.thompsom@genesys.com/pages

Contents

The History REST API contains the following resources:

• Event Resource
• Identity Resource
• Page Resource
• Visit Resource

History REST API Error Codes

API Reference 139

Note that each resource chapter lists all the operations available with the resource's path, not all the
operations related to the resource. For instance, the Event Resource chapter lists all the methods
associated with the server/data/events/ path. Additional methods to retrieve events for a given
identity are available in the Identity Resource chapter. You can also use the Operations Index to get
the complete list of available operations.

History REST API Error Codes

API Reference 140

HTTP Response Codes and Errors
The Genesys Web Engagement Server returns HTTP status codes and messages for every operation,
in the requested format. Status codes match standard HTTP codes, but messages can differ and
provide additional details included in the header of the response.

Important
Additional results and error codes may be returned due to external web servers and
layers involved in your operations.

Successful Result

A successful response to a request is marked by HTTP Status Code 200 (OK). In that case, your
application may get additional information in the header and the body of the response. Refer to the
Response section of your operation's page to get the detailed list of returned information. The
following table lists the standard HTTP codes used by Genesys Web Engagement Server for a
successful response.

Code Title Description
200 OK Success!

204 No Content

For "filtered collection read"
requests only. The request was
correct and successful but the
server has no appropriate
entities to return.

Errors

For responses with HTTP status code 4xx or 5xx, the response body contains an application-specific
description of the error instead of a representation of the requested resource. The following table lists
the specific errors that operations can encounter. This list is not restrictive; additional error codes
could be returned due to external web servers and layers involved:

Code Title Description

400 Bad Request

General error which could be
caused by:

• Missing required parameter.
• Parameter value of

History REST API HTTP Response Codes and Errors

API Reference 141

Code Title Description

unexpected type.

401 Not Authorized

Credentials are missing or
incorrect, or the given user is not
allowed to execute a given
service (such as an
administrative service method
that changes the profile schema).
See Basic Access Authentication.

403 Forbidden
The operation is forbidden and
the reason is specified in the
error message.

404 Not Found

For "identified entity read"
request only. The specified URI is
invalid, or the requested resource
(such as identity, visit, event,
and so on) does not exist.

500 Internal Server Error

An unexpected error occurred in
the Web Engagement Server (for
instance, a runtime exception).
The error message suggests you
forward logs to Genesys
Customer Care.

502 Bad Gateway

Returned when one or more of
the systems required to fulfill the
response (the Cassandra
database or the Genesys
environment, for example) are
either unavailable or returned an
error.

503 Service Unavailable

Web Engagement Server is
unable to process the given
request. Example situations
include:

• Too many requests.

History REST API HTTP Response Codes and Errors

API Reference 142

https://docs.genesys.com/Documentation/CS/latest/Developer/BasicAccessAuthentication

Authentication
The Web Engagement History REST API supports the Basic HTTP authentication (see
http://www.ietf.org/rfc/rfc2617.txt) scheme.

Important
HTTP authentication should be used with Secured HTTP communication (HTTPS).

Configuration

The REST API security is configured in the security section of the Web Engagement Server
application. The following configuration options are mandatory to enable authentication:

• auth-scheme
• user-id
• password

Note: If authentication is used, every REST API client must support that authentication type and the
clients must know the authentication credentials. You must configure authentication for Interaction
Workspace and if your Engagement strategies use the REST interface, you must also add your
authentication credentials. See Configuring Authentication in the Deployment Guide for details.

Basic Authentication

This authentication scheme passes unencrypted credentials, so it is unsafe unless you use a secured
connection (HTTPS).

History REST API Authentication

API Reference 143

https://docs.genesys.com/Documentation/GWE/latest/Deployment/securityOptions
https://docs.genesys.com/Documentation/GWE/latest/Deployment/securityOptions#auth-scheme
https://docs.genesys.com/Documentation/GWE/latest/Deployment/securityOptions#user-id
https://docs.genesys.com/Documentation/GWE/latest/Deployment/securityOptions#password
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Security#t-3

Operations and Resources Index
The History REST API contains the following resources and operations:

• Event Resource (/events)
• GET /events/${eventId}

• Global Visit Resource (/global_visits)
• GET /global_visits/${globalVisitId}/identities

• Identity Resource (/identities)
• GET /identities/${identityId}/events
• GET /identities
• GET /identities/${identityId}
• GET /identities/${identityId}/pages
• GET /identities/${identityId}/userAgents
• GET /identities/${identityId}/visits

• Page Resource (/pages)
• GET /pages/${pageId}/events
• GET /pages/${pageId}

• Visit Resource (/visits)
• POST /visits/${visitId}/events
• POST /visits
• GET /visits/${visitId}/events
• GET /visits/${visitId}/identities
• GET /visits/${visitId}/pages
• GET /visits/${visitId}

History REST API Operations and Resources Index

API Reference 144

Event Resource

Description

The event resource contains information related to a Business or System event that occurred on a
specific web page at a given time. Two types of event can be issued:

• System events are constant and cannot be customized. There are two groups of System events:
• Visit related (VisitStarted, PageEntered, PageExited);
• Identity related (SignIn, SignOut, UserInfo).

• Business events are custom events that you can define within the DSL. See Managing Business Events
for details.

The possible event names are listed in the following table:

Name Type Description

VisitStarted System

Generated by the Browser Tier
when the visitor starts visiting
the website and enters the first
page. It creates a new visit
resource and then all the pages
visited by the visitor are
associated with this visit
resource.

PageEntered System

Generated by the Browser Tier
when the visitor enters a page.
The Web Engagement Server
creates a page resource which is
associated with the visit. The
page resource can be associated
with an identity according to the
identification scope of the visitor.

PageExited System

Generated by the Browser Tier
when the visitor exits a page.
The Web Engagement Server
updates page resource
accordingly. If the visitor comes
back to the page, a new page
resource is created.

SignIn System

Generated by the Browser Tier
when the visitor signs in (or is
authenticated with the company
web portal). It captures the
identification information
processed to authenticate the
visitor, for instance, the email

History REST API Event Resource

API Reference 145

https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents

Name Type Description
address used to login. When the
Web Engagement Server
receives this event, it updates or
creates the identity resource
associated with the identifier.

SignOut System Generated by the Browser Tier
when the visitor signs out.

UserInfo System

Generated when the Browser Tier
submits information about the
visitor. This event occurs when
the visitor is recognized or
updates his or her profile
information.

Timeout or InactivityTimeout Business

Default business event with
Timeout set to 10 seconds.
Generated when the visitor's
mouse is no longer moving. This
Business event needs
customization through the DSL
rules. See Managing Business
Events for details.

Search Business

Default business event.
Generated when the web visitor
is searching on the website. This
Business event needs further
DSL customization. See
Managing Business Events for
details.

Custom name Business
Custom business event created
through DSL customization. See
Managing Business Events for
details.

Resource Details
Field Type Mandatory Description

eventID string yes The unique ID of the
event resource.

eventName string yes
Name of the event. See
the Description section
for further information.

eventType System, Business yes Event type.

category string no Category related to the
generated event.

serverTimestamp long yes Server timestamp.
browserPageID string yes The browser page ID.

History REST API Event Resource

API Reference 146

https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents

Field Type Mandatory Description
globalVisitID string yes Global Visit ID.
url string yes The url of the page.
timestamp long yes Timestamp.

pageID string yes ID of the associated
page resource.

data string[] no Additional JSON data,
specific to the event.

Related Requests

You can retrieve event resources by using the following operations:

• Query event
• Query events by identity
• Query events by page
• Create new event for visit
• Query events by visit

Examples

Retrieving a UserInfo Event
Request

GET http://127.0.0.1:9081/server/data/events/5cdca781-3fa3-11e2-aee5-00505625a04f

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 15:48:08 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 15:48:08 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 587
{"eventID":"5cdca781-3fa3-11e2-aee5-00505625a04f",
"category":"",
"eventType":"SYSTEM","eventName":"UserInfo",
"serverTimestamp":1354798164472,"browserPageID":"2D869014426A4CAA8FA5C0D7B8668D0A",
"globalVisitID":"c93a19a1-45db-4d59-9c85-b637daea4a20",
"url":"http://www.genesyslab.com/
afu_FLS_intermediary.page?returnUrl=/?","timestamp":1354798163915,
"visitID":"f24c60f6-0728-4f3d-
b8b4-1e7bad2dc8a3","pageID":"5c911f90-3fa3-11e2-aee5-00505625a04f",
"data":{"userID":"user@genesyslab.com","sex":"male","name":"user1","age":30}}

History REST API Event Resource

API Reference 147

Retrieving a PageEntered Event
Request

GET http://127.0.0.1:9081/server/data/events/c4203381-3fa3-11e2-aee5-00505625a04f

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 15:48:08 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 15:48:08 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 587
{"eventID":"c4203381-3fa3-11e2-aee5-00505625a04f","category":"",
"eventType":"SYSTEM","eventName":"PageEntered",
"serverTimestamp":1354798337720,"browserPageID":"AA8C3E0B8C9543D58D9CAB122A714124",
"globalVisitID":"c93a19a1-45db-4d59-9c85-b637daea4a20",
"url":"http://www.genesyslab.com/%3f","timestamp":1354798337628,
"visitID":"f24c60f6-0728-4f3d-b8b4-1e7bad2dc8a3",
"pageID":"c489cac0-3fa3-11e2-aee5-00505625a04f",
"data":{"urlReferrer":"http://www.genesyslab.com/afu_FLS_intermediary.page?returnUrl=/%3f",
"localTime":"2012-12-06T12:52:17.628Z",
"title":"404 - Not found"}}

History REST API Event Resource

API Reference 148

Query event

Description

The query event method retrieves a given event.

Request
Method GET

URL /events/${eventId}
Parameters

Name Value Mandatory Description
${eventId} string yes Event identifier.

<references />

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body Event

Example

The following operation retrieves a UserInfo event by its ID.

Request

http://127.0.0.1:9081/server/data/events/5cdca781-3fa3-11e2-aee5-00505625a04f

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 15:48:08 GMT

History REST API Event Resource

API Reference 149

Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 15:48:08 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 587
{"eventID":"5cdca781-3fa3-11e2-aee5-00505625a04f",
"category":"",
"eventType":"SYSTEM","eventName":"UserInfo",
"serverTimestamp":1354798164472,"browserPageID":"2D869014426A4CAA8FA5C0D7B8668D0A",
"globalVisitID":"c93a19a1-45db-4d59-9c85-b637daea4a20",
"url":"http://www.genesyslab.com/
afu_FLS_intermediary.page?returnUrl=/?","timestamp":1354798163915,
"visitID":"f24c60f6-0728-4f3d-
b8b4-1e7bad2dc8a3","pageID":"5c911f90-3fa3-11e2-aee5-00505625a04f",
"data":{"userID":"user@genesyslab.com","sex":"male","name":"user1","age":30}}

History REST API Event Resource

API Reference 150

Global Visit Resource

Description

The global visit resource contains information about the relationship between a visitor's browser
instance and their identity. Currently, the resource has one operation Query identities by
globalVisitID, which retrieves a list of identities for a given globalVisitID (the identifier for the
browser).

History REST API Global Visit Resource

API Reference 151

Query identities by globalVisitID

Description

This method retrieves a list of identities for the given global visit ID.

Request

Method GET
URL /global_visits/${globalVisitId}/identities

Parameters
Name Value Mandatory Description

${globalVisitId} string yes Global visit identifier.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON array of Identity

History REST API Global Visit Resource

API Reference 152

Identity Resource
The identity resource contains visitor information and is created when the Web Engagement Server
receives the SignIn event. The Browser Tier generates this event when the visitor signs in (or is
authenticated with the company web portal). The identification information submitted by the visitor is
used to create the identity ID (for instance, the email address or an account name).

At this point, the identification scope of the visitor is Authenticated. If the visitor signs out, the Web
Engagement Server receives the SignOut event and the identification scope becomes Recognized.
For further information on events, see Event Resource.

Resource Details
Field Type Mandatory Description

identityId string yes

The unique ID of the
given identity. The
visitor provides the
identityId information
when registering on the
website; for instance, it
can be the email
address.

name string no User name.
location string no User location.

entityInCS string no Entity in the Contact
Server.

visitScope
Authenticated,
Recognized yes

Specify the visit's
identification scope in
relation to the visitor. If
the visitor is
authenticated, you can
retrieve session
information. If the
visitor signs out, the
visit scope changes to
recognized.

eventIds string[] no
Array of event IDs
associated with this
identity.

events event[] no
Array of the event
resources associated
with this identity.

pageIds string[] no
Array of page IDs
associated with this
identity.

pages page[] no Array of the page

History REST API Identity Resource

API Reference 153

Field Type Mandatory Description
resources associated
with this identity.

visitIds string[] no
Array of visit IDs
associated with this
identity.

visits visit[] no
Array of the visit
resources associated
with this identity.

Related Requests

• Query events by identity
• Query identity
• Query identities
• Query pages by identity
• Query visits by identity
• Query identities by visit
• Query user agents by identity

Examples

Retrieving Identities
The following request retrieves all the identities available.

Request

GET http://127.0.0.1:9081/server/data/identities

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 15:17:09 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 15:17:09 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 477
[{"eventIds":null,"events":null,"pageIds":null,"pages":null,
"sessionIds":null,"sessions":null,"identityId":"pat.thompsom@genesyslab.com",
"name":null,"location":null,"entityInCS":null,"visitScope":"Authenticated",
"visitIds":null,"visits":null},
{"eventIds":null,"events":null,"pageIds":null,"pages":null,
"sessionIds":null,"sessions":null,"identityId":"user@genesyslab.com",

History REST API Identity Resource

API Reference 154

"name":null,"location":null,"entityInCS":null,"visitScope":"Authenticated",
"visitIds":null,"visits":null}]

Retrieving Identities with page IDs
The following request retrieves all the identities available, including the associated page IDs.

Request

GET /server/data/identities?include_pages=true

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 15:28:13 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 15:28:13 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 627
[{"eventIds":null,"events":null,
"pageIds":["11ff6de0-446e-11e2-bfd2-00505625a04f"],
"pages":null,"sessionIds":null,"sessions":null,"
identityId":"pat.thompsom@genesyslab.com",
"name":null,"location":null,"entityInCS":null,
"visitScope":"Authenticated","visitIds":null,
"visits":null},
{"eventIds":null,"events":null,
"pageIds":["45f0eda1-3fa4-11e2-aee5-00505625a04f","c489cac0-3fa3-11e2-aee5-00505625a04f",
"06afd7f0-3fa4-11e2-aee50505625a04f"],"pages":null,"sessionIds":null,
"sessions":null,"identityId":"user@genesyslab.com",
"name":null,"location":null,"entityInCS":null,"visitScope":"Authenticated",
"visitIds":null,"visits":null}]

History REST API Identity Resource

API Reference 155

Query events by identity

Description

This method retrieves the events associated with a given identity.

Request

Method GET
URL /identities/${identityId}/events

Parameters
Name Value Mandatory Description

${identityId} string yes Identity identifier.

age integer no
The maximum age for
the event, in seconds.
Older events are not be
returned.

eventName string no Event name.
eventType string no Event type.

category string or "all categories" no

Category name or the
"all categories" key,
which means that the
results include any
event associated with a
category or a
combination of
categories.

url string no Event URL.

globalVisitID string no Associated global Visit
ID.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

History REST API Identity Resource

API Reference 156

HTTP code 200
HTTP Title OK

Body JSON Array of Event resources.

Examples

Activating Paging
The following example retrieves the first three events for the 'user@genesyslab.com' Identity.

Request

GET http://127.0.0.1:9081/server/data/identities/user@genesyslab.com/events?page_size=3

Response

HTTP/1.1 200 OK
Date: Thu, 13 Dec 2012 14:26:47 GMT
Content-Type: application/json; charset=UTF-8
Date: Thu, 13 Dec 2012 14:26:47 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Paging-Next: user@genesyslab.com#1354798334842#c2994560-3fa3-11e2-aee5-00505625a04f
Content-Length: 1508
[{"eventID":"5cdca781-3fa3-11e2-aee5-00505625a04f",
"category":"","eventType":"SYSTEM","eventName":"UserInfo",
"serverTimestamp":1354798164472,
"browserPageID":"2D869014426A4CAA8FA5C0D7B8668D0A",
"globalVisitID":"c93a19a1-45db-4d59-9c85-b637daea4a20",
"url":"http://www.genesyslab.com/afu_FLS_intermediary.page?returnUrl=/?",
"timestamp":1354798163915,"visitID":"f24c60f6-0728-4f3d-b8b4-1e7bad2dc8a3",
"pageID":"5c911f90-3fa3-11e2-aee5-00505625a04f",
"data":{"userID":"user@genesyslab.com","sex":"male","name":"user1","age":30}},
{"eventID":"62a62150-3fa3-11e2-aee5-00505625a04f",
"category":"","eventType":"BUSINESS","eventName":"Timeout-10","serverTimestamp":1354798174181,
"browserPageID":"2D869014426A4CAA8FA5C0D7B8668D0A","globalVisitID":"c93a19a1-45db-4d59-9c85-b637daea4a20","url":"http://www.genesyslab.com/
afu_FLS_intermediary.page?returnUrl=/%3f",
"timestamp":1354798174090,"visitID":"f24c60f6-0728-4f3d-b8b4-1e7bad2dc8a3",
"pageID":"5c911f90-3fa3-11e2-aee5-00505625a04f","data":{}},
{"eventID":"6e920a60-3fa3-11e2-aee5-00505625a04f","category":"",
"eventType":"BUSINESS","eventName":"Timeout-30","serverTimestamp":1354798194182,
"browserPageID":"2D869014426A4CAA8FA5C0D7B8668D0A",
"globalVisitID":"c93a19a1-45db-4d59-9c85-b637daea4a20",
"url":"http://www.genesyslab.com/afu_FLS_intermediary.page?returnUrl=/%3f",
"timestamp":1354798194128,"visitID":"f24c60f6-0728-4f3d-b8b4-1e7bad2dc8a3",
"pageID":"5c911f90-3fa3-11e2-aee5-00505625a04f","data":{}}]

Retrieving the next page of results
The following request uses the Paging-Next header parameter of the previous response (
user@genesyslab.com#1354798334842#c2994560-3fa3-11e2-aee5-00505625a04f) to retrieve the
next three events.
Request

History REST API Identity Resource

API Reference 157

GET http://127.0.0.1:9081/server/data/identities/user@genesyslab.com/events?page_size=3
&page_value="user@genesyslab.com#1354798334842#c2994560-3fa3-11e2-aee5-00505625a04f"≠xt=true

Response

HTTP/1.1 200 OK
Date: Thu, 13 Dec 2012 14:35:11 GMT
Content-Type: application/json; charset=UTF-8
Date: Thu, 13 Dec 2012 14:35:11 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Paging-Next: pat.thompsom@genesyslab.com#1355325030949#11ed4570-446e-11e2-bfd2-00505625a04f
Paging-Prev: "user@genesyslab.com10135479833484210c2994560-3fa3-11e2-aee5-00505625a04f"
Content-Length: 1507
[{"eventID":"03956571-446e-11e2-bfd2-00505625a04f","category":"Internet","eventType":"SYSTEM","eventName":"SignIn",
"serverTimestamp":1355325007175,"browserPageID":"7FA47396264C4F6A8FED4F4E9710B0C4",
"globalVisitID":"66c0976d-cbdd-4e94-accb-26093803cf54",
"url":"http://www.genesyslab.com/catalogue-topic/t_new_internet_options.page?",
"timestamp":1355325006715,
"visitID":"42788a69-785d-4860-be39-45048d32441c",
"pageID":"f57b03a0-446d-11e2-bfd2-00505625a04f",
"data":{"userID":"pat.thompsom@genesyslab.com"}},
{"eventID":"072fa330-446e-11e2-bfd2-00505625a04f",
"category":"Internet",
"eventType":"BUSINESS","eventName":"Timeout-30",
"serverTimestamp":1355325013219,
"browserPageID":"7FA47396264C4F6A8FED4F4E9710B0C4",
"globalVisitID":"66c0976d-cbdd-4e94-accb-26093803cf54",
"url":"http://www.genesyslab.com/catalogue-topic/t_new_internet_options.page?",
"timestamp":1355325013148,
"visitID":"42788a69-785d-4860-be39-45048d32441c",
"pageID":"f57b03a0-446d-11e2-bfd2-00505625a04f",
"data":{}},
{"eventID":"0fbe5780-446e-11e2-bfd2-00505625a04f",
"category":"Internet","eventType":"SYSTEM",
"eventName":"PageExited","serverTimestamp":1355325027576,
"browserPageID":"7FA47396264C4F6A8FED4F4E9710B0C4",
"globalVisitID":"66c0976d-cbdd-4e94-accb-26093803cf54",
"url":"http://www.genesyslab.com/catalogue-topic/t_new_internet_options.page?",
"timestamp":1355325027495,
"visitID":"42788a69-785d-4860-be39-45048d32441c",
"pageID":"f57b03a0-446d-11e2-bfd2-00505625a04f",
"data":{}}]

History REST API Identity Resource

API Reference 158

Query identity

Description

This method retrieves a given identity.

Request

Method GET
URL /identities/${identityId}

Parameters
Name Value Mandatory Description

${identityId} string yes Identity identifier.

include_visits
• true

• false
no

If true, the returned
identity contains the
reference list of
associated visits.

include_visits_detail
• true

(if include_visits=
true)

• false

no

If true, the returned
identity contains the
associated visit
resources. You can only
use this parameter if
include_visits is set
to true.

include_pages
• true

• false
no

If true, the returned
identity contains the
reference list of the
associated pages.

include_pages_detail
• true

(if include_pages=t
rue)

• false

no

If true, the returned
identity contains the
associated pages. You
can only use this
parameter if
include_pages is set
to true.

include_events
• true

• false
no

If true, the returned
identity contains
the reference list of
associated events.

History REST API Identity Resource

API Reference 159

Method GET

include_events_detail
• true

(if include_events=
true)

• false

no

If true, the returned
identity contains the
associated events.
You can only use this
parameter if
include_events is set
to true.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON Identity.

Example

The following request retrieves the identity resource with the pat.thompsom@genesyslab.com ID.

Request

http://127.0.0.1:9081/server/data/identities/pat.thompsom@genesyslab.com

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 15:17:09 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 15:17:09 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 477
[{"eventIds":null,"events":null,"pageIds":null,"pages":null,
"sessionIds":null,"sessions":null,"identityId":"pat.thompsom@genesyslab.com",
"name":null,"location":null,"entityInCS":null,"visitScope":"Authenticated",
"visitIds":null,"visits":null}]

History REST API Identity Resource

API Reference 160

Query identities

Description

This method retrieves a list of identities. By default, only the identities are returned: the associated
visits, events, and pages are not included in the results.

Request

Method GET
URL /identities

Parameters
Name Value Mandatory Description

location string no
Filters the identity
results based on the
given geolocation
parameter.

userAgent string no
Returns identities with
an exact match for the
UserAgent attribute.

include_visits
• true

• false
no

If true, each returned
identity contains the
reference list of
associated visits.

include_visits_detail
• true

(if include_visits=
true)

• false

no

If true, each returned
identity contains the
associated visits
resources.
You can only use this
parameter if include_visits
is set to true.

include_pages
• true

• false
no

If true, each returned
identity contains the
reference list of the
associated pages.

include_pages_detail
• true

(if include_pages=t
rue)

• false

no

If true, each returned
identity contains the
associated pages. You
can only use this
parameter if
include_pages is set to

History REST API Identity Resource

API Reference 161

Method GET
true.

include_events
• true

• false
no

If true, each returned
identity contains
the reference list of
associated events.

include_events_detail
• true

(if include_events=
true)

• false

no

If true, each returned
identity contains the
associated events.You
can only use this
parameter if
include_events is set
to true.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON array of Identity.

Example

Retrieving Identities with page IDs
The following request retrieves all the identities available, including the associated page IDs.

Request

http://127.0.0.1:9081/server/data/identities?include_pages=true

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 15:28:13 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 15:28:13 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 627
[{"eventIds":null,"events":null,
"pageIds":["11ff6de0-446e-11e2-bfd2-00505625a04f"],
"pages":null,"sessionIds":null,"sessions":null,"
identityId":"pat.thompsom@genesyslab.com",

History REST API Identity Resource

API Reference 162

"name":null,"location":null,"entityInCS":null,
"visitScope":"Authenticated","visitIds":null,
"visits":null},
{"eventIds":null,"events":null,
"pageIds":["45f0eda1-3fa4-11e2-aee5-00505625a04f","c489cac0-3fa3-11e2-aee5-00505625a04f",
"06afd7f0-3fa4-11e2-aee50505625a04f"],"pages":null,"sessionIds":null,
"sessions":null,"identityId":"user@genesyslab.com",
"name":null,"location":null,"entityInCS":null,"visitScope":"Authenticated",
"visitIds":null,"visits":null}]

History REST API Identity Resource

API Reference 163

Query pages by identity

Description

This method retrieves the pages for a given identity.

Request

Method GET
URL /identities/${identityId}/pages

Parameters
Name Value Mandatory Description

${identityId} string yes Identity identifier.

age integer no
Pages' maximum age in
seconds. Older pages
will not be returned.

include_events
• true

• false
no

If true, the returned
pages contain
the reference list of
associated events.

include_events_detail
• true

(if include_events=
true)

• false

no

If true, the returned
pages contain the
associated events.
You can only use this
parameter if
include_events is set
to true.

url string no Page URL used to filter
the results.

title string no Page title used to filter
the results.

category string or "all categories" no

A specific category
name or the "all
categories" key, which
means that the results
include any page
associated with a
category or a
combination of
categories.

History REST API Identity Resource

API Reference 164

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON Array of Page resources.

History REST API Identity Resource

API Reference 165

Query user agents by identity

Description

This method retrieves the user agents for a given identity.

Request
Method GET

URL /identities/${identityId}/userAgents
Parameters

Name Value Mandatory Description
${identityId} string yes Identity identifier.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON Array of User Agents.

History REST API Identity Resource

API Reference 166

Query visits by identity

Description

This method retrieves the visits for a given identity.

Request
Method GET

URL /identities/${identityId}/visits
Parameters

Name Value Mandatory Description
${identityId} string yes Identity identifier.

age integer no
Visits' maximum age in
seconds. Older visits will
not be returned.

globalVisitID string no
Filters the visit results
based on the given
global Visit ID.

userAgent string no
Returns the visits
matching the UserAgent
field.

include_pages
• true

• false
no

If
true, the returned visits
contain the reference
list of the
associated pages.

include_pages_detail
• true(if include_pag

es=true)
• false

no

If true, the returned visits
contain the
associated pages. You
can only use this
parameter if
include_pages is set to
true.

include_events
• true

• false
no

If true,
the returned visits
contain the reference
list of associated
events.

include_events_detail • true
(if include_events= no

If true,
the returned visits

contain the

History REST API Identity Resource

API Reference 167

Method GET

true)
• false

associated events.
You can only use this
parameter if
include_events is set
to true.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON Array of Visit resources.

History REST API Identity Resource

API Reference 168

Page Resource

Description

The page resource is created when the visitor enters a page (upon the PageEntered event). If the
visitor leaves the page, and later visits the page again, a new page resource is created. For further
information about events, see Event Resource.

Resource Details
Field Type Mandatory Description

pageID string yes The unique ID of the
page resource.

url string yes The page URL.

browserPageID string yes
The browser page ID;
another page identifier
unique across the visit.

pageExitedDate long no
Date at which the user
left the page. 0 means
that the user did not
leave the page already.

pageEnteredDate long no Date at which the user
entered the page.

category string no Associated category, if
any.

title string no Page title.

first
• true

• false
no

true if this is the first
page entered for the
current visit.

eventIds string[] no IDs of the associated
events.

events event[] no Array of the associated
events.

Related Requests

• Query events by page

History REST API Page Resource

API Reference 169

• Query page
• Query pages by identity
• Query pages by visit

Example

Retrieving a page
Request

GET http://127.0.0.1:9081/server/data/pages/c489cac0-3fa3-11e2-aee5-00505625a04f

Response

{"eventIds":null,"events":null,"pageId":"c489cac0-3fa3-11e2-aee5-00505625a04f",
"url":"http://www.genesyslab.com/%3f",
"browserPageID":"AA8C3E0B8C9543D58D9CAB122A714124",
"pageExitedDate":1354798339992,
"pageEnteredDate":1354798338412,
"category":"","title":"404 - Not found","first":false}

History REST API Page Resource

API Reference 170

Query events by page

Description

This method retrieves the events for a given page.

Request

Method GET
URL /pages/${pageId}/events

Parameters
Name Value Mandatory Description

${pageId} string yes Page identifier.

age integer no
Events' maximum age
in seconds. Older events
will not be returned.

eventName string no Event name.
eventType string no Event type.

category string or "all categories" no

Category name or the
"all categories" key,
which means that the
results include any
event associated with a
category or a
combination of
categories.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON Array of Event resources

History REST API Page Resource

API Reference 171

Query page

Description

This method retrieves a given page.

Request

Method GET
URL /pages/${pageId}

Parameters
Name Value Mandatory Description

${pageId} string yes Page identifier.

include_events
• true

• false
no

If true, the returned
page contains
the reference list of
associated events.

include_events_detail
• true

(if include_events=
true)

• false

no

If true, the returned
page contains the
associated events.
You can only use this
parameter if
include_events is set
to true.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body Page

History REST API Page Resource

API Reference 172

Visit Resource

Description

The visit resource contains the information related to a visitor's visit, which is the browser session
opened by the visitor to visit the website. The visit starts with the VisitStarted event (submitted by
the website) and then, all the browsing activity is recorded in page and event resources associated
with the visit. The visitor remains Anonymous until he or she authenticates on the website. When
authentication occurs, the visit is associated with an identity resource.

Important
Several identities are associated with the same visitId if several visitors authenticate
on the website. See Identity Resource.

Resource Details
Field Type Mandatory Description

visitId string yes ID of the given visit.

startDate long yes Date in milliseconds at
which the visit started.

endDate long no
Date in milliseconds at
which the visit ended; 0
means that the visit is
not terminated.

globalVisitID string no ID of the global visit.

userAgentID string no
ID of the associated
user agent if any;
otherwise, null.

eventIds string[] no
Array of event IDs
associated with this
visit.

events event[] no
Array of the event
resources associated
with this visit.

pageIds string[] no
Array of page IDs
associated with this
visit.

pages page[] no Array of the page
resources associated

History REST API Visit Resource

API Reference 173

Field Type Mandatory Description
with this visit.

Related Requests

• Create new event for visit
• Create new visit
• Query events by visit
• Query identities by visit
• Query pages by visit
• Query visit
• Query visits by identity

Example

Retrieve a Given Visit

Request

GET http://127.0.0.1:9081/server/data/visits/f24c60f6-0728-4f3d-b8b4-1e7bad2dc8a3

Response

HTTP/1.1 200 OK
Date: Wed, 12 Dec 2012 16:03:03 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 12 Dec 2012 16:03:03 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.0
Content-Length: 345
{"eventIds":null,"events":null,"pageIds":null,"pages":null,"
sessionIds":null,"sessions":null,
"visitId":"f24c60f6-0728-4f3d-b8b4-1e7bad2dc8a3",
"startDate":1354797882714,"endDate":0,
"activeSessionId":"00000000-0000-1000-8000-000000000000",
"globalVisitID":"c93a19a1-45db-4d59-9c85-b637daea4a20",
"userAgentId":"b4ec8ef0-3fa2-11e2-aee5-00505625a04f"}

History REST API Visit Resource

API Reference 174

Create new event for visit

Description

This method creates a new event for a given visit resource.

Request

Method POST
URL /visits/${visitId}/events

Parameters
Name Value Mandatory Description

${visitId} string yes Visit identifier.

BODY Event JSON object which MUST contain the pageId field, to ensure that the
parent page is defined for this new event.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

History REST API Visit Resource

API Reference 175

Create new visit

Description

This method creates a new visit resource.

Request

Method POST
URL /visits

Parameters
Name Value Mandatory Description

None

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body Visit JSON object

History REST API Visit Resource

API Reference 176

Query events by visit

Description

This method retrieves the events for a given visit.

Request

Method GET
URL /visits/${visitId}/events

Parameters
Name Value Mandatory Description

${visitId} string yes Visit identifier.

age integer no
Events' maximum age
in seconds. Older events
will not be returned.

eventName string no Event name.
eventType string no Event type.

category string or "all categories" no

Category name or the
"all categories" key,
which means that the
results include any
event associated with a
category or a
combination of
categories.

url string no Event URL.

browserPageID string no
Browser page ID of the
event, which is another
page identifier unique
across the visit.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

History REST API Visit Resource

API Reference 177

HTTP code 200
HTTP Title OK

Body JSON Array of Event resources.

History REST API Visit Resource

API Reference 178

Query identities by visit

Description

This method retrieves a list of identities for the given visit ID.

Request

Method GET
URL /visits/${visitId}/identities

Parameters
Name Value Mandatory Description

include_visits
• true

• false
no

If true, each returned
identity contains the
reference list of
associated visits.

include_visits_detail
• true

(if include_visits=
true)

• false

no

If true, each returned
identity contains the
associated visits
resources.
You can only use this
parameter if include_visits
is set to true.

include_pages
• true

• false
no

If true, each returned
identity contains the
reference list of the
associated pages.

include_pages_detail
• true

(if include_pages=t
rue)

• false

no

If true, each returned
identity contains the
associated pages. You
can only use this
parameter if
include_pages is set
to true.

include_events
• true

• false
no

If true, each returned
identity contains
the reference list of
associated events.

include_events_detail • true no
If true, each returned
identity contains the
associated events. You

History REST API Visit Resource

API Reference 179

Method GET

(if include_events=
true)

• false

can only use this
parameter if
include_events is set
to true.

association
• "Authenticated"
• "Recognized"

no
Defines the type of
association between the
current visit and the
returned identity.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON array of Identity

History REST API Visit Resource

API Reference 180

Query pages by visit

Description

This method retrieves the pages for a given visit.

Request

Method GET
URL /visits/${visitId}/pages

Parameters
Name Value Mandatory Description

${visitId} string yes Visit identifier.

age integer no
Pages' maximum age in
seconds. Older pages
will not be returned.

include_events
• true

• false
no

If true, the returned
pages contain
the reference list of
associated events.

include_events_detail
• true

(if include_events=
true)

• false

no

If true, the returned
pages contain the
associated events.
You can only use this
parameter if
include_events is set
to true.

url string no Page URL used to filter
the results.

title string no Page title used to filter
the results.

category string or "all categories" no

A specific category
name or the "all
categories" key, which
means that the results
include any page
associated with a
category or a
combination of
categories.

browserPageID string no Browser page id, which
is another page

History REST API Visit Resource

API Reference 181

Method GET
identifier unique across
the visit. A collection
with maximum one
page will be returned.

Response

The History REST API answers with HTTP codes for every request. The following table shows the
correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body JSON Array of Page resources.

History REST API Visit Resource

API Reference 182

Query visit

Description

This method retrieves a given visit.

Request

Method GET
URL /visits/${visitId}

Parameters
Name Value Mandatory Description

${visitId} string yes Visit identifier.

include_pages
• true

• false
no

If true, the returned
visit contains the
reference list of the
associated pages.

include_pages_detail
• true

(if include_pages=t
rue)

• false

no

If true, the returned
visit contains the
associated pages. You
can only use this
parameter if
include_pages is set
to true.

include_events
• true

• false
no

If true, the returned
visit contains
the reference list of
associated events.

include_events_detail
• true

(if include_events=
true)

• false

no

If true, the returned
visit contains the
associated events.
You can only use this
parameter if
include_events is set
to true.

Response

The History REST API answers with HTTP codes for every request. The following table shows the

History REST API Visit Resource

API Reference 183

correct response for a successful request. See HTTP Response Codes and Errors for further details on
the possible codes that this request can return.

HTTP code 200
HTTP Title OK

Body Visit.

History REST API Visit Resource

API Reference 184

Pacing REST API

Overview

The Pacing API gives external components access to your pacing information, using two different
methods:

• The Reactive State method returns a number that indicates the probability of whether additional
reactive traffic will displace proactive traffic. It does not return the number of agents who are
ready to accept chat interactions.

• You can, however, use the Channel Capacity method to figure out how many agents are ready to
process incoming requests.

Important
Please read the following information carefully before attempting to use the Pacing
API!

Reactive State

Use this method to determine whether reactive traffic is displacing proactive traffic. If so, you may
want to take action, such as limiting the number of chat interactions that are initiated in response to
the reactive requests. To use this method, you must configure the Pacing Algorithm to use a type that
predicts reactive engagements, that is, either SUPER_PROGRESSIVE_DUAL or PREDICTIVE_B_DUAL.

Important
As noted below, a request using this method returns the probability that a new
reactive engagement should be allowed for a visitor. It does not contain
information about the number of agents who can accept an incoming
interaction.

Request

Method GET

URL http://<gwe_server_host:gwe_server_port>/server/data/pacing/
reactiveState?channel=<channelName>&groups=[<names>]

Pacing REST API Visit Resource

API Reference 185

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Features

Method GET

The HTTPS schema is also allowed, if configured.

Parameters
Name Value Mandatory Description

channel string yes

The name of a media
channel, which
determines if a reactive
engagement is possible.
Valid value is chat.

groups string no

The list of agent group
names. If this parameter
is not defined, then the
reactive pacing result is
consolidated over all
groups.
Note: If you want to specify
more than one group, you
must use the following syntax:
&groups=Group1_name&groups=Group2_name

Response

Response
{reactiveState : <value>}

The request returns the value of the pacing reactive state. This value is the probability that a new reactive
engagement should be allowed for a visitor.

Response
Type JSON

Example
<script>

$.ajax({url: 'http://{server}:{port}/server/data/pacing/reactiveState?channel=chat'})
.done(function(result) {

console.log('result: ' + JSON.stringify(result.reactiveState));
var rnd = Math.random();

if(rnd <= result.reactiveState) {
// Do something

}
});

</script>

Important
jQuery is required for the example above.

Pacing REST API Visit Resource

API Reference 186

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Security

Channel Capacity

Important
The channel capacity functionality was introduced in Genesys Web Engagement
8.1.200.41

Use this method to figure out how many agents are ready to process incoming requests.

Note: This method does not take into account the extent to which reactive traffic is displacing
proactive traffic. Because of this, if you use its results without taking other factors into account, you
may reduce the effectiveness of your proactive campaigns.

Request

Method GET

URL
http://<gwe_server.host:gwe_server.port>/server/data/pacing/
channelCapacity?channel=<channelName>&groups=[<names>]
The HTTPS schema is also allowed, if configured.

Parameters
Name Value Mandatory Description

channel string yes

The name of a media
channel for which you
want to determine the
count of ready agents.
Valid value is chat.

groups string no

The list of agent group
names. If this parameter
is not defined, then the
resulting agent count is
consolidated over all
groups.
Note: If you want to specify
more than one group, you
must use the following syntax:
&groups=Group1_name&groups=Group2_name

Response

Response
{capacity : <value>}

The request returns the count of ready agents in the specified group or groups—or for the entire channel, if
no group is specified—according to statistics provided by Stat Server.

Response JSON

Pacing REST API Visit Resource

API Reference 187

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Security

Response
{capacity : <value>}

The request returns the count of ready agents in the specified group or groups—or for the entire channel, if
no group is specified—according to statistics provided by Stat Server.

Type

Example
<script>

$.ajax({url: 'http://{server}:{port}/server/data/pacing/channelCapacity?channel=chat'})
.done(function(result) {

console.log('Ready agents capacity is: ' + JSON.stringify(result.capacity));
});

</script>

Important
jQuery is required for the example above.

Pacing REST API Visit Resource

API Reference 188

Business Events DSL

Description

The monitoring rules for each Genesys Web Engagement application you create are defined in a
domain specific language (DSL). The DSL specifies the document elements to monitor, the events to
send to the Web Engagement Server, and the data to include with those events. For details about
how these events are structured, see Events Structure.

<?xmlversion="1.0"encoding="utf-8"?>
<properties>

<events>
<event name="AddToCart">

<trigger name="AddToCartTrigger" element="img.bdt-addToCart" action="click"
url="http://www.MySite.com/" count="1">

<val name="productName"
value="$(event.target).parents('div.hproduct').find('h3.name a').text()"/>

<val name="productModel"
value="$(event.target).parents('div.hproduct').find('span.model')"/>

<val name="productSKU"
value="$(event.target).parents('div.hproduct').find('span.sku').text()"/>

<val name="productPrice"
value="$(event.target).parents('div.hproduct').find('h4.price').text()"/>

</trigger>
</event>

<event name="Search">
<trigger name="GoSearchClick" element="td#gobutton input" action="click"

url="http://www.MySite.com" count="1"/>
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>
</events>

</properties>

The Business Events API includes all the DSL elements that you can use to define business events.
For example and details about how to implement these events, see Managing Business Events. When
you modify the DSL, Genesys recommends that you use InTools, an application included with Genesys
Web Engagement that helps you create, validate, and test your changes to the DSL.

<properties> (mandatory)

The <properties> element is the main root element of the DSL file. It has an optional debug attribute
and a mandatory <events> child.

debug (optional) - Deprecated in release 8.1.2

The debug attribute enables debugging in the browser by setting its value to the JavaScript Boolean
true. The debugging information opens a pop-up window and shows the JSON serialized event data
for the business events before they are sent to the Web Engagement Server.

Business Events DSL Visit Resource

API Reference 189

https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/User/InTools

Note: In some browsers, using the debug attribute can affect the performance of the Web
Engagement Server by delaying the event dispatch.

<events>

The <events> element contains a list of all the business events that can be generated during
monitoring. These business events are captured in the <event> child element.

<event>

The <event> element contains mandatory id and name attributes, and an optional condition
attribute. An <event> must also have one or more <trigger> children, which define the conditions
that must be matched to generate an event.

Note: If the <trigger> child is omitted, the event will never be generated.

name (mandatory)

The name is sent to the Web Engagement Server. A DSL file may contain several <event> elements
with identical values for name, but with different values for id. For example, if your website includes a
search form, you can submit this form by clicking on the 'search' button or by pressing the 'enter' key.
Inside the browser, the click and key press events are clearly distinct, but are not relevant for the
Web Engagement Server.

The following example shows how to create two business events which return the same event name
to the Web Engagement Server:

<?xmlversion="1.0"encoding="utf-8"?>
<properties>

<events>
<event name="Search">

…
</event>
<event name="Search">

…
</event>

</events>
</properties>

condition (optional)

The condition attribute is a JavaScript Boolean expression. If it is present, the event’s triggers will
be installed in the page if the condition evaluates to true.

The following example creates a business event with a timer which can be triggered only if the text
inside the <h1> tag on the page is "Compare":

<event name="InactivityTimeout4CompareProducts" condition="$('h1').text() == 'Compare'">
<trigger name="InactivityTimeout4CompareProductsTrigger" element="" action="timer:10000"

Business Events DSL Visit Resource

API Reference 190

type="timeout"
url="http://www.MySite.com/site/olspage.jsp" count="1"/>

…
</event>

Since the event (in this case ‘InactivityTimeout4CompareProductsEvent’) will never be generated if
its triggers are not installed, the condition attribute allows you to place conditions on any feature of
the environment that can be tested by a JavaScript Boolean expression, in order to monitor and
generate events.

postcondition (optional)

A postcondition attribute is similar to a condition except it is evaluated after the business event is
already generated. If it is present, the event will be sent to the Web Engagement Server if the
postcondition evaluates to true.

<event name="InactivityTimeout4CompareProducts" postcondition="$('h1').text() == 'Compare'">
<trigger name="InactivityTimeout4CompareProductsTrigger" element=""

action="timer:10000" type="timeout"
url="http://www.MySite.com/site/olspage.jsp" count="1"/>

…
</event>

<trigger> (mandatory child element)

The <trigger> element defines the conditions that must be matched to generate business events, as
well as the data to be included with the event. If several triggers are part of the event definition, they
must all match to raise the business event. If each trigger matches a different DOM event in the
browser, then the set of triggers specifies a series of web events that must occur before the parent
business event is submitted to the Web Engagement Server.

The <trigger> element has mandatory name, element, and action attributes, and optional url and
count attributes. It can have and 0 or more <val> children.

name (mandatory)

This attribute specifies the name of the trigger. It must be unique in the parent <event> element. If
an <event> element has multiple triggers, they must all have different names.

element (mandatory)

The element attribute specifies the document's DOM element to which the trigger should be
attached. The value of element should be a jQuery selector. For details on jQuery selectors, see
http://api.jquery.com/category/selectors/. The element can have an empty value.

action (mandatory)

The action specifies the DOM event to track. The trigger is matched if the DOM event specified by
the action is targeted at the DOM element specified by the element attribute. The value of action
can be set to any JavaScript event type, such as focus, mouseover, or resize. In addition to the
standard DOM events, the DSL supports the following two values: timer and enterpress.

Business Events DSL Visit Resource

API Reference 191

timer

If you set action to timer, this allows triggers to be based on elapsed time. The amount of time is
specified by appending the number of milliseconds to timer, separated by a colon (":"). For example,
action=timer:10000", specifies a 10-second timer.

When action="timer:nnn", you must provide an additional attribute, type, to specify how the timer
works. You can set type to either timeout, notyping, or nomove. If type="timeout", the timer
interval begins after the page is loaded.

In the following example, the "InactivityTimeout" event is generated once the user has been inactive
for 10 seconds:

<event name="InactivityTimeout">
<trigger name="InactivityTimeout" element="" action="timer:10000" type="nomove"

url="http://www.genesys.com" count="1"/>
<val name="products" value="…” />

</event>

If type="timeout" were specified instead, the event would be generated 10 seconds after the page
was loaded.

enterpress

If you set action to enterpress, this event signals that the user has pressed the "enter" key. This
action is more specific than the standard DOM keypress event, which is raised when any key is
pressed. In the following example, the user enters text in a search box and presses the "enter" key
(as opposed to clicking the "search" button).

<event name="Search">
<trigger name="SearchKeyDown" element="input.searchfield:text" action="enterpress"

url="http://www.MySite.com" count="1"/>
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>

type (mandatory when action="timer:nnn")

The type attribute is mandatory when action="timer:nnn". The type can have a value of either
timeout, notyping, or nomove, which specifies how the timer action works.

If type="timeout", the timer interval begins after the page is loaded. If type="nomove", the timer
resets each time the user moves the mouse. If type="notyping", the timer resets each time the
browser registers keyboard input for the element specified in the element property or for any
element on the page, if this property is not specified. (Note that for this type, moving the mouse will
not reset the timer.)

In the following example, the "InactivityTimeout" event is generated after the user has been inactive
for 10 seconds.

<event name="InactivityTimeout" condition="$('h1').text() == 'Compare'">
<trigger name="InactivityTimeout" element="" action="timer:10000" type="nomove"

url="http://www.MySite.com/site/olspage.jsp" count="1"/>
<val name="products" value="…" />

</event>

Business Events DSL Visit Resource

API Reference 192

If type="timeout" was specified instead, the event would be generated 10 seconds after the page
was loaded.

url (optional)

The url attribute defines the URL of the specific page that raises the business event. The business
event is not submitted if the current document's URL does not match the URL parameter. This
attribute can contain a JavaScript regular expression for complex use cases, as shown in the following
example:

<event name="ExampleEvent">
<trigger name="SimpleUrlTrigger" element="" action="timer:10000" type="timeout"

url="http://www.genesys.com/customer-experience" count="1"/>
<trigger name="RegexpUrlTrigger" element="" action="timer:10000" type="timeout"

url="solutions|platform-services" count="1"/>
</event>

Note: When the url attribute contains one or more ? characters, you must escape them by
preceding them with a backslash. For example, http://www.genesys.com/?page=customer-experience
would be escaped as http://www.genesys.com/\?page=customer-experience.

count (optional)

The count attribute specifies how many times the trigger needs to be matched before the event is
generated and sent to the Web Engagement Server.

after (optional)

You can use this attribute to specify the trigger sequence. Note that you can only use the name of the
trigger from the current event with this attribute. Trigger names from other events cannot be used.

<event name="MySequenceEvent">
<trigger name="buttonTrigger1" element="#button1" action="click" url="" count="2" />
<trigger name="buttonTrigger2" element="#button2" action="click" url="" count="1"

after="buttonTrigger1" />
<trigger name="buttonTrigger3" element="#button2" action="click" url="" count="1"

after="buttonTrigger1" />
</event>

In the current example, buttonTrigger2 and buttonTrigger3 are initiated only when a button with
an ID of button1 has been clicked twice (count=2).

MySequenceEvent will be generated only when all three triggers are executed.

The after attribute can be used with a timer trigger, as shown below.

<event name="MySequenceWithTimerEvent">
<trigger name="SelectPlan" element="#button1" action="click" url="" />
<trigger name="TimeoutTrigger" element="" action="timer:5000" type="timeout" url=""

after="SelectPlan" />
</event>

Business Events DSL Visit Resource

API Reference 193

<val>

The <val> element can be used to add data to the business event. You can have 0 or more <val>
elements; each instance adds a field to the business event. If <val> is a child of <trigger>, it can
also have access to the DOM event matched by the trigger.

name (mandatory)

The name attribute is the name of the value in the generated business event. The name of each val
must be unique inside a parent event. The name is added to the generated business event's data,
along with the corresponding value attribute.

The following example adds a value named "searchString" when the "Search" event is generated and
sent to the Web Engagement Server.

<event name="Search">
<trigger name="GoSearchClick" element="td#gobutton input" action="click" url=" "

count="1"/>
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>

The following output is an example of an event (in JSON format) submitted to the Web Engagement
Server when the visitor enters "my search string" in the search box and clicks the search button. The
"eventName" parameter is taken from the name attribute of the <event> element, and the <param>
element causes the "searchString" parameter to be added to the event's "data" field (this examples
assumes that the visitor entered "my search string" as the search text). The additional fields are
generated automatically by the DSL code:

{
"data":{

"searchString":"my search string"
},
"eventType":"BUSINESS",
"eventName":"Search",
"eventID":"D88B2FF5A9C24095837CF105FB6D5CF9",
"pageID":"A9D1E9265D444351876C13D6C5FA5FAD",
"timestamp":1309962580226,
"globalVisitID":"7E67BA9701124F738CAC80DDFEA1D705",
"visitID":"4608DD210B034AC18C65C2C2275CD8B6",
"userID":"",
"url":"http://www.bestbuy.com/site/",
"category":""

}

value (optional)

The value attribute specifies the value to associate with the name attribute in the field of the
generated event. Its value can be any JavaScript code which returns a serializable object.

The following example tracks search events and includes the search string in the event when it is
sent to the Web Engagement Server. In this example, since there is only one search input box on the
page, the following <param> definition captures the search text and includes it in the generated
event:

<event name="Search">
<trigger name="GoSearchClick" element="td#gobutton input" action="click"

Business Events DSL Visit Resource

API Reference 194

url="http://www.MySite.com" count="1" />
<val name="searchString" value="$('input.searchfield:text').val();"/>

</event>

In the following example, the "AddToCart" event is tracked, including information about the product
that was added: name, model, SKU, and price. Tracking by clicking on the "add to cart" button does
not provide information about which button was clicked and which product was added to the cart. To
get this information, you need to use the DOM event object: "event.target" identifies the clicked
button, which can provide information related to the product.

<?xml version="1.0" encoding="UTF-8"?>
<event name="AddToCart">

<trigger name="AddToCartTrigger" element="div.info-side img.bdt-addToCart" action="click"
url="http://www.MySite.com" count="1">

<val name="productName" value="$(event.target).parents('div.hproduct').find('h3.name
a').text()"/>

<val name="productModel"
value="$(event.target).parents('div.hproduct').find('span.model').text()"/>

<val name="productSKU"
value="$(event.target).parents('div.hproduct').find('span.sku').text()"/>

<val name="productPrice"
value="$(event.target).parents('div.hproduct').find('h4.price').text().replace('Sale:',)"/>

</trigger>
</event>

Business Events DSL Visit Resource

API Reference 195

	API Reference
	Table of Contents
	Genesys Web Engagement API Reference
	Monitoring JS API
	Chat JS API
	Chat Widget JS API
	Additional Methods
	Customization Examples
	startChat(options)
	restoreChat(options)
	startChatInThisWindow(options)
	onBeforeChatOptionsApplied(callback)
	onSession(callback)
	close()
	toggle()
	onMinimized(callback)
	isMinimized()
	VERSION

	Chat Service JS API
	Launching the Chat Session
	Controlling the Chat Session

	Error Codes

	Notification Service REST API
	Engagement REST API
	History REST API
	HTTP Response Codes and Errors
	Authentication
	Operations and Resources Index
	Event Resource
	Query event

	Global Visit Resource
	Query identities by globalVisitID

	Identity Resource
	Query events by identity
	Query identity
	Query identities
	Query pages by identity
	Query user agents by identity
	Query visits by identity

	Page Resource
	Query events by page
	Query page

	Visit Resource
	Create new event for visit
	Create new visit
	Query events by visit
	Query identities by visit
	Query pages by visit
	Query visit

	Pacing REST API
	Business Events DSL

