
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Integrating Web Engagement and Co-browse with Chat

Developer's Guide

9/7/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Integrating Web Engagement and Co-
browse with Chat

Contents

• 1 Integrating Web Engagement and Co-browse with Chat
• 1.1 Instrumentation Snippet
• 1.2 Configuration
• 1.3 Obtaining Chat and Co-browse APIs
• 1.4 Versions and Compatibility

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 2

The Integrated JavaScript Application provides the functionality of Web Engagement monitoring, Co-
browse, and Chat in one easy to configure JavaScript application, rather than using the individual
applications for each component.

The Integrated JavaScript Application is a JavaScript file that contains the Chat, Tracker, and Co-
browse JavaScript applications, as well as code for their integration.

The integration consists of the following:

• For Chat and Tracker: The pageID and visitID are automatically attached to the chat session's
userData when the chat session is started (either via the "Live Chat" button or the Chat JS API).

• For Chat and Co-browse: The application automatically detects if the agent is connected via chat and, if
yes, the agent automatically joins the Co-browse session when it is started.

The physical integrated application file, named genesys.min.js, contains the pre-integrated Chat,
Tracker and Co-browse JavaScript applications.

Tip
Another form of the app (gcb.min.js) is only shipped as part of the Co-browse
solution and contains pre-integrated Chat and Co-browse (no Tracker).

Important
To successfully integrate Chat and Co-browse when chat is configured to operate in
"popup" mode, you must host chatWidget.html in the same domain as the website
(subdomain is also possible).

To use the Integrated Application in your Web Engagement or Co-browse solution, review the
information on this page and add the instrumentation snippet to your website, along with any
necessary configuration (this can vary depending on your solution — see Configuration for details.

Instrumentation Snippet

Important
The JavaScript files are obfuscated and minified. You are not allowed to decompile
and/or modify them. If you do, support can not be guaranteed. Instead, you can use
the public JavaScript APIs and other documented methods to customize the
functionality.

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 3

https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuration

You can activate the integrated functionality on a website by inserting the following snippet before
the closing </head> tag:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<GWE_SERVER_URL>/genesys.min.js",
cbUrl: "<COBROWSE_SERVER_URL>/cobrowse" // this line is required only if Co-browse is used

});</script>

This script asynchronously (which means the loading won't block your site performance) loads and
executes the required JavaScript file.

You should only modify the following (except for the special case of changing global variable names,
described below) lines:

• src: "<SERVER_URL>/genesys.min.js", — This defines the src (the URL) of the script that is loaded
and executed. You can load the script from the GWE Server, the Co-browse Server, or your own server:
• To load the script from the Web Engagement Server, the URL format should be

http(s)://GWE_SERVER_HOST[:GWE_SERVER_PORT]/server/resources/js/build/
genesys.min.js

• To load the script from the Co-browse Server, the URL format should be
http(s)://COBROWSE_HOST[:COBROWSE_PORT]/cobrowse/js/genesys.min.js

• To load the script from one of your own servers, use one of the above URLs to download the file and
then copy it to your server. If you choose this option, make sure to configure the caching properly
(see Note on Caching for details).

• cbUrl: "<COBROWSE_SERVER_URL>/cobrowse — This line is only required if you use Co-browse. It
defines the URL that is used by the Co-browse JavaScript to get and receive Co-browse-related data.

The Co-browse URL is also used by chat to connect to the Genesys infrastructure via the Co-browse
server. If you remove it, make sure to configure the serverURL option for chat, otherwise chat will not
work. Also, be sure to remove the trailing comma from the src: "<SERVER_URL>/genesys.min.js",
line so that your script looks like this:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<SERVER_URL>/genesys.min.js"

});</script>

Decoupling Instrumentation from Your Website: Tag Management Workflow
Introducing changes to your web site's source code can be a painful process. Tag management
systems simplify the process by allowing you to make changes to your scripts without directly
changing your web site's source code. When you use a tag management system, instead of adding
instrumentation and configuration snippets directly to you web page, you add a single snippet which

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Note_on_Caching
https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0

asynchronously loads all other scripts, including configuration scripts. For a good introduction to tag
management systems, see http://moz.com/blog/what-is-tag-management.

Setting Up a Tag Management Workflow

Even if you do not use a full featured tag management system, you can set up a tag management
workflow by doing the following:

1. Create a separate JavaScript file that includes instrumentation and configuration.
In this example, we call this file genesys.instr.js. This file includes the instrumentation snippet and all
configuration.

2. Host this file in a location accessible via HTTP.
You must host this file on your infrastructure or on one of the Genesys Servers. You can use the Web
Engagement Jetty container, see Hosting Static Resources. You can also host this file on your Co-browse
server by creating a sub-folder in the server/webapps folder and placing the file there.

Warning
This set-up creates one extra HTTP request when Genesys services load. Make sure you configure caching to
mitigate the extra HTTP request. To get started with caching, see the Note on Caching

3. Add the following instrumentation snippet to your website:
<script>(function(d, s, id, src) {

window._gt = window._gt || [];
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = src;
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-instr',
"http(s)://example.com/genesys.instr.js"

);</script>

In this snippet, change the URL of the genesys.instr.js file to the URL of the file you created.

Now your instrumentation and configuration files are included by genesys.instr.js and you can make changes to your actual
instrumentation and configuration files without having to also change your site's source code.

Tip
This approach is applicable not just to the Integrated Application but to any website instrumentation,
including Co-browse and the Tracker Application.

Warning
In the snippet we initialized the global _gt variable in this line of code:

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 5

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuration
https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#Hosting_Static_Resources
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Note_on_Caching
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring

window._gt = window._gt || [];

We use this variable to start the Tracker immediately. Otherwise, the Tracker will not start until all scripts have loaded. If you customize the
global variable for Tracker, you should modify the snippet accordingly. If you do not use Tracker at all, you may remove this line.

Note on Caching

Important
If you choose to serve static resources (JavaScript) on your servers, you should
implement the analogous caching strategy to achieve best performance and minimum
traffic load.

All static resources (JavaScript in our case) are served with caching HTTP headers when loaded from
the Web Engagement Server or Co-browse Server. Both servers use the combination of HTTP headers
that lead to the following caching workflow:

• When the client (browser) receives the resource, it stores it on disk for a configured time interval.
• During this time interval, if the resource is requested, the browser loads it from disk without sending

any requests to the server (which speeds up the initialization of the scripts).
• After the time interval expires, the browser requests the resource again from the server. Then

• if the resource has not changed since the previous request, the server replies with an empty
response with 304 Not Modified status, to minimize the traffic. The browser then caches the
resource on disk for yet another configured time interval.

• if the resource has changed since the previous request, the server replies with a new version of the
resource. The browser, again, caches the resource on disk for a configured time interval.

The default time interval for both servers is 30 minutes.

Configuration

Configuration for the integrated application (except for Tracker, see Configuring Tracker) is stored as
a JavaScript object assigned to a global _genesys variable. This variable should be accessible to
genesys.min.js when it is loaded. So the entire instrumentation might look like this:

<script>
var _genesys = {/* configuration goes here*/};
</script>
<INSTRUMENTATION_SNIPPET>

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 6

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Tracker

Important
For backwards compatibility with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. This is deprecated and may be
discontinued in later versions, so it is recommended that you switch to _genesys now
if you're using _gcb.

Disabling Services
You may encounter cases where you want to disable the Integrated Application and its services based
on some specific critieria. In this case, you can use a global variable to enable or disable services.

For example, if we create a global enableGenesys variable, we can enable Genesys services on the
page when it is set to true and disable services when the variable is set to false.

<script>
var enableGenesys = true; // or false
<script>

The configuration snippet would look like this:

var _genesys = {
// custom options

};
if (!enableGenesys) {

// overwrite cobrowse/chat options
_genesys.chat = false;
_genesys.cobrowse = false;

}

The idea is to disable a service by overriding its configuration with false when enableGenesys is
false.

Changing the "_genesys" name
You can actually store the configuration in any global variable, _genesys is just the default
convention. To tell the application that the configuration is stored in another variable, you have to
modify the instrumentation snippet by adding a line there:

e.setAttribute('data-cfg-var', 'myCustomVariableName');

For example:

<script>
var _myCustomConfiguration =

debug: true
};
</script>
<script>(function(d, s, id, o) {

var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
// Use _myCustomConfiguration variable as configuration (don't forget the quotes!):

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 7

e.setAttribute('data-cfg-var', '_myCustomConfiguration');
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<SERVER_URL>/genesys.min.js"
cbUrl: "<COBROWSE_SERVER_URL>/cobrowse"

});</script>

Common Options
The following options are shared between services. They are shared by Chat and Co-browse. For
Tracker, see Configuring Tracker. These options can be set as direct properties of an object assigned
to the _genesys variable:

var _genesys = {
<OPTION>: <VALUE>

};

If an option is set as in the example above, the option will be inherited by both Chat and Co-browse.
It is also possible to set an option for only one service or to set an option globally and override that
option for a particular service.

Examples:

// Set the option for all services:
var _genesys = {

<OPTION>: <VALUE>
};

// Set the option only for Chat:
var _genesys = {

chat: {
<OPTION>: <VALUE>

}
};

// Set the option for all services, but override for Co-browse:
var _genesys = {

<OPTION>: <VALUE_1>,
cobrowse: {

<OPTION>: <VALUE_2>
}

};

debug

The debug option is set to false by default. To enable debug output to the browser console log, set it
to true.

var _genesys = {
debug: true

};

Important
This option is not valid for the Tracker application. For details about configuring debug

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 8

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring

for the Tracker application, see Tracker Application Advanced Configuration.

disableWebSockets

Default: false

Set this option to true to disable Web Sockets. See corresponding Chat option and Co-browse option
for more information on the purpose and impact of this option.

// Example: disable WebSockets for Chat and Co-browse (not recommended)
var _genesys = {

disableWebSockets: true
};

// Example: disable WebSockets for Chat, but enable for Co-browse
var _genesys = {

chat: {
disableWebSockets: true

}
};

Tip
When used with Chat, this option is automatically passed from configuration to
startChat() and restoreChat().

Important
This option is ineffective for Tracker. See Configuring Tracker for information on
configuring Tracker.

Configuring Buttons
The _genesys.buttons section allows some basic configuration of the "Live Chat" and "Co-browsing"
buttons. It has three optional properties:

• position: Can be either "left" (default) or "right"
• cobrowse: Defaults to true
• chat: Defaults to true

Note that you can override only the properties that you want to be changed. Other properties are
used with their default values. For example this configuration:

var _genesys = {
buttons: {

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 9

https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#Advanced_Configuration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#disableWebSockets
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#disableWebSockets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring

chat: false
}

};

actually means this:

var _genesys = {
buttons: {

chat: false,
cobrowse: true, // inherited default
position: 'left' // inherited default

}
};

Disabling Buttons

As seen in the snippet above, you can pass false to disable the "Co-browsing" and/or "Live Chat"
button. This might be useful if you want to start chat or co-browsing from your own custom button (or
from any other element or event), using the Co-browse API or Chat Widget JS API.

Providing Custom HTML for Buttons

You can also pass a function that returns HTML elements to buttons.cobrowse or buttons.chat. In
this case, the output of the function is used to render the button instead of default image.

Note that in this case your custom button(s) inherit the positioning of the default button(s).

Here's a simple example that makes use of the jQuery library to generate HTML elements:

function createCustomButton() {
return jQuery('<div class="myButtonWrapper"><button

class="myButton">Chat!</button></div>')[0];
}

var _genesys = {
buttons: {

chat: createCustomButton
}

};

Important
jQuery is NOT mandatory to use in order to provide a custom HTML element. The
example above does return an HTML element out of a jQuery object by retrieving the
first element from jQuery collection via [0].

Configuring Tracker
In the current version of the Integrated JavaScript Application, the Genesys Web Engagement Tracker
Application is configured in its traditional way, via the global _gt (or other, if configured) variable.
See Tracker Application for details.

This means that the full instrumentation might look like this:

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 10

https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring

<script>
// Configure tracker:
var _gt = window._gt || [];
_gt.push(['config', {

dslResource: <DSL_RESOURCE>,
httpEndpoint: <HTTP_ENDPOINT>,
httpsEndpoint: <HTTPS_ENDPOINT>

}]);

// Configure integrated application:
var _genesys = { /* Integrated application, Chat and Co-browse configuration */ };
</script>

<INSTRUMENTATION_SNIPPET>

Changing the "_gt" Variable Name

If you use genesys.min.js to include the Tracker Application onto your page, and want to modify the
name of the variable that Tracker is exported to, you must add the following line to the
instrumentation snippet:

e.setAttribute('data-gpe-var', '<NAME_OF_THE_VARIABLE>');

For example, let's export Tracker to the _myTracker variable:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
e.setAttribute('data-gpe-var', '_myTracker'); // note the quotes around variable name
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<SERVER_URL>/genesys.min.js"
cbUrl: "<COBROWSE_SERVER_URL>/cobrowse"

});</script>

Using External Tracker

It is possible to use the integrated application with an external Tracker application (that is, a Tracker
application loaded from another script).

This might be useful if you have configured a Tracker application and want to use it with gcb.min.js
(provided by Co-browse solution) instead of loading Tracker from genesys.min.js (although this
setup is not recommended).

To do that, pass a reference to the external tracker to _genesys.tracker:

var _genesys = {
tracker: _gt

};

The passed external Tracker is integrated with the chat widget.

Configuring Chat
Configuration for chat is stored in the chat subsection of the global configuration object:

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 11

var _genesys = {
chat: {/* chat configuration */}

};

Configuring the Server URL

The main thing you might want to configure for chat is the URL of the server.

In most cases the server here is the Web Engagement Server. Use the template below to construct
the URL:

var _genesys = {
chat: {

serverUrl: 'http(s)://<SERVER_HOST>[:<SERVER_PORT>]/server/cometd'
}

};

Important
If you use Co-browse, you can use Co-browse Server for chat. In this case, you don't
have to configure the serverUrl option explicitly. The cbUrl option in the
instrumentation snippet is used to automatically create the proper URL to connect
chat to the Genesys infrastructure via Co-browse Server.

Disabling Chat

You can disable the built-in chat completely by passing false to _genesys.chat.

var _genesys = {
chat: false

};

In this case, the "Live Chat" button is also disabled (it is not added to the page). If you want to
disable chat and to enable the "Live Chat" button (for example, to bind your own chat widget to this
button), you can do it by explicitly enabling the button in configuration (see Configuring Buttons):

var _genesys = {
chat: false,
buttons: {

chat: true
}

};

Now the button is added to the page, but clicking it does not open the chat widget.

Tip
Also see Disabling Services.

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 12

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Buttons
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Disabling_Services

autoRestore

On every page reload / navigation, the chat widget is automatically restored if there is an ongoing
chat session. You can disable this behavior with the autoRestore option, which is set to true by
default. You might disable this behavior if you want more control over chat widget restoration or if
you want to get access to the chat session service API.

<script>
var _genesys = {

chat: {
autoRestore: false,
onReady: function(chat) {

chat.restoreChat().done(function(session) {
// Use chat session API here, e.g.:
// session.sendMessage('hello world');
// session.onAgentConnected(function(event) {...});

});
}

}
};
</script>

Tip
See Obtaining Chat and Co-browse APIs if the onReady syntax above looks confusing
to you.

Important
"Live Chat" and "Co-browsing" buttons appear only after restoreChat is called. So, if
you set autoRestore to false, it becomes your code's responsibility to call
restoreChat. If it is not called, buttons do not appear.

Chat Widget Options

All options (except for autoRestore and onReady) that are stored in the _genesys.chat object are
automatically passed to chat the startChat()/restoreChat() methods. See Chat Widget JS API for
the full list of options.

The integrated application provides some defaults for your convenience, so that minimal or no
explicit chat configuration is required. The provided defaults are:

• debug is inherited from _genesys.debug
• maxOfflineDuration is aligned with Co-browse's maxOfflineDuration option and defaults to 600 seconds

(10 minutes)
• serverUrl is set automatically to use the Co-browse Server (if Co-browse is used)

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 13

https://docs.genesys.com/Documentation/GWE/latest/API/ControlChat
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Obtaining_Chat_and_Co-browse_APIs
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#debug
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#maxOfflineDuration
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#maxOfflineDuration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#serverUrl

Configuring Co-browse
Co-browse configuration is stored in the cobrowse subsection of the global configuration object:

var _genesys = {
cobrowse: {/* Co-browse configuration */}

};

See Co-browse Configuration API for the full list of options.

Disabling Co-browse

You can disable Co-browse completely by passing false to _genesys.cobrowse:

var _genesys = {
cobrowse: false

};

In this case, the "Co-browsing" button is also disabled (not added to the page). If you want to disable
Co-browse, but enable the "Co-browsing" button, you can do so by explicitly enabling the button in
configuration (see Configuring Buttons):

var _genesys = {
cobrowse: false,
buttons: {

cobrowse: true
}

};

Now the button is added to the page, but clicking it does not start the Co-browse session.

Tip
Also see Disabling Services.

Localization of Chat and Co-browse

Important
The Tracker application does not have localization because it does not have a user
interface.

The integrated application is shipped with English localization. You can configure custom localization
in a few different ways, see Genesys Co-browse Localization.

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 14

https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#Co-browse_Configuration_Options
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Buttons
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Disabling_Services
https://docs.genesys.com/Documentation/GCB/8.5.0/Developer/Localization

Obtaining Chat and Co-browse APIs

Important
For the Tracker API, see the Tracker JS API.

Important
If you are using Chat as part of Web Engagement GPE.min.js (and not part of the
Integrated Application), see Chat JS Application for information on Chat API.

Using onReady Callbacks
There are three "ready" events in the integration module which can be used to gain access to the
APIs:

• "Main", or global, "ready" event which is fired after all the parts of the app have initialized. It provides
access to both Chat and Co-browse APIs.

• Chat "ready" event.
• Co-browse "ready" event.

For each of the events, there is a dedicated onReady property in the configuration, which can be
used to add callbacks for the event.

You can add subscriptions (callbacks) to any of these events via the mechanisms described below.

Tip
"ready" events are fired after the DOM is ready, so you don't have to wrap code that
uses the provided APIs into jQuery(document).ready or similar constructions.

Subscribing to APIs using One Dedicated Function

Use this method if you want to provide one, and only one, subscription to a "ready" event.

To use it, simply assign a function to the onReady property of the configuration section:

<script>
var _genesys = {

onReady: function(APIs) {
// Feel free to use the APIs here.

}
};

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 15

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#mainonready
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Chat_onReady_Callbacks
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Co-browse_onReady_Callbacks

</script>

Tip
See "Main" onReady Callbacks for details about what APIs is in the example above.

Inside this function you can, for example, pass the provided arguments (the APIs) to your code so
that it can be used multiple times there.

Also, if you need to use the APIs in different parts of your code, you can use an array as described in
the next section.

Using an Array for Multiple Subscriptions to APIs

To use this method, you have to pass an array to the onReady property. This array may contain 0 or
more subscription functions:

<script>
var _genesys = {

onReady: [function(APIs) {
// Feel free to use the APIs here.

}]
};

</script>

Now you can add subscriptions using the _genesys global variable in any part of your code:

_genesys.onReady.push(function(APIs) {
// Another use of the API here.

});

Tip
See "Main" onReady Callbacks for details about what APIs is in the example above.

Tip
If you push a callback after the respective "ready" event has already happened, the
callback is called immediately.

To use the .push(callback) mechanism, you MUST pass an array to configuration, otherwise it is not
guaranteed that the push method is always available.

For example, if you want to make use of the above push functionality for adding multiple
subscriptions to each of the three onReady events, the minimum required configuration is this:

<script>

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 16

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#mainonready
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#mainonready

var _genesys = {
cobrowse: {

onReady: []
},
chat: {

onReady: []
},
onReady: []

};
</script>

"Main" onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the
callbacks.

These callbacks can be used to access the Co-browse API and/or the Chat API, and are also fired after
the UI has been created. They can be used, for example, to attach custom handlers to the "Live chat"
and "Co-browsing" buttons, add additional buttons, and so on.

All attached callbacks receive two arguments:

1. An object containing Chat (only in top context) and Co-browse APIs. APIs can be accessed via object
properties:
a. .chat for Chat Widget JS API
b. .cobrowse for Co-browse API

2. A Boolean property indicating whether the code executes in the "top" context (true) or in an iframe
(false). This is useful for Co-browse API users (see Co-browse in iframes).

Example:

_genesys.onReady.push(function(APIs, isTopContext) {
// Check if we're in iframe:
alert('We are ' + (isTopContext ? '' : 'not') + ' in an iframe');

// Start a chat session:
if (isTopContext) {

APIs.chat.startSession();
}

// Mark an element as "service" to Co-browse (so that it won't be shown to agent):
APIs.cobrowse.markServiceElement(document.getElementById('myCustomChatWidget'));

});

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 17

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Using_onReady_Callbacks
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI#Co-browse_in_iframes

Chat onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the
callbacks.

These callbacks are fired as soon as the Chat Widget JS API is available and they provide the same
API methods the chat widget provides:

• startChat()

• restoreChat()

The only difference is that the provided methods use options from _genesys.chat configuration, so
you don't have to pass options to them.

If you still need to pass options directly to startChat() or restoreChat() call, you can but the
options are merged with options from configuration, and will take higher priority:

<!-- Suppose you have the following configuration: -->
<script>
var _genesys = {

chat: {
registration: false,
embedded: false,
onReady: []

}
};
</script>

<!-- And then somewhere in your code: -->
<script>
_genesys.chat.onReady.push(function(chat) {

chat.startChat({
embedded: true

});
});
</script>

<!-- The final options passed to startChat() will be: -->
{

registration: false, // taken from configuration
embedded: true // overriden by options from chat.startChat() call

}

Co-browse onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 18

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Using_onReady_Callbacks
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Chat
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Using_onReady_Callbacks

callbacks.

These callbacks receive two arguments:

• cobrowseApi: Instance of the Co-browse API (you can name it api, cobrowse or any other name that
is convenient to you).

• isTopContext: Boolean property indicating whether the code executes in the "top" context (true) or in
an iframe (false). See Co-browse in iframes.

For example:

<script>
var _genesys = {

cobrowse: {
disableBuiltInUI: true,
onReady: function(cobrowseApi, isTopContext) {

createCustomCobrowseUI(cobrowseApi, isTopContext);
}

}
};
</script>
<INSTRUMENTATION SNIPPET>

Versions and Compatibility

The Integrated JavaScript Application has its own versioning; different versions of the application are
compatible with different versions of Co-browse and Web Engagement.

The general rule is that the version of the integrated application shipped with a particular solution is
compatible with that version of the solution.

To find out the version of the integrated application, see the value of _genesys.VERSION (execute
_genesys.VERSION in the browser console) when the site is instrumented with the integrated
application:

You may also check the versions of the Co-browse and Chat JavaScript libraries included in the
integrated application by checking the values of _genesys.chat.VERSION and
_genesys.cobrowse.VERSION.

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 19

https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI#Co-browse_in_iframes

Compatibility Table
Note: The following table indicates which versions of Web Engagement and Co-browse are
compatible with the indicated versions of the Integrated Application. It does not show which version
of the Integrated Application is shipped with each version of Web Engagement and Co-browse.

Integrated Application
version (_genesys.VERSION)

Web Engagement Server
versions Co-browse Server versions

1.0.0 8.1.200.38+
8.1.302.06+ up to, but not
including 8.5
(Co-browse 8.5 is not supported)

850.0.X, 850.1.X 8.1.200.38+ 8.5.XXX.XX
850.2.0+ 8.5.XXX.XX 8.5.XXX.XX

Integrating Web Engagement and Co-browse with Chat

Developer's Guide 20

	Developer's Guide
	Integrating Web Engagement and Co-browse with Chat

