
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Web Engagement 8.5.0

Developer's Guide

12/30/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Genesys Web Engagement Developer's Guide 3
High-Level Architecture 5

Monitoring 14
Visitor Identification 16
Events Structure 20

Notification 27
Engagement 28

Application Development 42
Creating an Application 46
Generating and Configuring the Instrumentation Script 48
Customizing an Application 61

Creating Business Information 63
Simple Engagement Model 64
Advanced Engagement Model 73

Publishing the CEP Rule Templates 80
Customizing the SCXML Strategies 98

Customizing the Engagement Strategy 100
Customizing the Chat Routing Strategy 137

Customizing the Browser Tier Widgets 145
Deploying an Application 155
Starting the Web Engagement Server 156
Deploying a Rules Package 157
Testing with ZAP Proxy 166
Sample Applications 179
Get Information About Your Application 180
Integrating Web Engagement and Co-browse with Chat 181
Media Integration 199
Using Pacing Information to Serve Reactive Requests 208
Dynamic Multi-language Localization Application Sample 217

Genesys Web Engagement Developer's
Guide
Welcome to the Genesys Web Engagement 8.5 Developer's Guide. This document provides
information about how you can customize GWE for your website. See the summary of chapters below.

Architecture
Find information about Web Engagement
architecture and functions.

High-Level Architecture
Engagement
Notification
Monitoring

Developing a GWE Application
Find procedures to develop an
application.

Creating an Application
Instrumentation Script
Starting the Web Engagement Servers
Creating a Rules Package
Testing with ZAP Proxy

Customizing a GWE Application
Find procedures to customize an
application.

Customizing an Application
Creating Business Information
Customizing the Engagement Strategy
Customizing the Chat Routing Strategy
Customizing the Browser Tier Widgets

GWE Sample Applications
Learn about the Genesys Web
Engagement Playground application.

Playground Application

Developer Tools
Find information about the GWE
developer tools.

Integration
Learn how to integrate GWE with other
components and media.

Genesys Web Engagement Developer's Guide

Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Architecture
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Engagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Notification
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeChatRouting
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Samples

Simple ZAP Proxy
Advanced ZAP Proxy
Note: GWE also includes InTools, an
application that helps you create,
validate, and test DSL. You can read more
about it in the User's Guide.

Integrating GWE and Co-browse with Chat
Integration with Second-Party and Third-
Party Media
Serving Reactive Requests with Pacing
Information

Genesys Web Engagement Developer's Guide

Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy#t-0
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy#t-1
https://docs.genesys.com/Documentation/GWE/latest/User/InTools
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/dualpacing
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/dualpacing

High-Level Architecture

Introduction

This article discusses the components that make up Genesys Web Engagement. Before you dive in,
take a look at What is Web Engagement?

As mentioned in that article, Web Engagement has the following basic architecture:

As shown here, Web Engagement provides web services that connect your website with the Genesys
contact center solution using:

• Browser Tier Agents (JavaScript code snippets) which are inserted into your web pages; they run in
the visitor's browser and track their browsing activity.

• A Web Engagement Server, which includes the Web Monitoring Service and the Web Notification
Service. This server is responsible for managing the data and event flow, based on a set of configurable
rules and the visit's defined business events. It also stores data, submits information to the Genesys
solution, and manages engagement requests to the Genesys contact center solution.

Browser Tier Agents

The Browser Tier Agents are implemented as JavaScript components that run in the visitor's browser.
To enable monitoring on a web page, you create a short standardized section of JavaScript code with
the Genesys Administrator Extension plug-in and then add this code snippet to the pages of your site.

High-Level Architecture

Developer's Guide 5

https://docs.genesys.com/Documentation/GWE/latest/Deployment/ProductOverview

When a customer visits the webpage, the code retrieved within the page loads all the necessary
artifacts like the JavaScript libraries and Domain Specific Language (DSL) that contains the definitions
of your Business Events.

The DSL covers:

• The HTML elements to monitor.
• The custom business events to send to the Web Engagement Server.
• The data to include in the events.

The Browser Tier generates categorized standard System and custom Business events, defined in the
DSL definitions, and sends them to the Web Engagement Server over HTTP.

Genesys Web Engagement provides the following browser tier agents:

• The Monitoring Agent records the web browsing activity. It generates basic system events such as
VisitStarted, PageEntered, and additional custom business events, such as 'add-to-shopping cart'.
These events are sent to the Web Engagement Server for further processing. For further information
about events, see Event Workflow. For details about implementing monitoring, see Monitoring.

• The Notification Agent allows a web server to push data to a browser, without the browser explicitly
requesting it, providing an asynchronous messaging channel between server and browser. It is used for
presenting the engagement invite. For details about implementing notification, see Notification.

• The Engagement Agent provides the engagement mechanism, chat communication and web callback
initialization. For details about implementing engagement, see Engagement.

High-Level Architecture

Developer's Guide 6

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Architecture#Event_Workflow
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Notification
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Engagement

If you are only interested in Web Engagement's monitoring features, you need to configure your
instrumentation script accordingly. See Configuring the Instrumentation Script for details.

Web Engagement Server

Working with the Browser Tier
The Genesys Web Engagement Server receives System and Business events from the browser's
Monitoring Agent through its RESTful interface.

• System events track basic customer activities on your website. There are six of them, coming in two
different flavors:
• The Visit-related events, which are VisitStarted, PageEntered, and PageExited;
• The Identity-related events, which are SignIn, SignOut, and UserInfo. See Visitor Identification

for further details.

• Business events are additional custom events that you can create by implementing Advanced
Engagement:
• You create and define these events in the DSL loaded by the monitoring agents in the browser,

using the Business Events DSL. For details about how to implement them, refer to Managing
Business Events.

• You can submit these events from your web pages by using the Monitoring Javascript API.

For details about how Business and System events are structured, see Events Structure.

The Monitoring JavaScript Agent gets a list of categories from the Web Engagement Server and
categorizes each event, based on the event data, prior to sending it to the server. The integrated
Complex Event Processing (CEP) engine processes incoming events against the business rules and
creates actionable events when the required conditions are met. For more information on rules,
consult the documentation for Genesys Rules System.

The Web Engagement Server also sends invitation notifications to the Notification Agent injected into
the visitor's browser.

Hosting Static Resources

The Web Engagement Server is also responsible for hosting static resources, which are used in web
applications such as Invite Widget, Chat Widget, and so on. These resources are all available to the
newly created Web Engagement application in the
GWE_installation\apps\application_name\resources\ folder. After deploying an active application
into Web Engagement Server, these resources will be located in the GWE_installation\server\gwe\
resources\ folder.

Note: When a new GWE application is deployed, all resources belonging to previously deployed
applications are removed.

-conf
resources.properties // app configuration file

-drl // app drl files

High-Level Architecture

Developer's Guide 7

https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#instrumentconfig
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringDSL
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure
https://docs.genesys.com/Documentation/GRS/latest/User/Welcome

-dsl
domain-model.xml // default DSL file

-locale
callback-en.json // default English localization file for callback widget
callback-fr.json // default French localization file for callback widget

-_composer_projects // GRDT and SCXML Composer projects
ads.html // sample advertisement widget
callback.html // default web callback widget
chatTemplates.html // scripts for template-based modification of chat widget
chatWidget.html // default chat widget
invite.html // default invitation widget

You can add your own static resources under the Web Engagement Server, but Genesys recommends
you do this only if the resources are related to the Genesys Web Engagement solution. Alternatively,
you can host your static resources under a third-party server, as long as it supports all the features
required for the Web Engagement solution.

JSONP

The Web Engagement Server supports the JSONP protocol for all resources. JSONP stands for “JSON
with Padding” and it is a workaround for loading data from different domains. It loads the script into
the head of the DOM and thus you can access the information as if it were loaded on your own
domain, by-passing the cross domain issue.

Tip
For more information about JSONP, see http://en.wikipedia.org/wiki/JSONP.

For example, for this request:

http://{gwe server}/server/resources/invite.html?obj=myObj&callback=myMethod

the server returns following response body:

myObj.myMethod('<content of http://{gwe server}/server/resources/invite.html>');

Cross-origin resource sharing

Cross-origin resource sharing (CORS) is a mechanism that allows many resources (for example, fonts,
JavaScript, and so on) on a web page to be requested from another domain outside the domain from
which the resource originated. In particular, JavaScript's AJAX calls can use the XMLHttpRequest
mechanism. These "cross-domain" requests would otherwise be forbidden by web browsers due to
the same-origin security policy.

Tip
For more information about cross-origin sharing, see http://en.wikipedia.org/wiki/

High-Level Architecture

Developer's Guide 8

Cross-origin_resource_sharing.

GZIP

The Web Engagement Server can serve pre-compressed static content as a transport encoding and
avoid the expense of on-the-fly compression. So if a request for GPE.js is received and the file
GPE.js.gz exists, then it is served as GPE.js with a gzip transport encoding. By default, the Web
Engagement solution ships all JavaScript resources in minified and pre-compressed version.

Tip
For more information about GZIP, see
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-
encoding-and-transfer#text-compression-with-gzip and

http://en.wikipedia.org/wiki/HTTP_compression.

Working with the Enterprise Tier
The Web Engagement Server is also the engagement's entry point to the Genesys servers. It delivers
web and visitor information to the contact center, which allows that information to be correlated with
contact information.

On this end, the Web Engagement Server stores events, manages contexts and histories in its
Cassandra database, and submits the appropriate data to the other Genesys servers.

When the Web Engagement Server is notified that it should present a proactive offer, it retrieves the
engagement information, based on the visit attributes. Then, if the SCXML strategies allow it, the
proactive offer is displayed.

If the visitor accepts, the Engagement service connects to the Genesys servers. Once the connection
is established, the service manages the engagement context information across the visit.

The Web Engagement Server is also responsible for accepting rules deployed by the Genesys Rules
Authoring Tool (GRAT).

Database and Reporting

Web Engagement processes a large amount of data. To make this happen quickly enough, Genesys
has combined three technologies into the database and reporting layers:

• Apache Cassandra is an open source distributed database management system designed to handle
large amounts of data across many commodity servers, providing high availability with no single point
of failure.

High-Level Architecture

Developer's Guide 9

• Elasticsearch is a search server that provides a distributed, multitenant-capable full-text search engine
with a RESTful web interface and schema-free JSON documents.

• Apache Spark is an open source cluster computing framework.

Cassandra and Elasticsearch clusters are used in the Operational Cluster that stores data for realtime
processing. This Cassandra data is indexed by Elasticsearch for quick access, and the combined
results are replicated in a separate Cassandra cluster in the Reporting Cluster. This Reporting Cluster
uses a Spark cluster that massages the data in the Cassandra reporting cluster for more
sophisticated reporting.

The following diagram provides a highly simplified view of how it all fits together.

Event Workflow

The Genesys Web Engagement Server receives system and business events from the browser's
Monitoring Agent. This event flow is used to create actionable events which generate requests to the

High-Level Architecture

Developer's Guide 10

Genesys solution, and make the engagement, follow up, and additional actions with the Genesys
solution possible. (Note that an actionable event does not always result in a notification—sometimes
an action could be "do nothing.")

Here is a high-level view of this:

High-Level Architecture

Developer's Guide 11

High-Level Architecture

Developer's Guide 12

As you can see, when a customer visits your website, he or she interacts with your web pages. The
Monitoring Agent handles this traffic and translates it into the relevant System and Business events,
according to your DSL and category information.

The agent then submits the events to the Web Engagement Server where the Complex Event
Processing embedded in the server determines the actionable events ("Hot lead Identified" in the
above figure) and carries out further processing. This includes the use of SCXML-based routing
strategies to determine whether to proactively engage, to follow up, or to implement any other
action.

High-Level Architecture

Developer's Guide 13

Monitoring
The Monitoring Agent service records web browsing activity on your site. It generates basic system
events such as VisitStarted, PageEntered, and additional custom business events, such as 'add-to-
shopping cart'. Then it sends these events to the Web Engagement Server for further processing (you
can read more about the structure of these events here).

To implement monitoring, you simply include the Monitoring Service JS script in your web pages. This
short piece of regular JavaScript activates monitoring and notification functions by inserting one of
the following scripts into the page: GT.min.js, GTC.min.js, GPE.min.js. The script depends on your
requirements — see Configuring the Instrumentation Script for details. The JavaScript asynchronously
loads the application into your pages, which means that Monitoring Service JS does not block other
elements on your pages from loading.

Basic Configuration

The simplest way to get the Monitoring Service JS for your site is by using the Genesys Web
Engagement Plug-in for Genesys Administrator Extension. See Generating the Instrumentation Script
for details.

Important
If you plan to use Web Engagement chat, make sure to include the Chat JS Application
script into your web pages, as well. See Engagement for details.

Advanced Configuration

Once you generate the script, you can use it as is or implement the advanced configuration options
to customize the script to suit your requirements. See Configuring the Instrumentation Script for
details.

Monitoring JS API

You can also take a highly customized approach and use the Monitoring JS API to submit events to the
Web Engagement Server. You can submit UserInfo, SignIn, SignOut, and even your own custom
business events using this API. For example, you can use the API to identify visitors on your website.
See Visitor Identification for details.

High-Level Architecture Monitoring

Developer's Guide 14

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Engagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/VisitorIdentification

Related Links

• Visitor Identification
• Events Structure

High-Level Architecture Monitoring

Developer's Guide 15

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure

Visitor Identification

Overview

Genesys Web Engagement allows you to capture visitor activities on your website and to build a
complete history of the visitor’s interactions with your contact center.

When a visitor browses your website, the tracking code submits System events to the Web
Engagement servers that constitute a visit, such as VisitStarted, PageEntered, SignIn, UserInfo, and
so on. The association or relationship between the visit and the visitor is based on the flow derived
from System events, in addition to the information retrieved from the Contact Server. In the end, you
can access visit history through the Event Resource in the History REST API.

To associate the visitor with the visit, Genesys Web Engagement must "identify" the visitor as one of
three possible states:

• Authenticated — The visitor logged in to the website with a username and password. The username
can be an e-mail address, an account name or other similar identifier, depending on your website.
When a user is authenticated, Genesys Web Engagement can maintain an association between the
visitor and the visit.

• Recognized — The visitor closed the browser window and did not log out, but cookies are saved. The
next time the visitor comes to the website, the website can submit cookie-based user information,
which contains the userId.

• Anonymous — The visitor is anonymous.

High-Level Architecture Monitoring

Developer's Guide 16

https://docs.genesys.com/Documentation/GWE/latest/API/EventResource
https://docs.genesys.com/Documentation/GWE/latest/API/HistoryREST

Visitor states

Genesys Web Engagement relies on your website to trigger the transitions between visitor states. You
can do this by updating the tracking code with the following events in the Monitoring JS API:

• _gt.push(['event', 'SignIn', { data: options }]) or _gt.push(['event', 'sendSignIn', options]) — Send this
event when the user is authenticated by the website. This allows the system to identify the user and
creates a new "session" with a sessionId that is unique to a visit and will last the duration of the visit.
Only Authenticated visitors have an associated sessionId.

• _gt.push(['event', 'SignOut', { data: options }]) or _gt.push(['event', 'sendSignOut', options]) — Send
this event when the user logs out of the website.
Note: The sessionId lasts for the duration of the authenticated user's visit to your website. It is stored
in a cookie and sent with every event that occurs between SignIn and SignOut, and is changed
automatically after every SignIn event.

• _gt.push(['event', 'UserInfo', { data: options }]) or _gt.push(['event', 'sendUserInfo', options]) — Send
this event when the user visits your website after closing the browser window on an authenticated
session. For details, see Recognized Visitors.

Visitor Event Timeline

The figure below shows the timeline for events that take place when a visitor browses your website.

High-Level Architecture Monitoring

Developer's Guide 17

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#signin
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendSignIn
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#signout
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendSignOut
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#userinfo
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendUserInfo
https://docs.genesys.com/Documentation/GWE/latest/Developer/VisitorIdentification#Recognized_Visitors

All visitors to your website are identified with a visitId, which can be used to associate the visitor to
events, such as PageEntered or PageExited, during the span of the visit.

Accessing Visitor Information

The History REST API is a RESTful interface for accessing visit and identity information — in the form
of a collection of JSON objects — via POST and GET HTTP requests:

• The visit resource represents the sequence of pages that a given visitor went through.
• The identity resource contains information about authenticated and recognized visitors.
• The session resource contains information about the events and pages that a visitor browsed during an

authenticated session within a visit.
• The page resource contains information about browsed pages. If a visitor revisits a page, a new page

resource is created.
• The event resource contains information about System and Business events. For details about how

these events are structured, see Events Structure.

Authenticated Visitors
When the visitor is Authenticated on the website, you should use the_gt.push(['event', 'SignIn', {
data: options }]) or _gt.push(['event', 'sendSignIn', options]) event so that Genesys Web Engagement
can start a new session. When the Web Engagement Server receives the related command, it creates
a new session for the current visit. This process is completely transparent to the customer. The

High-Level Architecture Monitoring

Developer's Guide 18

https://docs.genesys.com/Documentation/GWE/latest/API/HistoryREST
https://docs.genesys.com/Documentation/GWE/latest/API/VisitResource
https://docs.genesys.com/Documentation/GWE/latest/API/IdentityResource
https://docs.genesys.com/Documentation/GWE/latest/API/SessionResource
https://docs.genesys.com/Documentation/GWE/latest/API/PageResource
https://docs.genesys.com/Documentation/GWE/latest/API/EventResource
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#signin
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#signin
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendSignIn

identifying information used to log in (for instance, the email address) is available in the SignIn event
and is used to:

• Create the identityId or search the visitor's identity resource.
• Associate the visitor with a contact in the Genesys solution.

Recognized Visitors
When an Authenticated visitor closes the browser window without signing out and then later revisits
your site, you can use the _gt.push(['event', 'UserInfo', { data: options }]) or _gt.push(['event',
'sendUserInfo', options]) command to tell Genesys Web Engagement that the visitor is now
Recognized.

You will need to send the userId in the _gt.push(['event', 'UserInfo', { data: options }]) or
_gt.push(['event', 'sendUserInfo', options]) event. How you track the userId depends on your
website. For example, you could create a persistent cookie to store the userId when a visitor logs in
to you website. Then when a visitor first browses your site, you could check the cookie and call the
_gt.push(['event', 'UserInfo', { data: options }]) or _gt.push(['event', 'sendUserInfo',
options]) event if the cookie contains the userId. There are many possible scenarios - the best
implementation is entirely dependent on your website and its workflow.

Important
The visitor's identity cannot be guaranteed in the Recognized state. For instance,
another member of the visitor's family could be browsing the website with the same
computer.

Anonymous Visitors
If the visitor is not Authenticated or Recognized, he or she is treated as Anonymous. The visitor's
activity on the website—including events and pages visited—is still associated with the visit.

High-Level Architecture Monitoring

Developer's Guide 19

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#userinfo
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendUserInfo
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#sendUserInfo

Events Structure

Overview

When the Tracker Application monitors the current web page, it generates a series of events, which
are represented in JSON format.

There are two available event types:

• SYSTEM — These events are generated automatically and cannot be configured.
• BUSINESS — These are additional custom events you can an create.

Important
You can configure when an event should be generated by customizing the DSL, but if
you need more flexibility you can use the Monitoring JS API.

Common Event Structure

The common event structure is a scaffold for generating System and Business events. In table below,
data represents the common structure that is included in both event types.

Field Type Description

eventType String The event type: BUSINESS or
SYSTEM.

eventName String The required event name.

eventID String The generated UUID that is used
to identify the event.

pageID String The generated UUID that is used
to identify the page.

timestamp Number
The time stamp for when the
event was generated. This is
taken from the browser.

category String
A list of categories separated by
semicolons. For more
information, see Managing
Categories.

url String The URL of the page where the
event was triggered.

High-Level Architecture Monitoring

Developer's Guide 20

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/User/Category
https://docs.genesys.com/Documentation/GWE/latest/User/Category

Field Type Description

languageCode String

The current language. This can
be configured using the
languageCode configuration
option in the instrumentation
script.

globalVisitID String
globalVisitID is a anonymously
identifier of a particular device or
browser.

visitID String visitID represents a particular
session in the browser.

data Object
Container for additional data.
Which depends on event type
and name. See appropriate event
below

Example of the Common Event Structure
{

"eventName": "PageEntered",
"eventID": "44D25DDB78174DEC8F33E28F96428336",
"pageID": "9A1AD4389AC34F0A86D3EB04E50D6137",
"timestamp": 1413979605190,
"category": "my-category",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681c1a9",
"visitID": "8bd4bbb5-3b1d-4647-9ede-37820b88e343",
"data": {

...
}

}

System Event Structure

System events have specific values for the following fields:

Field Type Description
eventType String SYSTEM

eventName String

The following values are possible:
PageEntered—generated
when the user enters a page

PageExited—generated
when the user changes
location or closes a page

SignIn—generated when
the user signs in

High-Level Architecture Monitoring

Developer's Guide 21

https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#languagecode
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#languagecode

Field Type Description
SignOut—generated when
the user signs out

UserInfo—generated when
the user signs in

VisitStarted—generated
when the visit is identified

data Object
This field should contain specific
information, described in System
data below.

System data
The value of the System event's data field can vary depending on the name of System event. The
following sections provide details about the data provided for each event name.

VisitStarted

The VisitStarted event expands the System event structure with the following value for data:

data field Type Description

userAgent String

The
window.navigator.userAgent
value. This contains information
about the name, version, and
platform of the browser.

screenResolution String
The screen resolution at the
moment the event is generated.
The format is width x height. For
example: "1440x900"

language String

The language code from
window.navigator, retrieved
from the first available of the
following objects:
window.navigator.language ||
window.navigator.browserLanguage ||
window.navigator.userLanguage ||
window.navigator.systemLanguage

timezoneOffset String The timezone offset in
milliseconds.

ipAddress String The client IP address.

{
"eventType":"SYSTEM",
"eventName":"VisitStarted",
"eventID":"5E1BA21F69F149F280B028385DF16DC3",
"pageID":"300E084345EC412F879D5A835F7CA4F6",
"timestamp":1414074819648,
"category":"my-category",

High-Level Architecture Monitoring

Developer's Guide 22

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure#System_data
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure#System_data

"url":"http://www.genesys.com/products",
"languageCode":"en-US",
"globalVisitID":"301438c2-3139-4035-aac0-1c9c8a60c481",
"visitID":"9ccd9489-6a94-4b45-8813-c1cca010d443",
"data":{

"userAgent":"Mozilla/5.0 (Windows NT 6.1; WOW64; rv:32.0) Gecko/20100101
Firefox/32.0",

"screenResolution":"1680x1050",
"language":"en-US",
"timezoneOffset":-10800000,
"ipAddress":"123.45.67.890"

}
}

PageEntered

The PageEntered event expands the System event structure with the following value for data:

data field Type Description

urlReferrer String

A window.document.referrer
value. The referrer property
returns the URL of the document
that loaded the current
document.

localTime String
The string representation of the
time in the browser when the
event was generated.

title String The page title, taken from
window.document.title.

{
"eventType": "SYSTEM",
"eventName": "PageEntered",
"eventID": "44D25DDB78174DEC8F33E28F96428336",
"pageID": "9A1AD4389AC34F0A86D3EB04E50D6137",
"timestamp": 1413979605190,
"category": "my-category",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681c1a9",
"visitID": "8bd4bbb5-3b1d-4647-9ede-37820b88e343",
"data": {

"urlReferrer": "http://www.genesys.com",
"localTime": "Wed Oct 22 2014 15:06:45 GMT+0300 (FLE Daylight Time)",
"title": "English"

}
}

PageExited

The PageExited event does not have additional data. The event structure is the same as the System
event structure, but with the PageExited event name specified:

{
"eventType": "SYSTEM",
"eventName": "PageExited",

High-Level Architecture Monitoring

Developer's Guide 23

"eventID": "E8E6F0926F3642BF889DA5ED4342EFA7",
"pageID": "9A1AD4389AC34F0A86D3EB04E50D6137",
"timestamp": 1413982730013,
"category": "my-category",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681c1a9",
"visitID": "8bd4bbb5-3b1d-4647-9ede-37820b88e343",
"data": {}

}

UserInfo

The UserInfo event expands the System event structure with the following value for data:

data field Type Description

userID String
A unique persistent string
identifier that represents a user
or signed-in account across
devices.

{
"eventType":"SYSTEM",
"eventName":"UserInfo",
"eventID":"532BC42B99C341578639A1DF1F2A45D9",
"pageID":"C90206CA44A2401F9408A1581EF0E258",
"timestamp":1419437657401,
"category":"",
"url":"http://www.genesys.com/products",
"languageCode":"en-US",
"globalVisitID":"c9b891e4-ae04-493b-b554-4eba19ad7c58",
"visitID":"b5c87b28-a00e-4461-961b-d6a01b754838",
"data":{

"userID":"user@genesyslab.com",
"name":"Bob",
"sex":"male",
"age":30

}
}

SignIn

The SignIn event expands the System event structure with the following value for data:

data field Type Description

userID String
A unique persistent string
identifier that represents a user
or signed-in account across
devices.

{
"eventType":"SYSTEM",
"eventName":"SignIn",
"eventID":"DE6826972BDF4820B03FAF5BB7945426",
"pageID":"C90206CA44A2401F9408A1581EF0E258",
"timestamp":1419437874950,
"category":"",
"url":"http://www.genesys.com/products",

High-Level Architecture Monitoring

Developer's Guide 24

"languageCode":"en-US",
"globalVisitID":"c9b891e4-ae04-493b-b554-4eba19ad7c58",
"visitID":"b5c87b28-a00e-4461-961b-d6a01b754838",
"data":{

"userID":"user@genesyslab.com",
"name":"Bob",
"sex":"male",
"age":30

}
}

SignOut

The SignOut event does not have additional data. The event structure is the same as the System
event structure, but with the SignOut event name specified:

{
"eventType":"SYSTEM",
"eventName":"SignOut",
"eventID":"3CE3204E697640A7986C70CA97F0945C",
"pageID":"C90206CA44A2401F9408A1581EF0E258",
"timestamp":1419437925162,
"category":"",
"url":"http://www.genesys.com/products",
"languageCode":"en-US",
"globalVisitID":"c9b891e4-ae04-493b-b554-4eba19ad7c58",
"visitID":"b5c87b28-a00e-4461-961b-d6a01b754838",
"data":{
}

}

Business Event Structure

Business events have the same structure as the common event structure, with additional data
specified in the DSL configuration. For example, if your DSL (domain-model.xml) has the following
event generation rules:

<event id="TimeoutEvent10" name="Timeout-10" condition="" postcondition="document.hasFocus()
=== true">

<trigger name="TimeoutTrigger" element="" action="timer:10000" type="timeout" url=""
count="1" />

<val name="myValueName" value="'myValue'"></val>
</event>

Then the generated Business event is expanded with the additional data:

{
"eventType": "BUSINESS",
"eventName": "Timeout-10",
"eventID": "11030C008B3D45ACADFB32A1B4E01122",
"pageID": "B501B6EE57EF4E2AA05379D468E772D6",
"timestamp": 1413990905565,
"category": "",
"url": "http://www.genesys.com/products",
"languageCode": "en-US",
"globalVisitID": "b5a93936-b2a4-4042-a5e6-0a2b9681c1a9",
"visitID": "8bd4bbb5-3b1d-4647-9ede-37820b88e343",

High-Level Architecture Monitoring

Developer's Guide 25

"data": {
"myValueName": "myValue"

}
}

High-Level Architecture Monitoring

Developer's Guide 26

Notification
The Notification Agent provides the browser with the asynchronous notification of the engagement
offer by opening an engagement invite. It opens the engagement window.

To implement notification, simply include the Notification Service JS script in your web pages. This
short piece of regular JavaScript activates monitoring and notification functions by inserting one of
the following scripts into the page: GT.min.js, GTC.min.js, GPE.min.js. The script depends on your
requirements — see Configuring the Instrumentation Script for details. The JavaScript asynchronously
loads the application into your pages, which means that Notification Service JS does not block other
elements on your pages from loading.

Basic Configuration

The simplest way to get the Notification Service JS for your site is by using the Genesys Web
Engagement Plug-in for Genesys Administrator Extension. All you have to do is select the Load
Engagement Script option in the Script Generator window to include notification in the generated
script. See Generating the Instrumentation Script for details.

Important
If you plan to use Web Engagement chat, make sure to include the Chat JS Application
script into your web pages, as well. See Engagement for details.

Advanced Configuration

Once you generate the script, you can use it as is or implement the advanced configuration options
to configure the script to suit your requirements. See Configuring the Instrumentation Script for
details.

Notification Service REST API

You can use the Notification Service REST API to reach your entire user base quickly and effectively
with notifications that are delivered to your web pages. For details, see Notification Service REST API
in the API Reference.

High-Level Architecture Notification

Developer's Guide 27

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Engagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI

Engagement
The Engagement Agent provides the engagement mechanism — proactive/reactive chat
communication or web callback initialization.

Select a tab below for details about the engagement method.

<tabber> Chat JS Application=
To implement chat, you simply include the Chat JS Application script in your web pages. This short
piece of regular JavaScript activates chat functions by inserting the GWC.min.js script into the page.
The JavaScript asynchronously loads the application into your pages, which means that Chat JS
Application does not block other elements on your pages from loading.

Basic Configuration

The simplest way to get the Chat JS Application for your site is by using the Genesys Web
Engagement Plug-in for Genesys Administrator Extension. All you have to do is select the "Chat"
option in the "Script Generator" window to include chat in the generated script. See Generating the
Instrumentation Script for details.

Advanced Configuration

The Chat JS Application script consists of two parts: script loader and configuration. The script
loader part actually loads the GWC.min.js script, while the configuration part sets options that
control things like window size and localization.

Script Loader
To load Chat JS Application, you just need to include a short piece of regular JavaScript, the script
loader, in your HTML. That JavaScript will asynchronously load the application into your pages, which
means that Chat JS Application will not block other elements on your web page from loading.

For example, your script loader code might look like this:

//Script loader
(function(v) {

if (document.getElementById(v)) return;
var s = document.createElement('script'); s.id = v;
s.src = ('https:' == document.location.protocol ? 'https://<Web Engagement Server

host>:<Web Engagement Server secure port>' :
'http://<Web Engagement Server host>:<Web Engagement Server port>') +

'/server/resources/js/build/GWC.min.js';
s.setAttribute('data-gwc-var', v);
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gwc');

High-Level Architecture Engagement

Developer's Guide 28

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script

Important
The above example uses _gwc as the configuration global variable — see the
"Configuration" section below for details.

Configuration
By default the chat application uses the _gwc global variable (you can change this in the script
loader) that is created before Chat JS Application script loader is actually added to the page. Some of
the options you set in the configuration code can be overwritten in the Chat Widget JS API methods
(startChat(options) and restoreChat(options) for a particular chat session, if the parameter name
matches the option name.

For example, your configuration code might look like this:

/* Configuration */
var _gwc = {widgetUrl: 'http://<Web Engagement Server host>:<Web Engagement Server
port>/server/resources/chatWidget.html',

serverUrl: 'http://<Web Engagement Server host>:<Web Engagement Server
port>/server/cometd'};

Options

High-Level Architecture Engagement

Developer's Guide 29

https://docs.genesys.com/Documentation/GWE/latest/API/StartChat
https://docs.genesys.com/Documentation/GWE/latest/API/RestoreChat

Option Type Default Value Mandatory Description

serverUrl string undefined yes, when default "transport"
is used

URL of the CometD chat
server for default (built-in)
CometD transport.

widgetUrl string undefined yes, when "embedded" is set
to false ("popup" mode)

URL of the chat widget HTML
that is open in an external
window when operating in
"popup" mode. By default,
the chat widget is stored
under the Web Engagement
Server and is available at the
following URL:
http://{gwe_server}:{server_port}/server/
resources/chatWidget.html;
however, you can store the
chatWidget.html file as a
static resourced under any
third-party server.

embedded boolean false no

Sets chat mode of operation:
"embedded" (chat widget is
rendered directly on a page)
or "popup" (chat opens in a
separate browser window).
Default is "popup". Pass the value
true to switch to "embedded" mode.

localization object or string or function undefined no

Provider for custom
localization, which will be
one of the following:

• A JavaScript object
containing localization
data

• A function that returns an

High-Level Architecture Engagement

Developer's Guide 30

Option Type Default Value Mandatory Description

object containing
localization data

• A function that accepts a
callback and calls it with
an object containing
localization data

• The URL for an external
JSON file containing
localization data

If omitted, the default English
localization will be used. See
Localization for more on how to
localize the chat widget.

windowSize object {width: <number>,
height: <number>} { width: 400, height: 500 } no

Size of external chat window
when operating in "popup"
mode.

windowName string genesysChatWindow no

A string name for the new
window that will be passed
to the window.open call
when opening chat widget
window. For details, see
https://developer.mozilla.org/
en-US/docs/Web/API/
Window.open.
Note: If you need to support
Internet Explorer versions 8
or 9, windowName must
not contain either hyphens
("-") or spaces (" "), as
documented at
http://stackoverflow.com/
questions/710756/ie8-var-w-
window-open-message-

High-Level Architecture Engagement

Developer's Guide 31

https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Localization

Option Type Default Value Mandatory Description
invalid-argument.

windowOptions object The value of the windowSize
option. no

An object containing window
options that are passed to
the window.open call when
opening chat widget window.
You can pass any window
options, such as position
(top, left), whether to
show browser buttons
(toolbar), location bar
(location), and so on. For
details about possible
window options, see
(https://developer.mozilla.org/
en-US/docs/Web/API/
Window.open. All options are
converted to a string that is
passed to the window.open
call.

debug boolean false no

Set to true to enable chat
debugging logs (by default
standard console.log is be
used, see the "logger" option
if you want to override that).

logger function console.log no

Pass a function that will be
used for chat logging (if
debug is set to true) instead
of the default console.log.
The function has to support
the interface of the
console.log — it must accept
an arbitrary number of
arguments and argument
types. To use the custom
logging function in a
separate window, you have

High-Level Architecture Engagement

Developer's Guide 32

Option Type Default Value Mandatory Description
to pass it directly on the
widget page to the
startChatInThisWindow
method.

Important
The "logger" function works
only for the Chat Widget JS API
context.

registration boolean or function true no

By default chat starts with a
built-in registration form
(that you can customize
using
ui.onBeforeRegistration).
Pass the value false to disable this
default built-in registration form.
See Custom registration in the Chat
Widget JS API for details.

userData object undefined no
Can be used to directly
attach necessary UserData
to a chat session.

createContact boolean true no

Determines whether new
contact should be created
from registration data if it
doesn't match any existing
contact. Only effective if
registration data is present
(collected either by built-in
or custom registration
workflow).
See createContact in the Chat
Widget JS API for details.

maxOfflineDuration number 5 no Time (in seconds) during

High-Level Architecture Engagement

Developer's Guide 33

https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#Custom_registration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#createContact

Option Type Default Value Mandatory Description
which state cookies are
stored after page reload/
navigation. If cookies expire,
the chat is not restored.
Basically, this option means
"how long shall the chat
session live after the user
leaves my website?"

ui boolean or object true no

Pass the value false to
disable the chat widget UI
completely. Or pass an
object with "hook" functions
that can modify the built-in
UI.
See ui in the Chat Widget JS API for
details.

transport object undefined no Custom transport instance
(for example, REST-based).

disableWebSockets boolean false no

By default, chat attempts to
use WebSockets to connect
to the server. When the
WebSocket connection is
unavailable (for example, if
your load balancer doesn't
support WebSockets), chat
switches to other, HTTP-
based, means of
communication. This might
take some time (a matter of
seconds, usually), so if you
want to speed up the
process, you can disable
WebSockets for chat by
passing true to this option.

High-Level Architecture Engagement

Developer's Guide 34

https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#ui

Option Type Default Value Mandatory Description

Important
This option is only effective
with default (built-in)
transport.

templates string undefined no

The URL of the HTML files
containing templates that
are used to render the chat
widget. The request is made
via either JSONP or AJAX,
following the same logic as
for localization files (see
Localization in the Chat
Widget JS API). Default
templates are included into
the JavaScript source, so by
default no requests are
made to load them. The
template system is based on
the popular lodash /
underscore templates:
http://lodash.com/
docs#template,
http://underscorejs.org/#template

autoRestore boolean true no

On every page reload/
navigation, chat
automatically attempts to
restore the chat widget using
the restoreChat method in
the Chat Widget JS API. You
can use this option to disable
this behavior if you want
more control over chat
widget restoration.

onReady array or function undefined no This field is a callback

High-Level Architecture Engagement

Developer's Guide 35

https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Localization
https://docs.genesys.com/Documentation/GWE/latest/API/RestoreChat

Option Type Default Value Mandatory Description
function fired when the
application has initialized.
The Chat Widget JS API
object is provided as the first
argument of the callback
function.
_gwc.onReady.push(function(chatAPI)
{

alert('Chat
application ready!');
});

If you use _gwc.onReady.push,
make sure that onReady is defined
as an array.

var _gwc = {
...
onReady: []

};

High-Level Architecture Engagement

Developer's Guide 36

Configuration Examples
Basic configuration for proactive engagement integration
/* Configuration */
var _gwc = {widgetUrl: 'http://<Web Engagement Server host>:<Web Engagement Server
port>/server/resources/chatWidget.html'};

// Script loader
(function(v) {

if (document.getElementById(v)) return;
var s = document.createElement('script'); s.id = v;
s.src = ('https:' == document.location.protocol ? 'https://<Web Engagement Server

host>:<Web Engagement Server secure port>':
'http://<Web Engagement Server host>:<Web Engagement Server port>') + '/server/

resources/js/build/GWC.min.js';
s.setAttribute('data-gwc-var', v);
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gwc');

Basic configuration for reactive chat
/* Configuration */
var _gwc = {widgetUrl: 'http://<Web Engagement Server host>:<Web Engagement Server
port>/server/resources/chatWidget.html',

serverUrl: 'http://<Web Engagement Server host>:<Web Engagement Server
port>/server/cometd'};

// Script loader
(function(v) {

if (document.getElementById(v)) return;
var s = document.createElement('script'); s.id = v;
s.src = ('https:' == document.location.protocol ? 'https://<Web Engagement Server

host>:<Web Engagement Server secure port>':
'http://<Web Engagement Server host>:<Web Engagement Server port>') + '/server/

resources/js/build/GWC.min.js';
s.setAttribute('data-gwc-var', v);
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gwc');

Advanced configuration for chat application
/* Configuration */
var _gwc = {

serverUrl: 'http://<Web Engagement Server host>:<Web Engagement Server port>/server/
cometd',

widgetUrl: 'http://<Web Engagement Server host>:<Web Engagement Server port>/server/
resources/chatWidget.html',

autoRestore: true,
debug: false,
embedded: true,
createContact: true,
localization: 'http://<Web Engagement Server host>:<Web Engagement Server port>/server/

resources/locale/chat-fr.json',
windowSize: { width: 400, height: 500 },

windowName: 'myWindowName',
windowOptions: {
left: 0,
top: 0

High-Level Architecture Engagement

Developer's Guide 37

},
/* Callbacks */
onReady: [function (chatAPI) {

var options = {
registration: true

};
chatAPI.startChat(options);

}]
};
// Script loader
(function(v) {

if (document.getElementById(v)) return;
var s = document.createElement('script'); s.id = v;
s.src = ('https:' == document.location.protocol ? 'https://<Web Engagement Server

host>:<Web Engagement Server secure port>':
'http://<Web Engagement Server host>:<Web Engagement Server port>') + '/server/

resources/js/build/GWC.min.js';
s.setAttribute('data-gwc-var', v);
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gwc');

Tip
For more information about the start parameters, see the Chat Widget JS API

Chat JS Application API

The Chat JS Application API is provided by the Chat Widget JS API component. The API object provides
two functions: startChat(options) and restoreChat(options). To access the API, use the onReady option
in the Chat JS Application configuration.

Reactive Chat
The following example shows how you can start reactive chat on a button click using the startChat
method.

$('#startChatButton1, #startChatButton2, #startChatButton3').click(function () {
_gwc.onReady.push(function (chatAPI) {

chatAPI.startChat();
});

});

If you want to provide monitoring information to the chat session, you should attach the visitID and
pageID from the Tracker Application to the chat interaction.

$('#startChatButton1, #startChatButton2, #startChatButton3').click(function () {
_gwc.onReady.push(function (chatAPI) {

_gt.push(['getIDs', function (IDs) {
chatAPI.startChat({userData: {visitID: IDs.visitID, pageID: IDs.pageID}});

}]);
});

});

High-Level Architecture Engagement

Developer's Guide 38

https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat
https://docs.genesys.com/Documentation/GWE/latest/API/RestoreChat

How To

Auto-generate an e-mail address based on the visitID
Use the Tracker JS Application and the Chat JS Application together:

_gwc.onReady.push(function (chatAPI) {
_gt.push(['getIDs', function (IDs) {

/* Start chat with generated email */
chatAPI.startChat({ userData: {

visitID: IDs.visitID,
pageID: ID.pageID,
email: IDs.globalVisitID + '@anonymous.com'

}});
}]);

});

|-| Callback widget=
The callback widget is represented by the callback.html file, which can only be used in separate
window mode — it is not currently supported for embedded mode like chat.

By default, the callback.html file has all its dependencies embedded to avoid extra requests to the
server. The file is located in the GWE_installation_directory/apps/application_name/resources/
folder when you create your GWE application. When you deploy your application, it will be located in
the GWE_installation_directory/server/gwe/resources/ folder.

Warning
If you modify this file, it will not be backward compatible with any new versions of
Genesys Web Engagement.

Configuration

To configure the callback widget, you can pass the following URL parameters (they must be URL
Encoded):

http://{server}:{port}/server/resources/
callback.html?visitID={visitID}&pageID={pageID}&gwe_serverUrl={gwe_serverUrl}&locale={locale}&
debug={debug}

Parameters
Option Type Default Value Mandatory Description

visitID string undefined yes
Unique identifier of
the current visit.
For instance,
58bd8e65-7390-4c56-8da9-79dd74bd73be

High-Level Architecture Engagement

Developer's Guide 39

Option Type Default Value Mandatory Description
You can use the
Monitoring JS API
to get this value.

pageID string undefined yes

Identifier of the
current page. For
instance,
662FE0368D654E9D80B0D1E1E29AE25F
You can use the
Monitoring JS API
to get this value.

gwe_serverUrl string undefined yes

URL of the Web
Engagement
Server; for
instance,
http://<Web
Engagement
Server
host>:<Web
Engagement
Server
port>/server.

locale string 'en' no

Localization tag for
language and
region; for
instance, en-US.
For details, see
Localization.

debug boolean false no

Set to true to
show callback
widget debug
information in the
browser console.

Configuration Example
http://<Web Engagement Server host>:<Web Engagement Server port>/server/resources/
callback.html?visitID=58bd8e65-7390-4c56-8da9-79dd74bd73be&pageID=662FE0368D654E9D80B0D1E1E29A
E25F&gwe_serverUrl=http%3A%2F%2F<Web Engagement Server host>%3A<Web Engagement Server
port>%2Fserver&locale=en-US&debug=true

Usage

To run the callback widget, simply open it in a separate window with the appropriate parameters:

var url = http://<Web Engagement Server host>:<Web Engagement Server port>/server/resources/
callback.html +

'?visitID=' + encodeURIComponent('58bd8e65-7390-4c56-8da9-79dd74bd73be') +
'&pageID=' + encodeURIComponent('662FE0368D654E9D80B0D1E1E29AE25F') +
'&gwe_serverUrl=' + encodeURIComponent('<Web Engagement Server host>:<Web Engagement

Server port>/server') +

High-Level Architecture Engagement

Developer's Guide 40

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#getids
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#getids
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets#t-2

'&locale=' + encodeURIComponent('en-US') +
'&debug=' + encodeURIComponent('true');

window.open(url,
title,
'toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=no,resizable=no,copyhistory=no'

+
',width=' + 400 + ',height=' + 500 + ',top=' + 300 + ',left=' + 300);

Customization

For details about how to customize the callback widget, see Customizing the Browser Tier Widgets.

High-Level Architecture Engagement

Developer's Guide 41

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets#t-2

Application Development

Overview

Developing an application for Genesys Web Engagement is the process of defining all the
components deployed through the Web Engagement Servers to implement Web Engagement
features in your Genesys contact center, and to add Web Engagement to your website.

When you create and configure your application, you create all the materials that are used to
generate the actionable events: customized business information, conditions, and engagement
strategies. As a result of an actionable event, the Web Engagement servers engage the visitor with a
chat or a web callback invite. Your application also contains the widgets for managing these invites,
including a registration form submitted to anonymous customers who accept the invitation.

The provided script tools create your application in the apps folder where Web Engagement is
installed. Your newly created application includes all the default rule templates, logic (SCXML), and
events (DSL), in addition to web-specific data and engagement widgets. You can customize the data
and widgets, and then deploy your application so all changes take effect.

Your new application can be adapted to work with two different engagement models:

• Simple Engagement Model — This type of engagement model works with default Web Engagement
capabilities, and provides customization through categories and rules.

• Advanced Engagement Model — This type of engagement model works with the same set of entities as
the simple engagement model, but also uses customer-specific business events (that are defined in
your DSL) and event-based capabilities to implement rules.

Application Development Workflow

The following diagram describes the development workflow for a Web Engagement application.

Application Development Engagement

Developer's Guide 42

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement

Application Development Lifecycle

1. Create your application
Tool: Web Engagement Scripts

Description: For each application you must use script tools to create and configure your
customized Web Engagement application.

2. Create Customized Business Information
Depending on the engagement model that you implement, you must define business information
specific to your web pages that will be used to submit actionable events and web contexts to the
Genesys Solution.
• Create categories (Simple Model)

Tool: Web Engagement Plug-in for Genesys Administrator Extension

Application Development Engagement

Developer's Guide 43

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#createcategory

Description: The categories contain business-related information to link your application with
your web pages. They are used as parameters to set up conditions on events and generate
actionable items. You can modify category information at run-time. The monitoring agent
requests a list of categories from the Web Engagement Server every time a new web page is
loaded or reloaded.

• Create Business Events. (Advanced Model)
Tool: Text editor / Chromium InTools

Description: You can create your own business events as lists of DSL items, which are loaded by
the monitoring agent. Then, these events are sent to the Web Engagement Server and
processed in the same manner as regular system events. To apply the DSL changes, you need
to redeploy the application with the modified DSL into the Web Engagement Server. You can
also test the changes at run-time with Chromium InTools.

3. Publish Rules Template and Customize Logic
Tool: Genesys Rules Development Tool / Composer

Description: You must publish a Web Engagement rules template before you can create rules. If
you want to, you can also customize your logic by Customizing the SCXML Strategies, and you can
also customize both the Browser Tier Widgets and the Chat Routing Strategy.

4. Deploy your application
Tool: Web Engagement Scripts

Description: If you create a new application or modify the SCXML, the DSL, or the logic of your
application, you must deploy or redeploy your application. Note that your Web Engagement
Servers should be switched off during the deployment procedure.

5. Start the Web Engagement Servers
Tool: Web Engagement Scripts.

Description: To enable your application, you must start or restart the Web Engagement Servers.

6. Create and Deploy Rules
Tool: Genesys Rules Authoring

Description: You must create rules to optimize the event flow and create complex conditions to
generate actionable events sent to the Genesys Solution. These rules link with the categories
containing the business information. You can deploy rules only if the Web Engagement servers are
started.

Application Development Tasks

You must complete the following steps to create a Genesys Web Engagement application:

1. Before developing an application, you must first install and configure Genesys Web Engagement and its
components in a lab environment. See the Standalone Deployment Scenario for details and step-by-
step instructions.

2. Creating an Application
3. Generating and Configuring the Instrumentation Script
4. Customizing an Application

a. Creating Business Information

Application Development Engagement

Developer's Guide 44

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement#createbusevents
https://docs.genesys.com/Documentation/GWE/latest/User/InTools
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/BuildandDeploy
https://docs.genesys.com/Documentation/GWE/latest/User/InTools
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeChatRouting
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/BuildandDeploy
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-0
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateBusinessInformation

b. Publishing the CEP Rule Templates
c. Customizing the SCXML Strategies
d. Customizing the Browser Tier Widgets

5. Deploying an Application
6. Starting the Web Engagement Servers
7. Creating a Rules Package
8. Testing with ZAP Proxy
9. Once you are satisfied with your application and are ready to deploy it to production, you should return

to the Deployment Guide and deploy and configure the Web Engagement Cluster. See the Cluster
Deployment Scenario for details and step-by-step instructions.

Application Development Engagement

Developer's Guide 45

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/BuildandDeploy
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-1
https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-1

Creating an Application
You must create an application to run Genesys Web Engagement — see Application Development for
details about the workflow for creating and deploying an application.

Complete the procedures on this page to create an application and then define its monitoring
domains.

Creating a New Application

In this procedure you'll run the create script (create.bat on Windows and create.sh on Linux) to
create your project structure. This script creates all the files required to run Genesys Web
Engagement on your website.

Start

1. Navigate to the GWE_installation_directory and type the following command:

create your_application_name.

End

Note: To request debug-level logs while this command is executed, use the -v parameter. For
example:

create myApp -v

Result

A folder named your_application_name is created in GWE_installation_directory/apps.

The directory structure for the "an_app" application.

Creating an Application Engagement

Developer's Guide 46

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/ApplicationDevelopment

This folder contains all the materials used to build and deploy your application:

• proxy contains the proxy configuration files used for testing purposes.
• resources contains the resources used by the app, including:

• _composer_project, which contains all the SCXML default templates for the routing strategies and
GRS rule template project. In addition, it contains the source code for the Browser Tier Widgets used
for engagements.

• conf, which contains an environment property file.
• drl contains your application's rules.
• dsl contains your application's DSL.
• The rest of the resources, including the locale folder, are widget-specific.

Next Steps

• Generating and Configuring the Instrumentation Script

Creating an Application Engagement

Developer's Guide 47

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript

Generating and Configuring the
Instrumentation Script
The Tracker Application instrumentation script is a small piece of JavaScript code that you paste into
your website to enable Web Engagement functionality. If you plan to use the Genesys Chat Widget or
other Genesys Widgets, you must create your instrumentation using Genesys Widgets, in which case
the Tracker Application provides built-in integration with Genesys Widgets.

Important
The rest of this article describes how to create your instrumentation script using the
Script Generator in the Genesys Web Engagement Plug-in for Genesys Administrator
Extension. However, you must only use this technique if you are going to use the
Tracker Application without Genesys Widgets. If you are using Genesys Widgets you
must use the appropriate instrumentation script.

You typically add the instrumentation script to your site when you are ready to move your application
to a production environment with a Web Engagement cluster. If you are working in a standalone
deployment in a lab environment, you can use the default ZAP Proxy implementation to inject the
instrumentation script into the pages of your web site on the fly.

You can complete the steps on this page to do the following:

1. Generate the basic instrumentation script.
2. Configure the script, if necessary for your solution.
3. Add the script to your website.

Generating the Instrumentation Script

Important
This section is only for use in creating a standalone Tracker application that uses the
native Web Engagement widgets. If you are using Genesys Widgets you must use the
appropriate instrumentation script.

Prerequisites

• You installed the Genesys Web Engagement Plug-in for Genesys Administrator Extension.

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 48

https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCConfig
https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCConfig
https://docs.genesys.com/Documentation/GWE/latest/Deployment/InstallingGWEServers
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCConfig
https://docs.genesys.com/Documentation/GWE/latest/Deployment/InstallthePlug-inforGAX

Start

1. Open Genesys Administrator Extension.

Main Home panel in the Genesys Administrator Extension

2. Navigate to Web Engagement > Script Generator. The Script Generator interface opens.
3. Fill in the following fields:

• Select the correct Web Engagement Cluster, Web Engagement Server, or Load Balancer.
• Enter the URL of the Web Engagement Server for the HTTP Endpoint. For example,

http://myserver.genesys.com:9081

• Enter the secure URL of the Web Engagement Server for the HTTPS Endpoint. For example,
https://myserver.genesys.com:3214

• Select Load Engagement Script, Load Embedded jQuery, and Chat to enable these features.

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 49

Example fields in the Script Generator.

• Enter the path(s) to the DSL Resource. The path is relative to the /server/resources/dsl URL path
of your Web Engagement server (or load balancer). You can add your DSL resources to this directory
or sub-directories.

4. Click Generate. The Generated Script panel opens and you can now copy your script.

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 50

The generated instrumentation script

If you are planning to configure the script, you might want to save it to a file so you don't lose your
changes.

End

Next Steps

• You can configure your generated script.
• You can add the script to your website.

Configuring the Instrumentation Script

The Tracker Application activates the Monitoring and Notification functions in Genesys Web
Engagement by inserting the GTCJ.min.js package into the page. This package includes jQuery, the
Monitoring Agent, and the Notification Agent. The Tracker Application actually provides several
packages that contain different functions and libraries. You can use these packages to enable
different Web Engagement functionality on your website (these are added to your script when you
use the GAX plug-in).

The table below shows the packages, in minified form, that are included with the Tracker Application.

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 51

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuring_the_Instrumentation_Script
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website

Script jQuery Monitoring
Agent

Notification
Agent Chat

GT.min.js no yes no no
GTJ.min.js yes yes no no
GTC.min.js no yes yes no
GTCJ.min.js yes yes yes no
GPE.min.js yes yes yes yes

Important
You must not make any changes to the scripts listed in the table above; any
modifications will not be supported by Genesys. Please refer to the Genesys Web
Engagement API Reference for information about the supported APIs.

The Tracker Application instrumentation script consists of two parts: configuration and script loader.

Script Loader
To load the Tracker Application, you just need to include the JavaScript in your web pages. This
asynchronously loads the application, which means that it won't block other elements on your web
pages from loading.

One solution for loading the script could be:

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ('https:' == document.location.protocol ? 'https://<Web Engagement

Server>:<Secure Web Engagement Server Port>':
'http://<Web Engagement Server>:<Web Engagement Server Port>') + '/server/resources/

js/build/GTCJ.min.js';
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gt');

Important
The script above uses the default "_gt" as the configuration global variable.

For more information about best practices for loading the script, see Adding the Instrumentation
Script to Your Website.

Configuration
By default, the Tracker Application script uses the "_gt" global variable (you can change this in the
script loader — see Changing the Global Configuration Variable for details) that must be initialized

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 52

https://docs.genesys.com/Documentation/GWE/latest/API/Welcome
https://docs.genesys.com/Documentation/GWE/latest/API/Welcome
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Changing_the_Global_Configuration_Variable

before the script loader is actually added to the page.

The following configuration options are available in the script:

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 53

Parameter Required Type Default Value Description Example value

httpEndpoint yes (if "httpsEndpoint"
is undefined) string - The URL of the Web

Engagement Server. http://genesyslab.com:8081

httpsEndpoint yes (if "httpEndpoint" is
undefined) String -

The secure URL of the
Web Engagement
Server.

https://genesyslab.com:8443

dslResource no string -
The DSL resource
location. If dslResource
is not defined, then the
DSL is not loaded.

http://genesyslab.com:8081/
server/resources/dsl/
domain-model.xml

name no string -

Name of the
application. This option
is a part of the cloud
multi-tenant, multi-
domain system.
Currently not used.

genesyslab

domainName no string Second-level domain
(SLD).

Name of the domain
where the cookie is
stored.

For the domain
sub.genesys.com, the
second-level domain is
genesys.com

languageCode no string en-US
Localization tag for
language and region.
Used for categorization.

en-US

debug no boolean false
Show Monitoring Agent
debug information in
the browser console.

true

debugCometD no boolean false
Show CometD debug
information in the
browser console.

true

preventIframeMonitoring no boolean false

If
preventIframeMonitoring
is true, the Monitoring
Agent does not
generate system and

true

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 54

Parameter Required Type Default Value Description Example value
business events if the
agent is loaded in an
iframe. See
preventIframeMonitoring
for details.

disableWebSockets no boolean false

Disable websockets
transport for the
notification agent. By
default, the Notification
Agent uses websocket
transport when it is
possible. Make sure
that your load
balancers support
websocket connections;
otherwise, disable it —
Disabling Websocket
CometD Transport.

true

disableAutoSystemEvents no boolean false

Disable automatic
sending of the following
system events:
VisitStarted,
PageEntered,
PageExited.

true

page no object -

Sets the page
configuration for
events. In some cases,
you might want to set a
parameter and have
the value persist across
multiple push events.
To override the page url
of each event with your
own custom url, you
can either set the new
url on each push

_gt.push(['config',
{

page: {
url:

'http://example.com/
my-page-url?id=1',

title: 'My
Page Title'

}
}]);

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 55

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#preventIframeMonitoring
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Disabling_Websocket_CometD_Transport
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Disabling_Websocket_CometD_Transport

Parameter Required Type Default Value Description Example value
command, or you can
use current option.
Note: This option
should only be used
with Single Page
Applications.

page:url no string window.location.href

The URL of the current
page. This option is
used for all subsequent
events sent from the
page.

page:title no string document.title
The title of the current
page (this title is used
in the PageEntered
event by default).

skipCategories no boolean false

Do not include category
information with server
response to initial page
request. This option can
be used when a
website does not need
to use categories.

true

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 56

Basic Configuration

Basic configuration is the default Tracking functionality:

var _gt = window._gt || [];
_gt.push(['config', {

dslResource: ('https:' == document.location.protocol ? 'https://server:securePort'
:

'http://server:port') + '/server/resources/dsl/domain-model.xml',
httpEndpoint: 'http://server:port',
httpsEndpoint: 'https://server:securePort'

}]);

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ('https:' == document.location.protocol ? 'https://server:securePort' :

'http://server:port') + '/server/resources/js/build/GTCJ.min.js';
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gt');

This snippet represents the minimum configuration needed to track a page asynchronously. The _gt
(Genesys Tracker) object is what makes the asynchronous syntax possible. It acts as a queue, which
is a first-in, first-out data structure that collects API calls until Genesys Web Engagement is ready to
execute them. To add something to the queue, you can use the _gt.push method. See the Monitoring
JS API for more information.

Basic Configuration with the Chat JS Application

If you select "Chat" in the GAX plug-in, it adds chat functionality to the basic configuration by loading
the Chat JS Application. Your script should now look something like this:

var _gt = window._gt || [];
_gt.push(['config', {

dslResource: ('https:' == document.location.protocol ? 'https://server:securePort' :
'http://server:port') + '/server/resources/dsl/domain-model.xml',

httpEndpoint: 'http://server:port',
httpsEndpoint: 'https://server:securePort'
}]);

var _gwc = {
widgetUrl: ('https:' == document.location.protocol ? 'https://server:securePort' :

'http://server:port') + '/server/resources/chatWidget.html'
};

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ('https:' == document.location.protocol ? 'https://server:securePort' :

'http://server:port') + '/server/resources/js/build/GPE.min.js';
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gt');

Advanced Configuration

The snippet below shows the instrumentation script with extended configuration (refer to the
configuration options table for details):

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 57

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuration

var _gt = _gt || [];
_gt.push(['config', {

name: 'demo',
domainName: 'localhost',
languageCode: 'en-US',
dslResource: ('https:' == document.location.protocol ? 'https://server:securePort':

'http://server:port') + '/server/resources/dsl/domain-model.xml',
httpEndpoint: 'http://server:port',
httpsEndpoint: 'https://server:securePort'
languageCode: 'en-US',
debug: true,
debugCometD: true,
preventIframeMonitoring: true,

}]);

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ('https:' == document.location.protocol ? 'https://server:securePort' :

'http://server:port') + '/server/resources/js/build/GTCJ.min.js';
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_gt');

preventIframeMonitoring

Some websites have iframe (or frame) elements on the page. If a website is instrumented so that the
Monitoring Agent is loaded on all web pages (even in an iframe), the agent generates events for all
pages, including iframes. For example, this means that a page with an iframe generates two
PageEntered events, one for the main page and one for the iframe.

To prevent this, you can use a special initialization parameter, preventIframeMonitoring. This
parameter is optional and has a default value of false. If true, the Monitoring Agent does not
generate system and business events if it is loaded in an iframe.

Changing the Global Configuration Variable

You can change the global configuration variable for the Tracker Application by using the data-gpe-
var attribute. For example:

(function(gpe) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ('https:' == document.location.protocol ? 'https://server:securePort':

'http://server:port') + '/server/resources/js/build/GTCJ.min.js';
s.setAttribute('data-gpe-var', gpe); // set global variable name for Tracker Application
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);

})('_myVariable');

In the example above global variable "_myVariable" is now used instead of "_gt".

Providing an External jQuery Library

If you already have a jQuery library on your website, you can reduce the size of the Genesys Web
Engagement JavaScript files by using the packages without jQuery (GT.min.js or GTC.min.js). In this
case, make sure that jQuery is available on your site through the global variable window.jQuery and
that jQuery is loaded before the Genesys Tracker Application.

If the jQuery library is present on some pages and not others, you must insert the following snippet of

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 58

code before the instrumentation script:

<script>
window.jQuery || document.write("<script src='http://code.jquery.com/
jquery-1.11.0.min.js'>\x3C/script>")
</script>

Disabling Websocket CometD Transport

To disable websockets CometD transport, use the transports option in your instrumentation script:

_gt.push(['config', {
disableWebSockets: true,
....

}]);

Next Steps

• When you are satisfied with your script configuration, you can move on to either Adding the
Instrumentation Script to Your Website or Customizing an Application (if you configured the script so it
can be used with the ZAP Proxy).

Adding the Instrumentation Script to Your Website

To add the instrumentation script, you need to have access to the source code for your website. If
you already have an older version of the instrumentation script on your site, make sure you remove it
from each page before you add the new one. If you have customizations you want to add back to
your pages after you add the new snippet, you can use a text or HTML editor to open and save a copy
of each file.

The instrumentation script is loaded asynchronously. One of the main advantages of the
asynchronous script is that you can position it at the top of the HTML document. This increases the
likelihood that the tracking beacon will be sent before the user leaves the page. Genesys
recommends placing the script at the bottom of the <head> section for best performance.

For the best performance across all browsers, Genesys recommends that you position other scripts in
your site either before the instrumentation script in the <head> section or after both the
instrumentation script and all page content (at the bottom of the HTML body).

Make sure that the document type is defined in the head of each of your web pages. If it is not
defined, Genesys Web Engagement will not work on your website.

<!DOCTYPE html>

Prerequisites

• You removed any older versions of the instrumentation script from your site.
• You generated the instrumentation script.

Start

1. Select and copy the generated script from GAX or from your own file, if you configured the script.

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 59

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Adding_the_Instrumentation_Script_to_Your_Website
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Generating_the_Instrumentation_Script

2. Paste the script at the bottom of the <head> section of your web pages:
• You can do this manually on each web page that you want to monitor.
• You can do this in the header template of your website, if you have one.

3. If your website includes additional scripts, do one of the following to optimize performance:
• Place your scripts above the instrumentation script in the <head> section.
• Make sure your scripts are located after the webpage contents (at the bottom of the body section).

End

Next Steps

• After you have generated the script and added it to your website (or the ZAP Proxy configuration), you
are ready to Customize an Application.

Generating and Configuring the Instrumentation Script Engagement

Developer's Guide 60

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeanApplication

Customizing an Application
When you develop a Web Engagement application, you start by creating your application with the
script tools which generates default SCXML strategies, rule templates, and DSL code. You can
customize all of this material through specific tools.

The diagram below shows where you can customize the Web Engagement data used by your
application.

1. If you are following the Simple Engagement Model, you create categorization information with the
Categories interface in Genesys Administrator Extension. This information is added to Configuration
Server and retrieved by the Web Engagement Server. When the Web Engagement Server receives a
browser request, it checks the category information. If you are following the Advanced Engagement
Model, you create business events by modifying the DSL using the InTools application.

Customizing an Application Engagement

Developer's Guide 61

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/ApplicationDevelopment
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Plug-in_for_GAX_Overview
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement#Creating_Business_Events_by_Customizing_the_DSL_File
https://docs.genesys.com/Documentation/GWE/latest/User/InTools

2. You must publish the CEP rule template associated with your engagement model. You can modify this
template before you publish it.

3. The Genesys Rules Authoring Tool (GRAT) loads the CEP Rule template and allows you to create a
package of CEP rules based on your categories (Simple Engagement Model) or on your business events
(Advanced Engagement Model).

4. If your application is built and deployed, and the Web Engagement servers are started, you can deploy
rules with GRAT.

5. GRAT notifies the Web Engagement Server that rules are available in the Rules repository.
6. The Web Engagement Server downloads the rules. You can use the InTools application to customize

your DSL.
7. You can customize the SCXML strategies available in the _composer-projects directory located in

Web Engagement installation directory/apps/application_name/resources. See Customizing the
SCXML Strategies for details. At this point you can also customize the various Browser Tier Widgets.

8. When a browser submits a request to the Web Engagement Server, the Web Engagement Server loads
the categories into the cache.

9. The user's web browser loads the updates.

Customizing an Application Engagement

Developer's Guide 62

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets

Creating Business Information
You must create business information for your application following either the Simple Engagement
Model, the Advanced Engagement Model, or a combination of both.

• The Simple Engagement Model derives categories from the content of the System events. With this
model, you do not need to create Business events; instead, you create rules and category information
based on the available out-of-the-box system events.

• The Advanced Engagement Model uses Business events defined in the Browser Tier Domain Specific
Language (DSL) to create event-related rules. Once the business event is generated by the DSL, all the
event attributes are available for complex event processing and for use by the SCXML strategies.

Customizing an Application Creating Business Information

Developer's Guide 63

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement

Simple Engagement Model

Overview

The Simple Engagement Model is a simple solution to add Web Engagement to your website with
limited effort.

You can use the GWE Plug-in for Genesys Administrator Extension to define, in a few clicks, Web
Engagement categories that contain business information related to URL or web page titles. These
categories are used in the CEP rule templates, which provide rules that define when to submit
actionable events to Web Engagement — this is what starts the engagement process.

For example, lets look at Solutions on the Genesys website. In this scenario, you can define a Solution
category associated with the http://www.genesys.com/solutions page and several or all solution
sub-pages, such as http://www.genesys.com/solutions/cloud or http://www.genesys.com/
solutions/enterprise-workload-management.

• To associate the category with all the pages containing the "solutions" string in the URL, you can create
the "solutions" tag. This tag defines the "solutions" string as a plain text expression to search in the
events triggered by the visitor browsers.

• To set up a specific list of sub-pages for the Solutions category, you can create a tag for each sub-page:
• The "cloud" tag, which defines the "cloud" string as the plain text expression to search in the events

triggered by the visitor browsers.
• The "enterprise-workload" tag, which defines the "enterprise-workload-management" string as the

plain text expression to search in the events triggered by the visitor browsers.

Now your rules can use this category to match solution-related pages.

The templates for category-based rules define how to process events sent from the Web Engagement
Server. They define both the type of events to take into account and the action to perform. The
Genesys Rules Authoring Tool loads the template and uses its content to help you define rules. These
templates are created with your application and can be modified with the Genesys Rules
Development Plug-in (in Composer or in Eclipse).

Default Rule Templates

The default templates for the Simple Engagement Model define how to process events sent from the
Web Engagement Server. They define both the type of events and the action to perform. Later, you'll
use the Genesys Rules Authoring Tool to create rules based on these templates.

Singleton

Description The template receives each single event as a
formal parameter. If the event's value matches the

Customizing an Application Creating Business Information

Developer's Guide 64

right category, then the actionable event is sent to
the Web Engagement Server.

GWM single.png

Expression Example

When
page transition event occurs that belongs to
category $category

Then

generate actionable event

Sequence

Description

This template analyses the event stream received
from the categorization engine and builds the
sequence of events by category values. As soon as
the event sequence is completed, the actionable
event is submitted. Note that the event sequence
must follow a specific order.

Click to enlarge.

Expression Example

When
page transition event occurs that belongs to
category $category1 save as $event1

and

event following $event1 with category
$category2 save as $event2

(...)
and

event following $eventn-1 with category
$categoryn save as $eventn

Then

generate actionable event based on $eventn

Set

Description

This template analyses the event stream received
from the categorization engine and collects the
events by category values. As soon as the event
set is completed, the actionable event is
submitted. If you use this template, the event order
is not taken into account.

Customizing an Application Creating Business Information

Developer's Guide 65

GWM Set.png

Expressions

When
(page transition event occurs that belongs to
category $category1

and

page transition event occurs that belongs to
category $category2)

or

(page transition event occurs that belongs to
category $category2

and

page transition event occurs that belongs to
category $category1)

Then

generate actionable event

Counter

Description

This template analyses the event stream received
from the categorization engine and counts events
which occur for a given category. As soon as the
counter is reached, the actionable actionable event
is submitted.

GWM Counter.png

Expressions

When
Category $category counts $count times

Then

generate actionable event

Customizing an Application Creating Business Information

Developer's Guide 66

Implementing the Simple Engagement Model

Complete the steps below to implement the Simple Engagement Model:

1. Plug-in for GAX Overview
2. Create a Category
3. Create Category Matching Tags

Plug-in for GAX Overview
You can add and remove categories for Web Engagement through the Category interface in the
Genesys Administrator Extension plug-in. You create these categories during the Application
Development process if you use the Simple Engagement Model when you Create Business
Information.

Each category is compliant with the category definition and includes tags to define business
information related to your website. To access the Categories interface, open Genesys Administrator
Extension and navigate to Web Engagement > Categories.

Customizing an Application Creating Business Information

Developer's Guide 67

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Plug-in_for_GAX_Overview
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Creating_a_Category
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Creating_Category_Matching_Tags
https://docs.genesys.com/Documentation/GWE/latest/Developer/CreateBusinessInformation
https://docs.genesys.com/Documentation/GWE/latest/Developer/CreateBusinessInformation

A list of Categories

Features
The Categories interface includes the following features:

Feature Usage
Create categories. See Creating a Category for instructions.

Create matching tags. See Creating Category Matching Tags for
instructions.

Delete matching tags.
Select the tag in the Category Matching Tag section
and click X.

Customizing an Application Creating Business Information

Developer's Guide 68

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Creating_a_Category
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Creating_Category_Matching_Tags

Feature Usage

Click Delete.

Delete categories.

Select the category in the list and click Delete. The
Delete Confirmation dialog opens. Click OK.

Delete Confirmation.

Important
You can also find the categories in Genesys Administrator, but you should not edit or
delete them through that interface because it can cause synchronization issues with
the Categories interface in GAX.

Creating a Category
Prerequisites

Customizing an Application Creating Business Information

Developer's Guide 69

• Your environment includes Genesys Administrator Extension. See Genesys environment prerequisites
for compliant versions.

• You installed the Web Engagement Plug-in for Genesys Administrator.

Start

1. In Genesys Administrator Extension, navigate to Web Engagement > Categories. The Categories
interface opens.

2. Click Switch Tenant, select the tenant where you deployed Genesys Web Engagement, and click OK.

Click the Switch tenant.

3. Click + to add a new Category. The New panel opens.
4. Enter a Category Name. For instance, pfs-login.
5. Optionally, you can enter a Category Description.
6. Enable Show category in Agent Desktop to instruct Agent Desktop to display this category in its

category list when an agent is working with media interactions initiated by Web Engagement.
7. Click Save. The pfs-login category is added to the list.

End

Customizing an Application Creating Business Information

Developer's Guide 70

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Prerequisites#Genesys_Environment
https://docs.genesys.com/Documentation/GWE/latest/IWSPluginHelp/URLsbyCategory

Creating Category Matching Tags
Each category should have at least one Category Matching Tag, which contains an expression to
search in the URLs and titles submitted with the events of the browser. For instance, a tag to identify
the http://www.genesyslab.com/products/genesys-inbound-voice/overview.aspx page could be the
plain expression 'genesys-inbound-voice' or the regular expression 'Inbound Voice'.

Prerequisites

• You completed Creating a Category.

Start

1. In Genesys Administrator Extension, navigate to Web Engagement > Categories and select a catetory.
The <category name> panel opens.

2. In the Category Matching Tags section, click +. The New panel opens.
3. Fill in the form to create a tag. Consult the table below for more information about the form fields.

Field Description

Name The display name for your tag. For example,
Inbound Voice.

Type

The type of expression to search. There are three
options:
• Regular Expression — A regular expression

search.
• Plain Text — A substring search. This is the

default.
• Google Like Expression — Selecting this

option opens a new window where you can
enter an expression using Google search
operators. When you click Generate to
REGEX, it converts the expression to a regular
expression and populates the Expression
field.

Expression The expression to search. This can be plain text
or a regular expression.

Case-sensitive Selecting this field makes the regular expression
case-sensitive. It is not selected by default.

Language
Select the language for the tag. This allows you
to make the search expression specific to the
localization of the browser.

4. Click Save. The tag is added to the list of Category Matching Tags.
5. If needed, you can also define display names for the category that are language specific. In the

Language-specific DisplayNames section click +. The New panel opens.
6. Enter a Name.
7. Select a Language.

Customizing an Application Creating Business Information

Developer's Guide 71

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Creating_a_Category

8. Click Save. The language-specific display name is added to the list on the <category name> panel.
9. Click Save on the <category name> panel.

End

Regular Expressions in Tags
You can create tags that use regular expressions to search for matches by selecting "Regular
Expression" from the Type list. A regular expression is a sequence of elements, either a word or
expression inside quotes. Each search element can be preceded by a '-' to exclude that element. A
wildcard symbol '*' can be used inside or outside of the quotes. If you prefer, you can select "Google
Like Expression" for the Type, which converts anything you enter in the "Expression" field to a regular
expression. If your expression is incorrect, your expression is not converted.

Search Request Patterns (Google Like Expression)

The following table describes the basic patterns in search requests.

Search Options Description

Search for all exact words in any order.
search query

The result must include all the words. These words
can be substrings attached to other words—for
example, [Web-search query1].

Search for an exact word or phrase.
"search query"

Use quotes to search for an exact word or set of
words in a specific order without normal
improvements such as spelling corrections and
synonyms. This option is handy when searching for
song lyrics or a line from literature—for example,
["imagine all the people"].

Exclude a word.
-query

Add a dash (-) before a word to exclude all results
that include that word. This is especially useful for
synonyms like Jaguar the car brand and jaguar the
animal. For example, [jaguar speed -car].

Include "fill in the blank".
query *query

Use an asterisk (*) within a query as a placeholder
for any terms. Use with quotation marks to find
variations of that exact phrase or to remember
words in the middle of a phrase. For example, ["a *
saved is a * earned"].

Next Steps

1. Make sure the CEP Rule Templates are ready. See Publishing the CEP Rule Templates for details.
2. Finish any customizations to the SCXML strategies or Browser Tier Widgets.
3. Continue on with the Application Development Tasks.

Customizing an Application Creating Business Information

Developer's Guide 72

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/ApplicationDevelopment#Application_Development_Tasks

Advanced Engagement Model

Overview

The Advanced Engagement Model enables customization based on Business events (read more about
how the events are structured here). In Web Engagement 8.5, the default DSL contains the
Timeout-30 event and a sample of a Search event. To customize the Advanced Engagement Model,
you must first define your own events using the DSL, which is loaded in the Browser Tier Agents.
Then, you can use the rule templates to create rules based on these events.

Default Rule Templates

The default templates for the Advanced Engagement Model define how to process events sent from
the Web Engagement Server. They define both the type of events and the action to perform. Later,
you'll use the Genesys Rules Authoring Tool to create rules based on these templates.

Singleton

Description

The template receives each single event as a
formal parameter. If the event's value matches the
right category, then the actionable event is sent to
the Web Engagement Server.

GWM single.png

Expression Example

When
page transition event occurs that belongs to
category $category

Then

generate actionable event

Sequence

Description

This template analyses the event stream received
from the categorization engine and builds the
sequence of events by category values. As soon as
the event sequence is completed, the actionable
event is submitted. Note that the event sequence
must follow a specific order.

Customizing an Application Creating Business Information

Developer's Guide 73

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure

Click to enlarge.

Expression Example

When
page transition event occurs that belongs to
category $category1 save as $event1

and

event following $event1 with category
$category2 save as $event2

(...)
and

event following $eventn-1 with category
$categoryn save as $eventn

Then

generate actionable event based on $eventn

Set

Description

This template analyses the event stream received
from the categorization engine and collects the
events by category values. As soon as the event
set is completed, the actionable event is
submitted. If you use this template, the event order
is not taken into account.

GWM Set.png

Expressions

When
(page transition event occurs that belongs to
category $category1

and

page transition event occurs that belongs to
category $category2)

or

(page transition event occurs that belongs to
category $category2

and

page transition event occurs that belongs to
category $category1)

Then

Customizing an Application Creating Business Information

Developer's Guide 74

generate actionable event

Counter

Description

This template analyses the event stream received
from the categorization engine and counts events
which occur for a given category. As soon as the
counter is reached, the actionable actionable event
is submitted.

GWM Counter.png

Expressions

When
Category $category counts $count times

Then

generate actionable event

Search

Description The actionable event is submitted if a Search
event occurs.

Expressions

When

event with name Search save as $event1

Then

generate actionable event based on $event1

Timeout

Description The actionable event is submitted if a Timeout
event occurs.

Expressions

When

event with name Timeout save as $event1

Then

generate actionable event based on $event1

Implementing the Advanced Engagement Model

Complete the steps below to implement the Simple Engagement Model:

Customizing an Application Creating Business Information

Developer's Guide 75

1. Business Events Overview
2. Create Business Events by Customizing the DSL File
3. Optionally, you can Create Business Events by Using the Monitoring Agent API.

Business Events Overview
When you create an application, a set of Domain Specific Language (DSL) files that are used by your
application is also created. These files are defined in the apps\Your application name\resources\
dsl\ directory. You can use the DSL to define Business events (read about the structure of these
events here) that are specific to your solution needs.

Default domain-model.xml
The domain-model.xml is the main default DSL file for your application:

<?xml version="1.0" encoding="utf-8" ?>
<properties>

<events>
<!-- Add your code here
<event id="" name="">
</event>
-->

<!-- This is template for your search event -->
<!--
<event id="Search" name="Search">

<trigger name="SearchTrigger" element="" action="click" url="" count="1" />
<val name="searchString" value="" />

</event>
-->
<event id="Timeout-30" name="Timeout-30" condition=""

postcondition="document.hasFocus() === true">
<trigger name="TimeoutTrigger" element="" action="timer:30000" type="timeout"

url="" count="1" />
</event>

</events>

</properties>

By using the <event> element, you can create as many business events as you need. These events
can be tied to the HTML components of your page and can have the same name, as long as they
have different identifiers (these identifiers must be unique across the DSL file, to make a distinction
between the events sent by the browser). It can be useful to associate several HTML components
with the same event if these HTML components have the same function. For instance, you can define
several events associated with a search feature and give all these events the same name: "Search".

For each event, you can define triggers which describe the condition to match in order to submit the
event:

• Triggers can implement timeouts.
• Triggers can be associated with DOM events.
• You can define several triggers for the same event.

Customizing an Application Creating Business Information

Developer's Guide 76

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement#Business_Events_Overview
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement#Creating_Business_Events_by_Customizing_the_DSL_File
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement#Creating_Business_Events_by_Using_the_Monitoring_Agent_API
https://docs.genesys.com/Documentation/GWE/latest/Developer/CreateanApplication
https://docs.genesys.com/Documentation/GWE/latest/Developer/EventsStructure
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringDSL#trigchild

Each trigger should have an element attribute that specifies the document's DOM element to attach
the trigger to, and the action attribute, which species the DOM event to track.

You can specify standard DOM events for the action:

• Browser Events
• Document Loading
• Keyboard Events
• Mouse Events
• Form Events

In addition to the standard DOM events, the DSL supports the following two values: timer and
enterpress.

The following example generates a "Search" event if the visitor does a site search. The "searchString"
value is the string entered in the "INPUT.search-submit" form.

<event id="SearchEventClick" name="Search">
<trigger name="SearchTrigger" element="INPUT.search-submit" action="click" url=""

count="1" />
<val name="searchString" value="INPUT.search-submit" />

</event>

If the DSL uses the optional condition attribute, the event's triggers are installed on the page if the
condition evaluates to true. The following example creates a Business event with a time that can be
triggered only if the text inside the <h1> tag is "Compare":

<event id="InactivityTimeout4CompareProductsEvent" name="InactivityTimeout4CompareProducts"
condition="$('h1').text() == 'Compare'">

<trigger name="InactivityTimeout4CompareProductsTrigger" element=""
action="timer:10000"

type="timeout" url="http://www.MySite.com/site/olspage.jsp" count="1"/>
</event>

If the DSL uses an optional postcondition attribute, this can manage how an event is generated by
checking a condition after the actions are completed. The following example creates a Business event
timeout by timer if a page is in focus. In this case, the event does not generate if the page is opened
in the background:

<event id="TimeoutEvent10" name="Timeout-10" condition="" postcondition="document.hasFocus()
=== true">

<trigger name="TimeoutTrigger" element="" action="timer:10000" type="timeout" url=""
count="1" />
</event>

A DSL trigger can use the type attribute. This can have a value of either timeout or nomove, which
specifies how the timer action works. If the type is timeout, then the timer interval begins after the
page is loaded. If the type is nomove, then the timer resets each time the user moves the mouse.

You can also apply the optional url attribute. This attribute defines the URL of the specific page that
raises the Business event. The Business event is not submitted if the current document's URL does
not match the URL parameter.

Finally, you can apply the optional count attribute. This attribute specifies how many times the

Customizing an Application Creating Business Information

Developer's Guide 77

trigger needs to be matched before the event is generated and sent to the Web Engagement Server.

For more information about the DSL elements, see the Business Events DSL.

Creating Business Events by Customizing the DSL File
You can edit the apps\Your application name\resources\dsl\domain-model.xml and add a list of
events, with specific conditions, related to your web pages' content.

Important
Genesys recommends that you use the InTools application to help you modify your
DSL.

The default domain-model.xml file includes two sample events to help you get started with your
DSL customizations: Timeout-30 and a prototype of the Search event (commented out by default).
The following sections show you how you can customize these events to work on your website.

Using the Search Event Template
By default, the domain-model.xml file contains commented code that you can implement to trigger
a business event when a visitor tries to search for something on your website. Complete the following
steps to customize the Search event for your website.

Start

1. Remove the comment characters that wrap around the event: <!– and -->. The event should look like
the following:
<event id="Search" name="Search">

<trigger name="SearchTrigger" element="" action="click" url="" count="1" />
<val name="searchString" value="" />

</event>

2. Set the element attribute to the jQuery selector that triggers a search. For example, we have an input
(id="search") with a submit button (id="search-submit").
<event id="Search" name="Search">

<trigger name="SearchTrigger" element="#search-submit" action="click" url=""
count="1" />

<val name="searchString" value="" />
</event>

3. Set the value attribute to the script to retrieve the search string. For example, our input id of "search".
<event id="Search" name="Search">

<trigger name="SearchTrigger" element="#search-submit" action="click" url=""
count="1" />

<val name="searchString" value="$(#search).val()" />
</event>

Now the search event is triggered when a visitor clicks the search-submit button.

Customizing an Application Creating Business Information

Developer's Guide 78

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringDSL
https://docs.genesys.com/Documentation/GWE/latest/User/InTools

End

Using the Timeout Events
By default, the domain-model.xml file contains the timeout-30 timeout event.

<event id="Timeout-30" name="Timeout-30" condition="" postcondition="document.hasFocus() ===
true">

<trigger name="TimeoutTrigger" element="" action="timer:30000" type="timeout" url=""
count="1" />
</event>

You can customize this event or disable it to suit your business needs. By default, this event is
triggered with a 30-second delay after the tracking script is initialized on the page. The only
difference between the events is the action attribute, which defines the timeout in milliseconds.

The default timeout event has the postcondition attribute set to "document.hasFocus() ===
true", which checks whether the focus is on the current page. The timeout event is only triggered if
the postcondition returns true.

Creating Business Events by Using the Monitoring Agent API
You can also use the Monitoring JS API, which allows you to submit events and data from the HTML
source code.

In this case, you can use the _gt.push() method which allows you to decide when events should be
submitted and which data they generate, directly from your web pages. See Monitoring JS API
Reference for further details.

You should also consider using the API when you have more complex logic that can't be handled by
DSL alone. For an example, see How To — Enable a trigger after another trigger.

Next Steps

1. Make sure the CEP Rule Templates are ready. See Publishing the CEP Rule Templates for details.
2. Finish any customizations to the SCXML strategies or Browser Tier Widgets.
3. Continue on with the Application Development Tasks.

Customizing an Application Creating Business Information

Developer's Guide 79

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#triggers
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/ApplicationDevelopment#Application_Development_Tasks

Publishing the CEP Rule Templates
After you create business information by following either the Simple Engagement Model or the
Advanced Engagement Model, you can begin working with the CEP Rule Templates.

Even if you do not plan to customize the CEP rule templates, you still need to import, configure, and
publish them in the rules repository so that they are available when you begin creating your rules.
You can do this in two different ways:

• Import the default CEP rule template into the Genesys Rules Authoring Tool (GRAT) and then use it as is.
This is known as the simple mode of default CEP rule template publishing.

• Use the Genesys Rules Development Tool (GRDT) to import the default CEP rule template, then modify it
and publish to the GRAT repository. This is known as the advanced mode of CEP rule template
publishing.

Simple mode of default CEP rule template publishing

If you do not plan to introduce new business events and will use only those available in the out-of-
the-box DSL file—or if you just want to get off to a quick start with the default CEP rule template,
without using GRDT—you can use the simple mode of default CEP rule template publishing, which
only requires GRAT.

Here's how:

1. Verify that gwe_default_grat_template.xml is present in Web Engagement installation
dir\apps\your application\resources_composer-projects\
WebEngagement_CEPRule_Templates\import. This file contains the default Web Engagement CEP
rule templates.

2. Open GRAT and select the Environment element from the left pane. The Import Templates button
appears in the right pane.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 80

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate#simple
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate#advanced

GRAT Import Templates Button

3. Click Import Templates.
4. Browse to gwe_default_grat_template.xml, then then click the Import button:

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 81

GRAT Import Templates Dialog

5. If the template file was successfully imported, you will see a confirmation dialog:

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 82

GRAT Confirmation Dialog

6. You can now create your own rule package, based on the imported CEP rule template:

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 83

New Rule Package

Advanced mode of CEP rule template publishing

To use the advanced mode, do this:

1. Read the overview information about the rule templates.
2. Importing the CEP Rule Templates in GRDT.
3. Configuring the CEP Rule Templates.
4. If necessary, you can Customize the CEP Rule Templates.
5. Publishing the CEP Rule Templates in the Rules Repository.

Overview
The Complex Event Processing (CEP) Rule Templates define the actions and conditions you can use
when you create your business rules in Genesys Rules Authoring Tool.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 84

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate#Overview
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate#Importing_the_CEP_Rule_Templates_in_GRDT
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate#Configuring_the_CEP_Rule_Templates
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate#custemplate
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate#Publishing_the_CEP_Rule_Templates_in_the_Rules_Repository

You use the Genesys Rules Authoring Tool (GRAT) to develop, author, and evaluate these business
rules. A business rule is a piece of logic defined by a business analyst. These rules are evaluated in a
Rules Engine based upon requests received from client applications such as Genesys Web
Engagement. A newly created Web Engagement application contains a pre-defined CEP (Complex
Event Processing) template. This template type enables rule developers to build templates that rule
authors then use to create rules and packages. These rules use customized event types and rule
conditions and actions. Each rule condition and action includes the plain-language label that the
business rules author will see, as well as the rule language mapping that defines how the underlying
data will be retrieved or updated.

By default, your newly created Web Engagement application contains the following CEP Rule
Template:

• \apps\application name\resources_composer-projects\WebEngagement_CEPRule_Templates
includes a GRDT-based project with CEP templates.

CEP rule template in Composer

In order to use these templates to define rules, you must first publish them.

Before you publish the templates, you can edit them to suit your business needs using the the
Genesys Rules Development Tool. For more information about rule templates, refer to the Genesys
Rules System documentation.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 85

Important
Note that if you customize your rule templates, you must republish them.

Actions

The list of actions available in the template is listed in WebEngagement_CEPRule_Templates >
Actions. You can edit, add, or remove these actions. In the Genesys Rules Authoring Tool (GRAT),
when you create a rule based on the template, you can add an action by clicking Add action; GRAT
displays all the actions defined in the template. You'll see how actions are implemented once you
start creating rules. The default actions are:

• Generate Actionable Event
• Generate Actionable Event Predefined

Enums

The enumerations available in the template are listed in WebEngagement_CEPRule_Templates >
Enums. You can edit, add, or remove these enumerations. When you create a rule based on the
template, you can specify a Phase by clicking Add Linear Rule; GRAT displays all the enumerates
available in the template. In the default template, no specific enumeration is available.

Conditions

The conditions are listed in WebEngagement_CEPRule_Templates > Conditions.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 86

List of conditions in the CEP rule template.

You can edit, add, or remove these conditions. Each condition associates a name with an expression.
When you create a rule based on the template, you can add one or more condition to this rule by
clicking Add condition; GRAT displays all the condition expressions available in the template. For
complex templates, you need several conditions to implement a rule.

Condition Details
Condition Name Expression Condition details

Check search string event searches {searchString} Returns true if the event Search
occurs and if the {searchString}

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 87

Condition Name Expression Condition details
label is found, this event's result
is saved in the {event} label.

Following event with category
AND event following {prevEvent}
with category {category} save
as {event}

If the event follows {prevEvent}
and contains the {category}
label, this event's result is saved
in the {event} label.

Following event with name
AND event following {prevEvent}
with name {eventName} save as
{event}

If the {eventName} follows
{prevEvent} in parameter, this
event's result is saved in the
{event} label.

Has Category
page transition event occurs that
belongs to category {category}
save as {event}

If the event is a page transition
for the given category, this
event's result is saved in the
{event} label.

Has Category without save page transition event occurs that
belongs to category {category}

Returns true if the event is a
transition to the given category's
page.

Has Name event with name {eventName}
save as {event}

If the {eventName} occurs, this
event's result is saved in the
{event} label.

Has Name without save AND event with name
{eventName}

Returns true if {eventName}
occurs.

Remember last event Precondition: save last event Saves the last event.

Save category as event category is {category} save as
{event}

If the event contains the given
category, this event's result is
saved in the {event} label.

Timeout on category Timeout event occurs with
category {category}

Returns true if the Timeout event
occurs for the given category.

Importing the CEP Rule Templates in GRDT
Complete this procedure to import the CEP rule templates in the Genesys Rules Development Tool.
Even if you do not plan to customize the templates, your rule template must be published in the
Rules System Repository before you try to create rules.
Prerequisites

• The Genesys Rules Development Tool is installed, configured, and opened in Composer.

Start

1. Navigate to Window > Open Perspective > Other > Template Development to switch to the
Template Development perspective of the Genesys Rules Development Tool.

2. Select File > Import....
3. In the Import dialog window, navigate to General > Existing Projects into Workspace. Click Next.
4. Select Select Root Directory:, then click Browse.
5. Import your project from Web Engagement installation directory\apps\application

name\resources_composer-projects\WebEngagement_CEPRule_Templates:

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 88

https://docs.genesys.com/Documentation/GWE/latest/Deployment/ComponentsSettings

• Browse to the \apps\application name\resources_composer-projects folder in the Genesys
Web Engagement installation directory and select a project.

• Click OK. WebEngagement_CEPRule_Templatesapplication name is added to the Projects list.
• Select the WebEngagement_CEPRule_Templatesapplication name project.
• Warning: Do not enable the option Copy projects into workspace.

Import the default templates by clicking Finish.

• Click Finish to import the project. WebEngagement_CEPRule_Templatesapplication name is
added to the Project Explorer.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 89

WebEngagement_CEPRule_Templatesapplication name is added to the Project Explorer.

End

Configuring the CEP Rule Templates
Prerequisites

• The Web Engagement Categories business attribute is defined in Genesys Administrator.

Start

1. In the GRDT Project Explorer, right-click on the WebEngagement_CEPRule_Templatesapplication
name project. Click Properties.

2. In the Properties dialog window, navigate to Template Properties. In Publishing Data, set Type to
web_engagement.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 90

Set the type to web_engagement.

3. Navigate to Template Properties > Imports. The Imports panel opens.
4. Select the Enable global imports option.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 91

Enabling global imports.

Note: The com.genesyslab.wme.cep.api.Event and
com.genesyslab.wme.cep.drools.EventDispatcher packages must be present.

5. Click OK.
6. In the Project Explorer, navigate to WebEngagement_CEPRule_Templatesapplication name >

Parameters > category.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 92

7. In the Parameters Editor panel, set Attribute Name to Web Engagement Categories.

8. Click Save.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 93

End

Customizing the CEP Rule Templates (Optional)
Start

1. Open the CEP rule template project with GRDT and navigate to the Conditions item.
2. Expand Conditions to open the Conditions editor.
3. In the Conditions tab, click +. The Add Condition window opens.

4. Enter a name and click OK. The condition is added and selected in the condition list; the condition detail
panel opens.

5. Insert the Language Expressions and Rule Language Mapping:

6. Click Save Now when the rule template is published, the rule will be available in GRAT:

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 94

End

Publishing the CEP Rule Templates in the Rules Repository
Prerequisites

• Your user has the correct permissions to manage rules in GRAT, as detailed in the Genesys Rules System
Deployment Guide.

• You configured GRDT to enable a connection to Configuration Server and Rules Repository Server.

Start

1. In Project Explorer, right click WebEngagement_CEPRule_Templatesapplication name.
2. Select Publish. The Publish Template Wizard opens.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 95

https://docs.genesys.com/Documentation/GWE/latest/Deployment/ComponentsSettings

The Publish Template Wizard.

3. Select WebEngagement_CEPRule_Templatesapplication name.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 96

Select WebEngagement_CEPRule_Templatesapplication name.

4. Click Finish.

End

Next Steps

• You can continue customizing your application:
• Customizing the SCXML Strategies
• Customizing the Browser Tier Widgets

• You can deploy your application.

Customizing an Application Publishing the CEP Rule Templates

Developer's Guide 97

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/BuildandDeploy

Customizing the SCXML Strategies
When you create your application, Genesys Web Engagement also creates default chat routing and
engagement logic strategies in the \apps\application_name\resources_composer-projects\
folder. Orchestration Server (ORS) uses these strategies to decide whether and when to make a
proactive offer and which channels to offer (chat or web callback). You can modify these strategies by
importing them into Composer.

Warning: When importing routing strategies, you must not enable the Copy projects into
workspace option.

Routing Strategy Import Dialog

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 98

Warning: When you modify your routing strategies, you can update workflows and processes. You
can also compile the strategies. But you must not use Composer's Publish functionality, which is
incompatible with Web Engagement.

The following shows the Chat Routing workflow, where interactions are routed to agents with
"Customer Service" or "Customer Care" skills:

A Chat Routing workflow example.

When you alter the strategies, you must save your changes, generate the code, redeploy, and restart
your Genesys Web Engagement application to apply those changes.

You can customize the routing strategies to help meet your specific business needs:

• Customizing the Engagement Strategy
• Customizing the Chat Routing Strategy

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 99

https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeChatRouting

Customizing the Engagement Strategy
When you create your Web Engagement application, Genesys Web Engagement also creates default
Engagement Logic and Chat Routing SCXML strategies in the
\apps\application_name\resources_composer-projects\ folder. Orchestration Server (ORS) uses
these strategies to decide whether and when to make a proactive offer and which channels to offer
(chat or web callback).

The Engagement Logic strategy processes Genesys Web Engagement interactions, and consists of
sub-workflows to handle: general processing, decision making, obtaining additional information from
the Cassandra database through the REST API, and contacting the Web Engagement Server with
instructions according to the engagement (or non-engagement) process.

You can modify the Engagement Logic SCXML by importing the Composer project into Composer. The
project is located here: \apps\application name\resources_composer-projects\
WebEngagement_EngagementLogic\. Refer to the sections below for details about the
Engagement Logic strategy and how it can be modified.

Main Interaction Process and Workflow

When Genesys Web Engagement creates an engagement attempt, the Web Engagement Server
creates an Open Media interaction of type webengagement and places it into the interaction queue
specified by the queueQualified option. By default, this option is set to the Webengagement_Qualified
queue. Orchestration Server (ORS) monitors this queue and pulls the interaction to process it with the
Engagement Logic strategy.

The Interaction Queue

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 100

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/Composer/8.1.3/Help/ImportandExport#Importing_Composer_Projects_into_Your_Workspace
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified

Passing Parameters into the Engagement Logic Strategy
When Genesys Web Engagement creates an engagement attempt, the Web Engagement Server
creates an Open Media interaction of type webengagement and places it into the Interaction Queue
specified by the queueQualified option. By default, this option is set to the Webengagement_Qualified
queue. Orchestration Server (ORS) monitors this queue and pulls the interaction to process it with the
Engagement Logic strategy.

Since ORS does not connect to the Web Engagement Server(s), certain parameters must be passed
to the Engagement Logic strategy in order to provide ORS with the data it needs.

1. The address where the SCXML strategy is located. Note: The default Engagement Logic and Chat
Routing strategies are located as resources under the Web Engagement Server. Provisioning
automatically specifies this address in the related Configuration Server objects when GWE is installed.
Since you can host strategies in other places, you can manually update the parameters in the related
objects.

2. The address where the Web Engagement Server can be accessed (if a secure address is present, pass
this as well). This information is used to issue REST requests to the GWE Cassandra database and to
start or cancel the engagement procedure through the Web Engagement Server.

The parameters are passed to ORS through the Enhanced Routing script object
Webengagement_Qualified.Routing that is associated with the Webengagement_Qualified Interaction
Queue.

The Webengagement_Qualified.Routing Script Object

There are several parameters specified by default, as shown in the following image.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 101

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified

The Webengagement_Qualified.Routing Parameters

The first set of parameters, (1) serverURL and serverURLSecure correspond to the (2)
BackendURL and BackendURLSecure parameters used in 8.1.2, which are still available, but are
now deprecated. You can also set (3) the maximum number of engagement attempts and (4) the
maximum number of simultaneous engagements.

In cases where you need a separate address for chat processing, use the mediaServerURL
parameter. This parameter is similar to the serverURL parameter but is used to specify a separate
URL to be used only for chat processing. This can be useful in situations where:

• Event traffic uses a non-secure server (as specified by the serverURL parameter), but you need a
secure connection for your chat traffic (in which case mediaServerURL will specify an HTTPS
endpoint)

• Event traffic is processed on one port, but chat traffic needs to be processed on a second port on the
same host

The Engagement Logic strategy has two interaction processes:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 102

• clean.ixnprocess — This process is explained in Cleaning Interaction Process
• queueBased.ixnprocess — This process features the major logic for the strategy.

In this section, we will consider the second one.

To access the above-mentioned parameters from within Composer, use the Composer Access
Project Variables button shown in the following image. Note: In order to access Project Variables,
your current tab in Composer must display Interaction Process (not Workflow).

This button opens a window containing the variables we are currently interested in:

Now let's take a look at queueBased.ixnprocess. Select it in the Package Explorer:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 103

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#Cleaning_Interaction_Process

The entry point Interaction Queue (Webengagement_Qualified) is shown here:

And its properties are here:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 104

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified

After the interaction is taken into processing, it is placed into a set of workflows for processing. All
workflows have notes related to specific blocks, however, this document highlights the most
important items.

Preventing Interaction Termination into Sub-flows
For all workflows, you must make sure that the workflow is configured to not terminate the
interaction upon exiting. If this step is not followed, the entire interaction process will not be able to
finish due to termination of the interaction in one of the sub-flows.

Note: Out-of-the-box Engagement Logic strategies already have the correct specified value (0) for
the system.TerminateIxnOnExit variable.

You must perform the following steps to turn off the termination of the interaction at the end of the
sub-flow:

1. Open the workflow diagram in Composer (note that in the images, it is shown as default.workflow).

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 105

2. Select the Entry block.

3. Open the properties of this block and access the Global Settings > Variables.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 106

4. Locate the variable system.TerminateIxnOnExit. In this case, we have filtered the variables so only
those that contain the string Terminate are showing. Set the value to 0.

Accessing User Data from the webengagement Interaction and Passing it into
Sub-flows
One of the most important features of the Engagement Logic is its ability to access User Data from
webengagement interactions. This data is populated by the Web Engagement Server and includes,
among other things, information provided by a pacing algorithm.

In previous releases of Genesys Web Engagement, this information was only available in JSON format
and needed to be parsed by the strategy in order to be easily used. If you are using a strategy from
release 8.1.2, you can still use access JSON data by specifying 8.1.2-compatible user data.

After data is parsed and assigned to variables, it can be propagated to sub-flows and used there. Sub-
flows are also able to pass output data in a backward direction.

In the following example, we show the TakeEngagementDecision subroutine:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 107

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#812compatibleuserdata

Then, you can see its parameters, which are displayed in a Composer window below the workflow
diagram:

Let's consider the parameters we are passing into decision.workflow, including
event_chatChannelCapacity and event_webcallbackChannelCapacity, as well as the
parameters we are receiving from the workflow, including,cancelCode, cancelDescription and
decision:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 108

Attached Data in Web Engagement 8.5
As specified in the following tables, Genesys Web Engagement 8.5 supports key-value pair–based
user data that is useable by Genesys Reporting, in addition to making 8.1.2-compatible data
available.

8.1.2-Compatible Data

Previous releases of Genesys Web Engagement provided JSON-based user data. If you would like the
Web Engagement Server to continue to attach 8.1.2-style data, set the attach812StyleUserData
option in the [userData] section to true, which provides access to the following two fields:

Key Type Description

ScheduledAt UTC-based timestamp of "Now"

This parameter is used by
Orchestration to pull interaction
into cleaning strategies if for
some reason it was not not
processed by Engagement Logic
strategy

jsonEvent String, which contains JSON
object

GWE 8.1.2-compatible field. Will
be attached only if the
attach812StyleUserData
option is set to true.

Mandatory Actionable Event Fields

Key Contents Description

HotLead_eventID UUID eventID obtained from Actionable
event

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 109

https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#attach812StyleUserData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData

Key Contents Description
HotLead_eventName String Actionable event name.

HotLead_visitID UUID visitID obtained from Actionable
event

HotLead_globalVisitID UUID globalVisitID obtained from
Actionable event

HotLead_pageID String browserPageID obtained from
Actionable event

HotLead_url String url obtained from Actionable
event

HotLead_languageCode String languageCode obtained from
Actionable event

HotLead_timestamp long timestamp obtained from
Actionable event

HotLead_category String category obtained from
Actionable event

HotLead_rule String rule obtained from Actionable
event

Web Engagement Server Data

Key Type Description

HotLead_engagementID UUID
ID of Engagement Profile
associated with
webengagement interaction

HotLead_engagementAttempts int
Count of engagement attempts
(accepted and rejected) that
happened already on this visit

HotLead_engagementsInProgress int Count of currently active
engagement attempts

pacing_chatCapacity int Actual capacity of chat channel,
predicted by pacing

pacing_webcallbackCapacity int Actual capacity of webcallback
channel, predicted by pacing

pacing String
JSON object, which includes
detailed group-based pacing
information

Optional Fields

Key Type Description

HotLead_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of actionable
event.
List of fields should be specified
in the option
eventType.ACTIONABLE

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 110

https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventType.ACTIONABLE

Key Type Description
([userData] section)
For example:
1) Actionable event has data
fields "myCustomField" and
"myAnotherCustomField":
"data": {"myCustomField":
"SomeValue",
"myAnotherCustomField":
"SomeAnotherValue"}
2) eventType.ACTIONABLE has
value "myCustomField"

GWE 8.5 will attach to the User
Data only the following pair:
"HotLead_myCustomField":
"SomeValue"

VisitStarted_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of VisitStarted
event.
List of fields should be specified
in the option
eventName.VisitStarted
([userData] section)
The following keys are available:
"userAgent",
"screenResolution",
"language", "timezoneOffset"

In OOB template option
eventName.VisitStarted has
value "timezoneOffset"
Correspondingly, GWE 8.5 will
attach to the User Data the
following pair:
"VisitStarted_timezoneOffset":
25200000 (value will depend on
visitor's timezone)

SignIn_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of SignIn
event.
List of fields should be specified
in the option eventName.SignIn
([userData] section)
List of available keys depends on
customer's workflow

UserInfo_<customFieldName> String

Field with name
<customFieldName>, obtained
from data object of UserInfo
event.
List of fields should be specified
in the option
eventName.UserInfo ([userData]

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 111

https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventName.VisitStarted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventName.SignIn
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#eventName.UserInfo
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData

Key Type Description
section)
List of available keys depends on
customer's workflow

Engagement Policy (Decision Workflow)

Engagement policy is the other name of decision workflow.

Consider the most important points provided by the out-of-the box strategy:

Count of Engagement Attempts
Check the count of engagement attempts already proposed to the current visitor.

To see where this check is executed open decision.workflow:

Looking at the workflow, you can select the ApplyEngagementPolicy block:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 112

In the properties for this block, select Branching > Conditions and open CorrespondsToPolicy:

CorrespondsToPolicy is an expression that uses application parameters from the
Webengagement_Qualified.Routing script object to determine how many engagement attempts
should be proposed for a particular visitor. Note: Engagement attempts in the current visit that were
closed with a timeout disposition code will not be taken into account, as there is no guarantee
whether the visitor has seen them. For example, the invitation may appear on a non-active browser
tab or window.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 113

Pacing Information
Check pacing information. This is executed inside of the CheckPacingEngagementChannel block:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 114

Note: The out-of-the-box strategy operates only on general information obtained from the pacing
algorithm: in particular, the event_chatChannelCapacity and event_callbackChannelCapacity
variables, which are passed from default.workflow, contain the accumulated (by channel) count of
interactions that can be triggered at a particular moment. You can also pass more detailed
information provided by the pacing algorithm into the decision workflow and build a more
sophisticated decision maker. The images below show the general idea: do not engage the visitor if
the count of available "interactions to produce" is 0 for both channels:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 115

Obtaining Data from the GWE Cassandra Database through REST
Requests

Requesting data from Web Engagement Server through the REST
During the decision making process, it might be useful to access data from the Web Engagement
Cassandra database. For example, to check additional parameters that are collected there.

The out-of-the-box Engagement Strategy provides an example of accessing the Cassandra database
in order to get the TimezoneOffset of the visitor's browser, and correspondingly modify the
greetings good evening, good morning, and so on. Note: the SCXML State block that is used to
demonstrate these concepts is disabled by default in Web Engagement 8.5. It has only been retained
as a sample, because the GWE 8.5 server provides related information as a part of the User Data in
the webengagement open media interaction.

Consider how Engagement Strategy does this task.

1. Use the SCXML State block in order to make the REST request with specified parameters.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 116

Use the State block to make REST requests

Note: The ServerURL and visitID parameters are passed from the parent workflow into this sub-flow.
2. Parse response to the REST request. After the response is successfully obtained, it should be parsed in

order to extract required data. In this example, the timezoneOffset parameter is obtained from the
data of the VisitStarted event:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 117

Parse the response to the REST request

Note: Alternatively, instead of the SCXML State block, you can use a Web Request or Web Service
block. In this case, Composer requires this logic to be hosted as a web application, which means the
entire Composer project must be hosted outside of the Web Engagement application. With Composer,
you can export the project as a web application in WAR format. This approach is not used in out-of-the-
box strategies.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 118

Configure Authentication in the out-of-the-box SCXML Strategy
Genesys Web Engagement 8.1.2 and higher provides basic access authentication on the base of
providing username/password pairs.

Username and password parameters, used in the SCXML State block, are passed into getRESTInfo
workflow from the parent workflow:

The username and password application variables in getRESTInfo.workflow.

The username and password parameters are specified in variables of the Entry block in
default.workflow:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 119

The username and password application variables in the default.workflow.

You must check that these credentials are compliant with the credentials specified in the security
section of the Web Engagement Cluster or Web Engagement Server options:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 120

The username and password are specified in the security section

See Configuring Authentication for details.

Start Engagement as a Result of the Engagement Logic Strategy

Sending the "start engage" Request to the Web Engagement Server
The special workflow engage.workflow notifies the Web Engagement Server about the start
engage command.

Notification of the Web Engagement Server is executed through the REST request using the SCXML
State block:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 121

https://docs.genesys.com/Documentation/GWE/latest/Deployment/Authentication
https://docs.genesys.com/Documentation/GWE/latest/API/EngagementAPI#Start_Engagement_Attempt

The REST request notifies the Web Engagement Server

Note: Authentication aspects shown here are the same in getRESTInfo.workflow.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 122

Fulfilling IxnProfile for "start engage" Request
Take note of the IxnProfile structure, which is passed in REST request to the Web Engagement
Server. This structure is fulfilled in the ECMA Script block called FulfillEngagementProfile.

The following object is sent to the Browser:

ixnProfile = {
'data': data
}

Consider the structure of the data object:

var data = {
'profile': engageProfile,
'notification': notification_message

}

As you can see, there are two fields:

• profile — represented by the variable engagementProfile.
• The content of this variable will be considered below. You can change the content of this variable if

the SCXML strategy worked in the area of visitor identification.
• It is not recommended to change it if related items are not a part of your modified strategy.

• notification — represented by the variable notification_message.

The structure of the notification message is described in Chat Invitation Message and Callback
Invitation Message.

Structure of the engagementProfile variable

Field name Field contents Description

engagementID UUID Auto-generated field which identifies
exactly one engagement attempt

visitID UUID
visitID of current session
(obtained from
HotLeadActionableEvent)

globalVisitID UUID
globalVisitID of current session
(obtained from
HotLeadActionableEvent)

webengagementInteractionID String
ID of "webengagement" OM
interaction associated with this
Engagement Profile

pageID String
PageID identified specific tab in
browser (obtained from
HotLeadActionableEvent)

category String List of categories specified in
HotLeadActionableEvent

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 123

https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Chat_Invitation_Message
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Callback_Invitation_Message
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Callback_Invitation_Message

Field name Field contents Description

rule String Name of rule, which triggered
this HotLeadActionableEvent

userID String

String, which allows to identify
authorized and recognized
visitors
For anonymous users it will be
null

userState String
State of current visit:
Anonymous, Recognized or
Authorized

firstName String First name of non-anonymous
user

lastName String Last name of non-anonymous
user

userData String

JSON string which represents
User Data, collected on
webengagement OM interaction
before submit and in the
Engagement Logic strategy

You can change the fields firstName, lastName and state in the case of additional work being
executed in the visitor identification area. In this case, the Web Engagement Server applies passed
values to the identity record of the specified engagementId.

Cancelling Engagement as a Result of the Engagement Logic
Strategy

Sending "cancel engagement" to Web Engagement Server
This is similar to sending start engage, request cancel engagement; it also uses the SCXML
State block to trigger a REST request to the Web Engagement Server:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 124

https://docs.genesys.com/Documentation/GWE/latest/API/EngagementAPI#Cancel_Engagement_Attempt

The REST request cancels the engagement

Security (authentication) aspects are the same as described in the getRESTInfo.workflow.

Fulfilling "no engage" Data
no engage data is available in the script properties of the FulfillNoEngagementData block:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 125

It contains six mandatory fields:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 126

Cleaning Interaction Process

In GWE 8.1.2 the cleaning process was responsible for removing stuck webengagement
interactions. An interaction can be stuck in one of the interaction queues for various reasons. For
example:

• Visitor obtained engagement invitation. This means that the webengagement interaction was put into
the Webengagement_Accepted queue.

• Power-off appeared on visitor's host, so the answer (Accept, Reject, or Timeout) was not delivered to
Genesys Web Engagement.

In this case, you need to define the cleaning process, which is also built on the top of ORS strategies.

The cleaning interaction process in Web Engagement 8.5 also carries out some other important
functions. It is responsible not only for cleaning stuck interactions, but also for the entire life cycle of
webengagement Open Media interactions, including these functions:

• Detecting when an interaction should be moved into a specific Interaction Queue
• Moving an interaction through the Interaction Queues
• Detecting when an interaction should be terminated
• Terminating an interaction

The Cleaning process has 6 entry points:

• Webengagement_Engaged
• Webengagement_Accepted
• Webengagement_Missed (new in GWE 8.5)
• Webengagement_Rejected
• Webengagement_Failed
• Webengagement_Timeout

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 127

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueEngaged
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueMissed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueRejected
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout

Note that the Webengagement_Qualified queue is no longer monitored by the Web Engagement 8.5
cleaning process. It is only used in the main process.

The cleaning process has two workflows:

• waitForDisposition.workflow
• clean.workflow

The waitForDisposition.workflow only works with the Webengagement_Engaged queue, while
clean.workflow works with all other queues and is extremely simple, as it only stops the interaction.

The "Wait for disposition" flow
This new workflow is dedicated to listening for User Data changes in webengagement interactions
and deciding which Interaction Queue the interaction should be moved to.

The interaction's disposition code (accept, reject, and so on) will be available in User Data as a key-
value pair with a key of dispositionCode. As soon as the dispositionCode key-value pair is
obtained, the result will be analyzed.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 128

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueQualified
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueEngaged

Here are the valid values for dispositionCode and the queues their interactions are placed in:

Value Description Queue

accept The visitor has accepted the
engagement invite Webengagement_Accepted

cancel The visitor has cancelled the
engagement invite Webengagement_Rejected

timeout The engagement invite has timed
out Webengagement_Timeout

pageExit The visitor has exited the page Webengagement_Failed

Notes

• For all other disposition code values, the associated interaction will be placed in the
Webengagement_Failed queue.

• If the disposition code is not defined, the strategy will wait for the next User Data change or for a
timeout.

• Disposition codes values are case-sensitive. For example, on receiving a disposition code of Accept
(instead of accept) Web Engagement will place the associated interaction in the
Webengagement_Failed queue

• If a timeout occurs, the interaction will be placed in the Webengagement_Timeout queue.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 129

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueRejected
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout

The "Cleaning" flow
The cleaning flow is quite simple: it stops the interaction. It operates with 5 terminal Interaction
Queues:

• Webengagement_Accepted
• Webengagement_Missed
• Webengagement_Rejected
• Webengagement_Failed
• Webengagement_Timeout

As soon as the interaction reaches one of these queues, it will be stopped by the strategy.

Propagating Data from Engagement Logic strategy into Chat
Routing Strategy

Use Case Description
In the routing process, it often makes sense to use business data from events that are produced on
the browser side. The Web Engagement Server automatically attaches this data to the User Data of
the webengagement interaction, but you can also propagate it to the chat or web callback
interactions.

For example:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 130

https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueAccepted
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueMissed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueRejected
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueFailed
https://docs.genesys.com/Documentation/GWE/latest/Deployment/queues#queueTimeout

• Business data produced on the page provides information about language.
• This information is passed as a User Data key into the webengagement interaction.
• During the Engagement Logic strategy, language information is re-attached and propagated to the chat

interaction.
• The Chat Routing strategy reads language information from the User Data of the chat interaction and

decides into which group to route the chat interaction.

The following are details of the described data propagation.

Attach UserData to the webengagement Interaction
All of the User Data contained in a webengagement Open Media interaction can be propagated into
a media interaction created on the top of the webengagement interaction.

The propagated fields are controlled by the keysToPropagate option in the [userData] section.

Additionally, you can collect data in the Engagement Logic strategy and attach it to the
webengagement interaction by using the User Data block, then you can add related fields into the
keysToPropagate option.

Control Copying UserData from webengagement Interaction to the Chat (or web
callback) Interaction
When a chat or web callback interaction is created, GWE attaches the UserData available in its parent
Open Media webengagement interaction. You can control how this data is attached by using the
keysToPropagate option in the [userData] section of the Web Engagement Server application. This
option has three modes:

• Copy all UserData
• Do not copy UserData
• Copy only specific KV pairs from UserData

The following tables provide example values for the keysToPropagate option. In these examples, the
Open Media webengagement interaction UserData contains the keys ORS Data, rule, strategy,
some data.

Value of keysToPropagate Data in the engagement interaction

all All keys are copied: ORS Data, rule, strategy, some
data.

no No keys are copied.
rule;strategy The rule, strategy keys are copied.

blank or empty If the value of keysToPropagate is absent or has an
empty value, no keys are copied.

my_key1;ORS Data
The ORS Data key is copied. my_key1 is ignored
because it is not part of the keys in the Open Media
webengagement interaction UserData.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 131

https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#keysToPropagate
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#keysToPropagate
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData
https://docs.genesys.com/Documentation/GWE/latest/Deployment/userData#keysToPropagate

Accessing Pacing Information from the Engagement Logic
Strategy

In release 8.5, Web Engagement provides the Engagement Logic strategy with pacing data for the
chat and web callback channels. You can access pacing information in two ways:

• Through the consolidated channel capacity (measured in the number of "allowed" interactions).
• Through detailed information for each channel, which contains capacity (measured in the number of

"allowed" interactions) for each particular group in a channel.

Important
The pacing information available to the Engagement Logic strategy is different from
the information returned from the Pacing API. You should evaluate each type of pacing
information carefully before deciding how to use it.

Pacing information is added to webengagement open media interaction User Data by the Web
Engagement Server. This information can then be read in the SCXML strategy — see Main Interaction
Process and Workflow for an example. The information is located (among other specific data, such as
the data provided in business events) in the User Data of the webengagement interaction, as
described above in the section on Accessing User Data from the webengagement Interaction and
Passing it into Sub-flows.

Understanding How the Pacing Algorithm Works
A dedicated pacing algorithm serves each particular group of agents, so if you have 2 chat-oriented
and 1 web callback-oriented group of agents, there will be 3 instance of the pacing algorithm (1 for
each group).

The agent availability on the specific channel is calculated taking into account the following:

• The agent state on the particular media (chat and web callback are different)
• Capacity rules.

For example, consider an agent who has a capacity rule for 2 chat interactions. In this scenario, the
following statements are true:

• Agent is Ready and has no interactions in progress. In this case, the agent is treated as 2 Ready agents
with a capacity rule of 1.

• Agent is Ready and has one interaction in progress. In this case, the agent is treated as 1 Ready agent
with a capacity of 1.

• Agent is Ready and has two interactions in progress. In this case, the agent is treated as 0 Ready agents
with a capacity of 1.

• Agent is Not Ready (count of interactions in progress does not matter). In this case, agent is treated as
0 Ready agents with a capacity of 1.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 132

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#Main_Interaction_Process_and_Workflow
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#Main_Interaction_Process_and_Workflow
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#acessinguserdata
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#acessinguserdata

The agent availability on the specific channel is also handled differently in the two main pacing
algorithm methods, SUPER_PROGRESSIVE and PREDICTIVE_B.

The SUPER_PROGRESSIVE method consumes the following major parameters:

• The number of Ready agents in the group.
• The number of pending (waiting for answer) interactions.
• HitRate - the percentage of accepted invitations compared to the general number of proposed

engagement invitations.

Important
It is important to remember that the values of these parameters are continuously
changing.

Consider the following example: There are 7 Ready agents (each with a capacity rule of 1), the
number of pending interactions is 5, and the HitRate is 0.05.

In this case, the pacing algorithm might predict the number of allowed interactions approximately as
(7 / 0.05 - 5) = 135.

Important
This example is intended to provide a basic idea of how the pacing algorithm works.
The finer details are more complex.

The PREDICTIVE_B method consumes the following major parameters:

• The number of logged in agents in the group.
• The Average handling time of interactions. For example, the average duration of a chat session with

visitors.
• HitRate - the percentage of accepted invitations compared to the general number of proposed

engagement invitations.

Important
It is important to remember that the values of these parameters are continuously
changing.

This algorithm is more complex than SUPER_PROGRESSIVE, but the general information described for
SUPER_PROGRESSIVE also applies to PREDICTIVE_B: The number of 'allowed' interactions will
significantly exceed the number of Logged In agents (depending, first of all, on the HitRate
parameter).

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 133

Consolidated Pacing Information by Channel
Capacity for the chat channel is available in the pacing_chatCapacity field and capacity for the web
callback channel is available in the pacing_webcallbackCapacity field.

For example:

pacing_chatCapacity:12
…
pacing_webcallbackCapacity:0
…

Detailed Pacing Information
Detailed pacing information is available as a nested JSON object with the following structure:

pacing: {
channels :
[

{
name: <name of this channel>,
groups:
[

{
name: <name of this group>,
capacity: <count of allowed interactions for this group>,
reactiveTrafficRatio: <portion of inbound chat\webcallback traffic that should be

'left' in the system>
},
...

],
capacity: <count of allowed interactions for this channel>

},
...

]
}

You can access detailed information in the Engagement Strategy SCXML as follows:

var pacingData = JSON.parse(_genesys.ixn.interactions[system.InteractionID].udata.pacing);
var currentChannel = undefined;
var channel = undefined;
var chatChannel = undefined;

for (channel in pacingData.channels) {
currentChannel = pacingData.channels[channel];
if (currentChannel.name=='chat') {

chatChannel = currentChannel;
break;

}
}

var englishChatGroupCapacity = undefined;
var group = undefined;
var currentGroup = undefined;

if (chatChannel != undefined) {
for (group in chatChannel.groups) {

currentGroup = chatChannel.groups[group];
if (currentGroup.name=='English Skill Group') {

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 134

englishChatGroupCapacity = currentGroup.capacity;
break;

}
}

}

Example of Using Pacing Information
Agents

Consider the following scenario where there are four chat and voice groups with agents in each
group:

• English Language Chat Group = Adam (logged in and ready) and Anna (logged in, not ready)
• Dutch Language Chat Group = Bart (NOT logged in) and Berta (NOT logged in)
• English Language Voice Group = Adam (logged in and ready) and Amanda (logged in and ready)
• Dutch Language Voice Group = Dan (logged in, ready)

The following group configuration options are set on the Web Engagement Cluster application:

• chatGroups = English Chat Group;Dutch Chat Group
• voiceGroups = English Voice Group;Dutch Voice Group

Customers

On the customer-facing website, two events are triggered simultaneously:

• Chris triggers a Hot Lead event on an English page.
• Merijn triggers a Hot Lead event on a Dutch page.

Pacing information

When events are triggered simultaneously, pacing information is the same. In this scenario, the
SUPER_PROGRESSIVE algorithm is used and the following parameters were true at the moment the
events were triggered:

• English Chat Ready agents: 1
• Dutch Chat Ready agents: 0
• English Voice Ready agents: 2
• Dutch Voice Ready agents: 1
• HitRate: 0.2
• Pending engagement invites: 0
• Reactive traffic is turned off

In this case, the results might look like this:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 135

https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#chatGroups
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#voiceGroups

...
chatChannelCapacity : 5,
webcallbackChannelCapacity : 16,
pacing: {

channels :
[

{
name: "chat",
groups:
[

{
name: "English Language Chat Group",
capacity: 5,
reactiveTrafficRatio: 0

},
{

name: "Dutch Language Chat Group",
capacity: 0,
reactiveTrafficRatio: 0,

}
],
capacity: 5

},
{

name: "webcallback",
groups:
[

{
name: "English Language Voice Group",
reactiveTrafficRatio: 0,
capacity: 11

},
{

name: "Dutch Language Voice Group",
reactiveTrafficRatio: 0,
capacity: 5

}
],
capacity: 16

}
]

}

Possible Engagement Logic SCXML flows

In this scenario, the following SCXML flows are possible for the two customers, Chris and Merijn:

• Chris
We can extract the capacity for the "English Language Chat Group" (5) and "English Language
Voice Group" (11) from the pacing data.

In the decision workflow, it is possible to engage Chris on the chat or web callback channel. It is
also possible to show him a modified invitation, where he can explicitly choose chat or web
callback.

• Merijn
We can extract the capacity for the "Dutch Language Chat Group" (0) and "Dutch Language Voice
Group" (5) from the pacing data.

In the decision workflow, it is possible to engage Merijn on the web callback channel only.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 136

Customizing the Chat Routing Strategy
When you create your Web Engagement application, Genesys Web Engagement also creates default
Engagement Logic and Chat Routing SCXML strategies in the
\apps\application_name\resources_composer-projects\ folder. Orchestration Server (ORS) uses
these strategies to decide whether and when to make a proactive offer and which channels to offer
(chat or web callback).

The default Chat Routing strategy delivers chat interactions that are initiated in Genesys Web
Engagement to a specific target. Although this strategy is included as part of the Web Engagement
installation, it is possible to use your own existing strategy for routing. For example, a URS-based
chat routing strategy; however, in this scenario you will need to adjust the Web Engagement solution
to support the pacing algorithm functionality.

You can modify the Chat Routing SCXML by importing the Composer project into Composer. The
project is located here: \apps\application name\resources_composer-projects\
WebEngagement_ChatRouting\. Refer to the sections below for details about the Chat Routing
strategy and how it can be modified.

Main Interaction Workflow

The default entry point to the GWE Chat Routing strategy is the Interaction Queue specified in the
webengagementChatQueue option on the Web Engagement Cluster application.

The Interaction Queue.

The interaction process pulls interactions from this queue and sends them through the chat workflow:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 137

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/Composer/8.1.3/Help/ImportandExport#Importing_Composer_Projects_into_Your_Workspace
https://docs.genesys.com/Documentation/GWE/latest/Deployment/chatOptions#webengagementChatQueue

The chat workflow

Important
If you decide to change the value of queueWebengagement, make sure to also

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 138

adjust the name of the queue in the Chat Routing strategy.

The default Chat Routing strategy is straightforward and includes the following highlights in the
workflow:

1. Obtain information from the User Data of the chat interaction that is being routed. See the
AssignCategory block in the Chat Routing Strategy for details.

2. Send messages to the chat session from the routing strategy. See Sending Messages from the Chat
Routing Strategy into the Chat Session for details.

3. Branch the workflow based on categories obtained from the chat interaction User Data. See the
BranchingByCategory block for details.

4. Route to skill-based Virtual Groups. See the RouteCustomerServer and RouteCustomerCare blocks
for details.

5. Route to a static Agent Group. See Routing to a Static Agent Group for details.

Routing to a Static Agent Group

When you plan to route an interaction to a static Agent Group, you should specify the name of this
group and the name of the Stat Server in the Target property of the RouteInteractionDefault block.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 139

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeChatRouting#Sending_Messages_from_the_Chat_Routing_Strategy_into_the_Chat_Session
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeChatRouting#Sending_Messages_from_the_Chat_Routing_Strategy_into_the_Chat_Session
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeChatRouting#Routing_to_a_Static_Agent_Group

The Target property of the RouteInteractionDefault block.

In the image above, the Stat Server name is specified through the
Variable(_data.StatServerName) variable. You can define this variable, or others like it, in
Composer and Genesys Administrator.

Specifying Variables in Composer
Start

1. Double click the interaction process - in this case, webme_chat.ixnprocess.
2. Make sure that there are no elements selected in the opened interaction process.
3. Access the interaction process variables by clicking "Access Project Variables", marked with a red

square in the image below:

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 140

Access the project variables

In the image above, the StatServerName variable is used in the default Chat Routing strategy.

End

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 141

Specifying Variables in Genesys Administrator
The StatServerName parameter is set automatically by the Provisioning Tool when you install
Genesys Web Engagement, but it can be changed manually.

Start

1. Navigate to Provisioning > Environment > Scripts and find the script with the entry-point
Interaction Queue. In this case, the script is Webengagement_Chat.Routing.

2. In the Configuration tab, open the Orchestration section.
3. Now you can see a list of parameters that are passed into the Chat Routing strategy, including

StatServerName.

The StatServerName parameter.

End

Sending Messages from the Chat Routing Strategy into the Chat

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 142

https://docs.genesys.com/Documentation/GWE/latest/Deployment/AutomaticProvisioning

Session

There are times when you might need to send messages into the chat session directly from the
routing strategy. For example, this could be additional information messages, advertising messages,
and so on.

The default Chat Routing strategy contains an External Service block that provides this
functionality:

The External Services block lets you send message from the routing strategy.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 143

Important
The External Service block is disabled by default.

Customizing an Application Customizing the SCXML Strategies

Developer's Guide 144

Customizing the Browser Tier Widgets

Deprecation notice

• Starting with the 8.5.000.38 release of Genesys Web Engagement, Genesys is deprecating the Native Chat and
Callback Widgets—and the associated APIs (the Common Component Library)—in preparation for discontinuing
them in the Genesys Engagement Manager 9.0 release.

This functionality is now available through a single set of consumer-facing digital channel APIs that are part of Genesys Mobile
Services (GMS), and through Genesys Widgets, a set of productized widgets that are optimized for use with desktop and mobile
web clients, and which are based on the GMS APIs.

Genesys Widgets provide for an easy integration with Web Engagement (which will become Genesys Engagement Manager in the
9.0 release), allowing you to proactively serve these widgets to your web-based customers.

Important
Although the deprecated APIs and widgets will be supported for the life of the 8.5 release of Web
Engagement, Genesys recommends that you move as soon as you can to the new APIs and to Genesys
Widgets to ensure that your functionality is not affected when you migrate to the 9.0 release.

• Note that this support for the Native Chat and Callback Widgets and the associated
APIs will not include the addition of new features and that bug fixes will be limited to
those that affect critical functionality.

• As mentioned above, all support for the deprecated widgets and APIs will be dropped
as of the 9.0 release of Genesys Engagement Manager.

Genesys Web Engagement includes pre-integrated Browser Tier widgets that are used for
engagements. These widgets are based on HTML, CSS, and JavaScript, and can be customized to suit
the look and feel of your website.

Warning
If you customize the widget HTML files, they will not be backward compatible with any
new versions of Genesys Web Engagement.

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 145

https://docs.genesys.com/Documentation/GMS/latest/API/Welcome
https://docs.genesys.com/Documentation/GWE/latest/Developer/MediaIntegration

Invitation Widget

Overview

The default invitation approach in Genesys Web Engagement is represented by invite.html (chat
and callback invitation). This HTML file, by default, has all the required dependencies embedded to
avoid extra requests to the server.

The invite.html file has three code sections:

• Initial HTML Section
• JavaScript Third-party Libraries (dependencies) Section
• JavaScript Invitation Business Logic Section

Customization

There are four main ways you can customize the invitation widget:

• HTML/CSS — You can edit the HTML/CSS of your page or the invite.html file.
• Business Logic — You can modify the business logic included in the invite.html file to work with

second- or third-party integration.
• Notification Service — You can change the JavaScript configuration through the Notification Service

REST API.
• You can build your own version of the invitation. The default invitation widget is an example of a

custom-built widget.

HTML/CSS

Important
In the paragraphs below, Genesys assumes that you have basic knowledge of CSS and
HTML technologies.

If you need to change the basic style of the invitation (color, company logo, size, and so on) Genesys
recommends that you use the HTML/CSS approach.

By default, the invite widget also contains all of the CSS needed for invite rendering, which is
automatically added to the beginning of the <head> section of the web page when the invite is
initialized.

If you need to modify these default styles, but you don't want to make it difficult to upgrade to newer

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 146

https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI

versions of the widget, you can can create custom override styles. Make sure that your overrides are
scoped to the components that need additional styling, and structure them so that they don't conflict
with or overwrite any stand CSS files.

When overriding styles, consider the following points:

1. Review how the classes are assigned in the invite widget markup to better understand how they're
applied (and how they can be overridden).

2. Create an override stylesheet. The best way to safely fine-tune a widget's appearance is to write new
style rules that override the invite widget's styles and append these "override rules" in a separate
stylesheet. Override rules are written against widget CSS class names and must appear in the source
order after your theme stylesheet; since styles are read in order, the last style rule always takes
precedence. By maintaining override styles in a separate file, you can customize the widget styles as
much or as little as you’d like and still preserve the ability to easily upgrade the widget files as needed
and simply overwrite your existing theme stylesheet, knowing that your override rules remain intact.
Override rules can be listed in a dedicated stylesheet for overriding default website styles, or if you
prefer to limit the number of files linked to your pages (and therefore limit the number of requests to
the server), append override rules to the master stylesheet for your entire project.

To see exactly what you can override, you can use the developer tools that are commonly found in
most modern web browsers. Currently, the Web Engagement CSS selector is not documented and
there is no guarantee for backward compatibility for future versions of the invite widget.

Customization Examples

Change subject, message, buttons caption

<div title="New Subject" class="gpe-helper-hidden gpe-dialog">
<div class="gpe-branding-logo"></div>
<div class="my-message-content">

New Message
</div>

</div>

Change colors (message, subject, background, and so on)
For example, if you want to change the dialog style to red colors, you can add these styles to your
page:

<style>
.gpe-dialog .gpe-dialog-titlebar {

background-color: red;
}
.gpe-dialog .gpe-button-text {

color: red;
}

</style>

Or message color:

<style>
.gpe-dialog .message-content {

color: blue;
background-color: red;

}
</style>

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 147

Or inline customization:

<div title="Chat" class="gpe-helper-hidden gpe-dialog">
<div class="gpe-branding-logo"></div>
<div class="message-content" style="color: #ffcc00; background-color: #0066ff "></div>

</div>

Size of Invitation Widget
To change the size (width and height) of the invite widget, you can use following snippet:

<style>
.gpe-dialog {

width: 300px !important;
height: 200px !important;

}
</style>

Branding Logo
To customize the branding logo, you can use the CSS class "gpe-branding-logo". By default, the
invite.html file uses an embedded image resource with a Data URI Scheme (http://en.wikipedia.org/
wiki/Data_URI_scheme) in base64 format:

<div class="gpe-branding-logo" style="
background-image: url( ... AAASUVORK5CYII=);

">

To customize the logo, you can generate the same base64 data code for your own image with the
generator (http://base64converter.com/).

Alternatively, you can just use CSS:

<div class="branding-content" style=" background-image:url('myLogo.png'); "></div>

Business Logic
The invite.html file includes functions that you can change or replace for second- or third-party
media integration:

• init()

• startChat()

• startCallback()

• sendInviteResult()

• onAccept()

Generally, you will need to work inside the startChat() or startCallback() functions, but you can
also make additional changes in other functions. For example, if you need to integrate another type
of media besides chat or callback, you can use onAccept() to extend the number of medias the
invite supports. You must also be sure to make any necessary changes in the Engagement Logic
Strategy.

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 148

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy

Customization Examples

• Integration with Second- and Third-Party Media - Examples

Notification Service
The Notification Service is used to pass data to the invitation from the server. By default, data is
composed in the engage.workflow of the Engagement Logic Strategy (apps/application
name/resources/_composer-projects/WebEngagement_EngagementLogic/Workflows/
engage.workflow).

You can use predefined commands in the Notification Service REST API to show your own invitation —
particularly, gpe.callFunction and gpe.appendContent.

Customization Examples

• Notification Service REST API - Using the API to Customize Widgets

Localization

You can localize the invite by using the Chat Invitation Message. Use the subject, message,
acceptBtnCaption and cancelBtnCaption options to set specific text for the invite widget.

Chat Widget

Overview

The chat widget provides the main chat functionality for Genesys Web Engagement. It's a versatile
widget that can be customized through the Chat Service JS API and the Chat Widget JS API.

Customization

There are three different customization types available for modifying the chat widget UI: Template-
based, CSS-based, and JavaScript-based. Using these customization types, you can do any of the
following:

• modify the structure of the widget

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 149

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration#Examples
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.callFunction
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.appendContent
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Using_the_API_to_Customize_Widgets
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#chatinvite
https://docs.genesys.com/Documentation/GWE/latest/API/ChatService
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI

• add content
• add css classes
• modify the style (including the logo and buttons)
• use JavaScript UI hooks to modify the widget

For details about the customization types and how you can use them, see Customizing the User
Interface, part of the Chat Widget JS API.

You can also use the Chat Service JS API to build your own chat widget and control chat sessions.
Before creating your own chat widget, be sure to review the default chat widget — it's highly
customizable through the Chat Widget JS API, and it also provides access to the same Chat Service JS
API.

Localization

You can use the startChat and restoreChat methods of the Chat Widget JS API to enable
localization for the chat widget. For details and step-by-step instructions, see Localization.

Callback Widget

Overview

The callback widget is represented by the callback.html file. The callback widget can only be used
only in separate window mode and is currently not supported in embedded mode (like chat). The
HTML file, by default, has all the required dependencies embedded to avoid extra requests to the
server.

The callback.html file has three code sections:

• Initial HTML Section
• JavaScript Third-party Libraries (dependencies) Section
• JavaScript Invitation Business Logic Section

Customization

There are three main ways you can customize the callback widget:

• HTML/CSS — You can edit the HTML/CSS of your page or the callback.html file.

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 150

https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Customizing_the_User_Interface
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Customizing_the_User_Interface
https://docs.genesys.com/Documentation/GWE/latest/API/ChatService
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI#Localization

• Notification Service — You can change the JavaScript configuration through the Notification Service
REST API.

• You can build your own version of the callback widget. The default callback widget is an example of a
custom-built widget.

HTML/CSS

Important
In the paragraphs below, Genesys assumes that you have basic knowledge of CSS and
HTML technologies.

If you need to change the basic style of the callback widget (color, company logo, size) Genesys
recommends that you use the HTML/CSS approach.

By default, the callback widget also contains all of the CSS needed for rendering. You can override
any of the default styles by adding a <link> or <style> tag with your own CSS rules for the callback
widget.

To check which CSS you can override, you can use developer tools that are commonly found in most
modern web browsers. Currently, the Web Engagement CSS selector is not documented and there is
no guarantee for backward compatibility for future versions of the callback widget.

Customization Examples

Change color scheme
For example, you change the color scheme by adding the following CSS style section to the
callback.html file:

<style>
.callback-content{

color:green
background-color:#E1E2E3

}
</style>

Note that by default we use embedded resources for calback.html. All scripts, style sheets, images
are embedded.

Branding Logo
To customize the branding logo, you can use the CSS class "branding-content". By default, the
callback.html file uses an embedded image resource with a Data URI Scheme (
http://en.wikipedia.org/wiki/Data_URI_scheme) in base64 format:

<div class="branding-content" style="
background-image: url( ... GK5CYII=);

"></div>
</div>

To customize the logo, you can generate the same base64 data code for your own image with the

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 151

https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI

generator (http://base64converter.com/).

Alternatively, you can just use CSS:

<div class="branding-content" style=" background-image:url('myLogo.png'); "></div>

Notification Service
The Notification service is used to pass data to the invitation from the server. By default, data is
composed in the engage.workflow of the Engagement Logic Strategy (apps/application
name/resources/_composer-projects/WebEngagement_EngagementLogic/Workflows/
engage.workflow).

You can use predefined commands in the Notification Service REST API to show your own callback
widget — particularly, gpe.callFunction and gpe.appendContent

Customization Examples

Change the page size and position
You can use the Notification Service to set the callback size and position. For example, you could use
the gpe.setVariable method to add a global variable, called com.genesyslab.gpe.invite.data, with
a value of callbackPage which includes the modified page size and position:

var notification_message = [
{

'page': event.pageID,
'channel': 'gpe.setVariable',
'data': {

'variable': 'com.genesyslab.gpe.invite.data',
'value': {

callbackPage: {
pageWidth: 320,
pageHeight: 380,
pageTop: 150,
pageLeft: 150

}
},

}
},
{

'page': event.pageID,
'channel': 'gpe.appendContent',
'data': {

'url': '/server/resources/invite.html'
}

}
];

Other examples

• Notification Service REST API - Using the API to Customize Widgets

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 152

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeEngagement
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.callFunction
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.appendContent
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#gpe.setVariable
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI#Using_the_API_to_Customize_Widgets

Localization

Web Engagement uses the jQuery Localize approach to localize its callback widgets. Localization
information for each language is placed in a JSON file, and each of these files contains one or more
key-value pairs whose keys correspond to the appropriate HTML templates.

Enable Localization

1. Open the Web Engagement installation folder and navigate to the application name\resources\
locale directory. This folder contains the JSON localization files. The name of each file includes a
language identifier, which is either the short locale name of the language (en, fr, ru, and so on) or the
full IETF locale name (en-US, fr-FR). These identifiers are represented in this sample filename by
language ID:
• callback-language ID.json

2. To add a new supported language for these widgets, follow these steps:
• Create a copy of the callback-en.json locale file.
• Rename it to: callback-language ID.json.
• Edit callback-language ID.json and replace all the text values with your translations.
• Save.

3. To deploy these localization files:
• Stop the Web Engagement Servers.
• Deploy your application.
• Start the Web Engagement Servers.

4. Change instrumentation to use the new language. Use the "languageCode" option in the Tracker Script.

Example of Localization File (callback-en.json)

The JSON file might contain any of the fields listed below. Fields that are not present are taken from
the built-in default localization.

{
"windowTitle" : "Genesys Web Callback",
"firstName" : "First name:",
"lastName" : "Last name:",
"phone" : "* Phone:",
"required" : "is a required field.",
"callMe" : "Call Me",
"cancel" : "Cancel",
"message" : "Our representative will call you in a few minutes.",
"message1" : "Please enter your contact details and click Call Me

button.",
"message2" : "Next available customer representative will call you

shortly.",
"messageFailCallback" : "Callback is not available now. Try again later.",
"yourPhone" : "Your phone number is",
"validationPhoneRequired" : "Phone number is required!",
"validationPhoneWrong" : "Phone number format +1(234)567-8910",

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 153

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/BuildandDeploy#Deploying_your_Application
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/StartyourServers
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizeMonitoringScript#Configuration

"validationNameWrong" : "Need more than 2 characters"
}

Customizing an Application Customizing the Browser Tier Widgets

Developer's Guide 154

Deploying an Application
Complete the procedures on this page after you have created your Genesys Web Engagement
application.

Deploying your Application

Warning
You must only deploy an application when the GWE servers are not running.

Prerequisites

• You have created your app.

Start

1. Navigate to the installation directory for Genesys Web Engagement and open a new console window.
2. Use the deploy script (deploy.bat on Windows and deploy.sh on Linux) to deploy your application:

deploy <your_application_name>

Note: To request debug-level logs while this command is executed, use the -v parameter. For example:

deploy myApp -v

End

The deploy script copies files to the appropriate locations. If the deploy is successful, the script
output displays a BUILD SUCCESSFUL messages at run-time.

Next Steps

• Starting the Web Engagement Server

Deploying an Application Customizing the Browser Tier Widgets

Developer's Guide 155

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/StartyourServers

Starting the Web Engagement Server
If you have created and deployed your application, you can start the Web Engagement Server from
Genesys Administrator, from the start script, or as a Windows service.

Start

To start your server from Genesys Administrator:

1. Navigate to Provisioning > Environment > Applications.
2. Select the Web Engagement Server.
3. Click Start applications in the Runtime panel.

To start your server using the provided start script (start.bat on Windows and start.sh on Linux):

1. Navigate to the Web Engagement installation directory and launch a console window.
• For Windows, type: start.bat
• For Linux, type: start.sh

End

The Web Engagement Server is started.

Next Steps

• Deploying a Rules Package

Starting the Web Engagement Server Customizing the Browser Tier Widgets

Developer's Guide 156

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateanApplication
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/BuildandDeploy
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage

Deploying a Rules Package
Creating a rules package is the final step before you are ready to test your new application. Refer to
the Application Development Tasks for details about the previous steps.

Rules are mandatory for managing actionable events generated from the System and Business event
flows submitted by the Browser Tier. To add rules, you must create a package and then a set of rules.
For details about rules, refer to the Genesys Rules System documentation.

After completing the steps on this page, the rules are deployed to the Web Engagement Servers.

Complete the following steps to create and deploy a rules package:

1. If you need to map your rules to a particular domain, review Multi-Package Domain Oriented Rules.
2. Creating a Rules Package
3. Creating Rules in the Rules Package
4. Deploying the Rules Package

Multi-Package Domain Oriented Rules

Genesys Web Engagement 8.5 supports multi-package domain oriented rules. You can map your rules
package to a particular domain by reversing the domain zone in the name of the rules package. For
example, the blog.genesys.com domain would have a rules package called com.genesys.blog.

You can have multiple rules packages on the same server at the same time. New rules packages
(with a different package name) that are deployed do not rewrite the current rules, but are instead
added to the current rules set. When the existing rules package is deployed, it rewrites selected
package rules in the current rules set.

This domain mapping is applied hierarchically - the "root" domain is processed by the "root" package
and the sub-domain is process by the sub-package and all parent packaged (including "root").

For example, your website contains the following sub-domains:

• genesys.com
• blog.genesys.com
• communication.genesys.com
• personal.communication.genesys.com

And you have the following rules packages:

• com.genesys

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 157

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/ApplicationDevelopment#Application_Development_Tasks
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage#Multi-Package_Domain_Oriented_Rules
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage#Creating_a_Rules_Package
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage#Creating_Rules_in_the_Rules_Package
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage#Deploying_the_Rules_Package

• com.genesys.blog
• com.genesys.communication
• com.genesys.communication.personal

The rules packages are processed as follows:

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 158

Domain com.genesys
com.genesys.

blog

com.genesys.
communication

com.genesys.
communication. personal

genesys.com + - - -
blog.genesys.com + + - -
communication.genesys.com + - + -
personal.communication.genesys.com+ - + +

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 159

Important
This feature is turned off by default. You can turn on domain separation rule execution
on the specified Web Engagement server by setting the domainSeparation option to
true.

Creating a Rules Package

Complete the steps below to create the rules package associated with your Web Engagement
application. This procedure is an example of how to create a rules package. For further information
about creating rules, refer to the Genesys Rules System Deployment Guide.

Prerequisites

• Your environment includes Genesys Rules Authoring Tool. See Genesys environment prerequisites for
compliant versions.

• Roles are configured to enable your user to create rules.
• Your CEP Rule templates were published.

Start

1. Open the Genesys Rules Authoring Tool and navigate to Environment > Solution > New Rule
Package.

2. In the General tab:
• Enter a Package Name. For example, myproject.rules.products.
• Enter a Business Name. For example, Products.
• Select web_engagement for Package Type. WebEngagement_CEPRule_Templates appears in the

Template table.
• Optionally, you can enter a Description.

3. Select WebEngagement_CEPRule_Templates in the Template table.

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 160

https://docs.genesys.com/Documentation/GWE/latest/Deployment/cepOptions#domainSeparation
https://docs.genesys.com/Documentation/GWE/latest/Deployment/Prerequisites#Genesys_Environment
https://docs.genesys.com/Documentation/GWE/latest/Deployment/ComponentsSettings
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/PublishtheCEPRulesTemplate

Create a new rules package

4. Click Save.

End

Creating Rules in the Rules Package

Prerequisites

• Creating a Rules Package

Start

1. In Genesys Rules Authoring Tool, select the rules package you created in the previous procedure.
2. Select the Rules tab.
3. Click New Linear Rule. This creates a new rule in the Rules table.

Note: Web Engagement does not support GRAT Decision Tables. You must only use Linear Rules.

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 161

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CreateaRulesPackage#Creating_a_Rules_Package

4. Select the created rule:
• Enter a Name. For example, Products.
• Enter a Phase. The list of rule phases can be modified by changing the values of the Phases

enumeration in the CEP Rules Template. The default value is *.

5. Click Add Condition:
• Scroll down to select a condition. For example, a page transition event occurs and belongs

to category, which launches the actionable event any time that a user enters or leaves a page on
your website.

Select your rule's condition

• Select a category in Parameters. For example, Products. The Parameters list displays the
categories that you previously created.

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 162

Set the condition's parameters

6. Click Add Action and select an action in the list. For example, generate actionable event.
7. Click Save....

You can create as many rules as you need in your rules package.

End

Deploying the Rules Package

Prerequisites

• Your GRAT application has a connection to the GWE Cluster application.
• You started the Web Engagement servers.

Start

1. In Genesys Rules Authoring Tool, navigate to Solution > your rules package > Deploy Rules.

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 163

https://docs.genesys.com/Documentation/GWE/latest/Deployment/ComponentsSettings
https://docs.genesys.com/Documentation/GWE/latest/Developer/StartyourServers

Deploy the rules package

2. Select the checkbox next to your rules package in the Package Snapshots section.
3. Click Deploy Now. The Deploy window opens.
4. Select your Genesys Web Engagement Server for the Location.

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 164

Deploy the rules package

5. Click Deploy. The rules package is deployed to the Web Engagement system.

End

Next Steps

• If you are following the Lab deployment scenario, you can test your application with the ZAP Proxy.

Deploying a Rules Package Customizing the Browser Tier Widgets

Developer's Guide 165

https://docs.genesys.com/Documentation/GWE/latest/Deployment/DeploymentScenarios#t-0
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy

Testing with ZAP Proxy
The ZAP Proxy is a development tool that allows you to test your application without adding the
JavaScript tracking code to your website. Once you have configured this proxy, you can launch it and
start the Genesys Web Engagement servers to start testing your application by emulating a visit on
your website. In a few clicks, without modifying your website, Genesys Web Engagement features will
show up on a set of web pages, according to the rules and categories that you created.

There are two proxy tools available in the Genesys Web Engagement installation: Simple and
Advanced. See the appropriate tabs below for details and configuration information.

Simple ZAP Proxy

To use the Simple ZAP Proxy, you must first complete a few procedures to configure the tool and your
web browser.

Getting the ZAP Proxy Port

Complete this procedure to retrieve the ZAP Proxy port, which you will need later when you configure
your web browser.

Start

1. Navigate to C:\Users\current user\ZAPProxy.
If this folder does not exist, navigate to your Web Engagement installation directory and launch
proxy.bat (on Windows) or proxy.sh (on Linux). The ZAPProxy folder appears automatically.

2. Edit config.xml and find the <proxy> tag.
3. Check that the value of the <ip> tag is set to your host IP address.

Note: You cannot use 127.0.0.1 or localhost for this value.

4. Note the value of the <port> tag (usually 15001).
5. Save your changes.

End

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 166

Configuring the Proxy

Important
The proxy configuration file will appear after you deploy your Web Engagement
application. Also, note that the playground application does not include a proxy
configuration file (instead it contains the entire website).

Start

1. Navigate to the \tools\proxy\plugin folder inside your your Web Engagement installation directory.
2. Open the configuration file, which is called FilterMultiReplaceResponseBody.xml.
3. Change <enable>false</enable> to <enable>true</enable>.

End

Starting the Proxy

Navigate to your Web Engagement installation directory and launch proxy.bat (on Windows) or
proxy.sh (on Linux). The Simple ZAP Proxy starts.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 167

The Simple ZAP Proxy

Setting Up your Web Browser

Configure your web browser to use the Simple ZAP Proxy.

Start

1. Start your web browser.
2. Open your Internet settings. For instance, in Mozilla Firefox, select Tools > Options. The Options

dialog window appears.
3. Select Advanced, and in the Network tab click Settings... The Connection Settings dialog windows

appears.
4. Select the Manual proxy configuration option:

• Enter your host IP address in the HTTP proxy text box.
• Enter the port used by the ZAPProxy in the Port text box. This is the value you retrieved in Getting

the ZAPProxy Port.
• Select the option Use this proxy server for all protocols.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 168

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy#gettingproxyport
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/TestwithGWMProxy#gettingproxyport

ZAPProxy used in Firefox

5. Click OK. Now your browser is set up for the ZAP Simple Proxy. To use the proxy, all you need to do is
navigate to the site where you want the proxy to inject the Web Engagement instrumentation script
and browse through the web pages.

End

Advanced ZAP Proxy

The Advanced ZAP Proxy is based on the OWASP Zed Attack Proxy Project (ZAProxy). In addition to
acting as a proxy, the Advanced ZAP Proxy also provides a UI and validates vulnerabilities in your
website at the same time. To use the Advanced ZAP Proxy, you must first complete a few procedures
to configure the tool.

Starting the Proxy

Navigate to your Web Engagement installation directory and launch tools\proxy\zap.bat (on
Windows) or tools\proxy\zap.sh (on Linux). The proxy starts.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 169

The Advanced ZAP Proxy

Configuring the Proxy

Once the proxy is running, you can configure it using the GUI.

Start

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 170

1. Open Tools > Filter....

Select the Filter menu item.

2. In the list of filters, select Replace HTTP response body using multiple patterns and click ... to
edit the filter.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 171

Select the filter.

3. Click Add and enter the following information:
• Pattern - </head>
• Replace with -

<script>
var _gt = _gt || [];
_gt.push(['config', {
dslResource: ('https:' == document.location.protocol ? 'https://<Web Engagement Server
host>:<Web Engagement Server port>' :
'<Web Engagement Server host>:<Web Engagement Server port>') + '/server/resources/dsl/
domain-model.xml',
httpEndpoint: '<Web Engagement Server host>:<Web Engagement Server port>',
httpsEndpoint: '<Web Engagement Server host>:<Web Engagement Server secure port>'
}]);

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 172

var _gwc = {
widgetUrl: ('https:' == document.location.protocol ? 'https://<Web Engagement Server
host>:<Web Engagement Server port> :
'<Web Engagement Server host>:<Web Engagement Server port>') + '/server/resources/
chatWidget.html'
};
(function(gpe, gwc) {
if (document.getElementById(gpe)) return;
var s = document.createElement('script'); s.id = gpe;
s.src = ('https:' == document.location.protocol ? 'https://<Web Engagement Server
host>:<Web Engagement Server port>' :
'<Web Engagement Server host>:<Web Engagement Server port>') + '/server/resources/js/
build/GPE.min.js';
s.setAttribute('data-gpe-var', gpe);
s.setAttribute('data-gwc-var', gwc);
(document.getElementsByTagName('head')[0] || document.body).appendChild(s);
})('_gt', '_gwc');
</script>
</head>

4. Click OK to save the pattern.
5. If you need to check or update the ZAP port address, open Tools > Options... and review the Local

proxy section.

End

Configuring the URL Filter

Complete this procedure to use the GUI to configure URLs that the proxy should ignore.

Start You can exclude a site in one of two ways:

• In the Sites tab, right-click on a site and select Exclude from > Proxy.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 173

Select a site to exclude

• Select File > Properties. In the Session Properties window, select Exclude from proxy, add your
URL, and click OK.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 174

Enter a URL to exclude.

• If you want the proxy to remember the excluded URLs beyond the current session, select File >
Persist session... and select a file to save your session.

End

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 175

Working with the Proxy

After you have configured the proxy, keep it open and open up a web browser. Now you can browse
through your web pages that are instrumented with Genesys Web Engagement and they will be
displayed in the Sites tab of the proxy GUI:

Your instrumented pages show up in the Sites tab

For more information about working with ZAProxy, see https://www.owasp.org/index.php/
OWASP_Zed_Attack_Proxy_Project.

Security Testing with ZAProxy

Genesys performs security testing with OWASP Zed Attack Proxy (ZAProxy) to make sure the Genesys
Web Engagement solution is invincible to known attacks.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 176

ZAP Overview

The ZAProxy is an easy-to-use, integrated penetration testing tool for finding vulnerabilities in
websites and web applications.

Among others, ZAProxy supports the follow methods for penetration security testing:

• passive scan
• active scan

Genesys uses both methods.

Passive Scan Overview

ZAP is an Intercepting Proxy. It allows you to see all of the requests made to a website/web app and
all of the responses received from it. For example, you can see AJAX calls that might not otherwise be
obvious.

Once set up, ZAP automatically passively scans all of the requests to and responses from the web
application being tested.

While mandatory use cases for the application that is being tested are followed (either manually or
automatically), ZAProxy analyzes the requests to verify the usual operations are safe.

Active Scan Overview

Active scanning attempts to find potential vulnerabilities by using known web attacks against the
selected targets. Active scanning is an attack on those targets. ZAProxy emulates known attacks
when active mode is used.

Through active scanning, Genesys Web Engagement is verified against the following types of attacks:

• Spider attack — Automatically discovers all URL links found on a web resource, sends requests, and
analyzes results (including src attributes, comments, low-level information disclosure, and so on).

• Brute browsing (based on the Brute Force technique) — Systematically makes requests to find secure
resources based on known (commonly used) rules. For example, backup, configuration files, temporary
directories, and so on.

• Active scan — Attempts to perform a predefined set of attacks on all resources available for the web
resource. You can find the default set of rules here.

• Ajax spider — Automatically discovers web resources based on presumed rules of AJAX control (JS
scripts investigation, page events, common rules, dynamic DOM, and so on).

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 177

Important
Requests to other web applications must be excluded from scanning in order to see a
report for a particular web application.

Important
Web applications that are being tested should be started on the local box because
some types of verification (like active scanning) can be forbidden by network
administrators.

References

If you want to examine your website against vulnerabilities in a similar way, refer to the OWASP Zed
Attack Proxy Project or other documentation to learn about how to perform security testing with ZAP.

Testing with ZAP Proxy Customizing the Browser Tier Widgets

Developer's Guide 178

Sample Applications
Genesys Web Engagement includes a sample called Playground.

The Playground environment also includes a website, and you can use this site with the Playground
application to find out what Web Engagement can do.

The Web Engagement Quick Start Guide provides step-by-step instructions on how to use Playground
to see Web Engagement in action.

Sample Applications Customizing the Browser Tier Widgets

Developer's Guide 179

https://docs.genesys.com/Documentation/GWE/latest/Quick/Welcome

Get Information About Your Application
After you have started your Web Engagement Servers, you can explicitly request version information
from them.

To get this information, you should send a GET HTTP request to the appropriate URL for the server.

URL: http(s)://<web_engagement_server_host>:< web_engagement_server_port>/server/
about

An example Web Engagement Server response

Get Information About Your Application Customizing the Browser Tier Widgets

Developer's Guide 180

Integrating Web Engagement and Co-
browse with Chat
The Integrated JavaScript Application provides the functionality of Web Engagement monitoring, Co-
browse, and Chat in one easy to configure JavaScript application, rather than using the individual
applications for each component.

The Integrated JavaScript Application is a JavaScript file that contains the Chat, Tracker, and Co-
browse JavaScript applications, as well as code for their integration.

The integration consists of the following:

• For Chat and Tracker: The pageID and visitID are automatically attached to the chat session's
userData when the chat session is started (either via the "Live Chat" button or the Chat JS API).

• For Chat and Co-browse: The application automatically detects if the agent is connected via chat and, if
yes, the agent automatically joins the Co-browse session when it is started.

The physical integrated application file, named genesys.min.js, contains the pre-integrated Chat,
Tracker and Co-browse JavaScript applications.

Tip
Another form of the app (gcb.min.js) is only shipped as part of the Co-browse
solution and contains pre-integrated Chat and Co-browse (no Tracker).

Important
To successfully integrate Chat and Co-browse when chat is configured to operate in
"popup" mode, you must host chatWidget.html in the same domain as the website
(subdomain is also possible).

To use the Integrated Application in your Web Engagement or Co-browse solution, review the
information on this page and add the instrumentation snippet to your website, along with any
necessary configuration (this can vary depending on your solution — see Configuration for details.

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 181

https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuration

Instrumentation Snippet

Important
The JavaScript files are obfuscated and minified. You are not allowed to decompile
and/or modify them. If you do, support can not be guaranteed. Instead, you can use
the public JavaScript APIs and other documented methods to customize the
functionality.

You can activate the integrated functionality on a website by inserting the following snippet before
the closing </head> tag:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<GWE_SERVER_URL>/genesys.min.js",
cbUrl: "<COBROWSE_SERVER_URL>/cobrowse" // this line is required only if Co-browse is used

});</script>

This script asynchronously (which means the loading won't block your site performance) loads and
executes the required JavaScript file.

You should only modify the following (except for the special case of changing global variable names,
described below) lines:

• src: "<SERVER_URL>/genesys.min.js", — This defines the src (the URL) of the script that is loaded
and executed. You can load the script from the GWE Server, the Co-browse Server, or your own server:
• To load the script from the Web Engagement Server, the URL format should be

http(s)://GWE_SERVER_HOST[:GWE_SERVER_PORT]/server/resources/js/build/
genesys.min.js

• To load the script from the Co-browse Server, the URL format should be
http(s)://COBROWSE_HOST[:COBROWSE_PORT]/cobrowse/js/genesys.min.js

• To load the script from one of your own servers, use one of the above URLs to download the file and
then copy it to your server. If you choose this option, make sure to configure the caching properly
(see Note on Caching for details).

• cbUrl: "<COBROWSE_SERVER_URL>/cobrowse — This line is only required if you use Co-browse. It
defines the URL that is used by the Co-browse JavaScript to get and receive Co-browse-related data.

The Co-browse URL is also used by chat to connect to the Genesys infrastructure via the Co-browse
server. If you remove it, make sure to configure the serverURL option for chat, otherwise chat will not
work. Also, be sure to remove the trailing comma from the src: "<SERVER_URL>/genesys.min.js",
line so that your script looks like this:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 182

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Note_on_Caching
https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0

e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<SERVER_URL>/genesys.min.js"

});</script>

Decoupling Instrumentation from Your Website: Tag Management Workflow
Introducing changes to your web site's source code can be a painful process. Tag management
systems simplify the process by allowing you to make changes to your scripts without directly
changing your web site's source code. When you use a tag management system, instead of adding
instrumentation and configuration snippets directly to you web page, you add a single snippet which
asynchronously loads all other scripts, including configuration scripts. For a good introduction to tag
management systems, see http://moz.com/blog/what-is-tag-management.

Setting Up a Tag Management Workflow

Even if you do not use a full featured tag management system, you can set up a tag management
workflow by doing the following:

1. Create a separate JavaScript file that includes instrumentation and configuration.
In this example, we call this file genesys.instr.js. This file includes the instrumentation snippet and all
configuration.

2. Host this file in a location accessible via HTTP.
You must host this file on your infrastructure or on one of the Genesys Servers. You can use the Web
Engagement Jetty container, see Hosting Static Resources. You can also host this file on your Co-browse
server by creating a sub-folder in the server/webapps folder and placing the file there.

Warning
This set-up creates one extra HTTP request when Genesys services load. Make sure you configure caching to
mitigate the extra HTTP request. To get started with caching, see the Note on Caching

3. Add the following instrumentation snippet to your website:
<script>(function(d, s, id, src) {

window._gt = window._gt || [];
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = src;
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-instr',
"http(s)://example.com/genesys.instr.js"

);</script>

In this snippet, change the URL of the genesys.instr.js file to the URL of the file you created.

Now your instrumentation and configuration files are included by genesys.instr.js and you can make changes to your actual
instrumentation and configuration files without having to also change your site's source code.

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 183

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuration
https://docs.genesys.com/Documentation/GWE/latest/Developer/Architecture#Hosting_Static_Resources
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Note_on_Caching

Tip
This approach is applicable not just to the Integrated Application but to any website instrumentation,
including Co-browse and the Tracker Application.

Warning
In the snippet we initialized the global _gt variable in this line of code:

window._gt = window._gt || [];

We use this variable to start the Tracker immediately. Otherwise, the Tracker will not start until all scripts have loaded. If you customize the
global variable for Tracker, you should modify the snippet accordingly. If you do not use Tracker at all, you may remove this line.

Note on Caching

Important
If you choose to serve static resources (JavaScript) on your servers, you should
implement the analogous caching strategy to achieve best performance and minimum
traffic load.

All static resources (JavaScript in our case) are served with caching HTTP headers when loaded from
the Web Engagement Server or Co-browse Server. Both servers use the combination of HTTP headers
that lead to the following caching workflow:

• When the client (browser) receives the resource, it stores it on disk for a configured time interval.
• During this time interval, if the resource is requested, the browser loads it from disk without sending

any requests to the server (which speeds up the initialization of the scripts).
• After the time interval expires, the browser requests the resource again from the server. Then

• if the resource has not changed since the previous request, the server replies with an empty
response with 304 Not Modified status, to minimize the traffic. The browser then caches the
resource on disk for yet another configured time interval.

• if the resource has changed since the previous request, the server replies with a new version of the
resource. The browser, again, caches the resource on disk for a configured time interval.

The default time interval for both servers is 30 minutes.

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 184

https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation
https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring

Configuration

Configuration for the integrated application (except for Tracker, see Configuring Tracker) is stored as
a JavaScript object assigned to a global _genesys variable. This variable should be accessible to
genesys.min.js when it is loaded. So the entire instrumentation might look like this:

<script>
var _genesys = {/* configuration goes here*/};
</script>
<INSTRUMENTATION_SNIPPET>

Important
For backwards compatibility with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. This is deprecated and may be
discontinued in later versions, so it is recommended that you switch to _genesys now
if you're using _gcb.

Disabling Services
You may encounter cases where you want to disable the Integrated Application and its services based
on some specific critieria. In this case, you can use a global variable to enable or disable services.

For example, if we create a global enableGenesys variable, we can enable Genesys services on the
page when it is set to true and disable services when the variable is set to false.

<script>
var enableGenesys = true; // or false
<script>

The configuration snippet would look like this:

var _genesys = {
// custom options

};
if (!enableGenesys) {

// overwrite cobrowse/chat options
_genesys.chat = false;
_genesys.cobrowse = false;

}

The idea is to disable a service by overriding its configuration with false when enableGenesys is
false.

Changing the "_genesys" name
You can actually store the configuration in any global variable, _genesys is just the default
convention. To tell the application that the configuration is stored in another variable, you have to
modify the instrumentation snippet by adding a line there:

e.setAttribute('data-cfg-var', 'myCustomVariableName');

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 185

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Tracker

For example:

<script>
var _myCustomConfiguration =

debug: true
};
</script>
<script>(function(d, s, id, o) {

var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
// Use _myCustomConfiguration variable as configuration (don't forget the quotes!):
e.setAttribute('data-cfg-var', '_myCustomConfiguration');
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<SERVER_URL>/genesys.min.js"
cbUrl: "<COBROWSE_SERVER_URL>/cobrowse"

});</script>

Common Options
The following options are shared between services. They are shared by Chat and Co-browse. For
Tracker, see Configuring Tracker. These options can be set as direct properties of an object assigned
to the _genesys variable:

var _genesys = {
<OPTION>: <VALUE>

};

If an option is set as in the example above, the option will be inherited by both Chat and Co-browse.
It is also possible to set an option for only one service or to set an option globally and override that
option for a particular service.

Examples:

// Set the option for all services:
var _genesys = {

<OPTION>: <VALUE>
};

// Set the option only for Chat:
var _genesys = {

chat: {
<OPTION>: <VALUE>

}
};

// Set the option for all services, but override for Co-browse:
var _genesys = {

<OPTION>: <VALUE_1>,
cobrowse: {

<OPTION>: <VALUE_2>
}

};

debug

The debug option is set to false by default. To enable debug output to the browser console log, set it

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 186

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring

to true.

var _genesys = {
debug: true

};

Important
This option is not valid for the Tracker application. For details about configuring debug
for the Tracker application, see Tracker Application Advanced Configuration.

disableWebSockets

Default: false

Set this option to true to disable Web Sockets. See corresponding Chat option and Co-browse option
for more information on the purpose and impact of this option.

// Example: disable WebSockets for Chat and Co-browse (not recommended)
var _genesys = {

disableWebSockets: true
};

// Example: disable WebSockets for Chat, but enable for Co-browse
var _genesys = {

chat: {
disableWebSockets: true

}
};

Tip
When used with Chat, this option is automatically passed from configuration to
startChat() and restoreChat().

Important
This option is ineffective for Tracker. See Configuring Tracker for information on
configuring Tracker.

Configuring Buttons
The _genesys.buttons section allows some basic configuration of the "Live Chat" and "Co-browsing"
buttons. It has three optional properties:

• position: Can be either "left" (default) or "right"

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 187

https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#Advanced_Configuration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#disableWebSockets
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#disableWebSockets
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring

• cobrowse: Defaults to true
• chat: Defaults to true

Note that you can override only the properties that you want to be changed. Other properties are
used with their default values. For example this configuration:

var _genesys = {
buttons: {

chat: false
}

};

actually means this:

var _genesys = {
buttons: {

chat: false,
cobrowse: true, // inherited default
position: 'left' // inherited default

}
};

Disabling Buttons

As seen in the snippet above, you can pass false to disable the "Co-browsing" and/or "Live Chat"
button. This might be useful if you want to start chat or co-browsing from your own custom button (or
from any other element or event), using the Co-browse API or Chat Widget JS API.

Providing Custom HTML for Buttons

You can also pass a function that returns HTML elements to buttons.cobrowse or buttons.chat. In
this case, the output of the function is used to render the button instead of default image.

Note that in this case your custom button(s) inherit the positioning of the default button(s).

Here's a simple example that makes use of the jQuery library to generate HTML elements:

function createCustomButton() {
return jQuery('<div class="myButtonWrapper"><button

class="myButton">Chat!</button></div>')[0];
}

var _genesys = {
buttons: {

chat: createCustomButton
}

};

Important
jQuery is NOT mandatory to use in order to provide a custom HTML element. The
example above does return an HTML element out of a jQuery object by retrieving the
first element from jQuery collection via [0].

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 188

https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI

Configuring Tracker
In the current version of the Integrated JavaScript Application, the Genesys Web Engagement Tracker
Application is configured in its traditional way, via the global _gt (or other, if configured) variable.
See Tracker Application for details.

This means that the full instrumentation might look like this:

<script>
// Configure tracker:
var _gt = window._gt || [];
_gt.push(['config', {

dslResource: <DSL_RESOURCE>,
httpEndpoint: <HTTP_ENDPOINT>,
httpsEndpoint: <HTTPS_ENDPOINT>

}]);

// Configure integrated application:
var _genesys = { /* Integrated application, Chat and Co-browse configuration */ };
</script>

<INSTRUMENTATION_SNIPPET>

Changing the "_gt" Variable Name

If you use genesys.min.js to include the Tracker Application onto your page, and want to modify the
name of the variable that Tracker is exported to, you must add the following line to the
instrumentation snippet:

e.setAttribute('data-gpe-var', '<NAME_OF_THE_VARIABLE>');

For example, let's export Tracker to the _myTracker variable:

<script>(function(d, s, id, o) {
var fs = d.getElementsByTagName(s)[0], e;
if (d.getElementById(id)) return;
e = d.createElement(s); e.id = id; e.src = o.src;
e.setAttribute('data-gcb-url', o.cbUrl);
e.setAttribute('data-gpe-var', '_myTracker'); // note the quotes around variable name
fs.parentNode.insertBefore(e, fs);

})(document, 'script', 'genesys-js', {
src: "<SERVER_URL>/genesys.min.js"
cbUrl: "<COBROWSE_SERVER_URL>/cobrowse"

});</script>

Using External Tracker

It is possible to use the integrated application with an external Tracker application (that is, a Tracker
application loaded from another script).

This might be useful if you have configured a Tracker application and want to use it with gcb.min.js
(provided by Co-browse solution) instead of loading Tracker from genesys.min.js (although this
setup is not recommended).

To do that, pass a reference to the external tracker to _genesys.tracker:

var _genesys = {
tracker: _gt

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 189

https://docs.genesys.com/Documentation/GWE/latest/Developer/Monitoring

};

The passed external Tracker is integrated with the chat widget.

Configuring Chat
Configuration for chat is stored in the chat subsection of the global configuration object:

var _genesys = {
chat: {/* chat configuration */}

};

Configuring the Server URL

The main thing you might want to configure for chat is the URL of the server.

In most cases the server here is the Web Engagement Server. Use the template below to construct
the URL:

var _genesys = {
chat: {

serverUrl: 'http(s)://<SERVER_HOST>[:<SERVER_PORT>]/server/cometd'
}

};

Important
If you use Co-browse, you can use Co-browse Server for chat. In this case, you don't
have to configure the serverUrl option explicitly. The cbUrl option in the
instrumentation snippet is used to automatically create the proper URL to connect
chat to the Genesys infrastructure via Co-browse Server.

Disabling Chat

You can disable the built-in chat completely by passing false to _genesys.chat.

var _genesys = {
chat: false

};

In this case, the "Live Chat" button is also disabled (it is not added to the page). If you want to
disable chat and to enable the "Live Chat" button (for example, to bind your own chat widget to this
button), you can do it by explicitly enabling the button in configuration (see Configuring Buttons):

var _genesys = {
chat: false,
buttons: {

chat: true
}

};

Now the button is added to the page, but clicking it does not open the chat widget.

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 190

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Buttons

Tip
Also see Disabling Services.

autoRestore

On every page reload / navigation, the chat widget is automatically restored if there is an ongoing
chat session. You can disable this behavior with the autoRestore option, which is set to true by
default. You might disable this behavior if you want more control over chat widget restoration or if
you want to get access to the chat session service API.

<script>
var _genesys = {

chat: {
autoRestore: false,
onReady: function(chat) {

chat.restoreChat().done(function(session) {
// Use chat session API here, e.g.:
// session.sendMessage('hello world');
// session.onAgentConnected(function(event) {...});

});
}

}
};
</script>

Tip
See Obtaining Chat and Co-browse APIs if the onReady syntax above looks confusing
to you.

Important
"Live Chat" and "Co-browsing" buttons appear only after restoreChat is called. So, if
you set autoRestore to false, it becomes your code's responsibility to call
restoreChat. If it is not called, buttons do not appear.

Chat Widget Options

All options (except for autoRestore and onReady) that are stored in the _genesys.chat object are
automatically passed to chat the startChat()/restoreChat() methods. See Chat Widget JS API for
the full list of options.

The integrated application provides some defaults for your convenience, so that minimal or no
explicit chat configuration is required. The provided defaults are:

• debug is inherited from _genesys.debug

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 191

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Disabling_Services
https://docs.genesys.com/Documentation/GWE/latest/API/ControlChat
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Obtaining_Chat_and_Co-browse_APIs
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#debug

• maxOfflineDuration is aligned with Co-browse's maxOfflineDuration option and defaults to 600 seconds
(10 minutes)

• serverUrl is set automatically to use the Co-browse Server (if Co-browse is used)

Configuring Co-browse
Co-browse configuration is stored in the cobrowse subsection of the global configuration object:

var _genesys = {
cobrowse: {/* Co-browse configuration */}

};

See Co-browse Configuration API for the full list of options.

Disabling Co-browse

You can disable Co-browse completely by passing false to _genesys.cobrowse:

var _genesys = {
cobrowse: false

};

In this case, the "Co-browsing" button is also disabled (not added to the page). If you want to disable
Co-browse, but enable the "Co-browsing" button, you can do so by explicitly enabling the button in
configuration (see Configuring Buttons):

var _genesys = {
cobrowse: false,
buttons: {

cobrowse: true
}

};

Now the button is added to the page, but clicking it does not start the Co-browse session.

Tip
Also see Disabling Services.

Localization of Chat and Co-browse

Important
The Tracker application does not have localization because it does not have a user
interface.

The integrated application is shipped with English localization. You can configure custom localization
in a few different ways, see Genesys Co-browse Localization.

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 192

https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#maxOfflineDuration
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#maxOfflineDuration
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#serverUrl
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#Co-browse_Configuration_Options
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Buttons
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Disabling_Services
https://docs.genesys.com/Documentation/GCB/8.5.0/Developer/Localization

Obtaining Chat and Co-browse APIs

Important
For the Tracker API, see the Tracker JS API.

Important
If you are using Chat as part of Web Engagement GPE.min.js (and not part of the
Integrated Application), see Chat JS Application for information on Chat API.

Using onReady Callbacks
There are three "ready" events in the integration module which can be used to gain access to the
APIs:

• "Main", or global, "ready" event which is fired after all the parts of the app have initialized. It provides
access to both Chat and Co-browse APIs.

• Chat "ready" event.
• Co-browse "ready" event.

For each of the events, there is a dedicated onReady property in the configuration, which can be
used to add callbacks for the event.

You can add subscriptions (callbacks) to any of these events via the mechanisms described below.

Tip
"ready" events are fired after the DOM is ready, so you don't have to wrap code that
uses the provided APIs into jQuery(document).ready or similar constructions.

Subscribing to APIs using One Dedicated Function

Use this method if you want to provide one, and only one, subscription to a "ready" event.

To use it, simply assign a function to the onReady property of the configuration section:

<script>
var _genesys = {

onReady: function(APIs) {
// Feel free to use the APIs here.

}
};

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 193

https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#mainonready
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Chat_onReady_Callbacks
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Co-browse_onReady_Callbacks

</script>

Tip
See "Main" onReady Callbacks for details about what APIs is in the example above.

Inside this function you can, for example, pass the provided arguments (the APIs) to your code so
that it can be used multiple times there.

Also, if you need to use the APIs in different parts of your code, you can use an array as described in
the next section.

Using an Array for Multiple Subscriptions to APIs

To use this method, you have to pass an array to the onReady property. This array may contain 0 or
more subscription functions:

<script>
var _genesys = {

onReady: [function(APIs) {
// Feel free to use the APIs here.

}]
};

</script>

Now you can add subscriptions using the _genesys global variable in any part of your code:

_genesys.onReady.push(function(APIs) {
// Another use of the API here.

});

Tip
See "Main" onReady Callbacks for details about what APIs is in the example above.

Tip
If you push a callback after the respective "ready" event has already happened, the
callback is called immediately.

To use the .push(callback) mechanism, you MUST pass an array to configuration, otherwise it is not
guaranteed that the push method is always available.

For example, if you want to make use of the above push functionality for adding multiple
subscriptions to each of the three onReady events, the minimum required configuration is this:

<script>

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 194

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#mainonready
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#mainonready

var _genesys = {
cobrowse: {

onReady: []
},
chat: {

onReady: []
},
onReady: []

};
</script>

"Main" onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the
callbacks.

These callbacks can be used to access the Co-browse API and/or the Chat API, and are also fired after
the UI has been created. They can be used, for example, to attach custom handlers to the "Live chat"
and "Co-browsing" buttons, add additional buttons, and so on.

All attached callbacks receive two arguments:

1. An object containing Chat (only in top context) and Co-browse APIs. APIs can be accessed via object
properties:
a. .chat for Chat Widget JS API
b. .cobrowse for Co-browse API

2. A Boolean property indicating whether the code executes in the "top" context (true) or in an iframe
(false). This is useful for Co-browse API users (see Co-browse in iframes).

Example:

_genesys.onReady.push(function(APIs, isTopContext) {
// Check if we're in iframe:
alert('We are ' + (isTopContext ? '' : 'not') + ' in an iframe');

// Start a chat session:
if (isTopContext) {

APIs.chat.startSession();
}

// Mark an element as "service" to Co-browse (so that it won't be shown to agent):
APIs.cobrowse.markServiceElement(document.getElementById('myCustomChatWidget'));

});

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 195

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Using_onReady_Callbacks
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI#Co-browse_in_iframes

Chat onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the
callbacks.

These callbacks are fired as soon as the Chat Widget JS API is available and they provide the same
API methods the chat widget provides:

• startChat()

• restoreChat()

The only difference is that the provided methods use options from _genesys.chat configuration, so
you don't have to pass options to them.

If you still need to pass options directly to startChat() or restoreChat() call, you can but the
options are merged with options from configuration, and will take higher priority:

<!-- Suppose you have the following configuration: -->
<script>
var _genesys = {

chat: {
registration: false,
embedded: false,
onReady: []

}
};
</script>

<!-- And then somewhere in your code: -->
<script>
_genesys.chat.onReady.push(function(chat) {

chat.startChat({
embedded: true

});
});
</script>

<!-- The final options passed to startChat() will be: -->
{

registration: false, // taken from configuration
embedded: true // overriden by options from chat.startChat() call

}

Co-browse onReady Callbacks

Tip
See Using onReady Callbacks for detailed information about how you can add the

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 196

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Using_onReady_Callbacks
https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Configuring_Chat
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/GCBIntegration#Using_onReady_Callbacks

callbacks.

These callbacks receive two arguments:

• cobrowseApi: Instance of the Co-browse API (you can name it api, cobrowse or any other name that
is convenient to you).

• isTopContext: Boolean property indicating whether the code executes in the "top" context (true) or in
an iframe (false). See Co-browse in iframes.

For example:

<script>
var _genesys = {

cobrowse: {
disableBuiltInUI: true,
onReady: function(cobrowseApi, isTopContext) {

createCustomCobrowseUI(cobrowseApi, isTopContext);
}

}
};
</script>
<INSTRUMENTATION SNIPPET>

Versions and Compatibility

The Integrated JavaScript Application has its own versioning; different versions of the application are
compatible with different versions of Co-browse and Web Engagement.

The general rule is that the version of the integrated application shipped with a particular solution is
compatible with that version of the solution.

To find out the version of the integrated application, see the value of _genesys.VERSION (execute
_genesys.VERSION in the browser console) when the site is instrumented with the integrated
application:

You may also check the versions of the Co-browse and Chat JavaScript libraries included in the
integrated application by checking the values of _genesys.chat.VERSION and
_genesys.cobrowse.VERSION.

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 197

https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSCobrowseAPI#Co-browse_in_iframes

Compatibility Table
Note: The following table indicates which versions of Web Engagement and Co-browse are
compatible with the indicated versions of the Integrated Application. It does not show which version
of the Integrated Application is shipped with each version of Web Engagement and Co-browse.

Integrated Application
version (_genesys.VERSION)

Web Engagement Server
versions Co-browse Server versions

1.0.0 8.1.200.38+
8.1.302.06+ up to, but not
including 8.5
(Co-browse 8.5 is not supported)

850.0.X, 850.1.X 8.1.200.38+ 8.5.XXX.XX
850.2.0+ 8.5.XXX.XX 8.5.XXX.XX

Integrating Web Engagement and Co-browse with Chat Customizing the Browser Tier Widgets

Developer's Guide 198

Media Integration

Important
This article is only for use with native Web Engagement widgets. If you plan to use
Genesys Widgets, you must follow these customization instructions.

You can integrate Genesys Web Engagement with second-party and third-party media to extend its
capabilities beyond what is available with the basic GWE installation. The key integration points for
both media types are the Notification Service or proactive invitation:

• The second-party media is a first-class citizen in the Genesys platform that can carry extra business
attributes (attached data), like visitID, pageID, and so forth, for operational and reporting purposes.
The key differentiator is that the second-party media is processed by Genesys components like
Interaction Server. The principle of the integration is simple — taking control of the proactive invitation
and Notification Service. Examples of second-party media include GWE Chat, Genesys Mobile Services
(GMS) Chat, and Web API Chat.

• The third-party media is provided by third-party services that are not tightly integrated with the
Genesys cross-channel platform (particularly with Interaction Server). The integration with third-party
media boils down to taking control of the proactive invitation, which is part of the Notification Service.

The proactive invitation (represented by the Invitation Widget) is the key integration point that
should be used when you need to overlay the widget on a page. The Notification Service should be
used in all other cases.

Integration with Genesys Widgets

In order to integrate with Genesys Widgets, the media widget and media server components must
propagate the Web Engagement visitID and pageID attributes to the interaction as attached data.
You can get the visitID and pageID in the widget through the public _gt.push ['getIDs',callback]
method in the Monitoring JS API. For proactively created chat sessions, you must attach a key-value
pair with a key of webengagement and an empty string as the value. This key-value pair can be
used later to distinguish between chat sessions that have been created proactively and reactively.

The diagram below shows an example of the data flow between components in a second-party media
integration. Web engagement is initiated by Genesys Orchestration Server (ORS), which sends a
notification to Genesys Web Engagement. As a result, the custom Invitation Widget appears in the
browser. After the invitation is accepted by the user, the Invitation Widget passes the Web
Engagement attributes (visitID and pageID) to the Media Widget. The third-party media server then
starts a new interaction with the attributes as attached data. Based on this data, the Web
Engagement Plug-in for Interaction Workspace can provide the browser history of the current user
and other information.

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 199

https://docs.genesys.com/Documentation/GWC/latest/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Engagement#t-0
https://docs.genesys.com/Documentation/GMS/8.5.001/Help/JavaScriptSamples
https://docs.genesys.com/Documentation/GMS/8.5.001/Help/JavaScriptSamples
https://docs.genesys.com/Documentation/ES/8.5.0/WebAPI/Chat
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI#getids

Here is another view of the data flow in a second-party media integration, shown in a sequence
diagram:

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 200

Third-Party Media Integration

The diagram below shows an example of third-party media integration. Web engagement is initiated
by ORS, which sends a notification to Genesys Web Engagement by using the Notification Service
REST API. As a result, the custom Invitation Widget appears in the browser. After the invitation is
accepted by the user, the Invitation Widget initiates the Media Widget. The third-party media server
does not create an interaction in Genesys Interaction Server as it does in the second-party media
integration scenario, but the same customization points are still available: Notification Service and
proactive invitation.

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 201

https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/API/NotificationAPI
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0

Examples

GWE Chat Integration
Genesys Web Engagement chat and callback use the same integration path as described in the
Second-Party Media Integration section:

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 202

GMS Chat Integration
Let's look at how to integrate the second-party chat offered by Genesys Mobile Services instead of
the standard Genesys Web Engagement chat. In this example, we use the GMS Chat Widget and
initiate a chat session when the user accepts the proactive invitation.

The diagram below shows the data flow between components involved in the integration:

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 203

https://docs.genesys.com/Documentation/GMS/latest/Help/JavaScriptSamples

To integrate GMS with Genesys Web Engagement, we need to modify the following:

• GWE Proactive Invitation
• GWE Engagement Logic Strategy
• GMS Chat Widget

GWE Proactive Invitation

The proactive invitation is represented by the invite.html file (see Invitation Widget for details), but
Genesys recommends that you make a copy of this file to modify for the integration. In this example,
we use a copy called inviteGMS.html.

In this file, we need to change how the invitation reacts when it is accepted by a visitor. We can do
this in the onAccept() function, which checks the invitation type and calls either startChat() or
startCallback(). Since we want to integrate chat, we need to replace the standard startChat()
with our own function called startGms(). This function opens the GMS Chat Widget window
(indexGPE.html — we will create this file in the GMS Chat Widget section below) and passes the
gmsScenario variable.

...
function startGms(gmsScenario) {

openWindow(
'http://<GMS Host>/genesys/admin/js/sample/cb/indexGPE.html', // Customized GMS

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 204

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration#GWE_Proactive_Invitation
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration#GWE_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration#GMS_Chat_Widget
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizetheBrowserTierWidgets#t-0
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration#GMS_Chat_Widget

widget
'GMS', // Window title
gmsScenario // GMS scenario name

);
}
function onAccept() {

log('onAccept()');
closeInviteDialogWindow();
if (_config.type === INVITE_TYPE.CHAT) {

startGms('CHAT-NOW'); // Start GMS 'CHAT-NOW' scenario
sendInviteResult(INVITE_RESULT.ACCEPT_CHAT);

} else if (_config.type === INVITE_TYPE.CALLBACK) {
startCallback();
sendInviteResult(INVITE_RESULT.ACCEPT_CALLBACK);

} else {
error('Invitation type not defined');

}
}

...

Important
You can add callback integration the same way. Replace the startCallback()
function with your own appropriate function in the onAccept() handler.

GWE Engagement Logic Strategy

In the previous section we made a new invitation widget for GMS chat, called inviteGMS.html, and
now we need to modify the Engagement Logic Strategy to use this widget. The final notification
message should look like the following:

...
var notification_message = [{

'page': event.pageID,
'channel': 'gpe.appendContent',
'data': {

'url': '/server/resources/inviteGMS.html'
}

}];
...

Important
For more information about Engagement Logic, see Start Engagement as a Result of
the Engagement Logic Strategy.

GMS Chat Widget

The GMS Chat Widget is represented by the index.html file, which is included as part of the Lab
Javascript (Web) Sample. Again, Genesys recommends that you make a copy of this file to modify for

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 205

https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeEngagement#Start_Engagement_as_a_Result_of_the_Engagement_Logic_Strategy
https://docs.genesys.com/Documentation/GMS/8.5.0/Help/JavaScriptSamples
https://docs.genesys.com/Documentation/GMS/8.5.0/Help/JavaScriptSamples

the integration. In this example, we use a copy called indexGPE.html.

The GMS Chat Widget is an HTML page that can be loaded as either an iframe or a pop-up, which
makes it simple to pass additional data through URL variables. In the GWE Proactive Invitation
section, we added the gmsScenario variable to the URL in the startGms() function. Now we need to
change the GMS Chat Widget so that it automatically starts the GMS scenario defined in that variable.

First, we need to get gmsScenario from the URL:

...
function getUrlVars (name) {

var vars = [], hash, i,
hashes = window.location.href.slice(window.location.href.indexOf('?') +

1).split('&');
for (i = 0; i < hashes.length; i += 1) {

hash = hashes[i].split('=');
vars.push(hash[0]);
vars[hash[0]] = hash[1];

}
return vars[name];

}
...

Next, we need to change the scenario name and connect to GMS Server:

...
function gpeStartScenario() {

var scenario = getUrlVars('gmsScenario') || 'CHAT-NOW'; // Fetch scenario name.
Default is 'CHAT-NOW'

$('#settings [name=service_name]').val('samples_new'); // Example GMS Service
$('#scenario').val(scenario); // Set scenario name

connect(); // Connect to GMS
}

...

Finally, we need to add the required parameters (visitID and pageID) to the connect() function,
which is responsible for setting up the connection to GMS Server:

...
function connect(e) {

// get data from ui
var headers = new Object();
headers.gms_user = $('#user_name').val();
var params = new Object();
params.first_name = $('#first_name').val();
params.last_name = $('#last_name').val();
params._provide_code = $('#provide_code').val();

params.visitID = getUrlVars('visitID'); // Required parameters
params.pageID = getUrlVars('pageID'); // Required parameters

var scenario = $('#scenario').val();
if ($('#scenario').val() == "VOICE-SCHEDULED-USERTERM") {

params._desired_time = $('#available_time_slots').val();
}
var serviceName = $('#service_name').val();
var serviceUrl;
var responseHandler = onResponseReceived;
if (scenario == "REQUEST-INTERACTION") {

serviceUrl = 'request-interaction';

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 206

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration#GWE_Proactive_Invitation
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/MediaIntegration#GWE_Proactive_Invitation

// request interaction requires _phone_number instead of _customer_number as
required by callback

params._phone_number = $('#contact_number').val();
responseHandler = onBuiltinCallbackResponseReceived;

} else if (scenario == "REQUEST-CHAT") {
serviceUrl = 'request-chat';
params._customer_number = $('#contact_number').val();
responseHandler = onBuiltinCallbackResponseReceived;

} else {
serviceUrl = 'callback/' + serviceName;
params._customer_number = $('#contact_number').val();

}
// post data
gmsInterface.createCallback(scenario, $('#url').val(), serviceUrl, params, headers,

responseHandler);
//gmsInterface.call_agent();

}
...

Now that we've customized the GMS Widget, it can be started automatically with a connection to
GMS Server in gpeStartScenario().

// inside onready callback
gpeStartScenario();

Media Integration Customizing the Browser Tier Widgets

Developer's Guide 207

Using Pacing Information to Serve Reactive
Requests

General information about Pacing Algorithms

The Web Engagement pacing component is designed to predict the number of media interactions
that should be proactively generated by the Web Engagement Server in each succeeding time
interval. For more information about pacing, consult this article.

Web Engagement also supports dual pacing, in which the pacing algorithm is able to determine how
much of its capacity should be set aside in order to handle reactive traffic without allowing the
proactive traffic to exceed the desired range.

In order to work with dual pacing, you should understand that:

• The pacing component works with a set of Agent Groups.
• The term Channel refers to a set of Agent Groups in which each group of agents is configured to work

on the same, specific media channel, such as chat, web callback, or Web RTC.
• The pacing component makes predictions for each Agent Group separately by creating a dedicated

thread for each Agent Group and running an instance of the pacing algorithm in each one.
• The pacing algorithm is executed at the frequency specified by the refreshPeriod option in the [pacing]

section.
• The pacing algorithms used for each Agent Group monitored by the pacing component are identically

configured.
• In addition to group-based predictions, the pacing component also calculates consolidated results for

every channel—that is, the sum of the results for all groups belonging to a particular channel.
• There are two types of workflows:

• Proactive—in which a media interaction is created every time a visitor accepts a proactively
generated invitation (that is, an invitation that was triggered by specific rules associated with the
Web Engagement software). With a proactive workflow, Web Engagement has complete control over
when and if a given interaction is created.

• Reactive—in which media interactions are created as a result of a visitor's reaction to static
elements on the website, such as clicking a button or following a link. This kind of workflow is
beyond the control of the Web Engagement software, since it can't control the behavior of the
people who visit the site.

Note that both proactive and reactive workflows produce the same kinds of
media interactions, such as chat or callback interactions. But from the
standpoint of the pacing component, proactively and reactively generated
interactions have vastly different implications.

• When the pacing component is configured to calculate information for both proactive and reactive

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 208

https://docs.genesys.com/Documentation/GWE/latest/Deployment/PacingAlgorithm
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions

workflows, we say that it is in dual mode and that it has been configured to use a dual pacing
algorithm.

• Proactive workflow predictions can be calculated in both the simple proactive mode and in dual mode.
But Reactive predictions are only calculated in dual mode.

• The pacing component cannot distinguish between Agent Groups that have been configured to service
proactive workflows and ones that are servicing reactive workflows. This distinction is completely
controlled by your Genesys configuration, including the way your strategies are configured.

• The pacing component assumes that each agent it is monitoring only belongs to one of the Agent
Groups it is monitoring.

• You can set up an environment where an Agent Group is configured to work with several interaction
types (or channels) simultaneously. This is known as blended mode. In blended mode, the pacing
component executes a dedicated instance of the pacing algorithm for each channel that is configured
for a particular Agent Group.

• The pacing algorithms use statistical information obtained both from Stat Server and from the Web
Engagement software, which has access to information that can't be obtained from Stat Server, such as
the pending invitation count and the average time it takes to obtain a disposition code for an invitation.

Configuring dual pacing mode

You can specify which type of pacing algorithm to use by setting the algorithm option in the [pacing]
section. This option supports the following values:

• SUPER_PROGRESSIVE—The Super Progressive optimization method only affects the Abandonment
Rate parameter and provides a higher Busy Factor then the Predictive one. It is efficient for relatively
small agent groups (1 to 30 agents) when the Predictive method gives poor results.

• PREDICTIVE_B—A Predictive method based on the Erlang-B queuing model. Recommended for large
agent groups (more than 30 agents) with impatient customers who cannot stay in the queue, even for
a short time.

• SUPER_PROGRESSIVE_DUAL—An adaptation of the Super Progressive method for environments
serving both proactive and reactive interactions.

• PREDICTIVE_B_DUAL—An adaptation of the Predictive B method for environments serving both
proactive and reactive interactions.

As you can see, you must specify either SUPER_PROGRESSIVE_DUAL or PREDICTIVE_B_DUAL if
you want to use a dual pacing algorithm.

The most important parameter calculated by a simple pacing algorithm is called
InteractionsToSend. This parameter determines how many proactive invitations should be sent
during each refresh period. When you use a dual pacing algorithm, you need to set a balance
between the percentage of agents in each group who are handling proactive invitations and those
who are handling reactive ones. Without doing this, you run the risk of having your reactive traffic
take over, meaning that proactively created hot leads—people who are likely to be prime
customers—may be displaced by random visitors about whom you know nothing.

You can use the proactiveRatio option to adjust this balance.

Web Engagement helps avoid this issue by calculating the InboundPortion parameter, which
specifies how much capacity should be set aside for inbound (reactive) traffic. The calculated values

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 209

https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#algorithm
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#proactiveRatio

for InboundPortion can range from 0 to 1:

• 0 means that the affected page should not allow inbound traffic (for example, by disabling chat request
buttons). This value will be returned by the pacing algorithm in situations where each new reactive chat
request "seizes" an agent who could potentially handle a proactive chat session, thereby making it
impossible to serve proactive traffic.

• 1 means that there are enough agents to serve the predicted count of proactive invitations, even if
reactive interactions are started on the affected page.

• A value between 0 and 1 means that if a reactive interaction is started on the affected page, then it can
potentially seize an agent who would otherwise be serving a predicted proactive interaction. This
situation may be undesirable, especially if the potential value of your proactive interactions is high. In
that case, you probably want to suppress the calculation of InboundPortion.

Suppressing Calculation of InboundPortion
Web Engagement provides two ways to suppress the calculation of InboundPortion:

• Use a simple, proactive-only pacing algorithm. In this case, InboundPortion will not be calculated at
all.

• Use a dual pacing algorithm, but specify proactiveRatio at 100. In this case, the value of
InboundPortion will always be 0, meaning that the affected page is instructed to block all inbound
chat traffic, if possible—for example, by disabling chat request buttons.

The Pacing REST API

For times when reactive chats can only be controlled from the page, Web Engagement provides a
RESTful Pacing API that gives you access to the value of the InboundPortion parameter calculated
by the dual pacing algorithm.

You can also use the Pacing API to access statistical information about agent availability in the
monitored Agent Groups. Although this statistical information is provided in a raw format that is used
as input by the pacing algorithm, it can sometimes be critical for your understanding of how to
control activity from the affected page.

Obtaining the Reactive State
Reactive state is another term that is used when talking about the InboundPortion parameter
described above.

You can query the reactive state by issuing this request:

http://<gweserver.host:gweserver.port>/server/data/pacing/
reactiveState?channel=<channelName>&groups=[<names>]

The information returned by this request helps you understand whether reactive traffic is displacing
proactive traffic on the specified channel for the specified Agent Group. If an Agent Group is not
specified, the result will be calculated for the entire channel.

The response to this request is a float between 0 and 1 that indicates the probability with which the

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 210

https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/API/PacingAPI

affected page should allow reactive interaction:

• 1—There are no limitations on the number of reactive interactions.
• 0—The page should not allow any reactive interactions.
• If the value is between 0 and 1, the page should use the specified probability to determine whether to

allow a given reactive interaction.

Let's consider an example of this last situation. If the reactiveState request returns a value of 0.7,
this means that you probably only want 7 out of 10 of your recently loaded pages to allow reactive
interactions. Therefore, the other 3 pages should prohibit them. If you don't set up this kind of
scenario, newly created reactive interactions can spiral out of control, meaning that some of them
will seize agents who should have been left available for proactive customers. This means that Web
Engagement will produce failed hot leads.

In JavaScript you can issue a reactiveState call like this:

<script>
$.ajax({url: 'http://{server}:{port}/server/data/pacing/reactiveState?channel=chat'})
.done(function(result) {

console.log('result: ' + result.reactiveState);
var rndValue = Math.random();
if(rndValue > result.reactiveState) {

// Disable reactive chat buttons
}
else {

// Enable reactive chat buttons
}

});
</script>

Here's a sample:

http://example.com:9081/server/data/pacing/
reactiveState?channel=chat&groups=Web%20Engagement%20Chat

And the response:

{"reactiveState":1.0}

Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the
page.

Obtaining Channel Capacity
You can use the channelCapacity method to understand how many concurrent interactions to allow
on a specific channel for a specific Agent Group (or for the specified channel only, if a group is not
explicitly specified).

Important: This method takes into account both agent state and the capacity rules that have been
configured for each agent. For example, if the channel contains 1 Ready agent with a capacity of 2
and 1 Ready agent with a capacity of 3, then the cumulative channel capacity will be calculated as 5.

Important: An InboundPortion value of 1 does not always mean that a reactive chat will be
immediately delivered to an agent.

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 211

Let's consider a situation where no agents are ready in the system and the proactive traffic is
predicted at 0. This means that the value of InboundPortion will be 1 (because there isn't any
proactive traffic to displace). However, because none of our agents are ready, you also don't want to
allow any immediate reactive interactions.

By issuing a channel capacity request, you can get more information on whether or not you have to
allow new reactive interactions.

Here's how to call the method:

http://<gweserver.host:gweserver.port>/server/data/pacing/
channelCapacity?channel=<channelName>&groups=[<names>]

And here is an example of how to use it in a script:

<script>
$.ajax({url: 'http://{server}:{port}/server/data/pacing/channelCapacity?channel=chat'})
.done(function(result) {

console.log('Chat channel capacity is: ' + result.capacity);
});

</script>

This request:

http://example.com:9081/server/data/pacing/
channelCapacity?channel=chat&groups=Web%20Engagement%20Chat

Might yield this response:

{"capacity":254}

Note: The channel capacity request provides information about the current state of channel. But you
need to keep in mind the potential for race conditions.

For example, if ten browsers have requested the channel capacity concurrently, each of them could
be told that the value is 1. By itself, this would lead each browser session to think that it can trigger a
reactive interaction. But if an interaction is triggered on more than one browser, you will have a race
condition in which the first interaction to seize an agent will use up all of the available capacity, and
all other interactions will be in a wait state.

Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the
page.

Step-by-Step Examples

Let's consider an example of how to use pacing information to determine how to serve reactive chats.

There are 2 use cases:

• The page makes sure that proactive traffic is not displaced.
• The page is not aware of proactive traffic and is interested only whether any agents are Ready.

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 212

Making sure that proactive traffic is not displaced
This is the most general use case, in which you need to avoid two different pitfalls:

• Reactive interactions should not be allowed to displace potential proactive interactions (which are
calculated based on the result of the reactiveState method)

• Reactive interactions should only be triggered when at least one Ready agent is available on the
channel

Here is the algorithm for this situation:

1. Determine whether reactive interactions are undesirable. If so, disable the request buttons on the page.
2. If reactive interactions are allowable, find out whether there are any available agents.
3. If no agents are available, disable the request buttons on the page.
4. If one or more agents are available, make sure the request buttons are enabled.

And here is a JavaScript sample:

function reactiveChatPacing() {
$.ajax({url: 'http://{server}:{port}/server/data/pacing/reactiveState?channel=chat'})

.done(function (reactiveResult) {
var rndValue = Math.random();

// Check that reactive chat is allowed with probability result.reactiveState
if (rndValue >= reactiveResult.reactiveState) {

disableReactiveChatButtons();
} else {

// For the case result.reactiveState == 1 we should check channel capacity
// as there is no guarantee that there are Ready agents
if (reactiveResult.reactiveState == 1) {

$.ajax({url: 'http://{server}:{port}/server/data/pacing/
channelCapacity?channel=chat'})

.done(function(capacityResult) {
if (capacityResult.capacity == 0) {

disableReactiveChatButtons();
} else {

enableReactiveChatButtons();
}

});

}
else {

enableReactiveChatButtons();
}

}
});

}

function disableReactiveChatButtons () {
// Disable reactive chat buttons

}

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 213

function enableReactiveChatButtons() {
// Enable reactive chat buttons

}

Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the
page.

Ignoring proactive traffic
This case is a shorter variant of the first one, since you only need to determine the channel capacity.

Note that you should reserve the use of this approach for situations in which you only want to support
reactive interactions.

Here is the algorithm:

1. Find out whether any agents are available.

And the JavaScript:

function reactiveChatChannelCapacity() {
$.ajax({url: 'http://{server}:{port}/server/data/pacing/channelCapacity?channel=chat'})

.done(function (capacityResult) {
if (capacityResult.capacity == 0) {

disableReactiveChatButtons();
} else {

enableReactiveChatButtons();
}

});
}

function disableReactiveChatButtons () {
// Disable reactive chat buttons

}

function enableReactiveChatButtons() {
// Enable reactive chat buttons

}

Note: This example uses the jQuery JavaScript library, which requires that jQuery be loaded on the
page.

Some Sample Calculations

70% Proactive Traffic, 30% Reactive Traffic

1. First, set your configuration options like this:
• refreshPeriod = 2 (default value)

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 214

https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#refreshPeriod

• proactiveRatio = 70

• optimizationGoal = 3 (default value)
• optimizationTarget = ABANDONMENT_RATE (default value)
• algorithm = SUPER_PROGRESSIVE_DUAL

2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side.
3. If InboundPortion is 1, check the channel capacity.
4. Either reduce or increase the reactive traffic, or leave it alone—depending on the result of your request,

as shown in the above example script.

30% Proactive Traffic, 70% Reactive Traffic

1. First, set your configuration options like this:
• refreshPeriod = 2 (default value)
• proactiveRatio = 30

• optimizationGoal = 3 (default value)
• optimizationTarget = ABANDONMENT_RATE (default value)
• algorithm = PREDICTIVE_B_DUAL

2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side.
3. If InboundPortion is 1, check the channel capacity.
4. Either reduce or increase the reactive traffic, or leave it alone—depending on the result of your request,

as shown in the above example script.

Disable Reactive Traffic
That is, provide 100% proactive traffic by disabling all reactive chats.

1. First, set your configuration options like this:
• refreshPeriod = 2 (default value)
• proactiveRatio = 100

• optimizationGoal = 3 (default value)
• optimizationTarget = ABANDONMENT_RATE (default value)
• algorithm = SUPER_PROGRESSIVE_DUAL

2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side (it
must be 0).

3. Deny reactive traffic by disabling your chat buttons.

Disable Proactive Traffic
Provide 100% reactive traffic.

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 215

https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#algorithm
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#algorithm
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#algorithm

1. First, set your configuration options like this:
• refreshPeriod = 2 (default value)
• proactiveRatio = 0

• optimizationGoal = 3 (default value)
• optimizationTarget = ABANDONMENT_RATE (default value)
• algorithm = SUPER_PROGRESSIVE_DUAL

2. Then get the InboundPortion value by using the corresponding HTTP request on the browser side (it
must be 100).

3. Allow reactive traffic by enabling your chat buttons.

Using Pacing Information to Serve Reactive Requests Customizing the Browser Tier Widgets

Developer's Guide 216

https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#refreshPeriod
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#proactiveRatio
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationGoal
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#optimizationTarget
https://docs.genesys.com/Documentation/GWE/latest/Deployment/pacingOptions#algorithm

Dynamic Multi-language Localization
Application Sample

Prerequisites

• Use the latest version of Genesys components.

Creating multilingual categories

Create one or more categories by following the instructions in Creating a Category.

Important
All tags for multi-language categories must have a different expression.

Dynamically adding the language in the instrumentation script

The language code is transmitted as a URL parameter. You can pass a language code as part of the
URL or you can set the code statically.

Here is an example of the code as part of the URL:

http://<Web Engagement Server host>:<Web Engagement Server port>/multi/
main.jsp?title=⯑⯑&language=zh-CN

Placing the language code in the instrumentation script allows you to localize the registration form
and chat. To do this, complete the following:

1. Add Localization Files to Your Web Engagement Application.
2. Add the language code to your instrumentation script.

The following example shows how to add the language code to your instrumentation script:

<% String title = request.getParameter("title"); %>
<% String langCode = request.getParameter("language"); %>
<title><%=title%></title>
<script>

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 217

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/SimpleEngagement#Creating_a_Category
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/CustomizetheBrowserTierWidgets#t-2

var _gt = _gt || [];
_gt.push(["config", {

"name" : "multi",
"domainName" : "<domain name of your website>",
"server" : "432",
"languageCode" : "<%=langCode%>",
"dslResource" : "<Web Engagement Server host>:<Web Engagement Server port>/server/

resources/dsl/domain-model.xml",
"secureDslResource" : "<Web Engagement Server host>:<Web Engagement Server secure

port>/server/resources/dsl/domain-model.xml",
"httpEndpoint" : "<Web Engagement Server host>:<Web Engagement Server port>",
"httpsEndpoint" : "<Web Engagement Server host>:<Web Engagement Server secure port>"

}]);
(function () {

var gt = document.createElement("script");
gt.setAttribute("async", "true");
gt.src = ("https:" == document.location.protocol ? "<Web Engagement Server host>:<Web

Engagement Server secure port>" :
"<Web Engagement Server host>:<Web Engagement Server port>") + "/server/resources/js/

build/GTC.min.js";
(document.getElementsByTagName("head")[0] || document.body).appendChild(gt);

})();
</script>

Parsing the address of the page and switching the invitation text

You can get the language code from the page address in the strategy. The page address is passed to
the strategy when the rule is triggered and an invitation is generated.

The event_url variable is declared and initialized in the default.workflow strategy:

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 218

The event_url variable is then transmitted to the engage.workflow strategy:

The following shows the description of the entering variable in the event_url in the
engage.workflow strategy:

The following example shows fetching the language code of the URL address and switching the labels
in the FullfillEngagementProfile ECMA Script block in the engage.workflow strategy:

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 219

var language=event_url.substr(-5);
var invitation=" Would you like some help with the selection? Our technical experts are
available to answer questions.";
var acceptBtnText= 'Chat1';
var acceptBtnVoice='Call Me';
var cancelBtnText = 'No Thanks';
var greetingDefault = 'Hello!';
var greetingMorning = 'Good morning!';
var greetingEvening = 'Good evening!';
var greetingAfternoon = 'Good afternoon!';
var titleChat = 'Chat';
var titleVoice = 'Voice';

switch (language)
{
case "zh-CN":

invitation=" ⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑";
acceptBtnText= '⯑';
cancelBtnText = '⯑⯑⯑⯑';
acceptBtnVoice='⯑⯑⯑⯑⯑';
greetingDefault = '⯑⯑⯑';
greetingMorning = '⯑⯑⯑⯑';
greetingEvening = '⯑⯑⯑⯑';
greetingAfternoon ='⯑⯑⯑⯑⯑⯑';
titleChat = '⯑';
titleVoice = '⯑⯑';
break;

case "en-US":
invitation=" Would you like some help with the selection? Our technical experts are

available to answer questions.";
acceptBtnText= 'Chat';
cancelBtnText = 'No Thanks';
acceptBtnVoice='Call Me';

greetingDefault = 'Hello!';
greetingMorning = 'Good morning!';
greetingEvening = 'Good evening!';
greetingAfternoon ='Good afternoon!';
titleChat = 'Chat';
titleVoice = 'Voice';
break;

case "fr-FR":
invitation=" Voulez-vous un peu d'aide avec la sélection? Nos experts techniques sont

disponibles pour répondre aux questions.";
acceptBtnText= "T'Chat";
cancelBtnText = 'Non Merci';
acceptBtnVoice='appelez-moi';

greetingDefault = 'Bonjour!';
greetingMorning = 'Bonjour!';
greetingEvening = 'Bonne soirée!';
greetingAfternoon ='Bon après-midi!';
titleChat = "T'Chat";
titleVoice = 'voix';
break;

case "ja-JP":
invitation=" ⯑⯑";
acceptBtnText= '⯑⯑⯑⯑';
cancelBtnText = '⯑⯑⯑⯑⯑⯑⯑';
acceptBtnVoice='⯑⯑⯑⯑⯑';

greetingDefault = '⯑⯑⯑⯑⯑⯑';
greetingMorning = '⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑';
greetingEvening = '⯑⯑⯑⯑⯑⯑';
greetingAfternoon ='⯑⯑⯑⯑⯑⯑';
titleChat = '⯑⯑⯑⯑';

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 220

titleVoice = '⯑';
break;

}

var channelName = titleChat;
var acceptBtnCaption = acceptBtnText;
var cancelBtnCaption = cancelBtnText;
if (channelType == 'proactiveCallback') {
channelName = titleVoice;
acceptBtnCaption = acceptBtnVoice;
}

var greeting = 'Hello!'
if (event_timeStamp !=) {

realLocalTime = event_timeStamp - event_timezoneOffset + (new
Date()).getTimezoneOffset()*60000;

var date = new Date(realLocalTime);
var hours = date.getHours();
if (hours < 6) {

greeting = greetingDefault;
} else if (hours < 12) {

greeting = greetingMorning;
} else if (hours < 17) {

greeting = greetingAfternoon;
} else {

greeting = greetingEvening;
}

}

var engageProfile = {
'visitID': event.visitID,
'nick_name': profile.FirstName,
'first_name': profile.FirstName,
'last_name': profile.LastName,
'subject': channelName,
'message':greeting + invitation,
'time_zone_offset': 8,
'wait_for_agent' : false,
'routing_point':sipRoutingPoint,
'ixn_type': channelType,
'pageID': event.pageID,
'inviteTimeout': 30,
'acceptBtnCaption': acceptBtnCaption,
'cancelBtnCaption': cancelBtnCaption

};

Localized widgets examples

Implementing the code above will result in localized versions of the Web Engagement widgets. For
example, if the language is Japanese, the text in the widgets would appear as follows:

Engagement invitation:

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 221

Registration form:

Chat:

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 222

Interaction Workspace:

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 223

Dynamic Multi-language Localization Application Sample Customizing the Browser Tier Widgets

Developer's Guide 224

	Developer's Guide
	Table of Contents
	Genesys Web Engagement Developer's Guide
	High-Level Architecture
	Monitoring
	Visitor Identification
	Events Structure

	Notification
	Engagement

	Application Development
	Creating an Application
	Generating and Configuring the Instrumentation Script
	Customizing an Application
	Creating Business Information
	Simple Engagement Model
	Advanced Engagement Model

	Publishing the CEP Rule Templates
	Customizing the SCXML Strategies
	Customizing the Engagement Strategy
	Customizing the Chat Routing Strategy

	Customizing the Browser Tier Widgets

	Deploying an Application
	Starting the Web Engagement Server
	Deploying a Rules Package
	Testing with ZAP Proxy
	Sample Applications
	Get Information About Your Application
	Integrating Web Engagement and Co-browse with Chat
	Media Integration
	Using Pacing Information to Serve Reactive Requests
	Dynamic Multi-language Localization Application Sample

