
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

High-Level Architecture

Developer's Guide

4/21/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

High-Level Architecture

Contents

• 1 High-Level Architecture
• 1.1 Introduction
• 1.2 Browser Tier Agents
• 1.3 Web Engagement Server
• 1.4 Database and Reporting
• 1.5 Event Workflow

High-Level Architecture

Developer's Guide 2

Introduction

This article discusses the components that make up Genesys Web Engagement. Before you dive in,
take a look at What is Web Engagement?

As mentioned in that article, Web Engagement has the following basic architecture:

As shown here, Web Engagement provides web services that connect your website with the Genesys
contact center solution using:

• Browser Tier Agents (JavaScript code snippets) which are inserted into your web pages; they run in
the visitor's browser and track their browsing activity.

• A Web Engagement Server, which includes the Web Monitoring Service and the Web Notification
Service. This server is responsible for managing the data and event flow, based on a set of configurable
rules and the visit's defined business events. It also stores data, submits information to the Genesys
solution, and manages engagement requests to the Genesys contact center solution.

Browser Tier Agents

The Browser Tier Agents are implemented as JavaScript components that run in the visitor's browser.
To enable monitoring on a web page, you create a short standardized section of JavaScript code with
the Genesys Administrator Extension plug-in and then add this code snippet to the pages of your site.

When a customer visits the webpage, the code retrieved within the page loads all the necessary
artifacts like the JavaScript libraries and Domain Specific Language (DSL) that contains the definitions
of your Business Events.

High-Level Architecture

Developer's Guide 3

https://docs.genesys.com/Documentation/GWE/latest/Deployment/ProductOverview

The DSL covers:

• The HTML elements to monitor.
• The custom business events to send to the Web Engagement Server.
• The data to include in the events.

The Browser Tier generates categorized standard System and custom Business events, defined in the
DSL definitions, and sends them to the Web Engagement Server over HTTP.

Genesys Web Engagement provides the following browser tier agents:

• The Monitoring Agent records the web browsing activity. It generates basic system events such as
VisitStarted, PageEntered, and additional custom business events, such as 'add-to-shopping cart'.
These events are sent to the Web Engagement Server for further processing. For further information
about events, see Event Workflow. For details about implementing monitoring, see Monitoring.

• The Notification Agent allows a web server to push data to a browser, without the browser explicitly
requesting it, providing an asynchronous messaging channel between server and browser. It is used for
presenting the engagement invite. For details about implementing notification, see Notification.

• The Engagement Agent provides the engagement mechanism, chat communication and web callback
initialization. For details about implementing engagement, see Engagement.

If you are only interested in Web Engagement's monitoring features, you need to configure your
instrumentation script accordingly. See Configuring the Instrumentation Script for details.

High-Level Architecture

Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Architecture#Event_Workflow
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Monitoring
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Notification
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/Engagement
https://docs.genesys.com/Documentation/GWE/latest/Developer/CustomizeMonitoringScript#instrumentconfig

Web Engagement Server

Working with the Browser Tier
The Genesys Web Engagement Server receives System and Business events from the browser's
Monitoring Agent through its RESTful interface.

• System events track basic customer activities on your website. There are six of them, coming in two
different flavors:
• The Visit-related events, which are VisitStarted, PageEntered, and PageExited;
• The Identity-related events, which are SignIn, SignOut, and UserInfo. See Visitor Identification

for further details.

• Business events are additional custom events that you can create by implementing Advanced
Engagement:
• You create and define these events in the DSL loaded by the monitoring agents in the browser,

using the Business Events DSL. For details about how to implement them, refer to Managing
Business Events.

• You can submit these events from your web pages by using the Monitoring Javascript API.

For details about how Business and System events are structured, see Events Structure.

The Monitoring JavaScript Agent gets a list of categories from the Web Engagement Server and
categorizes each event, based on the event data, prior to sending it to the server. The integrated
Complex Event Processing (CEP) engine processes incoming events against the business rules and
creates actionable events when the required conditions are met. For more information on rules,
consult the documentation for Genesys Rules System.

The Web Engagement Server also sends invitation notifications to the Notification Agent injected into
the visitor's browser.

Hosting Static Resources

The Web Engagement Server is also responsible for hosting static resources, which are used in web
applications such as Invite Widget, Chat Widget, and so on. These resources are all available to the
newly created Web Engagement application in the
GWE_installation\apps\application_name\resources\ folder. After deploying an active application
into Web Engagement Server, these resources will be located in the GWE_installation\server\gwe\
resources\ folder.

Note: When a new GWE application is deployed, all resources belonging to previously deployed
applications are removed.

-conf
resources.properties // app configuration file

-drl // app drl files
-dsl

domain-model.xml // default DSL file
-locale

callback-en.json // default English localization file for callback widget
callback-fr.json // default French localization file for callback widget

High-Level Architecture

Developer's Guide 5

https://docs.genesys.com/Documentation/IW/8.5.0/Developer/VisitorIdentification
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/AdvancedEngagement
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringDSL
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/User/BusinessEvents
https://docs.genesys.com/Documentation/GWE/latest/API/MonitoringAPI
https://docs.genesys.com/Documentation/IW/8.5.0/Developer/EventsStructure
https://docs.genesys.com/Documentation/GRS/latest/User/Welcome

-_composer_projects // GRDT and SCXML Composer projects
ads.html // sample advertisement widget
callback.html // default web callback widget
chatTemplates.html // scripts for template-based modification of chat widget
chatWidget.html // default chat widget
invite.html // default invitation widget

You can add your own static resources under the Web Engagement Server, but Genesys recommends
you do this only if the resources are related to the Genesys Web Engagement solution. Alternatively,
you can host your static resources under a third-party server, as long as it supports all the features
required for the Web Engagement solution.

JSONP

The Web Engagement Server supports the JSONP protocol for all resources. JSONP stands for “JSON
with Padding” and it is a workaround for loading data from different domains. It loads the script into
the head of the DOM and thus you can access the information as if it were loaded on your own
domain, by-passing the cross domain issue.

Tip
For more information about JSONP, see http://en.wikipedia.org/wiki/JSONP.

For example, for this request:

http://{gwe server}/server/resources/invite.html?obj=myObj&callback=myMethod

the server returns following response body:

myObj.myMethod('<content of http://{gwe server}/server/resources/invite.html>');

Cross-origin resource sharing

Cross-origin resource sharing (CORS) is a mechanism that allows many resources (for example, fonts,
JavaScript, and so on) on a web page to be requested from another domain outside the domain from
which the resource originated. In particular, JavaScript's AJAX calls can use the XMLHttpRequest
mechanism. These "cross-domain" requests would otherwise be forbidden by web browsers due to
the same-origin security policy.

Tip
For more information about cross-origin sharing, see http://en.wikipedia.org/wiki/
Cross-origin_resource_sharing.

High-Level Architecture

Developer's Guide 6

GZIP

The Web Engagement Server can serve pre-compressed static content as a transport encoding and
avoid the expense of on-the-fly compression. So if a request for GPE.js is received and the file
GPE.js.gz exists, then it is served as GPE.js with a gzip transport encoding. By default, the Web
Engagement solution ships all JavaScript resources in minified and pre-compressed version.

Tip
For more information about GZIP, see
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/optimize-
encoding-and-transfer#text-compression-with-gzip and

http://en.wikipedia.org/wiki/HTTP_compression.

Working with the Enterprise Tier
The Web Engagement Server is also the engagement's entry point to the Genesys servers. It delivers
web and visitor information to the contact center, which allows that information to be correlated with
contact information.

On this end, the Web Engagement Server stores events, manages contexts and histories in its
Cassandra database, and submits the appropriate data to the other Genesys servers.

When the Web Engagement Server is notified that it should present a proactive offer, it retrieves the
engagement information, based on the visit attributes. Then, if the SCXML strategies allow it, the
proactive offer is displayed.

If the visitor accepts, the Engagement service connects to the Genesys servers. Once the connection
is established, the service manages the engagement context information across the visit.

The Web Engagement Server is also responsible for accepting rules deployed by the Genesys Rules
Authoring Tool (GRAT).

Database and Reporting

Web Engagement processes a large amount of data. To make this happen quickly enough, Genesys
has combined three technologies into the database and reporting layers:

• Apache Cassandra is an open source distributed database management system designed to handle
large amounts of data across many commodity servers, providing high availability with no single point
of failure.

• Elasticsearch is a search server that provides a distributed, multitenant-capable full-text search engine
with a RESTful web interface and schema-free JSON documents.

• Apache Spark is an open source cluster computing framework.

High-Level Architecture

Developer's Guide 7

Cassandra and Elasticsearch clusters are used in the Operational Cluster that stores data for realtime
processing. This Cassandra data is indexed by Elasticsearch for quick access, and the combined
results are replicated in a separate Cassandra cluster in the Reporting Cluster. This Reporting Cluster
uses a Spark cluster that massages the data in the Cassandra reporting cluster for more
sophisticated reporting.

The following diagram provides a highly simplified view of how it all fits together.

Event Workflow

The Genesys Web Engagement Server receives system and business events from the browser's
Monitoring Agent. This event flow is used to create actionable events which generate requests to the
Genesys solution, and make the engagement, follow up, and additional actions with the Genesys
solution possible. (Note that an actionable event does not always result in a notification—sometimes
an action could be "do nothing.")

Here is a high-level view of this:

High-Level Architecture

Developer's Guide 8

High-Level Architecture

Developer's Guide 9

High-Level Architecture

Developer's Guide 10

As you can see, when a customer visits your website, he or she interacts with your web pages. The
Monitoring Agent handles this traffic and translates it into the relevant System and Business events,
according to your DSL and category information.

The agent then submits the events to the Web Engagement Server where the Complex Event
Processing embedded in the server determines the actionable events ("Hot lead Identified" in the
above figure) and carries out further processing. This includes the use of SCXML-based routing
strategies to determine whether to proactively engage, to follow up, or to implement any other
action.

High-Level Architecture

Developer's Guide 11

	Developer's Guide
	High-Level Architecture

