3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Developer's Guide

Customizing the Engagement Strategy

4/22/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Customizing the Engagement Strategy

Customizing the Engagement Strateqgy

Contents

e 1 Customizing the Engagement Strategy
* 1.1 Main Interaction Process and Workflow
e 1.2 Engagement Policy (Decision Workflow)
* 1.3 Obtaining Data from the GWE Cassandra Database through REST Requests
» 1.4 Start Engagement as a Result of the Engagement Logic Strategy

1.5 Cancelling Engagement as a Result of the Engagement Logic Strategy

1.6 Cleaning Interaction Process
e 1.7 Propagating Data from Engagement Logic strategy into Chat Routing Strategy

e 1.8 Accessing Pacing Information from the Engagement Logic Strategy

Developer's Guide

Customizing the Engagement Strategy

When you create your Web Engagement application, Genesys Web Engagement also creates default
Engagement Logic and Chat Routing SCXML strategies in the \apps\application_name_composer-
project\ folder. Orchestration Server (ORS) uses these strategies to decide whether and when to
make a proactive offer and which channels to offer (chat or web callback).

The Engagement Logic strategy processes Genesys Web Engagement interactions, and consists of
sub-workflows to handle: general processing, decision making, obtaining additional information from
the Cassandra database through the REST API, and contacting the Backend Server with instructions
according to the engagement (or non-engagement) process.

You can modify the Engagement Logic SCXML by importing the Composer project into Composer. The
project is located here: \apps\application name_composer-project\
WebEngagement_EngagementLogic\. Refer to the sections below for details about the
Engagement Logic strategy and how it can be modified.

Note: The strategies deployed out of the box with GWE 8.1.2 are made for Composer 8.1.300.89
projects. If you use a newer version of Composer, make sure that you upgrade these projects by
following the upgrade procedure.

Main Interaction Process and Workflow

The default entry point to the Engagement Logic strategy is the Interaction Queue specified in the
wmsg.connector.interactionServer.queueQualified option on the Backend Server application.

Developer's Guide 3

Customizing the Engagement Strategy

s e e

PROVISIOMING = Environment = Applications = Web_Engagement_Backend_Server_0G

Navigation
[Search +
|l Environment

(g} Alarm Conditions

(g} Scripts

(g} Application Templates
|3 Applications
(g} Hosts

(g} Selutions

g} Time Zones

(g} Business Units/Sites
(g} Tenants

[} Table Access Points
(g} Formats

(g} Fields

= Switching

= Routing/eServices

= Desktop

+ || [*][+]][+

=1 Accounts

The Interaction Queue

£ IWeh_Engagement_Backend_ServeEI_ - Stopped - Exited - \Applications),

Cancel H Save & Close H Save H Save & MNew LﬁF‘.eluad @Uninsmll E:) Start [Stop @

service:pacing (7 Items)
service:wes (8 Ttems)

serviceswmdb (2 Ttems)

Ellservice:wmsg (11 Items)

service: wmsghw msg.connector. defautEngagementChannel
service: wmsghw msg.connector.engagementExpirationTime
service:wmsghw meg.connector.interactionServer.queueiccepted
service wmsghw msg.connector.interactionServer.gueueEngaged

service:wmsg/wmsg.connector.interactionServer. gueueFailed

SEIVICE WMmSg
SEMVICE WMmsg
BErviCe Wmsg
SEMVICE WMSg

SEMVICE WMSg

- l Configuration H Options ” Permissions H Dependencies ” Alarms
[C|MNew [fgDelete ¥ Export o3 Import
Mame & Section Option
T |Filter Filter Filter

WMEg.connecC
WMmag. connec
WM2g.connec
WMag.connec

WMEg.connec
:

service wmsghw meg.connector.interactionServer.gueueQualified

SErviCe Wmsg

WM2g.connec

service wmsghwmsg.connector.interactionServer.gueueRejected
service: wmsgiw msg.connector.interactionServer. gueueTimeout
service wmsghw meg.connector. phoneNumber

service wmsalw msa.connector.reaistrationFormExpirationTime

Passing Parameters into the Engagement Logic Strategy

SEMVICE WMSg
SEMVICE WMSg
SEIVICE WMmSg

SEMVICE WMmsa

When Genesys Web Engagement creates an engagement attempt, the Backend Server creates an
Open Media interaction of type webengagement and places it into the Interaction Queue specified

by the wmsg.connector.interactionServer.queueQualified option. By default, this option is set to

the Webengagement_Qualified queue. Orchestration Server (ORS) monitors this queue and pulls the
interaction to process it with the Engagement Logic strategy.

Since ORS does not connect to the Backend Server(s), certain parameters must be passed to the
Engagement Logic strategy in order to provide ORS with the data it needs.

1. The address where the SCXML strategy is located. Note: The default Engagement Logic and Chat
Routing strategies are located as resources under the Backend Server. Provisioning automatically
specifies this address in the related Configuration Server objects when GWE is installed. Since you can
host strategies in other places, you can manually update the parameters in the related objects.

2. The address where the Backend Server can be accessed (if a secure address is present, pass this as
well). This information is used to issue REST requests to the GWE Cassandra database and to start or

Developer's Guide

WMag.Connec
WM2g.Cconnec
WMEg.connecC

Wm0, connec

Customizing the Engagement Strategy

cancel the engagement procedure through the Backend Server.

The parameters are passed to ORS through the Routing script object
Webengagement_Qualified.Routing that is associated with the Webengagement_Qualified Interaction

Queue.

PROVISIONING = Envirorment = Scripks

DEPLOYHMENT

OPERAT LN

[Havigats
. [y Search
' Environment
. [AMamm Canditions
[Application Templates
[Applicaticns
|__‘ Hasts
[l Solutions
[Tirme Zones
[Business Units/Sites
G Tenants
C§ Table Access Points

G Farmats
[Fields

| Lep Switching

l
+

]
[
b
I
k¥
[]
[
b
b
I

Sonpts

Hame «

T Wabsngagemant
View: =] Root = [Scripts

Visbengagemenl_Chal ChalRouling. WView
Viebengagement_Chal.Rouling
Viebengagement_Engaged
Veéebengagement_Engaged.Clean
Yebengagement_Engaged Routing
Webengagement_Failed
Viebengagement_Failed Clean
Viebengagement_Failed Routing
Viebengagemant_Cualified

Seripl Type
|| Fiter

Interaction Queue View
Enhanced Routing
Interaction Clueue
Interaction Clusue View
Enhanced Routing
Interaction Queue
Interaction Queue View
Enhanced Routing
Interaction Quaus

)= TlMew ... [MewFalder F*Edt... [fgRemove ... EaChange state [MiMave to

Slate
Filter

Enablad
Enabled
Ennbled
Enabled
Enablad
Enablad
Enabled
Ennbled
Enabled
Enablad

| Enablzd

DFERATIONS |

Vigbengagement Clualfed En ementLogic. View Interaciion Qugue Wigw
Iilr Visbengagement_Qualified Routing Enhanced Routng
MONTTORERG H NEPLOYMENT

e Webengagement_Qualified Routing

)| W cancel [l Save & Ciose [save [Save & tew aﬁ.:bﬂd () Check LA

Dpticns

Permisons

Dependendes " prea

QRS

Webengagemeant_Quaified Routing

¥ Enzblec

hztps/ f OGRYUKOW-LT us.nt. genasysizb_com: 3081 'baceend, 'ESDJFEES,IIM;'E"E-I]EF_"FD _queusBasad_Inoo

PAOVISIONING > Brdrorment > 5o
! L] ﬂmﬂ'ﬂ"_
g Seanch
o Enwirenment = | Cenfiguration
[&larm Conditions
G
; Apphcaban Templabe: " Flarre:
1 Apglicatiors Tanant:
[Heasts = Script Type:
[Solutions State:
[Tirne Zories
[Busiress Units/Sites = | dchestration
[Tenents lLIRJ!
[Table Access Points Faamatars
[Formats
[Felds
g Swltching +
4 Rt jeServces +
=) [i==kton +

[ElAdd et FRRemave

K117

2
BackendURL
BackendURLE2cure

hipd DGR VKO- LT us.nt genasysab.com 08 1 /backend
hitpsWDGRY ULD-LT.us.nk genesysiab.com 5001/backend

conmext_manage=ent_servicas_password
conmext_managemen_servicea_url
CONfEx]_MAnAGEmE T _EErvicEa_usentame

hitpa 25 235 54, 236:5080

The Webengagement_Qualified.Routing

The Engagement Logic strategy has two interaction processes:

Developer's Guide

Customizing the Engagement Strategy

¢ clean.ixnprocess — This process is explained in Cleaning Interaction Process
¢ queueBased.ixnprocess — This process features the major logic for the strategy.
To access BackendURL and BackendURLSecure (as shown in the above image), use the button

marked with a green square, which opens Project Variables. Note: In order to access Project
Variables, your current tab in Composer must display Interaction Process (not Workflow).

The block and properties related to the entry point Interaction Queue (Webengagement_Qualified)
are marked with green rectangles shown in the following image:

Developer's Guide

Customizing the Engagement Strategy

-

_Tnhonu

Sl FEE e 2@ D EPRBEEF @RV E R 2|00

o BI|AvBvsv—~| |Hivavmv| | - Evlwow

[{ Project Explorer 2 Bg e
[E;"'; develop-wmbackend
[H develop-wmfrentend
[+ l=F WebEngagement_CEPRule_Temnplates 85multi
[+ l=F WebEngagement_CEPRule_Temnplates_multi
I & WebEngagement_ChatRouting
4 [# WebEngagement_EngagementLogic

[* Er db

= include

4 = Interaction Processes

8 queueBased.nprocess
f ;ﬁ F

[+ = Reports

k= o

I (= src-gen

I = WEB-INF

I = Workflows
[=% WebEngagement_EngagementWidgets
2 webme-common-app-core
2 webme-common-channels
2 webme-common-db
E'F‘J webme-common-logd)2
2 webme-common-protocols
2 webme-common-utils
::-'-.‘,J- webme-common-websecurity
E wme-archetype
E wme-backend-connections
i wme-backend-db
E& wme-backend-es
*2l wme-backend-pacing
= wme-backend-root
H wrne-backend-sg
H wrne-backend-web
[E& wrne-backend-web-ext
b §2 wme-common
b §2 wme-common-category
[I:;‘,J- WIme-commaon-itest
[:7‘1 wrne-frontend-cepspi
o e frandamel reed

The queueBased.ixnprocess

T T T T W T T T T T T T W W T

After the interaction is taken into processing, it is placed into a set of workflows for processing. All

=

B8

m

58| queueBased.ixnprocess 13

—
@} Project Varial

= Set the Projec
{51“ = Set the Project
Incoming
EngagementLogic. View —_—
Variable Mam
. o
log ' BackendURL
) BackendURLS
IncominglLog .
= Workflow |
defauktWorkflow
W
& Stop —
SopinteractionOnErrar
4
® Markers '[E] Properties 33 dfl Servers [Data Source Explorer [Snippet
" Interaction Queue
Core Property
Appearance | 4 Alias
Mame
4 Annotation
Block Motes
« Configuration Server
Object Mame
4 Queus
Enabled
Existing Queue

Queue ﬁ:scriptmn

workflows have notes related to specific blocks, however, this document highlights the most

important items.

Developer's Guide

Customizing the Engagement Strategy

Preventing Interaction Termination into Sub-flows

For all workflows, you must make sure that the workflow is configured to not terminate the
interaction upon exiting. If this step is not followed, the entire interaction process will not be able to
finish due to termination of the interaction in one of the sub-flows.

Note: Out-of-the-box Engagement Logic strategies already have the correct specified value (0) for
the system.TerminatelxnOnExit variable.

You must perform the following steps to turn-off the termination of the interaction at the end of the
sub-flow:

1. Open the workflow diagram in Composer (note that in the images, it is shown as default.workflow).
2. Select the Entry block, and in the properties of this block, open Global Settings > Variables.

3. Scroll down and locate the variable system.TerminatelxnOnExit. Set the value to 0.

See the process in the following image:

Developer's Guide

Customizing the Engagement Strategy

[Project Explorer 52
b b develop-wmbackend

b h develep-wmfrentend T ":
1 1=+ WebEngagement_CEPRule_Ternplates_85multi i
1 1= WebEngagement_CEPRule_Templates_multi 5;'33" o E
¢ {4 WebEngagement_ChatRouting Stoplnteraction(...| interactign. deletad
EBEngagement_Engagementlogic | i Entry block is
= db : "m‘E;""'n mm
' & nelude. :n:f':.!?ﬁimslltllnzl?p;ﬁwant Lo i
4 [Interaction Processes us from endless oops specific (ueer
businessDec
a clean.xnprocess
a quw:hs:d.mPrn-gﬁ i
. = META-INF ﬂ Application Variables ‘
. = Reports
. B sie Set the application variables
+ kS sre-gen Set the application variables
+ = WEB-INF
d [= Workflows Ecrra S
ﬁ. "‘“_"_—“‘"Mln* Variable Mame Categary Value - Add | ig ﬂ';';
systern.LastVirtualQueueSelect... System ‘undefined” -to save
% App_Last_VirtualQd_Selected System system LastVirtualQueueSelected ||| | Pelete Lk
1 getRESTinfo.workf systern.StartEvent System undefined [U—P]
4| noengageworkdla —App Statfyent System Suetem StadPuent o
= WehEngagemnt_Enga 2 [WTWMM-&“M---H--------I Down |
%3 webme-common-app- App_Terminate_bmn_On_Exit System emn. TerminatelnOnEat
3 webme-comman-chann systern. WebServiceStubbing System L3 i
b 52 webme-commen-db ! - :
> fr webme-commen-logdi2 | | [Hide deprecated variables Vake
» |2 webme-commen-protoce
%2 webme-common-usls | | | Restore system variables default values |
I ::“ webme-common-websed o Staet
b f wme-archetype ® B
b B wme-backend-connecti -
b b wne-backend-db - - o
 f wme-backend-es — e
¢ = wme-backend-pacing I_"ﬂh::f:;w 3 '

I & wme-backend-root

Turn off interaction termination

Parsing User Data from the webengagement Interaction and Passing it into Sub-

flows

One of the most important items for Engagement Logic is the ability to access User Data of

webengagement interaction. This data is fulfilled inside of the Backend Server and includes, among
other items, information provided by a pacing algorithm. The following is the process of passing basic
pacing algorithm data into a decision sub-flow.

The first step is to parse User Data available in the webengagement interaction. This is done in the

ParseEvent block:

Developer's Guide

Customizing the Engagement Strategy

Project Explorer &1 =R-N
- & develop-wmbackend
! H develop-wmirontend
. = WebEngagement CEPRule_Templates 85mult
& WebEngagement_CEPRule_Templates_multi
- 184 WebEngagement_ChatRouting
| {4 WebEngagement_EngagementLogic
b db
b = nclude
4 [Interaction Processes
) clesn innprocess
E queueBased.pnprocess
b = META-INF
b = Reports
b= src
b = sre-gen
= WEB-INF
4 & Workflows
U clean.workflow
| decision.workflow
| default.workflow |
&] engage.workiiow
4l getRESTinfo.werkflow
5| noengageworkflow
= WebEngagement_EngagementWidgets
- 12 webme-common-app-core
12 webme-commen-channels
- 82 webme-commen-db
- & webme-common-logdj2
2 webme-commen-protocols
- i webme-common-utils
1 webme-comman-websecurity
' Eﬁ' wme-archetype
- & wme-backend-connections
& wme-backend-db
- B wme-backend-e&5
2 wme-backend-pacing
- i wme-backend-root
. =4 wme-harkend-cn

The ParseEvent block

5| default.workflow 2

StopInteractionO... ntemctifn.deleted

& should stop processing afras- [Entry
interaction in case of f"_"i . Start
efrar. This should prevent | ¥
us from endless loops
Log
QueueSourcelog
In queue-based
strategy we should
read user data from [2] Assign
interaction User Data GetUDataBvent
s ECMA Script
ParseEvent
1
&
leog

LogincomingEvent

& Expre:

Expressi
Buald ar
categor

[[E
Lopy C

Expressio

Il var e

3 pvent_
4 event_
5 event_
6 event_
7 event_
B event
9 if (ev
10 evel
1 }

12 [even
13 |even
14 even
15 if (ev
16 evel

] Properties I3

&n ECMA Script

Model

Appm‘lﬂi

Property
4 Exceptions

Exceptions

4 Logging

Condition
Logging Details
Log Level

18 even
19 even
20 even
21 even

25 if (eve
4

Rowld C

4 npt

Script

us

The variable jsonEvent, which is present in the described block is created in the GetUDataEvent

block before as the following:

_genesys.ixn.interactions[system.InteractionlD].udata.jsonEvent that is, from the current
interaction we take key jsonEvent from User Data.

After data is parsed and assigned to variables, it can be propagated to sub-flows and used there. Sub-
flows are also able to pass output data in a backward direction. In the example we pass (among
other) parameters event_chatLoad and event_voicelLoad into decision.workflow and obtain
back parameters cancelCode, cancelDescription and decision:

Developer's Guide

10

Customizing the Engagement Strategy

i

E Project Explorer &2

[» E:‘f- develop-wmbackend
> E;‘J develop-wmfrontend

[» 1= WebEngagement_CEPRule_Templates_85multi
[» = WebEngagement_CEPRule_Templates_multi

I+ {4 WebEngagement_ChatRouting
4 (% WebEngagement_EngagementLogic
P = db
P = include
4 (= Interaction Processes
&) clean.ixnprocess
a gueueBased.ixnprocess
I = META-INF
[» = Reports
I = src
[» [= src-gen
[= WEB-INF
4 = Workflows
5| clean.workflow
(o] decision.workflow
I = default.workflow I
iﬂ] engage.workflow
ifﬂ] getRESTinfo.workflow
@] noengage.workflow
b =+ WebEngagement_EngagementWidgets
b 12 webme-common-app-core
[» 'f:a’- webme-common-channels
b 12 webme-common-db
b e webme-common-logdj2
b Y= webme-common-protocols
b 2 webme-common-utils
b 2 webme-common-websecurity
b b wme-archetype
[» E:‘,J- wrmne-backend-connections

[» E:‘,J- wme-backend-db

[E:‘f- wme-backend-es

[» :;‘,J- wme-backend-pacing
b == wme-backend-root

Passing output data

&

8 = 8 J queueBased.ixnprocess ﬁ *default.workflow 3
Subroutine block
TakeEngagementDecsion is used to
invoke the “decsion” workflow. The —
‘decision” workflow & purposed to
make the decision whether to ==
engage customer or not based on
its business logic. The result is T
stored in "businessDecision” variable .
S |
i8] Parameters
Input Output Parameter Sync
Mame Type Variable DE:I
cancelCode output cancelReasonCode Cod
cancelDescription output cancelReasonDescription Desi
Ldecision outout _businessDecizion .
event_chatLoad input event_chatload Rest
event_engagement_attermpts input event_engagement_attempts Tot:
event_engagements_in_progress input event_engagements_in_progress Cou
event_engagemet_type input event_engagement_type Typ
event_inType input event_bmType Frir
event_voiceload input event_voiceload Res.

Developer's Guide

11

Customizing the Engagement Strategy

Engagement Policy (Decision Workflow)

Engagement policy is the other name of decision workflow.
Consider the most important points provided by the out-of-the box strategy:

Check count of engagement attempts already proposed to the current visitor. This check is executed
in the ApplyEngagementPolicy block (see image below). Default value is 3, which means that no
more that three engagement attempts should be proposed for a particular visitor. Note: If the
engagement attempt was closed by a timeout, it will not be taken into count, as soon as there is no
guarantee if the visitor has seen it at all. For example, the invitation may appear on a non-active
browser tab or window.

Developer's Guide 12

Customizing the Engagement Strategy

5 Project Explorer &2 BE&|e =08
.| e ——
&~ deve] Branching Conditions
= dev
+ 1= Webl | Branching Node settings
= We
» {4 Wel
4 &y We
[Mame Expression Add...
= = E
il CorrespondsToPolicy Numher{wmt_engagement_atter@
Remove All
b=
b
o
s [ok]|
el @ l

—
]. £+ Branching
]_ ApplyEngagementPolic

CurresponLTuPoliw

£= Branching
CheckDefaulkEngagementCh

_d.aﬁulﬁhan.u.aﬂSIutSDecrﬁed

wl| decision.workflow

| default.wo rkflow
wl| engage.workflow
&| getRESTinfo.workflow
@l noengage.workflow

i+ =% WebEngagement_EngagementWidgets

» 2 webme-common-app-core

o I:‘J, webme-common-channels

» T2 webme-common-db

b E:\s'» webme-common-logd)2

. 12 webme-common-protocols

;"L:‘yj webme-common-utils

- N2 webme-commeon-websecurity
E*_}J wme-archetype

i wme-backend-connections
E'_—‘ﬂ- wme-backend-db

+ b3 wme-backend-es

w7

Check the engagement attempts count.

1 result: wmmntdmﬂ%-
pterted. Fnnanement attemnt i
4

ECMA Script
MegativeDecision

8] Expression Builder

Expression Builder: Corres

Build an expression in the Exg
the categories and subcatego

B o

3 = X
Copy Cut Paste Delete

Markers [Properties 53

2 Branching

Model - Property
Alias
Appearance 4
—— Name

4 Annotation

Block Motes

al | 1 Mumber{event_engagemen
| :

'_..I.. F

Row:l Column:38

@

| Conditions

Check pacing information. This is executed inside of the CheckPacingEngagementChannel block.

Note: Out-of-the-box strategy operates only general information obtained from
pacing algorithm: variables event_chatLoad and event_voicelLoad, passed
from default.workflow, contain accumulated (by channel) count of interactions
that can be triggered in the particular moment. It is possible to pass into the
decision workflow detailed information provided by the pacing algorithm and
build a more sophisticated decision maker. The image below shows the general
idea: do not engage the visitor if the count of available "interactions to produce"

Developer's Guide

13

Customizing the Engagement Strategy

is O for both channels:

Tahopa Trﬂ TLH P (Y 5 = DB‘-%DQ_.| n | E"'”lﬂﬂ?"&u
@ Branching Conditions

& fonprocess |£,: decision.workflow 3 |
b Branching Node settings R
b Cunewonlﬂ
B
b |
b 4| | Name Expression [Add.. | [puttengagement channe i & Brs
- Ichann:lCantBeDe‘rected event_chatload <= 0 Bl eve| ,,, of padng algorithm CheckDefaultEng

f@] Expression

¢ 11

@ I

ok ||

oo —

m

4 [= Workflows
= clean.workflow
ot default.workflow
(5]l engage.workflow
(2] getRESTinfo.workflow
| noengage.workflow
b 1= WebEngagement_EngagementWidgets
¢ 52 webme-commeon-app-core

b §2 webme-common-channels

b 2 webme-common-db

[E:"; webme-common-logdjd

[H webme-common-protocols

b §23 webme-common-utils

b §= webme-common-websecurity
[Eﬁ wme-archetype

f H wme-backend-connections

b 5> wme-backend-db

B Eﬁ wme-backend-es

Check the pacing information.

i -= i
£= Branching Expression E
CheckPacingEngagementChannel Build an expr
. elementis) fr
channelCantieDetected N
Cancel I afau B o
O . Copy Cut B
’ i ECMA Script
NegativeDecision Expression fiel
Negative result: engagement channel Posi M
not be detectsd. Engagement attempt i githir
not allowed de F]
& [Row:1 Columr
]
Markers [E] Properties £3 4 Servers
t= Branching
Model Property
Appearance | 4 Alias
Mame
4 Annotation
Block Notes
4 branching '
[Conditions
— TUFENTINNT :

Developer's Guide

14

Customizing the Engagement Strategy

Obtaining Data from the GWE Cassandra Database through REST
Requests

Requesting data from Backend Server through the REST

During the decision making process, it might be useful to access data from the Web Engagement
Cassandra database. For example, to check additional parameters that are collected there.

The out-of-the-box Engagement Strategy provides an example of accessing the Cassandra database
in order to get the TimezoneOffset of the visitor's browser, and correspondingly modify the
greetings good evening, good morning, and so on.

Consider how Engagement Strategy does this task.

1. Use SCXML State block in order to make the REST request with specified parameters.

Developer's Guide 15

Customizing the Engagement Strategy

T Project Explorer ™ PR @
5 develop-wmbackend
b & develop-wmfrontend
I = WebEngagement_CEPRule_Templates 83multi
b = WebEngagement_CEPRule_Templates_mutti
{2 WebEngagement_ChatRouting
{4 WebEngagement_EngagementLogic
> & db
b= include
4 = Interaction Processes
E clean.bnprocess
E queueBased.xnprocess
» (= META-INF
& (= Reports
b e
b = src-gen
v (= WEB-INF
4 = Workflows
i cleanworkflow
1] decisionworkdlow
i default warkflew

|,,; QetRESTinfo workflow 1

4
i
o] O

Properties of Entry block ¢
variahles (s2e Clobal Seth
Mast of them are Systam

-

(.

Cenfigure Body

2| moengage.workflow
1 1= WebEngagement_Engageme
¢ 52 webme-common-apg-core
P I;!l webme-common-channels
52 webme-common-db

i & webme-common-logdj2

b §2 webme-common-protocels
B :ﬁ webme-common-utils

52 webme-comman-websecurity
b i wme-archetype @
I EFJ wme-backend-connections
I EI?J wme-backend-db

i & wme-backend-es

[H wme-backend-pacing | M_
L R - | Transitions L

Valwe:]t:nm-ntry‘:-
<session: fetch sroexpr="BackendURL + "/data/visitss" + visitID” method=""get'™ usernames"f
</sesslon:fetch>

< fonentry>

Use the State block to make REST requests

Note: BackendURL and visitlD parameters are passed from the parent workflow into this sub-flow.

2. Parse response to the REST request. After the response is successfully obtained, it should be parsed in
order to extract required data. In this example, the timezoneOffset parameter is obtained from the
data of the VisitStarted event:

Developer's Guide 16

Customizing the Engagement Strategy

rlcflow
oldl LRED | 1N U B LK

iy SCAML State
MakeRESTRequest

/—Malss Fa
i

&)/ getRESTinfo.workflow &3

Maldrrill

sery| =5
pErs

Expression Builder

Expression Builder

Build an expression in the Expression fi
from the categories and subcategories

B o+ @& X |
Copy Cut Paste Delete

Expressicn field

1 RESTData = _event.data;
2 var content = JSOM.parse(RESTData.
3 eventTimezoneOffset = content.5)

i
Parse results obtained éﬂ ECMA Script éﬂ ECMA Script
from OB and fullfill outgut = . _
parameters Success Fail
eventTimestamp and L
eventlocalTime
R
Log
PrintRESTData
— Fuit Variables to return is|
] 1 I
1
Markers B2 Properties F2 il Servers Data Scurce Explorer 5 Snippets 12
an ECMA Script
— 1
Model LT
Appearance a Exceptions
—_———— Exceptions
4 Logging
Condition

Logging Details

4

Row:3 Column:46

@
D I

1=

Log Level "= Project Default: Error
4 Script
Script I= RESTData = _event.data;var co

Parse the response to the REST request

Note: Alternatively, instead of the SCXML State block, you can use a Web Request or Web Service
block. In this case, Composer requires this logic to be hosted as a web application, which means the
entire Composer project must be hosted outside of the Web Engagement application. With Composer,
you can export the project as a web application in WAR format. This approach is not used in out-of-the-

box strategies.

Developer's Guide

17

Customizing the Engagement Strategy

Configure Authentication in the out-of-the-box SCXML Strategy

Genesys Web Engagement 8.1.2 provides basic access authentication on the base of providing
username/password pairs.

Username and password parameters, used in the SCXML State block, are passed into getRESTInfo
workflow from the parent workflow:

¥ queueBased.ixnprocess engageworkflow &) getRESTinfo.workflow &3 default.workflow

P —

Properties of Entry block contain definition of impartant

!" 1 ,Mﬁﬁﬂﬂﬂﬂiﬁﬂiﬂmm&mﬁ__

o - . E Application Vanables _-__ -
Exit errar._ -‘ Entry
@ Ermr[’gﬁ@mctinﬂxd g @ Entry I Set the application variables
" 5 Set the application variables
&
Log Variable Mame Category Value
StartRESTInfoBlock pagelD Input
eventLocalTime User
eventTimezoneOffset User !
UsEr Input " |
um SCXML State password Input !
MakeRESTRequest system.baselJRL Systermn getE»a'
I system.RelativePathURL Systemn getRe
s Fa ' 1l |
[Hide deprecated variables
Parse results obtained i ECMA Script e I#l [Restore system variables default values
fram DB and fullfill output
parameters Su ccess

< t @
kA -1 - F Mecmclao sl « mn [r - L3

The username and password application variables in getRESTInfo.workflow.

The username and password parameters are specified in variables of the Entry block in
default.workflow:

Developer's Guide 18

Customizing the Engagement Strategy

i S-S
mbackend
mfrontend
ement_CEPRule_Templates 85multi

= O 58| queueBased.ixnprocess

@ Bxity ror.interacti

ErrorExit

I E Application Variables

engage.workflow
Stop Interact
Fer

StopInteractionO... intemctitl:n.deleted

Set the application variables
Set the application variables

1 Variable Mame Category Value

| | event_custom erFirstMame User "

| event_customerLastMame User "
cancelReasonCode Uzer]
cancelReasonDescription User "
user User ‘userl’
password User ‘passwordl’

| s_vistem.ﬁa seURL System gletﬁa seURL()

1] m

i
Delete
Up

D Down

[] Hide deprecated variables

’ Restore systern variables default values

The username and password application variables in the default.workflow.

getRESTinfo.workflow

Log

QueueSourcels

Assign
GetlDataEven

o ECMA Scrip

Parsebvent

!

Log
LaglncomingEwe

T

T

plorer |f5 Snippets

You must check that these credentials are compliant with credentials specified in the security section

of the Backend Server options:

Developer's Guide

19

Customizing the Engagement Strategy

MONITORING

DEPLOYMENT OPERATIONS

PROVISIOMIMNG = Environment > Applications > Web Engagement Backend Server_0G

Navigation i |Web_Engagement_Backend_Server_... {Stopped - Exited - \Applications\,
|y Search 3¢ cancel [zl Save & Close | Save =l Save & New Iaﬁ‘.eload @Uninsmll Ep Start [Stop E

I_QL Environment

g Alarm Cenditions

(g} Scripts

Application Templates
(5} Applications

g Hosts
g Solutions

g Tirne Zones
g Business Units/Sites

g Tenants

I Configuration H Options ” Permissions H Dependencies ” Alarms

[C|New [fgDelete % Export o Import

MName « Section Option
T | Filter || Filter || Fitter
H log (11 Items)
H security (3 Ttems)
BECUITy aUin-scneme SECUTTY AUIN-SCNEmE '
security/password securty password
security/user-id security user-id
Service:pacing ems | '

The username and password are specified in the security section

See Configuring Authentication for details.

Start Engagement as a Result of the Engagement Logic Strategy

Sending the "start engage" Request to the Backend Server

The special workflow engage.workflow notifies the Backend Server about the start engage

command.

Notification of the Backend Server is executed through the REST request using the SCXML State

block:

Developer's Guide

20

Customizing the Engagement Strategy

j queueBased.xnprocess

&l engageworkflow 5

Fullfill variables, needed far
notification with information about
possible engagement session: visit
ID, customer information, type of
finteraction {engagement channel),

defaultworkflow
GetRESTData

“:n ECMA Script
FulfillEngagementProfile

etc, I
Log
MakeEngagementAttempt stat
Send to Backend LogFulfilledProfile has 2 possible transitions:
E;ﬁ i. cbent sernver 4 Success (notification was
zggagﬁérlr?gn?: auttuernpt X successfully delivered to
stored in variable | miy SCXML State | FDHE#EE Pwdlgsee}wer} =
xenProfile MakeEngagementtternpt
+——*
Succlass Fah
’
&; Body e —— ol
Configure Body

| | Value: [konentry>

Ml <session:fetch srcexpr="BackendURL
<content _expr="ixnProfile”/>
</session:fetchz

<fonentry>

r

+ "Sdota/goteway/engage ' method=""post

roar

type=""app

4 SCHML details

Body

TansIIons

The REST request notifies the Backend Server

Note: Authentication aspects shown here are the same in getRESTInfo.workflow.

I=<onentry>...

T=5u CCEss, Fail

Developer's Guide

21

Customizing the Engagement Strategy

Fulfilling IxnProfile for "start engage" Request

Take note of the IxnProfile structure, which is passed in REST request to the Backend Server. This
structure is fulfilled in the ECMA Script block called FulfillEngagementProfile.

The following object is sent to the Browser:

ixnProfile = {
'data': data
}

Consider the structure of the data object:

var data = {
'chat': engageProfile,
'event': event,
'notification': notification message

}

As you can see, there are three fields:

e chat — represented by the variable engagementProfile.

e Content of this variable will be considered below. You can change the content of this variable if the
SCXML strategy worked in the area of visitor identification.

* |tis not recommended to change it if related items are not a part of your modified strategy.

e event — this is a technical field, which provides for the Backend Server possibility to identify an event,
on the base of which the engagement decision was done.

* You should not change the structure or content of this member.

notification — represented by the variable notification_message.

e Structure of the notification message is described in Chat Invitation Message and Callback Invitation
Message.

Consider the structure of engagementProfile variable:

var engageProfile = {
'visitId': event visitID,
'nickName': profile.FirstName,
"firstName': profile.FirstName,
'lastName': profile.LastName,
'userState': state,
'userId': event customerID,
'ixnId': system.InteractionID

}

You can change the fields nickName, firstName, lastName and state in the case of additional
work being executed in the visitor identification area. In this case, the Backend Server applies passed
values to the identity record of specified visitld.

The following states are allowed: Authenticated, Recognized, and Anonymous.

Developer's Guide 22

Customizing the Engagement Strategy

Cancelling Engagement as a Result of the Engagement Logic
Strategy

Sending "cancel engagement" to Backend Server

This is similar to sending start engage, request cancel engagement; it also uses the SCXML
State block to trigger a REST request to the Backend Server:

Developer's Guide

23

Customizing the Engagement Strategy

i &#¥ queueBased.mnprocess engage.workflo default.workflo I ,ﬂ] noengage.workflow 3
no EMENT SESSI0N: VISIT LY, i,
5 mmﬂw:gode and description. PeaE FulfillMcEngagementData
T, User Data For historical statistical purposes it may be i
) to User Data reason code | description of er
AssignUData canceling
Send to Backend server T CancelEngagementAttempt
notification about j; state has 2 possible transitions:
canceling engagement = SCUML State Success (notification was
attempt __ successfully delivered to

N
CancelEngagementAttempt backend server) and Fail
T . f (otherwise)

Sucgkss Fal
— L e i

Configure Body

Value: konentry> |
<secgion: fetch crcexpr="BochendURl + '/dota/gateway/noengage’” methods"'post’” type="'agppli
<content _expr="cancelData"/>
</scESIOMITELLn,
</onentry> |
Pl m

Erceptions = ,
4 SCKML details

Body i=<onentry>...

L = Casrrmes Cail

The REST request cancels the engagement

Security (authentication) aspects are the same as described in the getRESTInfo.worfkflow'.

Fulfilling "no engage" Data

no engage data contains five mandatory fields:

Developer's Guide 24

Customizing the Engagement Strategy

B epremion s [

Expression Builder

Build an expression in the Expression field by selecting the operator(s) and data element(s)
from the categaries and subcategories below.

Ii.] noengage.workflow 27
—

FulfillNoEngagementData

B+ & % ¢ 9 g
Copy Cut Paste Delete Undo Redo Validate
Expression field type filter text &
: : =, User Data For historical statistical
| ||t kanceiData={ . » [Project variables . to Liser Data reason oo
| |[p vistiaevent visie, » 3 Workflow variabl Assgnubata canceling
3 'pageld:event_pagelD, . :
Il |4 ‘bnld': system.InteractiondD, > O Wurkfll:.nwfunctl:
|| |5 'noEngagelcde engagement_policy_cancelReasonCode, o [Javabeript CanceEngagem
|| |J6 ‘'noEngageDescription:engagement_policy_cancelReasenDescription [Orchestration Ses) state has 2 pos
Il s [0 Context Services iy SCHML State ﬁgﬂnﬁnﬁ
[Standard Respan CancelEngagementAttempt backend server’
I (1) User Functions L (otherwise)
I' Sucgess P2
f] 1] .]
: o | ECMA Script ¢,
Tt
i B | Fai Ll
| ——]
|
| |
I |
| | Snippets 2] Consol o Progre
|
i -
o i
Value
|| [Rowsl Column:l
| —
i k|
| iE
| @ Lok || conca |
| =
end-pacing -.': -
snd-root Log Level = Project Defa
i 4 SCIpL |
::::ih |;| Script US cancelData =
The "no engage" fields
Cleaning Interaction Process
The interaction, for various reasons, might be stuck in one of the Interaction Queues and fall out of
processing. For example:
¢ Visitor obtained engagement invitation. This means that the webengagement interaction was put into
Developer's Guide 25

Customizing the Engagement Strategy

Webengagement_Accepted queue.

e Power-off appeared on visitor's host, so the answer (Accept, Reject, or Timeout) was not delivered to
Genesys Web Engagement.

In this case, you need to define the cleaning process, which is also built on the top of ORS strategies.

{4 Project Explorer &2 Bg|® Y= 0O 8] queueBased.ixnprocess I clean.ixnprocess 53 I
> {32 develop-wmbackend -
> 2 develop-wmfrontend

¢ = WebEngagement_CEPRule_Templates_85multi

i 1= WebEngagement_CEPRule_Templates_multi & o

> {4 WebEngagement_ChatRouting | Interaction Q... " Interaction Queue

4 i Wenkngagement_EngegementLogic \Webengagemen... . Webengagement_Ac...
b = db i

b = include T

“q Cledn

L
Clean

B queue
¢ = META-INF
» [= Reports
b = src
b [= src-gen
b (= WEB-INF
4 = Workflows
= clean.workflow

1]

&) decision.workflow
o default.workflow
| engage.workflow
getRESTinfo.workflow
noengage.workflow 1
¢ = WebEngagement_EngagementWidgets

BBE

» 5= webme-common-app-core Markers S Properties B2 &L Servers §48 Data Source Explore

[:';‘,J- webme-commaon-channels)
B :;‘J webme-common-db .@ Interaction Queue

|
Core Property
4 Alas

> 52 webme-common-logdj2
» §2 webme-common-protocols

» 52 webme-comman-utils Appearance
B :;‘,J- webme-commen-wehsecurity |

I MName

I 4 Annotation

.
[wme-archetype
e Block Motes

> fg% wme-backend-connections

a Configuration Server
Object Mame

4 Queue
Enabled
Existing Queue

I E;‘f- wme-backend-db

s 2 wme-backend-es

» 42 wme-backend-pacing
b = wme-backend-roct

b Egi wme-backend-sg

QUEUE Descn EII on

b et wme-backend-web -
The clean.ixnprocess

Developer's Guide 26

Customizing the Engagement Strategy

As shown, the same cleaning process is applied for all Web Engagement-related Interaction Queues.
The only exemption is Webengagement_Qualified queue; this queue is not cleaned by the strategy.

The cleaning task in this queue is executed in scope of major Engagement Logic interaction process.

Cleaning Interaction Workflow

Out-of-the-box cleaning workflow is short and straightforward. It contains one block only: stop
interaction.

Propagating Data from Engagement Logic strategy into Chat
Routing Strategy

Use Case Description

In the routing process, it often makes sense to use business data from events that are produced on
the browser side. This data is propagated by the Backend Server to the webengagement interaction
automatically, but you can also propagate it to the chat or web callback interactions.

For example:

e Business data produced on the page provides information about language.
e This information is passed as a sub-key of the jsonEvent key into the webengagement interaction.

e During the Engagement Logic strategy, language information is re-attached and propagated to the chat
interaction.

* The Chat Routing strategy reads language information from the chat interaction and decides into which
group to route the chat interaction.

The following are details of the described data propagation.

Attach UserData to the webengagement Interaction

All data that comes from System events is stored in the Open Media webengagement interaction as a
KVlist under the key jsonEvent. You can access this data from the engagement strategy. If you want
to store this user data and then copy it into the chat or webcallback engagement interaction, you
must attach it manually to the Open Media webengagement interaction in the engagement strategy.
For example, you can do this with the User Data block:

Developer's Guide 27

Customizing the Engagement Strategy

":] queleBased.ixnprocess 1 &/ | getRESTinfa . workFlow \I

J@ defaule. waorkFlow 53

- '
BA Assign Data

Configure Assign Data

& ECMA Script

ParseEvent
% Default " Business Attributes € Skills Categories
: | alua .
rule ‘ariablefevent_rule)
Log atkemnpt_number ‘Wariablelevent_engageme

LogIhcarningEwvent
»

=, User Data

AssignlData

_E Identify Custo...

il
Eerr-SESS'?ﬁf’F’E"‘:Wdenti Customer @
errar.com.genesyslabjcomposer. badfegch
|

Assigning User Data

Genesys recommends that you collect all the data you need and attach it to the
interaction in a single Assign Data block. You should avoid using multiple Assign
Data blocks unless is it absolutely necessary.

Control Copying UserData from webengagement Interaction to the Chat (or web
callback) Interaction

When a chat or web callback interaction is created, GWE attaches the UserData available in its parent
Open Media webengagement interaction. You can control how this data is attached by using the
wes.connector.interaction.copyUserData option in the [service:wes] section of the Backend Server
application. This option has three modes:

e Copy all UserData

* Do not copy UserData

e Copy only specific KV pairs from UserData

Developer's Guide 28

Customizing the Engagement Strategy

The following tables provide example values for the wes.connector.interaction.copyUserData option.
In these examples, the Open Media webengagement interaction UserData contains the keys ORS
Data, rule, strategy, some data.

Value of

wes.connector.interaction.copyUserData L5 [T G EnmEnls (e e e

all All keys are copied: ORS Data, rule, strategy, some

data.
no No keys are copied.
rule;strategy The rule, strategy keys are copied.

If the value of
blank or empty wes.connector.interaction.copyUserData is absent
or has an empty value, no keys are copied.

The ORS Data key is copied. my_key1 is ignored
my key1;ORS Data because it is not part of the keys in the Open Media
webengagement interaction UserData.

Accessing Pacing Information from the Engagement Logic
Strategy

In release 8.1.2, Web Engagement provides the Engagement Logic strategy with pacing data for the
chat and web callback channels. You can access pacing information in two ways:

e Through the consolidated channel capacity (measured in the number of "allowed" interactions).

e Through detailed information for each channel, which contains capacity (measured in the number of
"allowed" interactions) for each particular group in a channel.

The pacing information available to the Engagement Logic strategy is different from
the information returned from the Pacing API. You should evaluate each type of pacing
information carefully before deciding how to use it.

Pacing information is added to webengagement open media interaction User Data by the Backend
Server. This information can then be read in the SCXML strategy — see Main Interaction Process and
Workflow for an example. The information is located (among other specific data, like data provided in
business-event) in the User Data of the webengagement interaction, under the jsonEvent key. This
key contains the JSON object, which should be parsed prior to access information.

In the SCXML strategy, you can access jsonEvent data in the following way:

var jsonEvent
var eventData

_genesys.ixn.interactions[system.InteractionID].udata.jsonEvent;
JSON.parse(jsonEvent);

Developer's Guide 29

Customizing the Engagement Strategy

Understanding How the Pacing Algorithm Works

A dedicated pacing algorithm serves each particular group of agents, so if you have 2 chat-oriented
and 1 web callback-oriented group of agents, there will be 3 instance of the pacing algorithm (1 for
each group).

The agent availability on the specific channel is calculated taking into account the following:

* The agent state on the particular media (chat and web callback are different)
e Capacity rules.

For example, consider an agent who has a capacity rule for 2 chat interactions. In this scenario, the
following statements are true:

¢ Agent is Ready and has no interactions in progress. In this case, the agent is treated as 2 Ready agents
with a capacity rule of 1.

* Agent is Ready and has one interaction in progress. In this case, the agent is treated as 1 Ready agent
with a capacity of 1.

¢ Agent is Ready and has two interactions in progress. In this case, the agent is treated as 0 Ready agents
with a capacity of 1.

e Agent is Not Ready (count of interactions in progress does not matter). In this case, agent is treated as
0 Ready agents with a capacity of 1.

The agent availability on the specific channel is also handled differently in the two main pacing
algorithm methods, SUPER_PROGRESSIVE and PREDICTIVE_B.

The SUPER_PROGRESSIVE method consumes the following major parameters:

¢ The number of Ready agents in the group.
* The number of pending (waiting for answer) interactions.

¢ HitRate - the percentage of accepted invitations compared to the general number of proposed
engagement invitations.

It is important to remember that the values of these parameters are continuously
changing.

Consider the following example: There are 7 Ready agents (each with a capacity rule of 1), the
number of pending interactions is 5, and the HitRate is 0.05.

In this case, the pacing algorithm might predict the number of allowed interactions approximately as
(7/0.05-5) =135.

Developer's Guide 30

Customizing the Engagement Strategy

This example is intended to provide a basic idea of how the pacing algorithm works.
The finer details are more complex.

The PREDICTIVE_B method consumes the following major parameters:

e The number of logged in agents in the group.

e The Average handling time of interactions. For example, the average duration of a chat session with
visitors.

¢ HitRate - the percentage of accepted invitations compared to the general number of proposed
engagement invitations.

It is important to remember that the values of these parameters are continuously
changing.

This algorithm is more complex than SUPER_PROGRESSIVE, but the general information described for

SUPER_PROGRESSIVE also applies to PREDICTIVE_B: The number of 'allowed" interactions will
significantly exceed the number of Logged In agents (depending, first of all, on the HitRate
parameter).

Consolidated Pacing Information by Channel
Capacity for the chat channel is available in the data.chatChannelCapacity' field (called
data.chatLoad before version 8.1.200.26), and capacity for the web callback channel is

available in the data.webcallbackChannelCapacity field (called data.voiceLoad before version
8.1.200.26).

For example:

var jsonEvent
var eventData

_genesys.ixn.interactions[system.InteractionID].udata.jsonEvent;
JSON.parse(jsonEvent);

var chatChannelCapacity = eventData.data.chatChannelCapacity;
var webcallbackChannelCapacity = eventData.data.webcallbackChannelCapacity;

Detailed Pacing Information
Detailed pacing information is available as a nested JSON object with the following structure:

pacing: {
channels :
[
{

name: <name of this channel>,
groups:

Developer's Guide

31

Customizing the Engagement Strategy

{
name: <name of this group>,
capacity: <count of allowed interactions for this group>,
reactiveTrafficRatio: <portion of inbound chat\webcallback traffic that should be
'left' in the system>
H

] ’
capacity: <count of allowed interactions for this channel>

]
}

The names of the pacing information fields were changed in release 8.1.200.26. See the table below
for details.

Name prior to 8.1.200.26 Name as of 8.1.200.26 Description
Name of the channel (or group,
channelName / groupName name depending on the type of

container object).

The number of 'allowed'
interactions for a channel (or
group, depending on the type of
container object).

intrNumber capacity

Portion of inbound chat traffic
that should be 'left' in the
system.

reactiveTrafficRatio reactiveTrafficRatio Valid values: from 0 to 1 For example,

reactiveTrafficRatio 0.8 means that only 8
of 10 'reactive' chat interactions should
be 'allowed' .

You can access detailed information in the Engagement Strategy SCXML as follows:

var jsonEvent
var eventData

_genesys.ixn.interactions[system.InteractionID].udata.jsonEvent;
JSON.parse(jsonEvent);

var detailedPacing=JSON.parse(eventData.data.pacing);
var event chatEnglishCapacity = pacing.channels[0].groups[0].capacity;
var event chatDutchLoadCapacity = pacing.channels[0].groups[1l].capacity;

In the example above, IDs (0, 1, and so on) in the arrays are used for sample purposes only. You
should use the specific names of the channels and groups to extract the data you need.

Example of Using Pacing Information
Agents

Consider the following scenario where there are four chat and voice groups with agents in each
group:

e English Language Chat Group = Adam (logged in and ready) and Anna (logged in, not ready)

Developer's Guide 32

Customizing the Engagement Strategy

e Dutch Language Chat Group = Bart (NOT logged in) and Berta (NOT logged in)
¢ English Language Voice Group = Adam (logged in and ready) and Amanda (logged in and ready)
e Dutch Language Voice Group = Dan (logged in, ready)

The following group configuration options are set on the Backend Server application:

e pacing.connector.chatGroup = English Chat Group;Dutch Chat Group

e pacing.connector.voiceGroup = English Voice Group;Dutch Voice Group

Customers
On the customer-facing website, two events are triggered simultaneously:

e Chris triggers a Hot Lead event on an English page.

e Merijn triggers a Hot Lead event on a Dutch page.

Pacing information

When events are triggered simultaneously, pacing information is the same. In this scenario, the
SUPER_PROGRESSIVE algorithm is used and the following parameters were true at the moment the
events were triggered:

e English Chat Ready agents: 1

¢ Dutch Chat Ready agents: 0

¢ English Voice Ready agents: 2
e Dutch Voice Ready agents: 1

e HitRate: 0.2

¢ Pending engagement invites: 0

e Reactive traffic is turned off

In this case, the results might look like this:

chatChannelCapacity : 5,
webcallbackChannelCapacity : 16,
pacing: {
channels :
[
{
name: "chat",
groups:
[
{
name: "English Language Chat Group",
capacity: 5,
reactiveTrafficRatio: 0
T
{

name: "Dutch Language Chat Group",

Developer's Guide

Customizing the Engagement Strategy

capacity: 0,
reactiveTrafficRatio: 0,

}
] ’
capacity: 5

name: "webcallback",
groups:
[
{
name: "English Language Voice Group",
reactiveTrafficRatio: 0O,
capacity: 11

{
name: "Dutch Language Voice Group",
reactiveTrafficRatio: 0,
capacity: 5

]I
capacity: 16

]
}

Possible Engagement Logic SCXML flows
In this scenario, the following SCXML flows are possible for the two customers, Chris and Merijn:

¢ Chris
We can extract the capacity for the "English Language Chat Group" (5) and "English Language
Voice Group" (11) from the pacing data.

In the decision workflow, it is possible to engage Chris on the chat or web callback channel. It is
also possible to show him a modified invitation, where he can explicitly choose chat or web
callback.

¢ Merijn
We can extract the capacity for the "Dutch Language Chat Group" (0) and "Dutch Language Voice
Group" (5) from the pacing data.

In the decision workflow, it is possible to engage Merijn on the web callback channel only.

Developer's Guide 34

	Developer's Guide
	Customizing the Engagement Strategy

