
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Advanced Engagement Model

Developer's Guide

4/16/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Advanced Engagement Model

Contents

• 1 Advanced Engagement Model
• 1.1 Overview
• 1.2 Default Rule Templates
• 1.3 Implementing the Advanced Engagement Model

Advanced Engagement Model

Developer's Guide 2

Overview

The Advanced Engagement Model enables customization based on Business events (read more about
how the events are structured here). In the 8.1.2 release, the default DSL contains the Timeout and
Search events. To customize the Advanced Engagement Model, you must first define your own
events using the DSL, which is loaded in the Browser Tier Agents. Then, you can use the rule
templates to create rules based on these events.

Default Rule Templates

The default templates for the Advanced Engagement Model define how to process events sent from
the Web Engagement Frontend Server. They define both the type of events and the action to perform.
Later, you'll use the Genesys Rules Authoring Tool to create rules based on these templates.

Singleton

Description

The template receives each single event as a
formal parameter. If the event's value matches the
condition's event name, then the actionable event
is sent to the Web Engagement Backend Server.

GWM single.png

Expression Example

When
event with name $name

Then

generate actionable event

Sequence

Description

This template analyses the event stream received
from the categorization engine and builds the
sequence of events by event names. As soon as
the event sequence is completed, the actionable
event is submitted. Note that the event sequence
must follow a specific order.

Click to enlarge.

Expression Example
When

event with name $name save as $event1
and

Advanced Engagement Model

Developer's Guide 3

https://docs.genesys.com/Documentation/IW/8.1.2/Developer/EventsStructure

event following $event1 with name $name2
save as $event2

(...)
and

event following $eventn-1 with name $namen

save as $eventn

Then

generate actionable event based on $eventn

Set

Description

This template collects the events by event names.
As soon as the event set is completed, the
actionable event is submitted. If you use this
template, the event order is not taken into account.

GWM Set.png

Expressions

When
event with name $name1 save as $event1

or

event with name $name2 save as $event2
(...)
or

event with name $namen save as $eventn

Then

generate actionable event

Implementing the Advanced Engagement Model

Complete the steps below to implement the Simple Engagement Model:

1. Business Events Overview
2. Create Business Events by Customizing the DSL File
3. Optionally, you can Create Business Events by Using the Monitoring Agent API.

Advanced Engagement Model

Developer's Guide 4

https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement#Business_Events_Overview
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement#Creating_Business_Events_by_Customizing_the_DSL_File
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/AdvancedEngagement#Creating_Business_Events_by_Using_the_Monitoring_Agent_API

Business Events Overview
When you create an application, a set of Domain Specific Language (DSL) files that are used by your
application is also created. These files are defined in the apps\Your application name_composer-
project\WebEngagement_EngagementWidgets\dsl\ directory. You can use the DSL to define
Business events (read about the structure of these events here) that are specific to your solution
needs.

Default domain-model.xml
The domain-model.xml is the main default DSL file for your application:

<?xml version="1.0" encoding="utf-8" ?>
<properties>

<events>
<!-- Add your code here
<event id="" name="">
</event>
-->

<!-- This is template for your search event -->
<!--
<event id="SearchEvent" name="Search">

<trigger name="SearchTrigger" element="" action="click" url="" count="1" />
<val name="searchString" value="" />

</event>
-->
<event id="TimeoutEvent10" name="Timeout-10" condition=""

postcondition="document.hasFocus() === true">
<trigger name="TimeoutTrigger" element="" action="timer:10000" type="timeout"

url="" count="1" />
</event>
<event id="TimeoutEvent30" name="Timeout-30" condition=""

postcondition="document.hasFocus() === true">
<trigger name="TimeoutTrigger" element="" action="timer:30000" type="timeout"

url="" count="1" />
</event>

</events>

</properties>

By using the <event> element, you can create as many business events as you need. These events
can be tied to the HTML components of your page and can have the same name, as long as they
have different identifiers (these identifiers must be unique across the DSL file, to make a distinction
between the events sent by the browser). It can be useful to associate several HTML components
with the same event if these HTML components have the same function. For instance, you can define
several events associated with a search feature and give all these events the same name: "Search".

For each event, you can define triggers which describe the condition to match in order to submit the
event:

• Triggers can implement timeouts.
• Triggers can be associated with DOM events.
• You can define several triggers for the same event (see <trigger> for further details).

Advanced Engagement Model

Developer's Guide 5

Each trigger should have an element attribute that specifies the document's DOM element to attach
the trigger to, and the action attribute, which species the DOM event to track.

You can specify standard DOM events for the action:

• Browser Events
• Document Loading
• Keyboard Events
• Mouse Events
• Form Events

In addition to the standard DOM events, the DSL supports the following two values: timer and
enterpress.

The following example generates a "Search" event if the visitor does a site search. The "searchString"
value is the string entered in the "INPUT.search-submit" form.

<event id="SearchEventClick" name="Search">
<trigger name="SearchTrigger" element="INPUT.search-submit" action="click" url=""

count="1" />
<val name="searchString" value="INPUT.search-submit" />

</event>

If the DSL uses the optional condition attribute, the event's triggers are installed on the page if the
condition evaluates to true. The following example creates a Business event with a time that can be
triggered only if the text inside the <h1> tag is "Compare":

<event id="InactivityTimeout4CompareProductsEvent" name="InactivityTimeout4CompareProducts"
condition="$('h1').text() == 'Compare'">

<trigger name="InactivityTimeout4CompareProductsTrigger" element=""
action="timer:10000" type="timeout" url="http://www.MySite.com/site/olspage.jsp" count="1"/>
</event>

If the DSL uses an optional postcondition attribute, this can manage how an event is generated by
checking a condition after the actions are completed. The following example creates a Business event
timeout by timer if a page is in focus. In this case, the event does not generate if the page is opened
in the background:

<event id="TimeoutEvent10" name="Timeout-10" condition="" postcondition="document.hasFocus()
=== true">

<trigger name="TimeoutTrigger" element="" action="timer:10000" type="timeout" url=""
count="1" />
</event>

A DSL trigger can use the type attribute. This can have a value of either timeout or nomove, which
specifies how the timer action works. If the type is timeout, then the timer interval begins after the
page is loaded. If the type is nomove, then the timer resets each time the user moves the mouse.

You can also apply the optional url attribute. This attribute defines the URL of the specific page that
raises the Business event. The Business event is not submitted if the current document's URL does
not match the URL parameter.

Finally, you can apply the optional count attribute. This attribute specifies how many times the
trigger needs to be matched before the event is generated and sent to the Frontend Server.

Advanced Engagement Model

Developer's Guide 6

For more information about the DSL elements, see the Business Events DSL.

Creating Business Events by Customizing the DSL File
You can edit the apps\Your application name\frontend\src\main\webapp\resources\dsl\
domain-model.xml and add a list of events, with specific conditions, related to your web pages'
content.

Important
Genesys recommends that you use the InTools application to help you modify your
DSL.

The default domain-model.xml file includes a few events to help you get started with your DSL
customizations: SearchEvent, TimeoutEvent10, and TimeoutEvent30. The following sections show you
how you can customize these events to work on your website.

Using the SearchEvent Template
By default, the domain-model.xml file contains commented code that you can implement to trigger
a business event when a visitor tries to search for something on your website. Complete the following
steps to customize the SearchEvent for your website.

Start

1. Remove the comment characters that wrap around the event: <!– and -->. The event should look like
the following:
<event id="SearchEvent" name="Search">

<trigger name="SearchTrigger" element="" action="click" url="" count="1" />
<val name="searchString" value="" />

</event>

2. Set the element attribute to the jQuery selector that triggers a search. For example, we have an input
(id="search") with a submit button (id="search-submit").
<event id="SearchEvent" name="Search">

<trigger name="SearchTrigger" element="#search-submit" action="click" url=""
count="1" />

<val name="searchString" value="" />
</event>

3. Set the value attribute to the script to retrieve the search string. For example, our input id of "search".
<event id="SearchEvent" name="Search">

<trigger name="SearchTrigger" element="#search-submit" action="click" url=""
count="1" />

<val name="searchString" value="$(#search).val()" />
</event>

Now the search event is triggered when a visitor clicks the search-submit button.

End

Advanced Engagement Model

Developer's Guide 7

Using the Timeout Events
By default, the domain-model.xml file contains two timeout events: timeout-10 and timeout-30.

<event id="TimeoutEvent10" name="Timeout-10" condition="" postcondition="document.hasFocus()
=== true">

<trigger name="TimeoutTrigger" element="" action="timer:10000" type="timeout" url=""
count="1" />
</event>
<event id="TimeoutEvent30" name="Timeout-30" condition="" postcondition="document.hasFocus()
=== true">

<trigger name="TimeoutTrigger" element="" action="timer:30000" type="timeout" url=""
count="1" />
</event>

You can customize these events or disable one or both to suit your business needs. By default, these
events are triggered with a 10-second and 30-second delay after the tracking script is initialized on
the page. The only difference between the events is the action attribute, which defines the timeout
in milliseconds.

Both events have the postcondition attribute set to "document.hasFocus() === true", which
checks whether the focus is on the current page. The timeout event is only triggered if the
postcondition returns true.

Creating Business Events by Using the Monitoring Agent API
You can also use the Monitoring JS API, which allows you to submit events and data from the HTML
source code.

In this case, you can use the _gt.push() method which allows you to decide when events should be
submitted and which data they generate, directly from your web pages. See Monitoring JS API
Reference for further details.

You should also consider using the API when you have more complex logic that can't be handled by
DSL alone. For an example, see How To — Enable a trigger after another trigger.

Next Steps

1. Make sure the CEP Rule Templates are ready. See Publishing the CEP Rule Templates for details.
2. Finish any customizations to the SCXML strategies or Browser Tier Widgets.
3. Continue on with the Application Development Tasks.

Advanced Engagement Model

Developer's Guide 8

https://docs.genesys.com/Documentation/IW/8.1.2/Developer/PublishtheCEPRulesTemplate
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizeStrategies
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/CustomizetheBrowserTierWidgets
https://docs.genesys.com/Documentation/IW/8.1.2/Developer/ApplicationDevelopment#Application_Development_Tasks

	Developer's Guide
	Advanced Engagement Model

