
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Widgets Current

Widgets Reference

6/17/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Genesys Widgets Reference 6

WebChatService 7
Configuration 9
Localization 16
API Commands 17
API Events 37

WebChat 41
Configuration 48
Localization 58
API Commands 64
API Events 75
Metadata 77
Customizable Chat Registration Form 81
Customizable Emoji Menu 91

SendMessageService 94
Configuration 95
Localization 97
API Commands 98
API Events 102

SendMessage 103
Configuration 108
Localization 111
API Commands 113
API Events 120
Metadata 122
Customizable SendMessage Registration Form 125

GWE 133
Configuration 134
Localization 136
API Commands 137
API Events 140

CoBrowse 141
Configuration 142
Localization 143
API Commands 144

API Events 148
App 149

Configuration 150
Localization 158
API Commands 159
API Events 167

Calendar 168
Configuration 172
Localization 174
API Commands 176
API Events 179

CallbackService 180
Configuration 181
Localization 183
API Commands 184
API Events 189

Callback 191
Configuration 196
Localization 199
API Commands 201
API Events 206
Metadata 207
Customizable Callback Registration Form 210

CallUs 219
Configuration 225
Localization 227
API Commands 228
API Events 231

ChannelSelector 232
Configuration 240
Localization 244
API Commands 245
API Events 251

ChatDeflection 252
Configuration 259
Localization 261
API Commands 263

API Events 266
ClickToCallService 267

Configuration 268
Localization 269
API Commands 270
API Events 273

ClickToCall 274
Configuration 279
Localization 282
API Commands 284
API Events 287
Metadata 289
Customizable ClickToCall Registration Form 291

Common 299
Console 319

Configuration 321
Localization 322
API Commands 323
API Events 326

Engage 327
Configuration 332
Localization 333
API Commands 334
API Events 344
Metadata 346

KnowledgeCenterService 348
Configuration 350
Localization 352
API Commands 353
API Events 363

Overlay 365
Configuration 367
Localization 368
API Commands 369
API Events 372

Search 373
Configuration 379

Localization 381
API Commands 383
API Events 389

SideBar 390
Configuration 395
Localization 398
API Commands 399
API Events 404

StatsService 405
Configuration 406
Localization 408
API Commands 409
API Events 412
Estimated Wait Time 413

Toaster 416
Configuration 418
Localization 419
API Commands 420
API Events 423

WindowManager 424
Configuration 426
Localization 427
API Commands 428
API Events 430

Genesys Widgets Reference

Tip
The latest version of our documentation (titled “Current”) relates to release 9.0.x.

The Widgets Reference covers all commands, events, configuration, and localization details for each
widget.

• WebChatService
• WebChat
• SendMessageService
• SendMessage
• GWE
• CoBrowse
• App
• Calendar
• CallbackService
• Callback
• CallUs
• ChannelSelector
• ChatDeflection
• ClickToCallService
• ClickToCall
• Common
• Console
• Engage
• KnowledgeCenterService
• Overlay
• Search
• SideBar
• StatsService
• Toaster
• WindowManager

Genesys Widgets Reference

Widgets Reference 6

WebChatService
• Configuration
• Localization
• API Commands
• API Events

Overview

WebChatService exposes a high-level API for utilizing Genesys chat services. You can you use these
services for monitoring and modifying a chat session on the front-end or for developing your own
custom WebChat widgets. Rather than developing a custom chat UI and using the chat REST API,
using WebChatService drastically simplifies integration and greatly improves reliability, features, and
compatibility on the bus for all widgets.

Usage

WebChatService and the matching WebChat widget work together right out of the box and they share
the same configuration object. Using WebChat uses WebChatService.

You can also use WebChatService as a high-level API using bus commands and events to build your
own WebChat widget or other UI features based on WebChatService events.

Namespace

WebChat Service plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration webchat
CXBus - API Commands & API Events WebChatService

Customization

WebChatService has many configuration options but no customization options. It is meant as a plug-
n-play type of plugin and works as-is.

Genesys Widgets Reference WebChatService

Widgets Reference 7

Limitations

Multiple instances of the same chat session
After starting a chat session, that session can be opened in any number of new tabs on the same site.
Each tab runs an independent instance of WebChat connected to the same chat session. Instances
are not synchronized with each other, however, which may result in unusual behavior. The following
limitations apply:

• When using CometD mode (long-polling or websockets), messages will not be synchronized between
tabs.

• Inactivity messages and other dialog messages will not be synchronized between tabs.
• The number of unread messages displayed will not be synchronized between tabs.
• The minimized state of WebChat will not be synchronized between tabs.

Genesys Widgets Reference WebChatService

Widgets Reference 8

Configuration

Description

WebChat and WebChatService share the configuration namespace '_genesys.widgets.webchat'.
WebChat has UI options while WebChatService has connection options.

Example
window._genesys.widgets.webchat = {

apikey: 'n3eNkgxxxxxxxxxxxx8VA',
dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat',
enableCustomHeader: true,

cometD: {

enabled: false,
cometURL: 'http://host:port/genesys/cometd',
channel: '/service/chatV2/customer-support',
apiURL: 'http://host:port/genesys/2/chat-ntf',
websocketEnabled: true,
logLevel: 'info'

},

userData: {},
emojis: true,
actionsMenu: true,

autoInvite: {

enabled: false,
timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

},

chatButton: {

enabled: true,
template: '<div>CHAT NOW</div>',
effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

},

async: {

enabled: true,

getSessionData: function(sessionData, Cookie, CookieOptions) {

Genesys Widgets Reference WebChatService

Widgets Reference 9

// Note: You don't have to use Cookies. You can, instead, store in a
secured location like a database.

Cookie.set('customer-defined-session-cookie',
JSON.stringify(sessionData), CookieOptions);

},

setSessionData: function(Open, Cookie, CookieOptions) {

// Retrieve from your secured location.

return Cookie.get('customer-defined-session-cookie');
}

}
};

Options

Name Type Description Default Required Introduced /
Updated

apikey string

Apigee Proxy
secure token.
Note: This
option is
only
supported in
GMS REST
mode.

n/a Yes, if using
Apigee Proxy

endpoint string
Manually select
the endpoint to
initiate chat
on.

n/a n/a

dataURL string (URL)

URL for GMS
REST chat
service. If
cometD.enabled
is set to true,
this property
will be ignored.

n/a Always

enableCustomHeaderboolean

Enables the
use of the
custom
authorization
header defined
in
_genesys.widgets.main.header
static config.
Attaches the
custom
authorization
header to all
WebChatService

false No 9.0.002.06

Genesys Widgets Reference WebChatService

Widgets Reference 10

Name Type Description Default Required Introduced /
Updated

request.

cometD object

Object
container for
CometD
configuration
options.

{enabled:
false,
cometURL: ,
channel:
'/service/
chatV2/
customer-
support',
apiURL: ,
websocketEnabled:
true, logLevel:
'info'}

Yes, if using
CometD

cometD.enabled boolean

Enables or
disables
CometD
connection
method. If set
to false or left
undefined,
WebChatService
will connect to
REST services
through the
dataURL
specified.

false Yes, if using
CometD

cometD.cometURLstring (URL)

URL for GMS
CometD
connection.
cometD.enabled
must be set to
true for
WebChatService
to connect to
this service.

n/a Yes, if using
CometD

cometD.channel string (path)
CometD
channel for
receiving chat
messages.

'/service/
chatV2/
customer-
support'

Yes, if using
CometD

cometD.apiURL string (URL)

URL for
additional
CometD
services such
as file upload
and download.

n/a
Yes, if using
CometD with
file uploads

cometD.websocketEnabledboolean

If set to true,
CometD will
attempt to
connect
through
websockets. If
set to false,

true n/a

Genesys Widgets Reference WebChatService

Widgets Reference 11

Name Type Description Default Required Introduced /
Updated

CometD will
only use long-
polling.
CometD will
fallback to
long-polling if it
can't connect
via
websockets.

cometD.logLevel string

Sets the log
level for the
CometD library.
Values are
'warn', 'info', or
'debug'.

'info' n/a

userData object

Arbitrary
attached data
to include
when initiating
a chat.

{} n/a

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout.

3000 n/a

xhrFields object

Allows you to
set the
properties for
the AJAX
xhrFields
object (for
example,
{withCredentials:
false}).
Note: This
option is
only
supported in
GMS REST
mode.

{withCredentials:
false} n/a

pollExceptionLimitnumber

Number of
successive poll
exceptions
(chat server
offline) before
WebChatService
publishes
'chatServerWentOffline'.

5 n/a

restoreTimeout number
Number of
milliseconds
before restore
timeout.

60000

Genesys Widgets Reference WebChatService

Widgets Reference 12

Name Type Description Default Required Introduced /
Updated

Prevents the
chat session
from restoring
after a certain
time away
from the
session (for
example, user
navigated to a
different site
during chat
and never
ended the
session).

async object

Object
container for
Async mode
configuration
options.

{enabled:
false} No 9.0.002.06

async.enabled boolean

Enable
Asynchronous
Chat where a
chat session
can be active
indefinitely.
When you
close WebChat
without ending
the chat
session, the
session will
simply go
dormant. When
you open
WebChat
again, the
session will
restore and
continue
chatting where
left off.
Currently,
Async Chat is
supported only
in cometD
mode and it
should be
enabled.

false n/a 9.0.002.06

async.getSessionDatafunction

A function that
you can define
to retrieve
updated
session data

none
Yes, when
Async WebChat
mode is
enabled

9.0.002.06

Genesys Widgets Reference WebChatService

Widgets Reference 13

Name Type Description Default Required Introduced /
Updated

from
WebChatService
plugin. This
function is
called back
when starting a
new Async
chat session
for the first
time or when
the
sessionData
changes over
the course of
an active chat
session. This
function takes
the following
arguments -
sessionData
(current active
session data),
Cookie
(Widgets
Internal cookie
reference) and
CookieOptions
(a parameter
that is needed
when using
Widgets
Cookie). The
purpose of this
function is to
provide you
the active
session data so
that it can be
stored
somewhere
safe and
secure. Later
this needs to
be provided in
the below
setSessionData
function to
restore the
chat session.
Refer to the
example for
usage.

async.setSessionDatafunction A function that
you can define none Yes, when

Async WebChat 9.0.002.06

Genesys Widgets Reference WebChatService

Widgets Reference 14

Name Type Description Default Required Introduced /
Updated

to return the
session data to
WebChatService
plugin. During
initialization,
WebChatService
plugin will call
this function to
check if any
session data is
returned. If
found,
WebChatService
tries to restore
the chat
session using
this session
data and open
WebChat
Widget.
WebChatService
will also pass
the following
arguments into
this function -
Open
(WebChat
current open
state value),
Cookie
(Widgets
Internal cookie
reference) and
CookieOptions
(a parameter
that will be
needed when
using Widgets
Cookie). Refer
to the example
for usage.

mode is
enabled

Genesys Widgets Reference WebChatService

Widgets Reference 15

Localization
No Localization options

Genesys Widgets Reference WebChatService

Widgets Reference 16

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChatService.getAgents');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

startChat

Initiates a new chat session with the chat server via GMS. Intended to be used by WebChat widgets
only. Should not be invoked manually.

Example
oMyPlugin.command('WebChatService.startChat', {

nickname: 'Jonny',
firstname: 'Johnathan',
lastname: 'Smith',
email: 'jon.smith@mail.com',
subject: 'product questions',
userData: {}

}).done(function(e){

// WebChatService started a chat successfully

Genesys Widgets Reference WebChatService

Widgets Reference 17

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

}).fail(function(e){

// WebChatService failed to start chat
});

Options
Option Type Description

nickname string Chat Entry Form Data:
'nickname'.

firstname string Chat Entry Form Data:
'firstname'.

lastname string Chat Entry Form Data:
'lastname'.

email string Chat Entry Form Data: 'email'.
subject string Chat Entry Form Data: 'subject'.

userData object

Arbitrary data to attach to the
chat session (AKA attachedData).
Properties defined here will be
merged with default userData set
in the configuration object.

Resolutions
Status When Returns

resolved When server confirms session
started (AJAX Response Object)

rejected When a chat session is already
active

'There is already an active chat
session'

rejected When AJAX exception occurs (AJAX Response Object)
rejected When server exception occurs (AJAX Response Object)

rejected When userData is invalid 'malformed data object provided
in userData property'

endChat

Ends the chat session with the chat server via GMS. Intended to be used by WebChat widgets only.
Should not be invoked manually.

Genesys Widgets Reference WebChatService

Widgets Reference 18

Example
oMyPlugin.command('WebChatService.endChat').done(function(e){

// WebChatService ended a chat successfully

}).fail(function(e){

// WebChatService failed to end chat
});

Resolutions
Status When Returns

resolved When active session is ended
successfully (AJAX Response Object)

rejected If no chat session is currently
active 'There is no active chat session'

sendMessage

Send a message from the client to the chat session. Intended to be used by WebChat widgets only.
Should not be invoked manually.

Example
oMyPlugin.command('WebChatService.sendMessage', {message: 'hi'}).done(function(e){

// WebChatService sent a message successfully

}).fail(function(e){

// WebChatService failed to send a message
});

Options
Option Type Description

message string The message you want to send

Genesys Widgets Reference WebChatService

Widgets Reference 19

Resolutions
Status When Returns

resolved When message is successfully
sent (AJAX Response Object)

rejected If no message text provided 'No message text provided'

rejected If no chat session is currently
active 'There is no active chat session'

rejected When AJAX exception occurs (AJAX Response Object)

sendCustomNotice

Send a custom notice from the client to the chat server.

Example
oMyPlugin.command('WebChatService.sendCustomNotice', {message: 'bye'}).done(function(e){

// WebChatService sent a custom message successfully

}).fail(function(e){

// WebChatService failed to send a custom message
});

Options
Option Type Description

message string A message you want to send
along with the custom notice

Resolutions
Status When Returns

resolved When message is successfully
sent (AJAX Response Object)

rejected When AJAX exception occurs (AJAX Response Object)

Genesys Widgets Reference WebChatService

Widgets Reference 20

sendTyping

Send 'customer typing' notification to chat session. A visual indication will be shown to agent.
Intended to be used by WebChat widgets only. Should not be invoked manually.

Example
oMyPlugin.command('WebChatService.sendTyping', {message: 'hi'}).done(function(e){

// WebChatService sent typing successfully

}).fail(function(e){

// WebChatService failed to send typing
});

Options
Option Type Description

message string The message you want to send
along with the typing notification.

Resolutions
Status When Returns

resolved When AJAX request is successful (AJAX Response Object)
rejected When AJAX exception occurs (AJAX Response Object)

rejected If no chat session is currently
active 'There is no active chat session'

sendFilteredMessage

Send a message along with a regular expression to match the message and hide it from the client.
Useful for sending codes and tokens through the WebChat interface to the Agent Desktop.

Important
Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Genesys Widgets Reference WebChatService

Widgets Reference 21

Example
oMyPlugin.command('WebChatService.sendFilteredMessage', {

message: 'filtered message',
regex: /[a-zA-Z]/

}).done(function(e){

// WebChatService sent filtered message successfully

}).fail(function(e){

// WebChatService failed to send filtered message
});

Options
Option Type Description

message string
Message you want to send but
don't want to appear in the
transcript

regex RegExp Regular expression to match the
message

Resolutions
Status When Returns

resolved When there is an active session n/a

rejected If no chat session is currently
active 'No active chat session'

addPrefilter

Add a new regular expression prefilter to the prefilter list. Any messages matched using the prefilters
will not be shown in the transcript

Important

Genesys Widgets Reference WebChatService

Widgets Reference 22

Filters are now automatically stored and recalled on chat restore for the duration of
the session.

Example
oMyPlugin.command('WebChatService.addPrefilter', {filters: /[a-zA-Z]/}).done(function(e){

// WebChatService added filter successfully
// e == Object of registered prefilters

}).fail(function(e){

// WebChatService failed to add filter
});

Options
Option Type Description

filters RegExp or Array of RegExp Regular Expression(s) to add to
the prefilter list

Resolutions
Status When Returns

resolved When valid filters are provided Array of all registered prefilters.

rejected When invalid or missing filters
provided

'Missing or invalid filters
provided. Please provide a
regular expression or an array of
regular expressions.'

updateUserData

Updates the userData properties associated with the chat session. If this command is called before a
chat session starts, it will update the internal userData object and will be sent when a chat session
starts. If this command is called after a chat session starts, a request to the server will be made to
update the userData on the server associated with the chat session.

Genesys Widgets Reference WebChatService

Widgets Reference 23

Example
oMyPlugin.command('WebChatService.updateUserData', {firstname: 'Joe'}).done(function(e){

// WebChatService updated user data successfully

}).fail(function(e){

// WebChatService failed to update user data
});

Options
Option Type Description

n/a object
userData object you want to send
to the server for this active
session

Resolutions
Status When Returns

resolved Session is active and userData is
successfully sent (AJAX Response Object)

rejected Session is active and AJAX
exception occurs (AJAX Response Object)

resolved
Session is not active and internal
userData object is merged with
new userData properties
provided

The internal userData object that
will be sent to the server

poll

Internal use only. Start polling for new messages. Intended to be used by WebChat widgets only.
Should not be invoked manually.

Example
oMyPlugin.command('WebChatService.poll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling

Genesys Widgets Reference WebChatService

Widgets Reference 24

});

Resolutions
Status When Returns

resolved When there is an active session n/a

rejected WebChatService isn't calling this
command

'Access Denied to private
command. Only WebChatService
is allowed to invoke this
command.'

rejected If no chat session is currently
active 'previous poll has not finished.'

startPoll

Start automatic polling for new messages. Intended to be used by WebChat widgets only. Should not
be invoked manually.

Example
oMyPlugin.command('WebChatService.startPoll').done(function(e){

// WebChatService started polling successfully

}).fail(function(e){

// WebChatService failed to start polling
});

Resolutions
Status When Returns

resolved When there is an active session n/a

rejected When no chat session is currently
active No active chat session

rejected When CometD is enabled Polling is not supported when
using CometD

Genesys Widgets Reference WebChatService

Widgets Reference 25

stopPoll

Stop automatic polling for new messages. Intended to be used by WebChat widgets only. Should not
be invoked manually.

Example
oMyPlugin.command('WebChatService.stopPoll').done(function(e){

// WebChatService stopped polling successfully

}).fail(function(e){

// WebChatService failed to stop polling
});

Resolutions
Status When Returns

resolved When there is an active session n/a

rejected If no chat session is currently
active No active chat session

resetPollExceptions

Reset the poll exception count to 0. pollExceptionLimit is set in the configuration.

Example
oMyPlugin.command('WebChatService.resetPollExceptions').done(function(e){

// WebChatService reset polling successfully

}).fail(function(e){

// WebChatService failed to reset polling
});

Genesys Widgets Reference WebChatService

Widgets Reference 26

Resolutions
Status When Returns

resolved Always n/a
rejected Never undefined

restore

Internal use only. Intended to be used by WebChatService only. Should not be invoked manually,
except when using Async mode.

Example
oMyPlugin.command('WebChatService.restore').done(function(e){

// WebChatService restored successfully

}).fail(function(e){

// WebChatService failed to restore
});

Options

Option Type Description Accepted Values Introduced /
Updated

sessionData object

Applicable when
using Async mode
only. The session
data that is
needed to restore
the WebChat in
Async mode. It is a
Key value pair
object containing
the values
mentioned.

secureKey, userId,
alias, sessionID 9.0.002.06

Resolutions
Status When Returns Introduced / Updated

resolved Session has been found. n/a

Genesys Widgets Reference WebChatService

Widgets Reference 27

Status When Returns Introduced / Updated

rejected Session cannot be
found. n/a

rejected Restoring chat session is
in progress.

Already restoring.
Ignoring request. 9.0.002.06

rejected Chat session is already
active.

Chat session is already
active, ignoring restore
command.

9.0.002.06

rejected Trying restore chat
session manually.

Access Denied to
private command. Only
WebChatService is
allowed to invoke this
command in Non-Async
mode.

9.0.002.06

getTranscript

Fetch an array of all messages in the chat session.

Important
For more information on the fields included in JSON response, see Digital Channels
Chat V2 Response Format.

Example
oMyPlugin.command('WebChatService.getTranscript').done(function(e){

// WebChatService got transcript successfully
// e == Object with an array of messages

}).fail(function(e){

// WebChatService failed to get transcript
});

Resolutions
Status When Returns

resolved Always Object with an array of messages

Genesys Widgets Reference WebChatService

Widgets Reference 28

https://docs.genesys.com/Documentation/GMS/latest/API/APIResponses#Digital_Channels_Chat_V2_Response_Format
https://docs.genesys.com/Documentation/GMS/latest/API/APIResponses#Digital_Channels_Chat_V2_Response_Format

getAgents

Return a list of agents that have participated in the chat. Includes agent metadata.

Example
oMyPlugin.command('WebChatService.getAgents').done(function(e){

// WebChatService got agents successfully
// e == Object with agents information in chat

}).fail(function(e){

// WebChatService failed to get agents
});

Resolutions
Status When Returns

resolved Always

(Object List) {name: (String),
connected: (Boolean), supervisor:
(Boolean), connectedTime: (int
time),disconnectedTime: (int
time)}

getStats

Return stats on chat session including start time, end time, duration, and list of agents.

Example
oMyPlugin.command('WebChatService.getStats').done(function(e){

// WebChatService got stats successfully
// e == Object with chat session stats

}).fail(function(e){

// WebChatService failed to get stats
});

Genesys Widgets Reference WebChatService

Widgets Reference 29

Resolutions
Status When Returns

resolved Always
{agents: (Object), startTime: (int
time), endTime: (int time),
duration: (int time)}

sendFile

Sends the file from the client machine to the agent.

Example
oMyPlugin.command('WebChatService.sendFile', {files: $('<input/>').attr('type', 'file') /*
Only works on UI, can not dynamically change */ }).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file
});

Options
Option Type Description

files File
A reference to a file input
element (for example <input
type=“file”/>)

Resolutions
Status When Returns

resolved When the file sent is a valid type
and size (AJAX Response Object)

rejected When the file sent is an invalid
type (AJAX Response Object)

rejected When the number of uploads is
exceeded (AJAX Response Object)

rejected When the file size exceeds the
limit (AJAX Response Object)

Genesys Widgets Reference WebChatService

Widgets Reference 30

Status When Returns

rejected When the file size is too large or
an unknown error occurs (AJAX Response Object)

rejected When CometD is enabled File Uploads are not currently
supported when using CometD

downloadFile

Downloads the file to the client machine.

Example
oMyPlugin.command('WebChatService.downloadFile', {fileId: '1', fileName:
'myfile.txt'}).done(function(e){

// WebChatService sent file successfully

}).fail(function(e){

// WebChatService failed to send file
});

Options
Option Type Description

fileId string This is the id of the file to be
downloaded from the session

fileName string
This is the name of the file to be
downloaded from the session. It
is an optional field.

Resolutions
Status When Returns

resolved When the file is downloaded
successfully n/a

getFileLimits

This optional request can be used before uploading a large file. If size, type, or other constraints are

Genesys Widgets Reference WebChatService

Widgets Reference 31

not met, then uploading the file will fail, avoiding network and CPU overhead.

Example
oMyPlugin.command('WebChatService.getFileLimits').done(function(e){

// WebChatService got file limits successfully

}).fail(function(e){

// WebChatService failed to get file limits
});

Resolutions
Status When Returns

resolved When the file limits request
succeeds (AJAX Response Object)

rejected When the file limits request fails (AJAX Response Object)

rejected When CometD is enabled File Uploads are not currently
supported when using CometD

getSessionData

[Introduced: 9.0.002.06]

To retrieve the active session data at any time.

Example
oMyPlugin.command('WebChatService.getSessionData')

Resolutions
Status When Returns

resolved Always
{secureKey: (string), sessionID:
(number/string), alias: (number/
string), userId: (number/string)}

rejected Never undefined

Genesys Widgets Reference WebChatService

Widgets Reference 32

fetchHistory

[Introduced: 9.0.002.06]

For use with WebChat Widget only. This applies only in Asynchronous mode to fetch older chat
messages. It does not fetch all at a time, rather a certain number of messages are fetched every time
this command is called. Response data will be available in the messageReceived event. This internal
command determines the last received message index and, based on this information, fetches older
messages whenever it is called.

Example
oMyPlugin.command('WebChatService.fetchHistory')

Resolutions
Status When Returns

resolved When old messages are
retrieved. (AJAX Response Object)

rejected When request fails. (AJAX Response Object)

rejected When Asynchronous mode is not
enabled.

Fetching history messages
applies only to Asynchronous
chat

rejected When all messages are received No more messages to fetch

registerTypingPreviewInput

Select an HTML input to watch for key events. Used to trigger startTyping and stopTyping
automatically. Intended to be used by WebChat widgets only. Should not be invoked manually.

Example
oMyPlugin.command('WebChatService.registerTypingPreviewInput', {input: $('input')
}).done(function(e){

// WebChatService registered input area successfully

}).fail(function(e){

// WebChatService failed to register typing preview
});

Genesys Widgets Reference WebChatService

Widgets Reference 33

Options
Option Type Description

input HTML Reference An HTML reference to a text or
textarea input

Resolutions
Status When Returns

resolved When valid HTML input reference
is provided n/a

rejected When invalid or missing HTML
input reference

'Invalid value provided for the
'input' property. An HTML
element reference to a textarea
or text input is required.'

registerPreProcessor

Allows you to register a function that receives the message object, allowing you to manipulate the
values before it is rendered in the transcript.

Example
oMyPlugin.command('WebChatService.registerPreProcessor', {preprocessor: function(message){

message.text = message.text + ' some preprocessing text';

return message;

}}).done(function(e){

// WebChatService registered preprocessor function
// e == function that was registered

}).fail(function(e){

// WebChatService failed to register function

});

Genesys Widgets Reference WebChatService

Widgets Reference 34

Options
Option Type Description

preprocessor function The preprocessor function you
want to register.

Resolutions
Status When Returns

resolved
When a valid preprocessor
function is provided and is
registered.

The registered preprocessor
function.

rejected When an invalid preprocessor
function is provided.

No preprocessor function
provided. Type provided was
'<DATATYPE>'.

verifySession

Checks for existing WebChat session before triggering a proactive invite.

Example
oMyPlugin.command('WebChatService.verifySession').done(function(e){

if(e.sessionActive) {

// dont show chat invite

} else if(!e.sessionActive) {

if(oMyPlugin.data('WebChat.open') == false){

// show chat invite

} else {

// dont trigger chat invite

}

}

});

Genesys Widgets Reference WebChatService

Widgets Reference 35

Resolutions
Status When Returns

resolved A session exists or not A boolean 'sessionActive' which
holds the session state.

Genesys Widgets Reference WebChatService

Widgets Reference 36

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChatService.ready', function(e){});

Name Description Data Introduced / Updated

ready
WebChatService is
initialized and ready to
accept commands.

n/a

restored

Chat session has been
restored after page
navigation or refresh. In
Asynchronous mode,
this event includes data
indicating whether a
chat session has been
restored in Async mode
or not.

{async: (boolean)} 9.0.002.06

restoreTimeout

Chat session restoration
attempted was denied
after user navigated
away from originating
website for longer than
the time limit: default
60 seconds.

n/a

restoreFailed
Could not restore chat
session after page
navigation or refresh.

n/a

restoredOffline

Chat session was
restored normally but
chat server is offline.
This means no
messages can come

n/a

Genesys Widgets Reference WebChatService

Widgets Reference 37

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Name Description Data Introduced / Updated
through. When chat
server is comes back
online,
'chatServerBackOnline'
is published.

messageReceived

A new message has
been received from the
server. Includes text
messages, status
messages, notices, and
other message types.

{originalMessages:
(object), messages:
(array of objects),
restoring: (boolean),
sessionData: (object)}

9.0.002.06

error
An error occurred
between the client and
the server.

(AJAX Response)

started Chat session has
successfully started.

(AJAX Response
containing session data)

ended Chat session has
successfully ended. n/a

agentTypingStarted Agent has started
typing a new message. (AJAX Response)

agentTypingStopped Agent has stopped
typing. (AJAX Response)

pollingStarted Chat server automatic
polling has started. n/a

pollingStopped Chat server automatic
polling has stopped. n/a

clientConnected
Indicates the user has
been connected to the
chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

clientDisconnected
Indicates the user has
been disconnected from
the chat session.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

agentConnected Indicates an agent has
connected to the chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

agentDisconnected
Indicates an agent has
disconnected from the
chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

supervisorConnected
Indicates a supervisor
has connected to the
chat.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

supervisorDisconnected
Indicates a supervisor
has disconnected from
the chat.

{message: (object),
agents: (object),
numAgentsConnected:

Genesys Widgets Reference WebChatService

Widgets Reference 38

Name Description Data Introduced / Updated
(number)}

botConnected

Indicates a bot has
connected to the chat.

Important
This event is applicable
only when using WebChat
with GMS API.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.014.13

botDisconnected

Indicates a bot has
disconnected from the
chat.

Important
This event is applicable
only when using WebChat
with GMS API.

{message: (object),
agents: (object),
numAgentsConnected:
(number)}

9.0.014.13

clientTypingStarted
The user has started
typing. Sends an event
to the agent.

n/a

clientTypingStopped

After a user stops
typing, a countdown
begins. When the
countdown completes,
the typing notification
will clear for the agent.

n/a

disconnected
Cannot reach servers.
No connection. Either
the user is offline or the
server is offline.

n/a

reconnected
Connection restored.
This event is only
published after
'disconnected'.

n/a

chatServerWentOffline

Chat server has gone
offline but chat session
has not ended. New
messages are
temporarily unavailable.
This event is published
only after the
configuration option
'pollExceptionLimit' has
been exceeded. Default
limit is 5 poll
exceptions.
'restoredOffline' is an
alternate to this event
that is used only when
the chat server is down
while trying to restore
your chat session. The
reason for having two

n/a

Genesys Widgets Reference WebChatService

Widgets Reference 39

Name Description Data Introduced / Updated
events is to allow for
separate handling of
both scenarios.

Important
This event is applicable
only when using WebChat
with GMS API.

chatServerBackOnline

Chat server has come
back online after going
offline. This will only be
published after
'chatServerWentOffline'.

Important
This event is applicable
only when using WebChat
with GMS API.

n/a

connectionPending

If there is a connection
problem and
WebChatService is
trying to reconnect, this
event will be published.
Published before
'chatServerWentOffline'.

Important
This event is applicable
only when using WebChat
with GMS API.

n/a

connectionRestored

Is published when the
connection has been
reestablished. Publishes
at the same time as
'chatServerBackOnline'.

n/a

Genesys Widgets Reference WebChatService

Widgets Reference 40

WebChat

• Configuration
• Localization
• API Commands
• API Events

Overview

The WebChat Widget allows a customer to start a live chat with a customer service agent. The UI
appears within the page and follows the customer as they traverse your website. Customers can also
initiate a Co-browse session with the agent directly from WebChat (Co-browse license and
configuration required). Other features include minimize/maximize, auto-reconnect, and a built-in
invite feature.

Genesys Widgets Reference WebChat

Widgets Reference 41

Usage

WebChat can be launched manually by the following methods:

• Calling the command "WebChat.open"
• Configuring ChannelSelector to show WebChat as a channel
• Enable the built-in launcher button for WebChat that appears on the right side of the screen
• Create your own custom button or link to open WebChat (using the "WebChat.open" command)

Deployment Notes

WebChat Configuration
Genesys WebChat utilizes the Genesys Mobile Services (GMS) Chat API v2. For the purposes of chat,
GMS can be installed in Chat-only mode (without Cassandra).

Chat Service Configuration in GMS
In order to configure your chat service in GMS, please follow these instructions.

Important
The GMS configuration section referring to your chat service must follow the Chat v2
conventions. For example, if you want a chat service called "mychatservice", your
configuration section must be called "chat.mychatservice" (not
"service.mychatservice", as was the case for Chat v1 services).

For more information on configuring chat support in GMS, please see the following links:

• Chat API Version 2
• Setting Chat Dependencies
• Configuration Options Reference

Can I modify the Chat Registration Form?
Yes, the Chat Registration Form is customizable by defining your own form elements, thus bypassing
the default registration form. For implementation, see Customizable Chat Registration Form.

Genesys Widgets Reference WebChat

Widgets Reference 42

https://docs.genesys.com/Documentation/GMS/latest/Deployment/ConfiguringDigitalChannels
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIVersion2
https://docs.genesys.com/Documentation/GMS/latest/Deployment/ConfiguringChatSupport
https://docs.genesys.com/Documentation/GMS/latest/Deployment/ConfigurationOptions#chat_Section

Customization

All static text shown in the WebChat Widget is fully customizable and localizable by adding entries
into your configuration and localization options.

WebChat supports Themes. You may create and register your own themes for Genesys Widgets.

Namespace

The WebChat plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration webchat
i18n - Localization webchat
CXBus - API Commands & API Events WebChat
CSS .cx-webchat

Mobile Support

WebChat supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, WebChat switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Markdown Support

Starting in Genesys Widgets version 9.0.013.04, Markdown text formatting is supported in WebChat.
Our implementation follows the CommonMark spec. Please review the syntax rules and available
formatting.

Example

Dark Theme

This is a title!

This is some *emphasized
text* and some **strongly
emphasized text**

Light Theme

Genesys Widgets Reference WebChat

Widgets Reference 43

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

This is a bulleted list:

* item 1
* item 2
* item 3

This is a numbered list:

1. item 1
2. item 2
3. item 3

[This is a
link](http://www.genesys.com)

This is an image:

![Alt
Text](https://genbin.genesys.com/
media/
genesys_logo_tagline.svg)

Screenshots

"Dark" Theme

•

Desktop docked view showing
form

•

Genesys Widgets Reference WebChat

Widgets Reference 44

Mobile fullscreen view in portrait
orientation showing form

•

Mobile fullscreen view in
Landscape orientation showing
form

•

Desktop docked view showing
transcript

•

Mobile fullscreen view in portrait
orientation showing transcript

•

Mobile fullscreen view in
landscape orientation showing
transcript

"Light" Theme

Genesys Widgets Reference WebChat

Widgets Reference 45

•

Desktop docked view showing
form

•

Mobile fullscreen view in portrait
orientation showing form

•

Mobile fullscreen view in
Landscape orientation showing
form

•

Desktop docked view showing
transcript

Genesys Widgets Reference WebChat

Widgets Reference 46

•

Mobile fullscreen view in portrait
orientation showing transcript

•

Mobile fullscreen view in
landscape orientation showing
transcript

Important
You may choose to apply different colors/themes to your widgets, and you can visit
Styling the Widgets to find out how.

Genesys Widgets Reference WebChat

Widgets Reference 47

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCCustomize

Configuration

Description

WebChat and WebChatService share the configuration namespace '_genesys.widgets.webchat'.
WebChat has UI options while WebChatService has connection options.

Example
window._genesys.widgets.webchat = {

apikey: 'n3eNkgLLgLKXREBMYjGm6lygOHHOK8VA',
dataURL: 'https://api.genesyscloud.com/gms-chat/2/chat',
userData: {},
emojis: true,
uploadsEnabled: false,
confirmFormCloseEnabled: true,
actionsMenu: true,
maxMessageLength: 140,

autoInvite: {

enabled: false,
timeToInviteSeconds: 10,
inviteTimeoutSeconds: 30

},

chatButton: {

enabled: true,
template: '<div class="cx-widget cx-webchat-chat-button cx-side-button"

role="button" tabindex="0" data-message="ChatButton" data-gcb-service-node="true"><span class="i18n cx-chat-button-label" data-
message="ChatButton"></div>',

effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

},

async: {

enabled: true,
newMessageRestoreState: 'minimized',

getSessionData: function(sessionData, Cookie, CookieOptions) {

// Note: You don't have to use Cookies. You can, instead, store in a
secured location like a database.

Cookie.set('customer-defined-session-cookie',
JSON.stringify(sessionData), CookieOptions);

Genesys Widgets Reference WebChat

Widgets Reference 48

},

setSessionData: function(Open, Cookie, CookieOptions) {

// Retrieve from your secured location.

return Cookie.get('customer-defined-session-cookie');
}

},

minimizeOnMobileRestore: false,

markdown: false,

ariaIdleAlertIntervals:[50,25,10],

ariaCharRemainingIntervals:[75, 25, 10]
};

Options

Name Type Description Default Required Introduced /
Updated

emojis boolean

Enable/disable
Emoji menu
inside chat
message input.
Emojis are
supported
using unicode
characters and
the list
includes ☺
U+263A
(smile), ⯑
U+1F44D
(thumbs up)
and ☹ U+2639
(sad).

false n/a

form object

An object
containing a
custom
registration
form definition.
The definition
placed here
becomes the
default
registration
form layout for
WebChat. See
Customizable
Chat
Registration
Form.

A basic
registration
form is defined
internally by
default

n/a

Genesys Widgets Reference WebChat

Widgets Reference 49

Name Type Description Default Required Introduced /
Updated

uploadsEnabled boolean

Show/Hide the
Send File
button. The
button will be
shown if the
value is set to
true.

false n/a

confirmFormCloseEnabledboolean

Enable or
disable
displaying a
confirmation
message
before closing
WebChat if
information
has been
entered into
the registration
form.

true n/a

timeFormat number/string

This sets the
time format for
the
timestamps in
this widget. It
can be 12 or
24.

12 false

actionsMenu boolean
Enable/disable
actions menu
next to chat
message input.

true n/a

maxMessageLengthnumber

Set a character
limit that the
user can input
into the
message area
during a chat.
When max is
reached, user
cannot type
any more.

500 n/a

charCountEnabledboolean

Show/Hide the
number of
characters
remaining in
the input
message area
while the user
is typing.

false n/a

autoInvite.enabledboolean
Enable/disable
auto-invite
feature.
Automatically

false n/a

Genesys Widgets Reference WebChat

Widgets Reference 50

Name Type Description Default Required Introduced /
Updated

invites user to
chat after user
idles on page
for preset time.

Important
In case of
running Widgets
in lazy load
mode, this
option requires
WebChat plugin
to be pre-
loaded.

autoInvite.timeToInviteSecondsnumber

Number of
seconds of idle
time before
inviting
customer to
chat.

5 n/a

autoInvite.inviteTimeoutSecondsnumber

Number of
seconds to
wait, after
showing invite,
before closing
chat invite.

Important
When the focus
is on the Invite
window, the
chat invite will
not auto close
upon the
specified
timeout. In this
scenario, you
must click the
Close button to
manually close
the Invite
window. This is
to support the
logical and
predictable
focus order as
recommended
by WCAG
2.4.3:Focus
Order.

30 n/a

chatButton.enabledboolean

Enable/disable
chat button on
screen.

Important
In case of
running Widgets

false n/a

Genesys Widgets Reference WebChat

Widgets Reference 51

Name Type Description Default Required Introduced /
Updated

in lazy load
mode, this
option requires
WebChat plugin
to be pre-
loaded.

chatButton.templatestring
Custom HTML
string template
for chat button.

<div
class="cx-
widget cx-
webchat-chat-
button cx-
side-button"
role="button"
tabindex="0"
data-
message="ChatButton"
data-gcb-
service-
node="true"><span
class="cx-
icon" data-
icon="chat"><span
class="i18n
cx-chat-
button-
label" data-
message="ChatButton"></div>

n/a

chatButton.effect string

Type of
animation
effect when
revealing chat
button. 'slide'
or 'fade'.

fade n/a

chatButton.openDelaynumber

Number of
milliseconds
before
displaying chat
button on
screen.

1000 n/a

chatButton.effectDurationnumber
Length of
animation
effect in
milliseconds.

300 n/a

chatButton.hideDuringInviteboolean

When auto-
invite feature is
activated, hide
the chat
button. When
invite is
dismissed,
reveal the chat
button again.

true n/a

Genesys Widgets Reference WebChat

Widgets Reference 52

Name Type Description Default Required Introduced /
Updated

async object

Object
container for
Async mode
configuration
options.

{enabled:
false,
newMessageRestoreState:
'full'}

Yes, if using
Async mode 9.0.002.06

async.enabled boolean

Enable
Asynchronous
Chat where a
chat session
can be active
indefinitely.
When you
close WebChat
without ending
the chat
session, the
session will
simply go
dormant. When
you open
WebChat
again, the
session will
restore and
continue
chatting where
left off.
Currently,
Async Chat is
supported only
in cometD
mode and it
should be
enabled.

false n/a 9.0.002.06

async.newMessageRestoreStatestring

Determines
how WebChat
should be
displayed when
a new message
arrives if
WebChat is
closed.
Accepted
values are 'full'
and
'minimized'.
'full' means
WebChat
appears on
screen
displaying new
messages in
the transcript
area as a new

full n/a 9.0.002.06

Genesys Widgets Reference WebChat

Widgets Reference 53

Name Type Description Default Required Introduced /
Updated

message
arrives.
'minimized'
means
WebChat
opens in a
minimized
state along
with a counter
in the title bar
area indicating
how many new
messages are
present.

async.getSessionDatafunction

A function that
you can define
to retrieve
updated
session data
from
WebChatService
plugin over the
course of an
active chat
session. This
function takes
the following
arguments -
sessionData
(current active
session data),
Cookie
(Widgets
Internal cookie
reference) and
CookieOptions
(a parameter
that is needed
when using
Widgets
Cookie). The
purpose of this
function is to
provide you
the active
session data so
that it can be
stored
somewhere
safe and
secure. Later
this needs to
be provided in
the below

none
Yes, when
Async WebChat
mode is
enabled

9.0.002.06

Genesys Widgets Reference WebChat

Widgets Reference 54

Name Type Description Default Required Introduced /
Updated

setSessionData
function to
restore the
chat session.
Refer to the
example for
usage.

async.setSessionDatafunction

A function that
you can define
to return the
session data to
WebChat
plugin. During
initialization,
WebChatService
plugin will call
this function to
check if any
session data is
returned. If
found,
WebChatService
tries to restore
the chat
session using
this session
data and open
WebChat
Widget.
WebChatService
will also pass
the following
arguments into
this function -
Open
(WebChat
current open
state value),
Cookie
(Widgets
Internal cookie
reference) and
CookieOptions
(a parameter
that will be
needed when
using Widgets
Cookie). Refer
to the example
for usage.

none
Yes, when
Async WebChat
mode is
enabled

9.0.002.06

minimizeOnMobileRestoreboolean
Enable/disable
the minimized
state of
webchat on

false n/a 9.0.013.02

Genesys Widgets Reference WebChat

Widgets Reference 55

Name Type Description Default Required Introduced /
Updated

chat restore.

Important
This option is
only for mobile
mode.

markdown boolean
Enable/disable
the markdown
feature for chat
messages.

false n/a 9.0.014.02

ariaIdleAlertIntervalsarray/boolean

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
idle time. By
default, it is
enabled with
the following
time intervals,
and it is
customizable
according to
the user's
needs.
Configuring a
value of 'false'
will let the
screen reader
call out idle
time for every
change.

[100, 75, 50,
25, 10] n/a 9.0.016.11

ariaCharRemainingIntervalsarray/boolean

An array
containing the
intervals as a
percentage at
which the
screen reader
will announce
the remaining
characters
when the user
inputs text into
the message
area. By
default, it is
enabled with
the following
intervals, and it
is customizable

[50, 25, 10] n/a 9.0.016.11

Genesys Widgets Reference WebChat

Widgets Reference 56

Name Type Description Default Required Introduced /
Updated

according to
the user needs.
Configuring a
value of 'false'
will let the
screen reader
call out
remaining
characters for
every change.

metaDataEnabledboolean
Enable or
disable
WebChat
MetaData.

true n/a 9.0.017.26

enableUrlTrailingSlashboolean

Enable or
disable trailing
slash at the
end of the
dataURL when
the start chat
connection
request is sent
to the server.

Important
This option is
applicable for
REST mode only.

true n/a 9.0.017.28

Genesys Widgets Reference WebChat

Widgets Reference 57

Localization

Customer Defined Strings

You can define string key names and values to match the system messages that are received from
the chat server. If a customer system message is received as SYS001 in the message body, Webchat
checks to determine if any keys match in the language pack, and then replaces the message body
accordingly. SYS001 is an example format. There are no format restrictions on custom message
keys. The purpose of this feature is to allow localization for the User Interface and Server to be kept
in the same file.

Special Values for Localization

You can inject the <%Agent%> special value. When used, the agent's name is rendered in its place at
runtime.

Error Handling

Customers can define their own error messages by defining them in the Errors section found in the
above Webchat Localization. If no error messages are defined, default error messages are used.

Important
For information on how to set up localization, please refer to the Localization guide.

Usage

'webchat' namespace should be used when defining localization strings for WebChat plugin in your
i18n JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Genesys Widgets Reference WebChat

Widgets Reference 58

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

Inactivity Messages

If Chat Server is configured to end the chat session after a certain idle time, it may send several
warning messages to the client to inform them and prompt them to act. Chat Server can be
configured to show a first warning, a second warning, and a final notice when it ends the chat
session. By default, WebChat will display the warning message text as it is received from the server.
If you wish to localize these methods on the client side instead, follow these steps:

The first warning can be localized by setting the string 'IdleMessage1'.

The second warning can be localized by setting the string 'IdleMessage2'.

The final notice can be localized by setting the string 'IdleMessageClose'.

Tip
Find more information on configuring Inactivity Monitoring for Chat Server here.

Tip
If Chat Server ever allows more than two idle warning messages, you can localize
them by incrementing the integer value in the string name (e.g. 'IdleMessage3',
'IdleMessage4', and so on).

Default i18n JSON
{

"en": {
"webchat": {

"ChatButton": "Chat",
"ChatStarted": "Chat Started",
"ChatEnded": "Chat Ended",
"AgentNameDefault": "Agent",
"AgentConnected": "<%Agent%> Connected",
"AgentDisconnected": "<%Agent%> Disconnected",
"BotNameDefault": "Bot",
"BotConnected": "<%Bot%> Connected",
"BotDisconnected": "<%Bot%> Disconnected",
"SupervisorNameDefault": "Supervisor",
"SupervisorConnected": "<%Agent%> Connected",
"SupervisorDisconnected": "<%Agent%> Disconnected",
"AgentTyping": "...",
"AriaAgentTyping": "Agent is typing",
"AgentUnavailable": "Sorry. There are no agents available. Please try

later.",
"ChatTitle": "Live Chat",
"ChatEnd": "X",
"ChatClose": "X",

Genesys Widgets Reference WebChat

Widgets Reference 59

https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatInactivity

"ChatMinimize": "Min",
"ChatFormFirstName": "First Name",
"ChatFormLastName": "Last Name",
"ChatFormNickname": "Nickname",
"ChatFormEmail": "Email",
"ChatFormSubject": "Subject",
"ChatFormPlaceholderFirstName": "Required",
"ChatFormPlaceholderLastName": "Required",
"ChatFormPlaceholderNickname": "Optional",
"ChatFormPlaceholderEmail": "Optional",
"ChatFormPlaceholderSubject": "Optional",
"ChatFormSubmit": "Start Chat",
"AriaChatFormSubmit": "Start Chat",
"ChatFormCancel": "Cancel",
"AriaChatFormCancel": "Cancel",
"ChatFormClose": "Close",
"ChatInputPlaceholder": "Type your message here",
"ChatInputSend": "Send",
"AriaChatInputSend": "Send",
"ChatEndQuestion": "Are you sure you want to end this chat session?",
"ChatEndCancel": "Cancel",
"ChatEndConfirm": "End chat",
"AriaChatEndCancel": "Cancel",
"AriaChatEndConfirm": "End chat",
"ConfirmCloseWindow": "Are you sure you want to close chat?",
"ConfirmCloseCancel": "Cancel",
"ConfirmCloseConfirm": "Close",
"AriaConfirmCloseCancel": "Cancel",
"AriaConfirmCloseConfirm": "Close",
"ActionsDownload": "Download transcript",
"ActionsEmail": "Email transcript",
"ActionsPrint": "Print transcript",
"ActionsCobrowseStart": "Start Co-browse",
"AriaActionsCobrowseStartTitle": "Opens the Co-browse session",
"ActionsSendFile": "Attach Files",
"AriaActionsSendFileTitle": "Opens a file upload dialog",
"ActionsEmoji": "Send Emoji",
"ActionsCobrowseStop": "Exit Co-browse",
"ActionsVideo": "Invite to Video Chat",
"ActionsTransfer": "Transfer",
"ActionsInvite": "Invite",
"InstructionsTransfer": "Open this link on another device to transfer

your chat session</br></br><%link%>",
"InstructionsInvite": "Share this link with another person to add

them to this chat session</br></br><%link%>",
"InviteTitle": "Need help?",
"InviteBody": "Let us know if we can help out.",
"InviteReject": "No thanks",
"InviteAccept": "Start chat",
"AriaInviteAccept": "Start chat",
"AriaInviteReject": "No thanks",
"ChatError": "There was a problem starting the chat session. Please

retry.",
"ChatErrorButton": "OK",
"AriaChatErrorButton": "OK",
"ChatErrorPrimaryButton": "Yes",
"ChatErrorDefaultButton": "No",
"AriaChatErrorPrimaryButton": "Yes",
"AriaChatErrorDefaultButton": "No",
"DownloadButton": "Download",
"AriaDownloadButton": "Download",
"FileSent": "has sent:",
"FileTransferRetry": "Retry",

Genesys Widgets Reference WebChat

Widgets Reference 60

"AriaFileTransferRetry": "Retry",
"FileTransferError": "OK",
"AriaFileTransferError": "OK",
"FileTransferCancel": "Cancel",
"AriaFileTransferCancel": "Cancel",
"RestoreTimeoutTitle": "Chat ended",
"RestoreTimeoutBody": "Your previous chat session has timed out.

Would you like to start a new one?",
"RestoreTimeoutReject": "No thanks",
"RestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutAccept": "Start chat",
"AriaRestoreTimeoutReject": "No thanks",
"EndConfirmBody": "Would you really like to end your chat session?",
"EndConfirmAccept": "End chat",
"EndConfirmReject": "Cancel",
"AriaEndConfirmAccept": "End chat",
"AriaEndConfirmReject": "Cancel",
"SurveyOfferQuestion": "Would you like to participate in a survey?",
"ShowSurveyAccept": "Yes",
"ShowSurveyReject": "No",
"AriaShowSurveyAccept": "Yes",
"AriaShowSurveyReject": "No",
"UnreadMessagesTitle": "unread",
"AriaYouSaid": "You said",
"AriaSaid": "said",
"AriaSystemSaid": "System said",
"AriaWindowLabel": "Live Chat Window",
"AriaMinimize": "Live Chat Minimize",
"AriaMaximize": "Live Chat Maximize",
"AriaClose": "Live Chat Close",
"AriaEmojiStatusOpen": "Emoji picker dialog is opened",
"AriaEmojiStatusClose": "Emoji picker dialog is closed",
"AriaEmoji": "emoji",
"AriaCharRemaining": "Characters remaining",
"AriaMessageInput": "Message box",
"AsyncChatEnd": "End Chat",
"AsyncChatClose": "Close Window",
"AriaAsyncChatEnd": "End Chat",
"AriaAsyncChatClose": "Close Window",
"DayLabels": [

"Sun",
"Mon",
"Tue",
"Wed",
"Thur",
"Fri",
"Sat"

],
"MonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sept",
"Oct",
"Nov",
"Dec"

],
"todayLabel": "Today",

Genesys Widgets Reference WebChat

Widgets Reference 61

"Errors": {
"102": "First name is required.",
"103": "Last name is required.",
"161": "Please enter your name.",
"201": "The file could not be sent.
<p

class='filename' title='<%FilenameFull%>'>'<%FilenameTruncated%>'</p><p class='cx-
advice'>The maximum number of attached files would be exceeded (<%MaxFilesAllowed%>).</p>",

"202": "The file could not be sent.
<p
class='filename' title='<%FilenameFull%>'>'<%FilenameTruncated%>'</p><p class='cx-
advice'>Upload limit and/or maximum number of attachments would be exceeded
(<%MaxAttachmentsSize%>).</p>",

"203": "The file could not be sent.
<p
class='filename' title='<%FilenameFull%>'>'<%FilenameTruncated%>'</p><p class='cx-
advice'>File type is not allowed.</p>",

"204": "We're sorry but your message is too long. Please
write a shorter message.",

"240": "We're sorry but we cannot start a new chat at this
time. Please try again later.",

"364": "Invalid email address.",
"401": "We're sorry but we are not able to authorize the chat

session. Would you like to start a new chat?",
"404": "We're sorry but we cannot find your previous chat

session. Would you like to start a new chat?",
"500": "We're sorry, an unexpected error occurred with the

service. Would you like to close and start a new Chat?",
"503": "We're sorry, the service is currently unavailable or

busy. Would you like to close and start a new Chat again?",
"ChatUnavailable": "We're sorry but we cannot start a new

chat at this time. Please try again later.",
"CriticalFault": "Your chat session has ended unexpectedly

due to an unknown issue. We apologize for the inconvenience.",
"StartFailed": "There was an issue starting your chat

session. Please verify your connection and that you submitted all required information
properly, then try again.",

"MessageFailed": "Your message was not received successfully.
Please try again.",

"RestoreFailed": "We're sorry but we were unable to restore
your chat session due to an unknown error.",

"TransferFailed": "Unable to transfer chat at this time.
Please try again later.",

"FileTransferSizeError": "The file could not be
sent.
<p class='filename'
title='<%FilenameFull%>'>'<%FilenameTruncated%>'</p><p class='cx-advice'>File size
is larger than the allowed size (<%MaxSizePerFile%>).</p>",

"InviteFailed": "Unable to generate invite at this time.
Please try again later.",

"ChatServerWentOffline": "Messages are currently taking
longer than normal to get through. We're sorry for the delay.",

"RestoredOffline": "Messages are currently taking longer than
normal to get through. We're sorry for the delay.",

"Disconnected": "<div style='text-align:center'>Connection
lost</div>",

"Reconnected": "<div style='text-align:center'>Connection
restored</div>",

"FileSendFailed": "The file could not be sent.
<p
class='filename' title='<%FilenameFull%>'><%FilenameTruncated%></p><p class='cx-
advice'>There was an unexpected disconnection. Try again?</p>",

"Generic": "<div style='text-align:center'>An unexpected
error occurred.</div>",

"pureengage-v3-rest-INVALID_FILE_TYPE": "Invalid file type.
Only Images are allowed.",

"pureengage-v3-rest-LIMIT_FILE_SIZE": "File size is larger
than the allowed size.",

Genesys Widgets Reference WebChat

Widgets Reference 62

"pureengage-v3-rest-LIMIT_FILE_COUNT": "The maximum number of
attached files exceeded the limit.",

"pureengage-v3-rest-INVALID_CONTACT_CENTER": "Invalid x-api-
key transport configuration.",

"pureengage-v3-rest-INVALID_ENDPOINT": "Invalid endpoint
transport configuration.",

"pureengage-v3-rest-INVALID_NICKNAME": "First Name is
required.",

"pureengage-v3-rest-AUTHENTICATION_REQUIRED": "We're sorry
but we are not able to authorize the chat session.",

"purecloud-v2-sockets-400": "Sorry, something went wrong.
Please verify your connection and that you submitted all required information properly, then
try again.",

"purecloud-v2-sockets-500": "We're are sorry, an unexpected
error occurred with the service.",

"purecloud-v2-sockets-503": "We're sorry, the service is
currently unavailable."

}
}

}
}

Genesys Widgets Reference WebChat

Widgets Reference 63

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WebChat.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

open

Opens the WebChat UI.

Example
oMyPlugin.command('WebChat.open', {

userData: {},
form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
email: 'John@mail.com',
subject: 'Customer Satisfaction'

},
formJSON: {...},
markdown: false

Genesys Widgets Reference WebChat

Widgets Reference 64

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

}).done(function(e){

// WebChat opened successfully

}).fail(function(e){

// WebChat isn't open or no active chat session
});

Options
Option Type Description Introduced / Updated

form object

Object containing form
data to prefill in the
chat entry form and
optionally auto-submit
the form.

form.autoSubmit boolean
Automatically submit
the form. Useful for
bypassing the entry
form step.

form.firstname string Value for the first name
entry field.

form.lastname string Value for the last name
entry field.

form.email string Value for the email
entry field.

form.subject string Value for the subject
entry field.

formJSON object

An object containing a
custom registration
form definition. See
Customizable Chat
Registration Form.

userData object

Object containing
arbitrary data that gets
sent to the server.
Overrides userData set
in the webchat
configuration object.

async boolean

Starts a new chat either
in asynchronous or
normal mode based on
the boolean value. Note
that unless async static
configuration is defined,
a chat in normal mode
will start automatically.

9.0.002.06

markdown boolean The markdown feature 9.0.014.02

Genesys Widgets Reference WebChat

Widgets Reference 65

Option Type Description Introduced / Updated
for chat messages.

id string

A Unique identifier of a
chat session that helps
to identify the instance
of that session and its
associated events. A
random value is
automatically generated
and assigned when no
value is passed
explicitly.

9.0.014.09

Resolutions
Status When Returns

resolved When WebChat is successfully
opened n/a

rejected When WebChat is already open 'already opened'

close

Closes the WebChat UI.

Example
oMyPlugin.command('WebChat.close').done(function(e){

// WebChat closed successfully

}).fail(function(e){

// WebChat is already closed or no active chat session
});

Resolutions
Status When Returns

resolved When WebChat is successfully
closed n/a

rejected When WebChat is already closed 'already closed'

Genesys Widgets Reference WebChat

Widgets Reference 66

minimize

Minimize or unminimize WebChat UI.

Example
oMyPlugin.command('WebChat.minimize').done(function(e){

// WebChat minimized successfully

}).fail(function(e){

// WebChat ignores command
});

Options
Option Type Description

minimized boolean
Rather than toggling the current
minimized state you can specify
the minified state directly: true =
minimized, false = uniminimized.

Resolutions
Status When Returns

resolved Always n/a
rejected Never 'Invalid configuration'

endChat

Starts the 'end chat' procedure. User may be prompted to confirm.

Example
oMyPlugin.command('WebChat.endChat').done(function(e){

// WebChat ended a chat successfully

}).fail(function(e){

Genesys Widgets Reference WebChat

Widgets Reference 67

// WebChat has no active chat session
});

Resolutions
Status When Returns

resolved When there is an active chat
session to end n/a

rejected When there is no active chat
session to end

'there is no active chat session to
end'

invite

Show an invitation to chat using the Toaster popup element. Text shown in invitation can be edited in
the localization file.

Example
oMyPlugin.command('WebChat.invite').done(function(e){

// WebChat invited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions
Status When Returns

resolved
When WebChat is closed and the
toast element is created
successfully

n/a

rejected
When WebChat is already open
(prevents inviting a user that is
already in a chat)

'Chat is already open. Ignoring
invite command.'

reInvite

When an active chat session is unable to restore, this invitation will offer the user to start a new chat.
Text shown in invitation can be edited in the localization file.

Genesys Widgets Reference WebChat

Widgets Reference 68

Example
oMyPlugin.command('WebChat.reInvite').done(function(e){

// WebChat reinvited successfully

}).fail(function(e){

// WebChat is already open and will be ignored
});

Resolutions
Status When Returns

resolved

When WebChat is closed, the
config item
'webchat.inviteOnRestoreTimeout'
is set, and the toast element is
created successfully.

n/a

rejected
When WebChat is already open.
Prevents inviting a user that is
already in a chat.

'Chat is already open. Ignoring
invite command.'

injectMessage

Inject a custom message into the chat transcript. Useful for extending WebChat functionality with
other Genesys products.

Example
oMyPlugin.command('WebChat.injectMessage', {

type: 'text',
name: 'person',
text: 'hello',
custom: false,
bubble:{

fill: '#00FF00',
radius: '4px',
time: false,
name: false,
direction: 'right',
avatar:{

custom: '<div>word</div>',
icon: 'email'

Genesys Widgets Reference WebChat

Widgets Reference 69

}
}

}).done(function(e){

// WebChat injected a message successfully
// e.data == The message HTML reference (jQuery wrapped set)

}).fail(function(e){

// WebChat isn't open or no active chat
});

Options
Option Type Description Accepted Values

type string
Switch the rendering
type of the injected
message between text
and html.

text, html

name string

Specify a name label for
the message to identify
what service or widget
has injected the
message.

n/a

text string
The content of the
message. Either plain
text or HTML.

n/a

custom boolean

If set to true, the default
message template will
not be used, allowing
you to inject a highly
customized HTML block
unconstrained by the
normal message
template.

true, false

bubble.fill string of valid CSS color
value

The content of the
message. Either plain
text or HTML.

n/a

bubble.radius string of valid CSS
border radius vale

The border radius you'd
like for the bubble. n/a

bubble.time boolean
If you'd like to show the
timestamp for the
bubble.

true, false

bubble.name boolean If you'd like to show the
name for the bubble. true, false

bubble.direction string
Which direction you
want the message
bubble to come from.

left, right, none

bubble.avatar.custom string or HTML Change the content of n/a

Genesys Widgets Reference WebChat

Widgets Reference 70

Option Type Description Accepted Values

reference
the html that would be
the avatar for the chat
bubble.

bubble.avatar.icon class name
Generated common
library provided for icon
name.

n/a

Resolutions
Status When Returns

resolved When WebChat is open and there
is an active chat session

An HTML reference (jQuery
wrapped set) to the new injected
message

rejected
When WebChat is not open and/
or there was no active chat
session

'No chat session to inject into'

showChatButton

Makes the standalone chat button visible on the screen using either the default template and CSS or
customer-defined ones.

Example
oMyPlugin.command('WebChat.showChatButton', {

openDelay: 1000,
duration: 1500

}).done(function(e){

// WebChat shows chat button successfully

}).fail(function(e){

// WebChat button is already visible or chat button is disabled in configuration
});

Options
Option Type Description

openDelay number Duration in milliseconds to delay

Genesys Widgets Reference WebChat

Widgets Reference 71

Option Type Description
showing the chat button on the
page.

duration number Duration in milliseconds for the
show and hide animation.

Resolutions
Status When Returns

resolved
When the chat button is enabled
in the configuration and is
currently not visible.

n/a

rejected
When the chat button is either
not enabled in the configuration,
or it's already visible.

'Chat button is not enabled in the
configuration, or already visible.
Ignoring command.'

hideChatButton

Hides the standalone chat button.

Example
oMyPlugin.command('WebChat.hideChatButton', {duration: 1500}).done(function(e){

// WebChat hid chat button successfully

}).fail(function(e){

// WebChat button is already hidden
});

Options
Option Type Description

duration number Duration in milliseconds for the
show and hide animation.

Genesys Widgets Reference WebChat

Widgets Reference 72

Resolutions
Status When Returns

resolved When the chat button is currently
visible n/a

rejected When the chat button is already
hidden

'Chat button is already hidden.
Ignoring command.'

showOverlay

A slide-down overlay the opens over WebChat's content. You can fill this overlay with content such as
disclaimers, articles, and other information.

Example
oMyPlugin.command('WebChat.showOverlay', {

html: '<div id='cx_chat_information'>Example text</div>',
hideFooter: false

}).done(function(e){

// WebChat successfully shows overlay

}).fail(function(e){

// WebChat isn't open
});

Options
Option Type Description Accepted Values

html string or HTML
reference

The HTML content you
want to display in the
overlay.

Important
The id attribute value of
the HTML content can be
set to
cx_chat_information.
This supports a screen
reader's ability to
announce the overlay's
content to the user, as
recommended by WCAG.

n/a

hideFooter boolean Normally the overlay
appears between the true, false

Genesys Widgets Reference WebChat

Widgets Reference 73

Option Type Description Accepted Values
titlebar and footer bar.
Set this to true to have
the overlay overlap the
footer to gain a bit more
vertical space. This
should only be used in
special cases. For
general use, don't set
this value.

Resolutions
Status When Returns

resolved When WebChat is open and the
overlay opens. n/a

rejected When WebChat is not currently
open.

WebChat is not currently open.
Ignoring command.

hideOverlay

Hides the slide-down overlay.

Example
oMyPlugin.command('WebChat.hideOverlay').done(function(e){

// WebChat hid overlay successfully

}).fail(function(e){

// WebChat isn't open
});

Resolutions
Status When Returns

resolved When WebChat is open and the
overlay closes. n/a

rejected When WebChat is not currently
open.

WebChat is not currently open.
Ignoring command.

Genesys Widgets Reference WebChat

Widgets Reference 74

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WebChat.ready', function(e){ /* sample code */ });

Name Description Data Introduced / Updated

ready
WebChat is initialized
and ready to accept
commands.

n/a

opened The WebChat widget
has appeared on screen. Metadata

started The WebChat has
successfully started. Metadata

submitted The user has submitted
the form. Metadata 9.0.002.06

rejected
When the chat session
fails to start. Typically
due to form validation
or network errors.

Metadata 9.0.014.07

completed
The Chat session ended
after agent is
successfully connected
to WebChat.

Metadata

cancelled
The Chat session ended
before agent is
connected to WebChat.

Metadata

closed
The WebChat widget
has been removed from
the screen.

Metadata

minimized The WebChat widget
has been changed to a n/a

Genesys Widgets Reference WebChat

Widgets Reference 75

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Name Description Data Introduced / Updated
minimized state.

unminimized
The WebChat widget
has been restored from
a minimized state to the
standard view.

n/a

messageAdded
When a message is
added to the transcript,
this event will fire.

Returns an object
containing two
properties: 'data' and
'html'. 'data' contains
the JSON data for the
message, while 'html'
contains a reference to
the visible message
inside the chat
transcript.

Genesys Widgets Reference WebChat

Widgets Reference 76

Metadata

Interaction Lifecycle

Every WebChat interaction has a sequence of events we describe as the 'Interaction Lifecycle'. This is
a sequence of events that tracks progress and choices from the beginning of an interaction (opening
WebChat), to the end (closing WebChat), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
rejected
completed
closed

Lifecycle Scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with WebChat. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened WebChat but changed their mind and closed it without starting a chat session:

ready -> opened -> cancelled -> closed

The user started a chat session but ended it before an agent connected. Perhaps it was taking too
long to reach someone:

ready -> opened -> submitted -> started -> cancelled -> closed

The user started a chat, but the chat fails to start:

ready -> opened -> submitted -> rejected

The user started a chat, met with an agent, and the session ended normally:

ready -> opened -> submitted -> started -> completed -> closed

Tip
For a list of all WebChat events, see API Events.

Genesys Widgets Reference WebChat

Widgets Reference 77

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a WebChat interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with chat interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference
Name Type Description Introduced / Updated

proactive boolean
Indicates this chat
session was started
proactively.

prefilled boolean
Indicates the
registration form was
prefilled with info
automatically.

autoSubmitted boolean

Indicates the
registration form was
submitted
automatically, usually
after being prefilled.

coBrowseInitiated boolean
Indicates that a Co-
browse session was
started at some point
during the chat session.

filesUploaded integer
Current number of files
uploaded during chat
session.

numAgents integer
Current number of
agents that have
connected to the chat
session.

userMessages integer Current number of
messages sent by user.

agentMessages integer
Current number of
messages sent by
agents.

systemMessages integer
Current number of
system messages
received.

errors array/boolean
An array of error codes
encountered during chat
session. If no errors, this
value will be false.

Genesys Widgets Reference WebChat

Widgets Reference 78

Name Type Description Introduced / Updated

form object
An object containing the
form parameters when
the form is submitted.

9.0.002.06

opened integer (timestamp)
Timestamp indicating
when WebChat was
opened.

started integer (timestamp)
Timestamp indicating
when chat session
started.

cancelled integer (timestamp)

Timestamp indicating
when the chat session
was cancelled.
Cancelled refers to
when a user ends a chat
session before an agent
connects.

rejected integer (timestamp)

Timestamp indicating
when the chat session
was rejected. Rejected
refers to when a chat
session fails to start.

9.0.014.07

completed integer (timestamp)

Timestamp indicating
when the chat session
ended normally.
Completed refers to
when a user or agent
ends a chat after an
agent connected.

closed integer (timestamp)
Timestamp indicating
when WebChat was
closed.

agentReached integer (timestamp)
Timestamp indicating
when the first agent
was reached, if any.

supervisorReached integer (timestamp)
Timestamp indicating
when the first agent
supervisor was reached,
if any.

elapsed integer (milliseconds)

Total elapsed time in
milliseconds from when
the user started the
chat session to when
the chat session ended.

waitingForAgent integer (milliseconds)

Total time in
milleseconds waiting for
an agent from when the
user started the chat
session to when an
agent connected to the
session.

Genesys Widgets Reference WebChat

Widgets Reference 79

Name Type Description Introduced / Updated

id string

A Unique identifier of a
chat session that helps
to identify the instance
of that session and its
associated events.

Genesys Widgets Reference WebChat

Widgets Reference 80

Customizable Chat Registration Form
Introduced: 9.0.000.08

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new registration
form definition through the WebChat.open command:

_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default Example

The following example is the default object used to render WebChat’s registration form. This is a very
simple definition that does not use many properties.

Important
You can define any number of inputs here, of any supported type, in any combination.
Our example below simply demonstrates how WebChat defines its default form
internally.

{
wrapper: "<table></table>",
inputs: [

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

Genesys Widgets Reference WebChat

Widgets Reference 81

},

{
id: "cx_webchat_form_lastname",
name: "lastname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderLastName",
label: "@i18n:webchat.ChatFormLastName"

},

{
id: "cx_webchat_form_email",
name: "email",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderEmail",
label: "@i18n:webchat.ChatFormEmail"

},

{
id: "cx_webchat_form_subject",
name: "subject",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderSubject",
label: "@i18n:webchat.ChatFormSubject"

}
]

}

Using this definition will result in this output:

Genesys Widgets Reference WebChat

Widgets Reference 82

Properties

Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input
element.

Special Properties
Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

label string
Set the text for the
label. If no value
provided, no label will
be shown. You may use

Genesys Widgets Reference WebChat

Widgets Reference 83

Property Type Default Description
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string “<table></table>"

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is "

validate function

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

Genesys Widgets Reference WebChat

Widgets Reference 84

Property Type Default Description

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1’} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML Attributes
With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a text
input.

HTML Output

<input type="text" id="cx_webchat_form_firstname
name="firstname" maxlength="100" placeholder="Required"></input>

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Genesys Widgets Reference WebChat

Widgets Reference 85

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers: Form
Wrappers and Input Wrappers

Form Wrapper
You can specify the parent wrapper for the overall form in the top-level "wrapper" property. In the
example below, we specify this value as “<table></table>". This is the default wrapper for the
WebChat form.

{
wrapper: "<table></table>", /* form wrapper */
inputs: []

}

Input Wrapper
Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
wrapper: "<tr><th>{label}</th><td>{input}</td></tr>" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form. You can change the form wrapper to
“<div></div>" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table wrappers, you are
responsible for styling and aligning your layout. Only the default table-row wrapper is supported by
default Themes and CSS.

Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how a validation function is defined:

Genesys Widgets Reference WebChat

Widgets Reference 86

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

return true; // or false
}

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class "cx-error" to the input.

Validation Function Arguments
Argument Type Description

event JavaScript event object

The input event reference object
related to the form input field.
This event data can be helpful to
perform actions like active
validation on an input field while
the user is typing.

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Form Submit

Custom input field form values are submitted to the server as key value pairs under the userData
section of the form submit request, where input field names will be the property keys. During the
submit, this data is merged along with the userData defined in the WebChat open command.

Genesys Widgets Reference WebChat

Widgets Reference 87

Important
Depending on the API used (PureEngage V2 API or Genesys Cloud) the payload
structure in the request can vary for each, but the section below explains how the
form data is submitted by the WebChat UI plugin when using custom forms.

Below is the internal form data object defined in the WebChat Plugin by default. Since firstname,
lastname, nickname, email, and subject are reserved keywords, users are not allowed to have custom
fields with the same name.

{
firstname: '',
lastname: '',
nickname: '',
email: '',
subject: '',
userData: {}

}

Example
The example below shows how the custom form data given in the WebChat form fields have been
mapped as a form data object.

The form fields with reserved keywords like firstname, lastname, and email will be sent as top level
and the rest of the fields will be sent under userData to the WebChatService plugin.

Once the form data object is sent to the WebChatService plugin, it will parse and send in the payload
request.

{
"wrapper":"<table></table>",
"inputs":[

{
"id":"cx_webchat_form_firstname",
"name":"firstname",
"type":"text",
"maxlength":"100",
"placeholder":"@i18n:webchat.ChatFormPlaceholderFirstName",
"label":"@i18n:webchat.ChatFormFirstName",
"value":"John"

},
{

"id":"cx_webchat_form_lastname",
"name":"lastname",
"type":"text",
"maxlength":"100",
"placeholder":"@i18n:webchat.ChatFormPlaceholderLastName",
"label":"@i18n:webchat.ChatFormLastName",
"value":"Smith"

},
{

"id":"cx_webchat_form_email",
"name":"email",

Genesys Widgets Reference WebChat

Widgets Reference 88

"type":"text",
"maxlength":"100",
"placeholder":"@i18n:webchat.ChatFormPlaceholderEmail",
"label":"Email",
"value":"john.smith@company.com"

},
{

"id":"cx_webchat_form_phonenumber",
"name":"phonenumber",
"type":"text",
"maxlength":"100",
"placeholder":"Phone Number",
"label":"Phone Number",
"value":"9256328346"

},
{

"id":"cx_webchat_form_enquirytype",
"name":"enquirytype",
"type":"select",
"label":"Enquiry Type",
"options":[

{
"text":"Account",
"group":true

},
{

"text":"Sales",
"value":"Sales",
"selected":true

},
{

"text":"Credit Card",
"value":"credit card"

},
{

"text":"General",
"group":true

},
{

"text":"Warranty",
"value":"warranty"

},
{

"text":"Return policy",
"value":"returns"

}
]

}
]

}

Genesys Widgets Reference WebChat

Widgets Reference 89

{
firstname: 'John',
lastname: 'Smith',
email: 'john.smith@company.com',
userData: {

phonenumber: '9256328346',
enquirytype: 'Sales' //value selected from the dropdown

}
}

Genesys Widgets Reference WebChat

Widgets Reference 90

Customizable Emoji Menu

Introduction

WebChat offers a new v2 emoji menu that lets you choose emojis you want to offer.

Differences between v1 and v2

• v1 shows as a tooltip-style overlay; v2 shows as a new block between the transcript and the message
input.

• v1 closes when you select an emoji or click outside the menu; v2 lets you choose multiple emojis and
only closes if you click the emoji menu button again.

• v1 has three fixed emojis to choose from; v2 can show hundreds of customizable emojis in a grid layout.
• v1 menu appears in mobile mode; v2 menu is not available in mobile mode (when v2 is configured, no

emoji menu button is present in mobile mode).

Genesys Widgets Reference WebChat

Widgets Reference 91

• v1 menu has default emojis; v2 menu does not have default emojis. It must be explicitly configured with
a list of emojis.

Usage
Clicking the Emoji menu icon at the bottom-left corner of the WebChat UI will open the v2 emoji
menu. The transcript will be resized to fit the emoji menu, which can vary in height depending on the
number of emojis configured.

• When 1-8 emojis are configured, the menu is one row tall, and no scrollbar appears.
• When 9-16 emojis are configured, the menu is two rows tall, and no scrollbar appears.
• When 17-24 emojis are configured, the menu is three rows tall, and no scrollbar appears.
• When 25 or more emojis are configured, the menu is three rows tall and a scrollbar appears.

Configuration
The v2 emoji menu can be configured by passing a string containing emoji into the WebChat
configuration or through localization.

Important
Note: If you define an emoji list in the WebChat configuration, it will override any
emoji lists defined in localization files.

You configure the emoji list by specifying a string of emoji characters, like "😀😑😕😗". WebChat will
parse this string and arrange them into the emoji menu.

// Configure a flat list of emoji characters
_genesys.widgets.webchat.emojiList = "😀😑😕😗😙😛😟😦😧⯑😮😯😴";

Genesys Widgets Reference WebChat

Widgets Reference 92

Emoji Display Names

You can also add names to emojis so their name will appear when you hover over them. To add
names to emojis, you simply add a colon and a name, and separate each instance with a semicolon.

The format is ;😀:name;

You can only add one name to an emoji. Each emoji:name pair must be separated by a semicolon at
each end to separate it from the others. A colon must be used to link the title to the emoji.

// Configure an emoji list with emoji names
_genesys.widgets.webchat.emojiList =
"😀:grinning;😑:expressionles;😕:confuse;😗:kissing;😙:kissing_smiling_eyes;😛:stuck_out_tongue;😟:worried;😦:frowning;

Partially Named Lists

You don't have to add names for every emoji. You can add titles to only a select few.

// Configure an emoji list with only a few emoji names
_genesys.widgets.webchat.emojiList =
"😀😑;😕:confuse;😗😙;😛:stuck_out_tongue;😟😦😧⯑😮;😯:hushed;😴:sleeping;";

Localization
Emojis can be localized so that each language has a preferred set of emojis and emoji titles.

Important
Note: If you define an emoji list in the WebChat configuration, it will override any
emoji lists defined in localization files.

The key name for defining an emoji list is "EmojiList".

Example:

{
"en": {

"webchat": {
"EmojiList":

"😀:grinning;😑:expressionles;😕:confuse;😗:kissing;😙:kissing_smiling_eyes;😛:stuck_out_tongue;😟:worried;😦:frowning;
}

}
}

Emoji lists are defined in a localization file using the same syntax as the WebChat configuration.

Genesys Widgets Reference WebChat

Widgets Reference 93

SendMessageService
• Configuration
• Localization
• API Commands
• API Events

Overview

SendMessageService exposes a high-level API for utilizing Genesys send message services. You can
use these services for sending a message to customer service on the front-end or for developing your
own custom SendMessage widgets. Rather than developing a custom messaging UI and using the
REST API directly, using SendMessageService drastically simplifies integration and greatly improves
reliability, features, and compatibility on the bus for all widgets.

Usage

SendMessageService and the matching SendMessage widget work together right out of the box and
they share the same configuration object. Using SendMessage uses SendMessageService.

You can also use SendMessageService as a high-level API using bus commands and events to build
your own SendMessage widget.

Namespace

SendMessage Service plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration sendmessage
CXBus - API Commands & API Events SendMessageService

Customization

SendMessageService has no customization options. It is meant as a plug-n-play type of plugin and
works as-is.

Genesys Widgets Reference SendMessageService

Widgets Reference 94

Configuration

Description

SendMessage and SendMessageService share the configuration namespace
'_genesys.widgets.sendmessage'. SendMessage has UI options while SendMessageService has
connection options.

Example
window._genesys.widgets.sendmessage = {

apikey: 'n3eNkgXXXXXXXXXXXXX',
dataURL: 'http://host:port/genesys/2/email',
userData: {},

SendMessageButton: {

enabled: true,
template: '<div>Email</div>',
effect: 'fade',
openDelay: 1000,
effectDuration: 300,
hideDuringInvite: true

}
};

Options
Name Type Description Default Required

apikey string Apigee Proxy
secure token n/a Yes, if using

Apigee Proxy
dataURL URL String URL of GMS server n/a Always

ajaxTimeout number
Number of
milliseconds to
wait before AJAX
timeout

3000 n/a

userData object
Arbitrary attached
data to include
with message

{} n/a

uploadsEnabled boolean
Enables file
uploads to the
server and enables
the file upload

true n/a

Genesys Widgets Reference SendMessageService

Widgets Reference 95

Name Type Description Default Required
feature in the
SendMessage UI
plugin.

Genesys Widgets Reference SendMessageService

Widgets Reference 96

Localization
No Localization options

Genesys Widgets Reference SendMessageService

Widgets Reference 97

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('SendMessageService.sendForm',{

formData: {
firstName: 'Bob',
lastName: 'Jones',
email: 'b.jones@mail.com',
subject: 'product questions',
text: 'Good morning',
email: 'b.jones@mail.com'

},
userData: {},
files: []

});

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('SendMessage.configure', {

formValidation: true,
SendMessageButton:{

enabled: false,
openDelay: 1000,
template: 'Done',
effect: 'fade',

Genesys Widgets Reference SendMessageService

Widgets Reference 98

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

effectDuration: 1000
}

}).done(function(e){

// SendMessage configured successfully

}).fail(function(e){

// Invalid configuration
});

Options
Option Type Description

formValidation boolean Enable/disable browser form
validations.

SendMessageButton.enabled boolean Enable/disable Send Message
button on screen.

SendMessageButton.template string Custom HTML string template for
Send Message button.

SendMessageButton.effect string
Type of animation effect when
revealing Send Message button
('slide' or 'fade').

SendMessageButton.openDelay number
Number of milliseconds before
displaying send message button
on screen.

SendMessageButton.effectDuration number Length of animation effect in
milliseconds.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

sendForm

Sends a Message with the Email server via GMS. Intended to be used by Send Message widgets only.
Should not be invoked manually.

Genesys Widgets Reference SendMessageService

Widgets Reference 99

Example
oMyPlugin.command('SendMessageService.sendForm', {

formData: {
firstName: 'Bob',
lastName: 'Jones',
email: 'b.jones@mail.com',
subject: 'product questions',
text: 'Good morning'

},
userData: {},
files: []

}).done(function(e){

// SendMessageService sent the form successfully

}).fail(function(e){

// SendMessageService failed to send a form
});

Options
Option Type Description

formData.firstName string Send Message Entry Form Data:
'First Name'.

formData.lastName string Send Message Entry Form Data:
'Last Name'.

formData.email string Send Message Entry Form Data:
'Email'.

formData.subject string Send Message Entry Form Data:
'Subject'.

formData.text string Send Message Entry Form Data
for message body content.

files array
Array of file objects containing
the attached files.Intended to be
used by Send Message widgets
only.

userData object

Arbitrary data to attach to the
message (AKA attachedData).
Properties defined here will be
merged with default userData set
in the configuration object. If
Genesys Web Engagement
(GWE) is enabled, this userData
also includes visitID, globalVisitID
and pageID.

Genesys Widgets Reference SendMessageService

Widgets Reference 100

Resolutions
Status When Returns

resolved When server confirms message
sent (AJAX Response Object)

rejected When a browser does not support
HTML5 form attachments

'No HTMl5 formData support on
your browser'

rejected When no form data passed 'No formData found'

Genesys Widgets Reference SendMessageService

Widgets Reference 101

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('SendMessageService.ready', function(e){});

Name Description Data

ready SendMessageService is initialized
and ready to accept commands n/a

messageSent Message is successfully sent {interactionId: (interactionid)}

error An error occurred between the
client and the server

{result: (object), textStatus:
(string), statusCode: (number),
jqXHR: (string)}

Genesys Widgets Reference SendMessageService

Widgets Reference 102

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

SendMessage

Genesys Widgets Reference SendMessage

Widgets Reference 103

• Configuration

Genesys Widgets Reference SendMessage

Widgets Reference 104

• Localization
• API Commands
• API Events

Overview

The SendMessage Widget provides a form for sending a message directly to customer service. Like
an email, you can write a subject, body, and attach files. After sending your message an agent will
respond back to the email provided.

Usage

SendMessage can be launched manually by the following methods:

• Calling the command "SendMessage.open"
• Configuring ChannelSelector to show SendMessage as a channel
• Enabling the built-in SendMessage launcher button that appears on the right side of the screen
• Create your own custom button or link to open SendMessage (using the "SendMessage.open"

command)

Deployment Notes

SendMessage Service Configuration in GMS
In order to configure your SendMessage service in GMS, please follow these instructions.

Customization

All text shown in the SendMessage Widget is fully customizable and localizable by adding entries into
your configuration and localization options.

SendMessage supports themes. You may create and register your own themes for Genesys Widgets.

Namespace

Send Message plugin has the following namespaces tied-up with each of the following types.

Genesys Widgets Reference SendMessage

Widgets Reference 105

https://docs.genesys.com/Documentation/GMS/latest/API/EmailAPI
https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

Type Namespace
Configuration sendmessage
i18n - Localization sendmessage
CXBus - API Commands & API Events SendMessage
CSS .cx-send-message

Mobile Support

SendMessage supports both desktop and mobile devices. Like all Genesys Widgets, there are two
main modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, SendMessage switches to special
fullscreen templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

"Dark" Theme

•

Desktop docked view

•

Mobile fullscreen view in portrait
orientation

Genesys Widgets Reference SendMessage

Widgets Reference 106

•

Mobile fullscreen view in
landscape orientation

"Light" Theme

•

Desktop docked view

•

Mobile fullscreen view in portrait
orientation

•

Mobile fullscreen view in
landscape orientation

Genesys Widgets Reference SendMessage

Widgets Reference 107

Configuration

Description

SendMessage and SendMessageService share the configuration namespace
'_genesys.widgets.sendmessage'. SendMessage has UI options while SendMessageService has
connection options.

Example
window._genesys.widgets.sendmessage = {

apikey: 'n3eNkXXXXXXXXXXXX',
dataURL: 'http://host:port/genesys/2/email',

SendMessageButton: {

enabled: true,
template: <div class='cx-icon' data-icon='email'></div>,
effect: 'fade',
openDelay: 1000,
effectDuration: 300

}
};

Options

Name Type Description Default Required Introduced /
Updated

formValidation boolean

Enable/Disable
browser form
validations.

Note: This
option is
not
applicable
when custom
forms are
used.

true n/a

uploadsEnabled boolean
Show/Hide the
Attach Files link
in the UI, will

true n/a

Genesys Widgets Reference SendMessage

Widgets Reference 108

Name Type Description Default Required Introduced /
Updated

be shown if the
value is set to
true. This
enables or
disables the
file upload
feature.

SendMessageButton.enabledboolean

Enable/Disable
Send Message
button on
screen.

Note: In
case of
running
Widgets in
lazy load
mode, this
option
requires
SendMessage
plugin to be
pre-loaded.

false n/a

SendMessageButton.templatestring

Custom HTML
string template
for Send
Message
button

<div
class='cx-
widget cx-
send-message-
button cx-
side-button'
data-
message='SendMessageButton'
data-gcb-
service-
node='true'><span
class='cx-
icon' data-
icon='email'><span
class='i18n
cx-send-
message-
button-
label' data-
message='SendMessageButton'></div>

n/a

SendMessageButton.effectstring

Type of
animation
effect when
revealing Send
Message
button ('slide'
or 'fade').

fade n/a

SendMessageButton.openDelaynumber Number of 1000 n/a

Genesys Widgets Reference SendMessage

Widgets Reference 109

Name Type Description Default Required Introduced /
Updated

milliseconds
before
displaying send
message
button on
screen.

SendMessageButton.effectDurationnumber
Length of
animation
effect in
milliseconds.

300 n/a

form object

An object
containing a
custom
registration
form definition.
The definition
placed here
becomes the
default
registration
form layout for
SendMessage.
See
Customizable
SendMessage
Registration
Form

A basic
registration
form is defined
internally by
default

n/a 9.0.014.01

Genesys Widgets Reference SendMessage

Widgets Reference 110

Localization

Important
For information on how to setup localization, please refer to the Localization Guide

Usage

'sendmessage' namespace should be used when defining localization strings for Send Message plugin
in your i18n JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"sendmessage": {

"SendMessageButton": "Send Message",
"OK": "OK",
"Title": "Send Message",
"PlaceholderFirstName": "Required",
"PlaceholderLastName": "Required",
"PlaceholderEmail": "Required",
"PlaceholderSubject": "Required",
"PlaceholderTypetexthere": "Type your message here...",
"FirstName": "First Name",
"LastName": "Last Name",
"Email": "Email",
"Subject": "Subject",
"Attachfiles": "Attach files",
"AriaAttachfiles": "Attach files link. Open a file upload dialog.",
"Send": "Send",
"AriaSend": "Send Message",
"Sent": "Your message has been sent...",
"Close": "Close",
"ConfirmCloseWindow": "Are you sure you want to close the Send

Message widget?",
"Cancel": "Cancel",
"AriaMinimize": "Send Message Minimize",
"AriaMaximize": "Send Message Maximize",
"AriaWindowLabel": "Send Message Window",
"AriaClose": "Send Message Close",

Genesys Widgets Reference SendMessage

Widgets Reference 111

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

"AriaCloseAlert": "Alert box is closed",
"AriaEndConfirm": "Yes",
"AriaEndCancel": "Cancel",
"AriaOK": "OK",
"AriaRemoveFile": "Remove file",
"AriaFileIcon": "File",
"AriaFileSize": "File Size",
"Errors": {

"102": "First Name required.",
"103": "Last Name required.",
"104": "Subject required.",
"181": "Email address required.",
"182": "Message text content required.",
"connectionError": "Unable to reach server. Please try

again.",
"unknownError": "Something went wrong, we apologize for the

inconvenience. Please check your connection settings and try again.",
"attachmentsLimit": "Total number of attachments exceeds

limit: ",
"attachmentsSize": "Total size of attachments exceeds limit:

",
"invalidFileType": "Unsupported file type. Please upload

images, PDFs, text files and ZIPs.",
"invalidFromEmail": "Invalid email - From address.",
"invalidMailbox": "Invalid email - To address."

}
}

}
}

Genesys Widgets Reference SendMessage

Widgets Reference 112

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('SendMessage.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('SendMessageService.configure', {

apikey: '123456',
dataURL: 'http://localhost:8080/foo/mygms',
ajaxTimeout: 10000,
userData: {}

}).done(function(e){

// SendMessageService configured successfully

}).fail(function(e){

// SendMessageService failed to configure properly
});

Genesys Widgets Reference SendMessage

Widgets Reference 113

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

apikey string Apigee Proxy secure token
dataURL URL String URL of GMS server

ajaxTimeout number Number of milliseconds to wait
before AJAX timeout

userData object Arbitrary attached data to
include with the message.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

open

opens the send message widget UI.

Example
oMyPlugin.command('SendMessage.open', {

text: 'To whom it may concern.....',
userData: {},
form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
email: 'John@mail.com',
subject: 'Customer Satisfaction',
messagebody: 'I am truly satisfied!'

}

}).done(function(e){

// SendMessage opens successfully

}).fail(function(e){

// SendMessage isn't open or no active chat session
});

Genesys Widgets Reference SendMessage

Widgets Reference 114

Options
Option Type Description

userData object

Object containing arbitrary data
that gets sent to the server.
Overrides userData set in the
sendmessage configuration
object.

form object
Object containing form data to
prefill in the send message form
and optionally auto-submit the
form.

form.autoSubmit boolean
Automatically submit the form
and send an email with prefilled
content.

form.validation boolean
Enables/Disables validating the
form data while submitting. By
default, its enabled.

form.firstname string Value for the first name entry
field.

form.lastname string Value for the last name entry
field.

form.email string Value for the email entry field.
form.subject string Value for the subject entry field.

text string value for the email body text
content entry field

Resolutions
Status When Returns

resolved When Send Message is
successfully opened n/a

rejected When Send Message is already
open 'Already opened'

close

Closes the Send Message UI.

Genesys Widgets Reference SendMessage

Widgets Reference 115

Example
oMyPlugin.command('SendMessage.close').done(function(e){

// SendMessage closed successfully

}).fail(function(e){

// SendMessage failed to close
});

Resolutions
Status When Returns

resolved When Send Message is
successfully closed n/a

rejected When Send Message is already
closed 'already closed'

minimize

Minimize or Unminimize Send Message UI.

Example
oMyPlugin.command('SendMessage.minimize').done(function(e){

// SendMessage minimized successfully

}).fail(function(e){

// SendMessage ignores command
});

Resolutions
Status When Returns

resolved Always n/a
rejected Never n/a

Genesys Widgets Reference SendMessage

Widgets Reference 116

showSendMessageButton

Makes the standalone Send Message button visible on the screen using either the default template
and CSS or customer-defined ones.

Example
oMyPlugin.command('SendMessage.showSendMessageButton', {

openDelay: 1000,
duration: 1500

}).done(function(e){

// SendMessage shows send message button successfully

}).fail(function(e){

// SendMessage button is already visible, or it is disabled in configuration
});

Options
Option Type Description

openDelay number
Duration in milliseconds to delay
showing the send message
button on the page.

duration number Duration in milliseconds for the
show and hide animation.

Resolutions
Status When Returns

resolved
When the Send Message button
is enabled in the configuration
and is currently not visible.

n/a

rejected
When the Send Message button
is either not enabled in the
configuration, or it's already
visible.

'Send Message button is not
enabled in the configuration, or
already visible. Ignoring
command.'

Genesys Widgets Reference SendMessage

Widgets Reference 117

hideSendMessageButton

Hides the standalone Send Message button.

Example
oMyPlugin.command('SendMessage.hideSendMessageButton', {

duration: 1000

}).done(function(e){

// SendMessage shows send message button successfully

}).fail(function(e){

// SendMessage button is already visible, or it is disabled in configuration
});

Options
Option Type Description

duration number Duration in milliseconds for the
show and hide animation

Resolutions
Status When Returns

resolved When the send message button
is currently visible n/a

rejected When the send message button
is already hidden

'Send Message button is already
hidden. Ignoring command.'

submit

The user entered form data and attached files are submitted

Example
oMyPlugin.command('SendMessage.submit').done(function(e){

Genesys Widgets Reference SendMessage

Widgets Reference 118

// SendMessage submitted form successfully

}).fail(function(e){

// SendMessage failed to submit form
});

Resolutions
Status When Returns

resolved When Send Message form is
submitted successfully n/a

rejected When form submit fails 'No form data found'

Genesys Widgets Reference SendMessage

Widgets Reference 119

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('SendMessage.ready', function(e){});

Name Description Data Introduced / Updated

ready
The Send Message is
initialized and ready to
accept commands.

n/a

opened
The Send Message
widget has appeared on
screen.

Metadata

started The Send Message has
successfully started. Metadata 9.0.002.06

submitted The user has submitted
the form. Metadata 9.0.002.06

completed
The Send Message has
successfully sent the
message.

Metadata 9.0.002.06

cancelled
The Send Message has
been closed before
sending the message.

Metadata 9.0.002.06

minimized
The Send Message
widget has been
changed to a minimized
state.

n/a

unminimized

The Send Message
widget has been
restored from a
minimized state to the
standard view.

n/a

Genesys Widgets Reference SendMessage

Widgets Reference 120

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Name Description Data Introduced / Updated

closed
The Send Message
widget has been
removed from the
screen.

Metadata

Genesys Widgets Reference SendMessage

Widgets Reference 121

Metadata

Interaction Lifecycle

Every SendMessage interaction has a sequence of events we describe as the 'Interaction Lifecycle'.
This is a sequence of events that tracks progress and choices from the beginning of an interaction
(opening SendMessage), to the end (closing SendMessage), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
cancelled
submitted
completed
closed

Lifecycle Scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with SendMessage.
Here are several sequences of events in the lifecycle that correspond to different scenarios.

The user opened SendMessage but changed their mind and closed it without entering any
information:

ready -> opened -> cancelled -> closed

The user started filling out the form but closed SendMessage without sending it:

ready -> opened -> started -> cancelled -> closed

The user started filling out the form and submitted it successfully:

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all SendMessage events, see API Events.

Genesys Widgets Reference SendMessage

Widgets Reference 122

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a SendMessage interaction, these
values will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with email interactions. During run-time, the
metadata can help you offer a smart and dynamic experience to your users.

Reference
Name Type Description Introduced / Updated

proactive boolean
Indicates SendMessage
was offered and
accepted proactively.

prefilled boolean
Indicates the form was
prefilled with info
automatically.

autoSubmitted boolean
Indicates the form was
submitted
automatically, usually
after being prefilled.

errors array/boolean

An array of error codes
encountered after
submitting the form. If
no errors, this value will
be false.

form object
An object containing the
form parameters when
the form is submitted.

9.0.002.06

opened integer (timestamp)
Timestamp indicating
when SendMessage was
opened.

started integer (timestamp)
Timestamp indicating
when the user started
entering information
into the form.

cancelled integer (timestamp)

Timestamp indicating
when the message draft
is cancelled. Cancelled
refers to when a user
abandoned the
interaction by closing
SendMessage before
sending a message.

completed integer (timestamp)
Timestamp indicating
when the message was
sent successfully.

Genesys Widgets Reference SendMessage

Widgets Reference 123

Name Type Description Introduced / Updated

closed integer (timestamp)
Timestamp indicating
when SendMessage was
closed.

elapsed integer (milliseconds)

Total elapsed time in
milliseconds from when
the user started
entering information to
when the user cancelled
or completed the
interaction.

Genesys Widgets Reference SendMessage

Widgets Reference 124

Customizable SendMessage Registration
Form
Introduced: 9.0.014.03

SendMessage allows you to customize the registration form shown to users prior to starting a
session. The following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.sendmessage.form configuration option. Alternately, you can pass a new
registration form definition through the SendMessage.open command:

_genesys.widgets.bus.command("SendMessage.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default Example

The following example is the default object used to render SendMessage’s registration form. This is a
very simple definition that does not use many properties.

Important
You can define any number of inputs here, of any supported type, in any combination.
Our example below simply demonstrates how SendMessage defines its default form
internally.

Important
The fields with the names (firstname, lastname, email, subject, messagebody) are
required for all Sendmessage custom forms. These field values are required by

Genesys Widgets Reference SendMessage

Widgets Reference 125

Genesys Sendmessage API to send messages.

{
wrapper: "<table></table>",
inputs: [

{
id: "cx_sendmessage_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:sendmessage.PlaceholderFirstName",
label: "@i18n:sendmessage.FirstName"

},

{
id: "cx_sendmessage_form_lastname",
name: "lastname",
maxlength: "100",
placeholder: "@i18n:sendmessage.PlaceholderLastName",
label: "@i18n:sendmessage.LastName"

},

{
id: "cx_sendmessage_form_email",
type: "email",
name: "email",
maxlength: "100",
placeholder: "@i18n:sendmessage.PlaceholderEmail",
label: "@i18n:sendmessage.Email"

},

{
id: "cx_sendmessage_form_subject",
name: "subject",
maxlength: "100",
placeholder: "@i18n:sendmessage.PlaceholderSubject",
label: "@i18n:sendmessage.Subject"

},

{
id: "cx_sendmessage_form_messagebody",
type: "textarea",
name: "messagebody",
rows: "2",
placeholder: "@i18n:sendmessage.PlaceholderTypetexthere",
label: false

}
]

}

Using this definition will result in this output:

Genesys Widgets Reference SendMessage

Widgets Reference 126

Properties

Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input
element.

Special Properties
" "

Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and

Genesys Widgets Reference SendMessage

Widgets Reference 127

Property Type Default Description
"textarea".

label string

Sets the text for the
label. If no value is
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string "
{label} {input}

Each input exists in its
own row in the form. By
default this is a table
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is "

{label} {input}

validate function

Defines a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form does not submit
and the invalid input is
highlighted in red. See

Genesys Widgets Reference SendMessage

Widgets Reference 128

Property Type Default Description
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Executes validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1’} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML Attributes
With the exception of special properties, all properties are added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_sendmessage_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:sendmessage.PlaceholderFirstName",
label: "@i18n:sendmessage.FirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here are applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a text
input.

HTML Output

<input type="text" id="cx_sendmessage_form_firstname"
name="firstname" maxlength="100" placeholder="Required"></input>

Genesys Widgets Reference SendMessage

Widgets Reference 129

Labels

A label tag is generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label
automatically links to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, Form
Wrappers and Input Wrappers:

Form Wrapper
You can specify the parent wrapper for the overall form in the top-level "wrapper"
property. In the example below, we specify this value as "
". This is the default wrapper for the SendMessage form.
{

wrapper: "<table></table>", /* form wrapper */
inputs: []

}

Input Wrapper
Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_sendmessage_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:sendmessage.PlaceholderFirstName",
label: "@i18n:sendmessage.FirstName",
wrapper: "<tr><th>{label}</th><td>{input}</td></tr>" /* input row wrapper */

}

The {label} identifier is optional. Omitting it allows the input to fill the row. If you decide to keep the
label, you can move it to any location within the wrapper, such as putting the label on the right, or
stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form.You can change the form

Genesys Widgets Reference SendMessage

Widgets Reference 130

wrapper to "
" and then change the individual input wrappers from a table row to your own
specification. Be aware though that when you move away from the default table
wrappers, you are responsible for styling and aligning your layout. Only the
default table row wrapper is supported by default Themes and CSS.

Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how a validation function is defined:

{
id: "cx_sendmessage_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:sendmessage.PlaceholderFirstName",
label: "@i18n:sendmessage.FirstName",

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

return true; // or false
}

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the SendMessage form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class "cx-error" to the input.

Validation Function Arguments
Argument Type Description

event JavaScript event object

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Genesys Widgets Reference SendMessage

Widgets Reference 131

Argument Type Description

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Form Submit

Custom Input field form values are submitted to the server as key value pairs under the userData
section of the form submit request, where input field names will be the property keys. During the
submit, this data is merged along with the userData defined in the SendMessage open command.

Genesys Widgets Reference SendMessage

Widgets Reference 132

GWE
• Configuration
• Localization
• API Commands
• API Events

Overview

The GWE plugin allows for Genesys Widgets to interface with the Genesys Web Engagement product
and services. GWE can invite users to start a chat session or send a message to customer service.

More information can be found on the Genesys Web Engagement product page.

Genesys Widgets Reference GWE

Widgets Reference 133

Configuration

Description

Configuration for the Genesys Widgets GWE plugin are very basic, allowing you to set the secured or
unsecured path to the GWE server. For a detailed list of configuration options for the GWE application,
please visit the main documentation for GWE: Genesys Web Engagement - Generating and
Configuring the Instrumentation Script

Example
window._genesys.widgets.gwe = {

httpEndpoint: 'http://www.website.com/gwe/',
httpsEndpoint: 'https://www.website.com/gwe/'

};

Options
Name Type Description Default Required

httpEndpoint string
URL/Path to the
GWE server over
standard HTTP

n/a yes, if unsecured
access available

httpsEndpoint string
URL/Path to the
GWE server over
secure HTTPS

n/a yes, if secured
access available

smartInvites boolean

When set to true,
the smartInvites
option will prevent
proactive invites
from appearing
while the user is
already using one
of the widgets.
This prevents
redundancy and
improves user
experience.
Disable to
continue to show
invites even if the
user currently has
a widget open.

true No

Genesys Widgets Reference GWE

Widgets Reference 134

https://docs.genesys.com/Documentation/GWE/8.5.0/Developer/CustomizeMonitoringScript#scrollNav-4-2
https://docs.genesys.com/Documentation/GWE/8.5.0/Developer/CustomizeMonitoringScript#scrollNav-4-2

Name Type Description Default Required

trackedEvents object

An object list of
Widgets events for
GWE to track and
send to the server.
The object
configured here
will be blended
with the default
list of tracked
events inside of
the GWE plugin.
You can disable
the default events
by specifying each
one with a false
value. You can add
new events as
well. for example
{'WebChat.opened':
true}

{
'WebChatService.error':
true,
'WebChatService.clientConnected':
true,
'WebChatService.agentConnected':
true,
'WebChatService.started':
true,
'WebChatService.ended':
true,
'WebChatService.disconnected':
true,
'WebChat.opened':
true,
'WebChat.closed':
true,
'SendMessageService.error':
true,
'SendMessage.opened':
true,
'SendMessage.closed':
true,
'CoBrowse.started':
true,
'CoBrowse.stopped':
true,
'CallbackService.scheduled':
true,
'CallbackService.scheduleError':
true,
'CallbackService.availabilityError':
true,
'Callback.opened':
true,
'Callback.closed':
true,
'CallUs.opened':
true,
'CallUs.closed':
true,
'ChannelSelector.opened':
true,
'ChannelSelector.closed':
true
}

No

smartInvite boolean

If set to true you
will be able to see
proactive invites
even when
webchat,
sendmessage,
callback, or callus
is open.

false No

Genesys Widgets Reference GWE

Widgets Reference 135

Localization
No localization options

Genesys Widgets Reference GWE

Widgets Reference 136

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('GWE.getIDs');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('GWE.configure', {

httpEndpoint: 'http://localhost:8080/foo/bar',
httpsEndpoint: 'https://localhost:8080/foo/bart'

}).done(function(e){

// GWE configured successfully

}).fail(function(e){

// GWE wasn't configured properly
});

Genesys Widgets Reference GWE

Widgets Reference 137

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

httpEndpoint string URL/Path to the GWE server over
standard HTTP

httpsEndpoint string URL/Path to the GWE server over
secure HTTPS

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

getIDs

Return Ids of Web Engagement items

Example
oMyPlugin.command('GWE.getIDs').done(function(e){

// GWE got IDs successfully

}).fail(function(e){

// GWE did not get IDs
});

Resolutions
Status When Returns

resolved When IDs are valid or if they are
available. Array of IDs or nothing

Genesys Widgets Reference GWE

Widgets Reference 138

invite

Show an invitation using the Toaster popup element.

Example
oMyPlugin.command('GWE.invite', {

container: {},
content: 'content of view'

}).done(function(e){

// GWE showed invite successfully

}).fail(function(e){

// GWE failed to show invite properly
});

Options
Option Type Description

container object Contaienr object

content string Content within the web
engagement view

Resolutions
Status When Returns

resolved When web engagement
information properly provided n/a

Genesys Widgets Reference GWE

Widgets Reference 139

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('GWE.ready', function(e){});

Name Description Data

ready The GWE plugin is initialized and
ready on the bus n/a

Genesys Widgets Reference GWE

Widgets Reference 140

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

CoBrowse
• Configuration
• Localization
• API Commands
• API Events

Overview

The CoBrowse plugin allows for Genesys Widgets to interface with the Genesys Co-browse product
and services to start and stop Co-browse sessions.

More information can be found on the Genesys Co-browse product page.

Deployment Notes

Blocking Pages from Agent View
Having the co-browse instrumentation removed from certain pages allows customers to block those
pages from the agent view completely. In order to block certain pages, use one of the following
methods:

Method 1: Do not configure co-browse on that page. CX Widgets only initializes and injects co-
browse instrumentation when co-browse configuration is set.

Method 2: Override loaded plugins using configuration:

Examples
Normal pages
_genesys.widgets.main.plugins = ["cx-webchat", "cx-webchat-service","cx-cobrowse"]

Bypass Cobrowse
_genesys.widgets.main.plugins = ["cx-webchat", "cx-webchat-service"]

Genesys Widgets Reference CoBrowse

Widgets Reference 141

Configuration

Description

The CoBrowse plugin has both configuration options for Genesys Widgets and configuration options
for the Co-browse application itself. Listed on this page are the configuration options for the Genesys
Widgets CoBrowse plugin which are defined in the global configuration object here:
'_genesys.widgets.cobrowse'. Configuration objects for the Co-browse application can be set in either
'window._genesys.cobrowse' or 'window._genesys.widgets.cobrowse'. For a detailed list of
configuration options for the Co-browse application, please visit the main documentation for Co-
browse: https://docs.genesys.com/Documentation/GCB

Example
window._genesys.widgets.cobrowse = {

src: 'https://www.website.com/cobrowse/js/gcb.min.js',
url: 'https://www.website.com/cobrowse/'

};

Options
Name Type Description Default Required

src string

URL/Path to the
Co-browse
JavaScript
package. Usually
resides on the Co-
browse server.

n/a Always

url string
URL/Path to the
Co-browse server
endpoint

n/a Always

Genesys Widgets Reference CoBrowse

Widgets Reference 142

https://docs.genesys.com/Documentation/GCB

Localization

Usage

'cobrowse' namespace should be used when defining localization strings for CoBrowse plugin in your
i18n JSON file.

In the below i18n schema, we demonstrate defining new strings for the 'en' (English) language. You
may use any language codes you wish; there is no standard format. When selecting the active
language in your configuration, you must match one of the language codes defined in your i18n JSON
file. Please note that you must only define a language code once in your i18n JSON file. Inside each
language object you should define the localization strings below.

Localization strings

The localization strings for the Co-browse plugin are defined in the Co-browse documentation. Refer
to the Co-browse documentation to find the string names and values, and define the same in the
'cobrowse' section of the Widgets i18n JSON file, as shown in the below i18n schema.

Note: The localization string names must be the same, but the values do not need to be the same
and can be customized as needed.

i18n JSON Schema
{

"en": {
"cobrowse": {}

}
}

Genesys Widgets Reference CoBrowse

Widgets Reference 143

https://docs.genesys.com/Documentation/GCB/latest/Developer/Localization#Built-in_localization

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CoBrowse.start');

start

Start a Co-browse session

Example
oMyPlugin.command('CoBrowse.start').done(function(e){

// Co-browse started a session successfully

}).fail(function(e){

// Co-browse failed to start a session
});

Resolutions
Status When Returns

resolved Co-browse API is available and
used to start session n/a

rejected Co-browser API is not available n/a

Genesys Widgets Reference CoBrowse

Widgets Reference 144

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

stop

Stop the currently active Co-browse session

Example
oMyPlugin.command('CoBrowse.stop').done(function(e){

// Co-browse stopped a session successfully

}).fail(function(e){

// Co-browse failed to stop a session
});

Resolutions
Status When Returns

resolved Co-browse API is available and
used to end the active session n/a

rejected Co-browser API is not available n/a

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('CoBrowse.configure', {

src: 'http://localhost:8080/foo/sample',
url: 'http://localhost:8080/foo/bar'

}).done(function(e){

// Co-browse configured successfully

}).fail(function(e){

// Co-browse wasn't configured properly
});

Genesys Widgets Reference CoBrowse

Widgets Reference 145

Options
Option Type Description

src string
URL/Path to the Co-browse
JavaScript package. Usually
resides on the Co-browse server.

url string URL/Path to the Co-browse server
endpoint

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

open

Opens the Co-browse UI.

Example
oMyPlugin.command('CoBrowse.open').done(function(e){

// Co-browse opened successfully

}).fail(function(e){

// Co-browse failed to open
});

Resolutions
Status When Returns

resolved When Co-browse is successfully
opened n/a

rejected When Co-browse is already open 'Already opened'

Genesys Widgets Reference CoBrowse

Widgets Reference 146

close

Closes the Co-browse UI.

Example
oMyPlugin.command('CoBrowse.close').done(function(e){

// Co-browse closed successfully

}).fail(function(e){

// Co-browse failed to close
});

Resolutions
Status When Returns

resolved When Co-browse successfully
closed n/a

rejected When Co-browse is already
closed 'Already closed'

Genesys Widgets Reference CoBrowse

Widgets Reference 147

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CoBrowse.ready', function(e){});

Name Description Data

started A Co-browse session has been
started n/a

stopped An active Co-browse session has
been stopped n/a

online
Additional JS files have been
loaded and a connection to the
server has been established

n/a

ready The CoBrowse plugin is initialized
and ready on the bus n/a

Genesys Widgets Reference CoBrowse

Widgets Reference 148

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

App
• Configuration
• Localization
• API Commands
• API Events

Overview

App is the main controller for Genesys Widgets and has no UI. It controls all startup routines, global
configurations, Extensions, executes the onReady event, and distributes changes to theme,
language, mobile mode, and other application-wide effects.

Usage

App's main interface is its configuration. You set all global defaults using the
window._genesys.widgets.main property. App also has a few commands you can use to change the
language and theme.

Customization

App itself cannot be customized but its configuration options affect all widgets.

Mobile Support

App has built-in mobile detection and can automatically notify all widgets to switch to mobile mode.
You can also control this manually.

Genesys Widgets Reference App

Widgets Reference 149

Configuration

Description

App uses the configuration property '_genesys.widgets.main'. App controls the Genesys Widgets
product as a whole, handling themes, languages, and mobile devices.

Example
window._genesys.widgets = {

main: {
theme: 'dark',
themes: {

dark: 'cx-theme-dark',
light: 'cx-theme-light',
blue: 'cx-theme-blue',
red: 'cx-theme-red'

},
lang: 'en',
i18n: 'i18n.json',
mobileMode: 'auto',
mobileModeBreakpoint: 600,
debug: true,
downloadGoogleFont: true,
googleFontUrl: 'https://apps.mypurecloud.com/webfonts/roboto.css',
header: {'Authorization': 'value'},
cookieOptions: {

secure: true,
domain: 'genesys.com',
path: '/',
sameSite: 'Strict'

}
},
onReady: function(){

// Do something on Widgets ready
}

}

Options

Name Type Description Default Required Introduced /
Updated

main.themes object An object list {dark: 'cx- n/a

Genesys Widgets Reference App

Widgets Reference 150

Name Type Description Default Required Introduced /
Updated

containing the
CSS classname
for each
theme. The
property
names are
used to select
the theme in
the 'theme'
property, for
example
{dark:'cx-theme-
dark', light:'cx-
theme-light',
'red':'cx-theme-
red', 'blue':'cx-
theme-blue'}.

Where 'dark' and
'light' are the built-
in themes provided
in Genesys
Widgets and 'red'
and 'blue' are
example custom
theme names you
may create on your
own. Note: It is not
necessary to
define the 'dark'
and 'light' theme
as shown in this
example. It is
included to help
show how the
formatting works.
Whatever you put
in this object will
be merged with
the default themes
object internally.

theme-dark',
light: 'cx-
theme-light'}

main.theme string

Selects the
theme to apply
to Genesys
Widgets from
the 'themes'
object. Uses
the property
name of the
theme. for
example using
the example
from 'themes'
above, possible
values for this
could be 'dark',
'light', 'red',
'blue'.

dark n/a

Genesys Widgets Reference App

Widgets Reference 151

Name Type Description Default Required Introduced /
Updated

main.lang string

Select the
language to
use from the
'i18n' language
pack.
Language
codes are
selected by the
customer. Any
language code
format can be
used as long as
this property
matches one of
the language
codes in your
i18n language
pack. For more
information
about
localization,
see
localization.

en n/a

main.i18n URL string or
JSON

Either a path to
a remote
i18n.json
language pack
file or an inline
JSON language
pack definition.
For more
information
about
language
packs, see
localization.

Default English
language
strings are
built into each
widget and are
displayed by
default.
Defining this
i18n language
pack overrides
the built-in
strings.

n/a

main.header object

An object
containing a
key value pair
for the
authorization
header.

n/a n/a 9.0.002.06

main.preload array

(For use with
lazy-loading
only) A list of
plugins you
want pre-
loaded at
startup. You
may want
certain plugins,
such as
SideBar, to be

none
When lazy
loading
Widgets

Genesys Widgets Reference App

Widgets Reference 152

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat
https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

Name Type Description Default Required Introduced /
Updated

shown on
screen as soon
as possible; to
do so, you may
add 'sidebar' to
this preload
plugins array
so it will be
loaded after
Widgets starts
up. The names
you add to the
list must match
the first part of
the plugin
filename you
wish to load.
Example:
'sidebar' will
load
'sidebar.min.js'
from the
'plugins/'
folder. All
filenames are
lowercase.

Note: This
preload
array is
intended for
use when
running
widgets in
lazy-loading
mode. You
may also use
this to pre-
load your
own custom-
made plugins.

main.mobileMode boolean/string

Mobile Mode
setting.
true = Force
Mobile Mode on all
devices. false =
Disable Mobile
Mode completely.
'auto' = Genesys
Widgets
Automatically
switches between
Mobile and
Desktop Modes

auto n/a

Genesys Widgets Reference App

Widgets Reference 153

Name Type Description Default Required Introduced /
Updated

using the
'mobileModeBreakpoint'
property and
UserAgent
detection.

main.timeFormat number/string

This sets the
time format for
the
timestamps. It
can be 12 or
24.

12 n/a

main.mobileModeBreakpointnumber

The breakpoint
width in pixels
where Genesys
Widgets will
switch to
Mobile Mode.
Breakpoint
checked at
startup only.

600 n/a

main.debug boolean

Enable debug
logging from
the bus to
appear in the
browser
console.

false n/a

main.customStylesheetIDstring

The HTML ID of
a <style> tag
that contains
CSS overrides,
custom
themes, or
other custom
CSS intended
for Genesys
Widgets. On
startup,
Widgets will
move this
<style> tag to
the end of the
document so
that 1:1 CSS
class overrides
apply correctly.

n/a n/a

main.downloadGoogleFontboolean

By default,
Genesys
Widgets
downloads and
uses the
Google Font
'Roboto'. To

true n/a

Genesys Widgets Reference App

Widgets Reference 154

Name Type Description Default Required Introduced /
Updated

disable this
download, set
this value to
false.

main.googleFontUrlstring

The string used
to refer the
URL where the
Google Fonts
are hosted in
Genesys
Hosted
Repository. You
can configure
one of the
Genesys
Hosted region
font URLs
specified here,
Genesys Web
Fonts.

Note: This
Option is
only
applicable
when the
downloadGoogleFont
option is
set to true.

https://apps.mypurecloud.com/
webfonts/
roboto.css

n/a 9.0.018.00

main.deploymentIDstring

The string used
to customize
cookie names
so that
multiple
Widgets
deployments
can run in the
same domain.

n/a n/a 9.0.006.02

main.cookieOptionsobject

An object
containing
cookie
attributes that
applies globally
to all Widgets.
The following
cookie
attributes are
supported:

{sameSite:'Strict'}n/a 9.0.017.01

Genesys Widgets Reference App

Widgets Reference 155

https://docs.genesys.com/Documentation/GWC/Current/Deployment/Welcome
https://docs.genesys.com/Documentation/GWC/Current/Deployment/Welcome

Name Type Description Default Required Introduced /
Updated

1. 'secure'
- Either
true or
false,
indicating
if the
cookie
transmission
requires a
secure
protocol
(https).
2. 'domain'
- A string
indicating a
valid domain
where the
cookie
should be
visible.
3. 'path' -
A string
indicating
the path
where the
cookie is
visible.
4. 'expires'
- Specifies
the number
of days,
either from
time of
creation or
from a date
instance,
until the
cookie is to
be removed.
5.
'sameSite' -
This maps to
the cookie
SameSite
attribute
allowing the
cookie to be
restricted
to a first-
party or
same-site
context. It
can take any
of the
supported
values that
SameSite
attribute

Genesys Widgets Reference App

Widgets Reference 156

Name Type Description Default Required Introduced /
Updated

takes.

'domain' and 'path'
can be used to
make cookies
compatible with
environments that
use a non FQDN
URL, such as an
intranet hostname.
However, the
domain should
only be manually
set in production if
the automated
values are causing
problems.
Otherwise, rely on
the automated
domain and path.

Note: The values
are automatically
set by Widgets to
support cross-sub-
domain cookies.
Modifying these
options overrides
the automated
values and might
break cross-sub-
domain cookie
support if not
properly set.

For usage, please
refer to the above
example.

onReady function

A callback
function that is
invoked when
the Widgets
are ready and
initialized with
the
configuration
provided.

none n/a

Genesys Widgets Reference App

Widgets Reference 157

Localization
No localization options.

Genesys Widgets Reference App

Widgets Reference 158

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('App.themeDemo');

setTheme

Sets the theme for Genesys Widgets from the list of registered themes. Default themes are 'light' and
'dark'. You can register as many new themes as you need.

Example
oMyPlugin.command('App.setTheme', {theme: 'light'}).done(function(e){

// App set theme successfully

}).fail(function(e){

// App failed to set theme
});

Options
Option Type Description

theme string

Name of the theme you want to
use. This name is specified in
window._genesys.main.themes.
Default themes are 'light' and
'dark'.

Genesys Widgets Reference App

Widgets Reference 159

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Resolutions
Status When Returns

resolved Theme exists and is successfully
changed

The name of the theme that was
chosen. For example 'light'.

rejected Theme does not exist 'Invalid theme specified'

getTheme

Get the CSS classname for the currently selected theme.

Example
oMyPlugin.command('App.getTheme').done(function(e){

// App got theme successfully
// e == CSS classname for current theme

}).fail(function(e){

// App failed to get theme
});

Resolutions
Status When Returns

resolved Always
CSS classname for the currently
selected theme. For example 'cx-
theme-light'.

rejected Never n/a

reTheme

Accepts an HTML reference (either string or jQuery wrapped set) and applies the proper CSS Theme
Classname to that HTML and returns it back. When widgets receive the 'theme' event from App, they
pass-in their UI containers into App.reTheme to have the old theme classname stripped and new
classname applied.

Genesys Widgets Reference App

Widgets Reference 160

Example
oMyPlugin.command('App.reTheme', {html: '<div>Test Theme</div>'}).done(function(e){

// App set theme successfully

}).fail(function(e){

// App failed to set theme
});

Options
Option Type Description

html string or jQuery Wrapped Set HTML string or jQuery Wrapped
Set you want to have modified

Resolutions
Status When Returns

resolved When HTML is provided and
theme is updated

HTML that was passed-in and
modified

rejected When no HTML is provided 'No HTML provided by [plugin
name]'

themeDemo

Start an automated demo of each theme. All registered themes will be applied with a default delay
between themes of 2 seconds. You can override this delay. This command is useful for comparing
themes or testing themes with official or custom widgets.

Example
oMyPlugin.command('App.themeDemo', {delay: 1000}).done(function(e){

// App demo successfully started

}).fail(function(e){

// App failed to start demo
});

Genesys Widgets Reference App

Widgets Reference 161

Options
Option Type Description

delay number
Number of milliseconds between
theme changes. Default value is
2000 milliseconds.

Resolutions
Status When Returns

resolved Always n/a
rejected Never n/a

setLanguage

Changes the language

Important
Internal use only.

Example
oMyPlugin.command('App.setLanguage', {lang: 'eng'}).done(function(e){

// App set language successfully started

}).fail(function(e){

// App failed to set language
});

Options
Option Type Description

lang string
Change the language of Genesys
Widgets. Switches all strings in
Widgets to selected language.

Genesys Widgets Reference App

Widgets Reference 162

Resolutions
Status When Returns

resolved When language successfully
changed n/a

rejected When no language code is
provided No language code provided

rejected
When no matching language
code is specified in your
language pack

No matching language code
found in language pack

closeAll

Publishes the 'App.closeAll' event that requests all widgets to close.

Example
oMyPlugin.command('App.closeAll').done(function(e){

// App closed all successfully

}).fail(function(e){

// App failed to close all
});

Resolutions
Status When Returns

resolved Always n/a
rejected Never n/a

updateAJAXHeader

Introduced: 9.0.002.06

Updates the Authorization header.

Genesys Widgets Reference App

Widgets Reference 163

Example
_genesys.widgets.bus.command('App.updateAJAXHeader', {header:

{'Authorization': 'value'}

});

Resolutions
Status When Returns

resolved When header is updated n/a
rejected Never No request header found

removeAJAXHeader

Introduced: 9.0.002.06

Removes the set Authorization header.

Example
_genesys.widgets.bus.command('App.removeAJAXHeader');

Resolutions
Status When Returns

resolved Always n/a

registerExtension

Introduced: 9.0.002.06

Allows you to register and initialize new extensions at runtime instead of predefining extensions
before Genesys Widgets starts up.

Genesys Widgets Reference App

Widgets Reference 164

Options
Option Type Description

undefined function
Your extension function. Receives
the following arguments: $
(jQuery), CXBus, Common

Resolutions
Status When Returns

resolved Valid 'extension' object provided n/a

rejected Invalid 'extension' option
provided n/a

registerAutoLoad

(For use with lazy-loading only) Allows you to register a plugin into the preload plugins array so that it
can be pre-loaded at the startup rather than lazy loading later. This can be useful when there is an
active session maintained by your Widget and you would like to show it immediately at startup during
page refresh or navigating across pages.

Note: This command is intended for use when running widgets in lazy-loading mode. You may
also use this to register and pre-load your own custom-made plugins.

Options
Option Type Description

name string
The name of the plugin that
needs to be registered for auto
loading.

Resolutions
Status When Returns

resolved When a plugin is added into the
preload list n/a

Genesys Widgets Reference App

Widgets Reference 165

Status When Returns
rejected Never n/a

deregisterAutoLoad

(For use with lazy-loading only) Allows you to de-register a plugin from the preload plugins array so
that it will not be pre-loaded at startup. This can be useful when there is no more active session
maintained by your Widget and you don't want to show it on the screen immediately at startup.

Note: This command is intended for use when running widgets in lazy-loading mode. You may
also use this to de-register your own custom-made plugins.

Options
Option Type Description

name string
The name of the plugin that
needs to be de-registered from
auto loading.

Resolutions
Status When Returns

resolved When a plugin is removed from
the preload list n/a

rejected Never n/a

Genesys Widgets Reference App

Widgets Reference 166

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('App.ready', function(e){});

Name Description Data

ready CallUs is initialized and ready to
accept commands

i18n
Published when the language for
Genesys Widgets is changed or is
being set for the first time.

'(language code)'

theme
Published when the theme for
Genesys Widgets is changed or is
being set for the first time.

{theme: '(theme CSS
classname)'}

timeFormat
Published when the time format
for Genesys Widgets is changed
or is being set for the first time.

{timeFormat: iTimeFormat}

Genesys Widgets Reference App

Widgets Reference 167

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Calendar

• Configuration
• Localization
• API Commands
• API Events

Genesys Widgets Reference Calendar

Widgets Reference 168

Overview

Calendar widget is a UI Plugin that displays time-slots for a selected day. The number of days to
display, as well as open time and close time for a day are configurable as shown in Configuration.

Usage

Important
By default the calendar widget needs a UI container to display itself properly. Please
refer to the calendar generated events to get the calendar and to display it where you
prefer.

• Enable/Disable certain sections of a day using calendarHours.section.enable
• Define your own business hours for each section of a day using calendarHours.section.openTime and

calendarHours.section.closeTime.
• Use showAvailability configuration to enable only those time-slots for which a customer service agent is

available and disable the remaining.
• Define your own time interval between each time-slot.

How does the Calendar widget render time slots in local time zones?

1. The Calendar widget uses the command showAvailability which calls
CallbackService.availability with the start date. This start date is then converted into the ISO
8601 format, using UTC as the timezone by toISOString(), internally.

2. The Callback service fetches the available time slots from the server.
3. The Calendar gets the available time slots from CallbackService.availableSlots in the ISO 8601

format, using UTC as the timezone.
4. Each and Every Time Slot is converted according to the user's local time zone internally through Date()

and toTimeString() methods in the Calendar Plugin.

Customization

All the texts shown in calendar widget are fully localizable as shown in Localization

Namespace

Calendar plugin has the following namespaces tied-up with each of the following types.

Genesys Widgets Reference Calendar

Widgets Reference 169

Type Namespace
Configuration calendar
i18n - Localization calendar
CXBus - API Commands & API Events Calendar
CSS .cx-calendar

Mobile Support

Calendar supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Calendar switches to special full-screen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

"Dark" Theme

•

Mobile fullscreen view in portrait
orientation

•

Mobile fullscreen view in
landscape orientation

"Light" Theme

Genesys Widgets Reference Calendar

Widgets Reference 170

•

Mobile fullscreen view in portrait
orientation

•

Mobile fullscreen view in
landscape orientation

Genesys Widgets Reference Calendar

Widgets Reference 171

Configuration

Description

Calendar share the configuration namespace '_genesys.widgets.calendar'. Calendar has UI options.

Example
window._genesys.widgets.calendar = {

showAvailability: true,
numberOfDays: 5,
hideUnavailableTimeSlots: false

calendarHours: {

interval: 10,
allDay: {

openTime: '09:00',
closeTime: '23:59'

}
}

};

Options
Name Type Description Default Required

showAvailability boolean

Enable/disable
calendar to update
the timeslots
based on the
callback
availability. The
unavailable
timeslots are
greyed out.

true n/a

numberOfDays number
The number of
days to display on
calendar starting
today.

5 n/a

timeFormat number/string
This sets the time
format for the
timestamps in this
widget. It can be

12 n/a

Genesys Widgets Reference Calendar

Widgets Reference 172

Name Type Description Default Required
12 or 24.

hideUnavailableTimeSlotsboolean
Show/hide the
unavailable
callback time slots.

false n/a

calendarHours.intervalnumber

The time interval
between each
consecutive
timeslot displayed
on calendar.

15 n/a

calendarHours.allDay.openTimenumber
Opening time in
'HH:MM' 24 Hr
format.

17:00 n/a

calendarHours.allDay.closeTimenumber
Closing time in
'HH:MM' 24 Hr
format.

23:59 n/a

Genesys Widgets Reference Calendar

Widgets Reference 173

Localization

Important
For information on how to setup localization, please refer to the Localization Guide

Usage

'calendar' namespace should be used when defining localization strings for Calendar plugin in your
i18n JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"calendar": {

"CalendarDayLabels": [
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"

],
"CalendarMonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sept",
"Oct",
"Nov",
"Dec"

],
"CalendarLabelToday": "Today",
"CalendarLabelTomorrow": "Tomorrow",

Genesys Widgets Reference Calendar

Widgets Reference 174

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

"CalendarTitle": "Schedule a Call",
"CalendarOkButtonText": "Okay",
"CalendarError": "Unable to fetch availability details.",
"CalendarClose": "Cancel",
"AriaWindowTitle": "Calendar Window",
"AriaCalendarClose": "Cancel the Calendar and Go Back to the Callback

Registration",
"AriaYouHaveChosen": "You have chosen",
"AriaNoTimeSlotsFound": "No time slots found for selected date"

}
}

}

Genesys Widgets Reference Calendar

Widgets Reference 175

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Calendar.reset');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

generate

Builds and generates the calendar. Should subscribe to the events to get the generated calendar and
display where you would like to.

Example
oMyPlugin.command('Calendar.generate', {date: 'Mon Mar 20 2017 19:51:47 GMT-0700
(PDT)'}).done(function(e){

// Calendar generated successfully

}).fail(function(e){

// Calendar failed to generate
});

Genesys Widgets Reference Calendar

Widgets Reference 176

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

date Date string/object To pre-select the date and time
on calendar.

Resolutions
Status When Returns

resolved When the calendar is
successfully generated n/a

rejected When Invalid date is passed to
calendar 'Invalid data'

showAvailability

Update the calendar timeslots with the callback availability. This enables only those timeslots that
have the callback facility and disables the remaining.

Example
oMyPlugin.command('Calendar.showAvailability', {date: '03/22/17'}).done(function(e){

// Calendar showed availability successfully

}).fail(function(e){

// Calendar failed to show availability
});

Options
Option Type Description

date Date string/object

Update the available time slots in
the Calendar plugin for the
selected Date. Note that, after
calling this command, the
internal showAvailability value
is set to true for this session and
the Calendar only shows the
available time slots when
switching between other dates.

Genesys Widgets Reference Calendar

Widgets Reference 177

Resolutions
Status When Returns

resolved When timeslots are successfully
updated n/a

rejected When no date value is found to
check the availability

'No date found to check
availability'

rejected When invalid date value is found 'Invalid date'

reset

Resets the calendar with no pre-selected values.

Example
oMyPlugin.command('Calendar.reset').done(function(e){

// Calendar reset successfully

}).fail(function(e){

// Calendar failed to reset
});

Resolutions
Status When Returns

resolved When calendar is successfully
reset n/a

Genesys Widgets Reference Calendar

Widgets Reference 178

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Calendar.ready', function(e){});

Name Description Data

ready Calendar is initialized and ready
to accept commands n/a

generated
Calendar UI has been generated.
Use this event to get the
calendar UI and display where
you would like to.

{ ndCalendar: <Generated HTML
Calendar> }

selectedDateTime Date and time selected on
calendar

{ dayString: <The day selected
on calendar>, dateString: <The
date selected on calendar in DD
MMM format>, timeString: <The
time selected on calendar in
HH:MM 12 Hr format>, date:
<Entire Date in date string
format>}

Genesys Widgets Reference Calendar

Widgets Reference 179

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

CallbackService
• Configuration
• Localization
• API Commands
• API Events

Overview

CallbackService exposes a high-level API for utilizing Genesys Callback services. You can use these
services to schedule a callback with customer service using our callback widget or by developing
your own custom Callback widget. Using CallbackService drastically simplifies integration and greatly
improves reliability, features, and compatibility on the bus for all widgets.

Usage

CallbackService and the matching Callback widget work together right out of the box and they share
the same configuration object. Using Callback uses CallbackService.

You can also use CallbackService as a high-level API using bus commands and events to build your
own Callback widget.

Namespace

Callback Service plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration callback
CXBus - API Commands & API Events CallbackService

Customization

CallbackService has no customization options. It is meant as a plug-n-play type of plugin and works
as-is.

Genesys Widgets Reference CallbackService

Widgets Reference 180

Configuration

Description

Callback and CallbackService share the configuration namespace '_genesys.widgets.callback'.
Callback has UI options while CallbackService has connection options.

Example
// If using Callback API v1

window._genesys.widgets.callback = {

apikey: 'n3eNkgXXXXXXXXOXXXXXXXXA',
dataURL: 'http://host:port/genesys/1/service/callback/samples',
userData: {},
countryCodes: true

};

// If using Callback API v3

window._genesys.widgets.callback = {

apikey: 'n3eNkgXXXXXXXXOXXXXXXXXA',
apiVersion: 'v3',
serviceName: 'service',
dataURL: 'http://host:port/callbacks',
userData: {},
countryCodes: true

};

Options

Name Type Description Default Required Accepted
Values

apikey string

Apigee Proxy
secure token. If
apiVersion is
v3, this holds
the x-api-key
value.

n/a Yes, if using
Apigee Proxy n/a

dataURL URL String
URL to the API
endpoint for
Callback

n/a Always n/a

apiVersion string Version of 'v1' Yes, if using 'v1', 'v3'

Genesys Widgets Reference CallbackService

Widgets Reference 181

Name Type Description Default Required Accepted
Values

Callback API

Note: This
value
determines
the version
of Callback
API in GMS/
v3.

Callback v3
dataURL

serviceName string
Service Name
of Callback API
in v3

n/a
Yes, if using
Callback v3
dataURL

n/a

userData object

Arbitrary
attached data
to include
while
scheduling a
callback

{} n/a

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout

3000 n/a

Genesys Widgets Reference CallbackService

Widgets Reference 182

Localization
No Localization options

Genesys Widgets Reference CallbackService

Widgets Reference 183

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CallbackService.schedule', {

userData: {},
firstname: 'Bob',
lastname: 'Jones',
email: 'b.jones@mail.com',
subject: 'product questions',
desiredTime: '2017-04-04T00:24:17.804Z',
phonenumber: '4151110000'

});

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

schedule

Schedule a callback service with the GMS callback schedule API.

Example
// If using Callback API v1

oMyPlugin.command('CallbackService.schedule', {

Genesys Widgets Reference CallbackService

Widgets Reference 184

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

userData: {}
firstname: 'Bob',
lastname: 'Jones',
email: 'b.jones@mail.com',
subject: 'product questions',
desiredTime: '2017-03-03T00:24:17.804Z',
phonenumber: '4151110000'

});

// If using Callback API v3

oMyPlugin.command('CallbackService.schedule', {

userData: {},
serviceName: 'service' // service name from callback API v3 version,
firstname: 'Bob',
lastname: 'Jones',
email: 'b.jones@mail.com',
subject: 'product questions',
desiredTime: '2017-03-03T00:24:17.804Z',
phonenumber: '4151110000'

});

Options
Option Type Description

firstname string Receive a Call entry Form Data:
'firstname'.

lastname string Receive a Call entry Form Data:
'lastname'.

phonenumber string Receive a Call entry Form Data:
'phonenumber'.

subject string Receive a Call entry Form Data:
'notes'.

email string Receive a Call entry Form Data:
'email'.

desiredtime string
The preferred desired time user
would like to get the callback
scheduled. Time should be in UTC
format.

userData object

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object. If
Genesys Web Engagement
(GWE) is enabled, this userData
also includes visitID, globalVisitID
and pageID.

serviceName string Service Name of Callback API to

Genesys Widgets Reference CallbackService

Widgets Reference 185

Option Type Description
be passed if the apiVersion is v3.

Resolutions
Status When Returns

resolved When server confirms callback is
scheduled

200 OK AJAX Response -
Schedule Callback
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected When selected timeslot is not
available

400 Bad Request AJAX Error
Response - Refer to error
responses under Schedule
Callback
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected When AJAX exception occurs

429 Too Many Requests AJAX
Error Response - Refer to error
responses under Schedule
Callback
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected When server exception occurs

500 Internal Server Error
Response - Refer to error
responses under Schedule
Callback
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

rejected When no form data is found to
schedule callback

'No data found to schedule
callback'

availability

Get the list of available callback timeslots via GMS callback service.

Genesys Widgets Reference CallbackService

Widgets Reference 186

https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback

Example
// If using Callback API v1

oMyPlugin.command('CallbackService.availability', {

startDate: '2017-04-03T00:24:17.804Z',
numberOfDays: '5',
maxTimeSlots: 20

}).done(function(e){

// CallbackService successfully showing availability

}).fail(function(e){

// CallbackService failed to show availability
});

// If using Callback API v3

oMyPlugin.command('CallbackService.availability', {

serviceName: 'service' // service name from callback API v3 version,
startDate: '2017-04-03T00:24:17.804Z',
numberOfDays: '5',
maxTimeSlots: 20

}).done(function(e){

// CallbackService successfully showing availability

}).fail(function(e){

// CallbackService failed to show availability
});

Options
Option Type Description

startDate string
The start date is specified in ISO
8601 format, using UTC as the
timezone (yyyy-MM-
ddTHH:mm:ss.SSSZ).

endDate string

The end date is specified in ISO
8601 format, using UTC as
timezone (yyyy-MM-
ddTHH:mm:ss.SSSZ). If neither
endDate nor numberOfDays is
specified, the end date is
assumed to be the same as the
start date.

numberOfDays string
Used as an alternative to the end
date. If neither endDate nor
numberOfDays is specified, the

Genesys Widgets Reference CallbackService

Widgets Reference 187

Option Type Description
end date is assumed to be the
same as the start date.

maxTimeSlots number
The maximum number of time
slots to be included in the
response.

serviceName string Service Name of Callback API to
be passed if the apiVersion is v3.

Resolutions
Status When Returns

resolved When server confirms the list of
available callback timeslots

200 OK AJAX Response - Query
Callback Availability
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected When timeslots are not available
for selected period

400 Bad Request AJAX Response
- Refer to error responses under
Query Callback Availability
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected When AJAX exception occurs

400 Bad Request AJAX Response
- Refer to error responses under
Query Callback Availability
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected When server exception occurs

500 Internal Server Error
Response - Refer to error
responses under Query Callback
Availability
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

rejected When no query data is found 'No query parameters passed for
callback availability service'

Genesys Widgets Reference CallbackService

Widgets Reference 188

https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallbackService.ready', function(e){});

Name Description Data

ready CallbackService is initialized and
ready to accept commands. n/a

scheduled Callback is scheduled
successfully.

200 OK AJAX Response -
Schedule Callback.
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

scheduleError
An error occurred between the
client and the server during a
callback schedule.

The JSON data returned by GMS
Callback server. For more
information about these error
details refer to the 'Responses'
status codes section under
Schedule Callback API.
For Callback API v3, refer
to 'Responses' in Schedule
Callback V3

availableSlots Callback available slots fetched
successfully.

200 OK AJAX Response - Query
Callback Availability.
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

availabilityError An error occurred between the
client and the server while

The JSON data returned by GMS
Callback server. For more

Genesys Widgets Reference CallbackService

Widgets Reference 189

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Start-Callback
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability

Name Description Data

fetching the available timeslots.

information about these error
details refer to the 'Responses'
status codes section under Query
Availability Callback API.
For Callback API v3, refer
to 'Responses' in
Availability Callback V3

Genesys Widgets Reference CallbackService

Widgets Reference 190

https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability
https://docs.genesys.com/Documentation/GMS/latest/API/CallbackServicesAPI#Query-Availability

Callback

• Configuration
• Localization
• API Commands
• API Events

Genesys Widgets Reference Callback

Widgets Reference 191

Overview

The Callback Widget provides a form to fetch user details such as name, phone number, and
email—and whether the customer would like an immediate callback or would prefer to receive a call
at another time of their choosing. Callback then submits this information to Customer Service. The
times that Callback displays are based on agent availability, meaning the user can select a time that
works for everyone.

Usage

Callback can be launched manually by the following methods:

• Calling the command "Callback.open"
• Configuring ChannelSelector to show Receive a Call as a channel
• Configuring Calendar to show a Date-Time picker for selecting a preferred time

Dependency

The Callback Widget needs the Calendar plugin. Make sure that it is included.

Customization

All text shown in the Callback Widget is fully customizable and localizable by adding entries into your
configuration and localization options.

Callback supports themes. You may create and register your own themes for Genesys Widgets.

Namespace

Callback plugin has the following namespaces tied up with each of the following types.

Type Namespace
Configuration callback
i18n - Localization callback
CXBus - API Commands & API Events Callback
CSS .cx-callback

Genesys Widgets Reference Callback

Widgets Reference 192

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

Mobile Support

Callback supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Callback switches to special fullscreen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

"Dark" Theme

•

Callback with Calendar in
desktop

•

Choose Callback time in desktop

•

Mobile fullscreen view in portrait
orientation

Genesys Widgets Reference Callback

Widgets Reference 193

•

Mobile fullscreen view in
landscape orientation

"Light" Theme

•

Desktop Callback view with
selected date and time

•

Mobile fullscreen view in portrait
orientation

•

Mobile fullscreen view showing
country codes for phone
numbers

Genesys Widgets Reference Callback

Widgets Reference 194

•

Callback confirmation in desktop

Genesys Widgets Reference Callback

Widgets Reference 195

Configuration

Description

Callback and CallbackService share the configuration namespace '_genesys.widgets.callback'.
Callback has UI options while CallbackService has connection options.

Example
window._genesys.widgets.callback = {

apikey: 'n3eNkgXXXXXXXXOXXXXXXXXA',
dataURL: 'http://host:port/genesys/1/service/callback/samples',
userData: {},
countryCodes: true,
immediateCallback: true,
scheduledCallback: true,
ewt: {

display: true,
queue: 'chat_ewt_test',
threshold: 2000,
immediateCallback: {

thresholdMin: 1000,
thresholdMax: 3000

}
}

};

Options

Name Type Description Default Required Introduced /
Updated

countryCodes boolean

Enable/disable
display of
country codes
for phone
number.

true n/a

immediateCallbackboolean

Enable/disable
the immediate
(As Soon As
Possible)
callback
option.

true n/a

scheduledCallbackboolean Enable/disable
the scheduling true n/a

Genesys Widgets Reference Callback

Widgets Reference 196

Name Type Description Default Required Introduced /
Updated

(Pick date &
time) callback
option.

form object

An object
containing a
custom
registration
form definition.
The definition
placed here
becomes the
default
registration
form layout for
Callback. See
Customizable
Callback
Registration
Form

A basic
registration
form is defined
internally by
default

n/a

ewt.display boolean
To display
Estimated Wait
Time (EWT)
details.

true n/a

ewt.queue string
EWT service
channel virtual
queue.

none

Always
required if
Estimated
Waiting Time
has to be
displayed.

ewt.threshold number

If EWT is less
than this
threshold value
(seconds), wait
time will not be
shown.

30 n/a

ewt.refreshIntervalnumber

Wait time is
updated for
every time
interval
(seconds)
defined here.

10 n/a

ewt.immediateCallback.thresholdMinnumber

If EWT is less
than this
minimum
threshold value
(seconds), then
'As Soon As
Possible' option
(Immediate
Callback) will
be disabled.
This value

none n/a 9.0.002.06

Genesys Widgets Reference Callback

Widgets Reference 197

Name Type Description Default Required Introduced /
Updated

should be
configured less
than or equal
to above
ewt.threshold
value.

ewt.immediateCallback.thresholdMaxnumber

If EWT is more
than this
maximum
threshold value
(seconds), then
'As Soon As
Possible' option
(Immediate
Callback) will
be disabled.

none n/a 9.0.002.06

Genesys Widgets Reference Callback

Widgets Reference 198

Localization

Important
For information on how to set up localization, please refer to the Localization Guide.

Usage

Use the 'callback' namespace when defining localization strings for the Callback plugin in your i18n
JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"callback": {

"CallbackTitle": "Receive a Call",
"CancelButtonText": "Cancel",
"AriaCancelButtonText": "Cancel",
"ConfirmButtonText": "Confirm",
"AriaConfirmButtonText": "Confirm",
"CallbackPlaceholderRequired": "Required",
"CallbackPlaceholderOptional": "Optional",
"CallbackFirstName": "First Name",
"CallbackLastName": "Last Name",
"CallbackPhoneNumber": "Phone",
"CallbackQuestion": "When should we call you?",
"CallbackDayLabels": [

"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"

],
"CallbackMonthLabels": [

"Jan",
"Feb",
"Mar",
"Apr",

Genesys Widgets Reference Callback

Widgets Reference 199

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec"

],
"CallbackConfirmDescription": "You're booked in!",
"CallbackNumberDescription": "We will call you at the number

provided:",
"CallbackNotes": "Notes",
"CallbackDone": "Close",
"AriaCallbackDone": "Close",
"CallbackOk": "Okay",
"AriaCallbackOk": "Okay",
"CallbackCloseConfirm": "Are you sure you want to cancel arranging

this callback?",
"CallbackNoButtonText": "No",
"AriaCallbackNoButtonText": "No",
"CallbackYesButtonText": "Yes",
"AriaCallbackYesButtonText": "Yes",
"CallbackWaitTime": "Wait Time",
"CallbackWaitTimeText": "min wait",
"CallbackOptionASAP": "As soon as possible",
"CallbackOptionPickDateTime": "Pick date & time",
"AriaCallbackOptionPickDateTime": "Opens a date picker",
"CallbackPlaceholderCalendar": "Select Date & Time",
"AriaMinimize": "Callback Minimize",
"AriaWindowLabel": "Callback Window",
"AriaMaximize": "Callback Maximize",
"AriaClose": "Callback Close",
"AriaCalendarClosedStatus": "Calendar is closed",
"Errors": {

"501": "Invalid parameters cannot be accepted, please check
the supporting server API documentation for valid parameters.",

"503": "Missing apikey, please ensure it is configured
properly.",

"1103": "Missing apikey, please ensure it is configured
properly.",

"7030": "Please enter a valid phone number.",
"7036": "Callback to this number is not possible. Please

retry with another phone number.",
"7037": "Callback to this number is not allowed. Please retry

with another phone number.",
"7040": "Please configure a valid service name.",
"7041": "Too many requests at this time.",
"7042": "Office closed. Please try scheduling within the

office hours.",
"unknownError": "Something went wrong, we apologize for the

inconvenience. Please check your connection settings and try again.",
"phoneNumberRequired": "Phone number is required."

}
}

}
}

Genesys Widgets Reference Callback

Widgets Reference 200

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Callback.open');

open

Opens the Callback UI.

Example
oMyPlugin.command('Callback.open', {

form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
subject: 'Customer Satisfaction',
desiredTime: 'now',
phonenumber: '8881110000'

},
formJSON: {...}

}).done(function(e){

// Callback opened successfully

}).fail(function(e){

// Callback failed to open
});

Genesys Widgets Reference Callback

Widgets Reference 201

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

form object
Object containing form data to
prefill in the callback form and
optionally auto-submit the form.

form.autoSubmit boolean Automatically submit the
callback form.

form.firstname string Value for the first name entry
field.

form.lastname string Value for the last name entry
field.

form.subject string Value for the notes entry field.

form.desiredTime string

This value is shared by the
immediate or scheduled callback
drop down option in the form (in
other words, As Soon As Possible
or Pick date & time). A string
value 'now' pre-selects the 'As
Soon As Possible' option. A string
value with Date Time or Date
Object, is passed into this drop
down option and pre-selected.
During form submission, it is
converted into UTC string format
and sent to the server as the
desired callback time.

form.phonenumber string

Value for the phone entry field.
Should be a valid telephone
number, when used with a prefix
'+' auto selects the country flag
near the phone input field.

formJSON object
An object containing a custom
registration form definition. See
Customizable Callback
Registration Form

userData object

Arbitrary data that is to be
attached with callback schedule.
Properties defined here will be
merged with default userData set
in the configuration object.

Resolutions
Status When Returns

resolved When callback form is
successfully opened. n/a

rejected When callback form is already 'already opened'

Genesys Widgets Reference Callback

Widgets Reference 202

Status When Returns
open.

close

Closes the Callback UI.

Example
oMyPlugin.command('Callback.close');

Resolutions
Status When Returns

resolved When Callback form is
successfully closed. n/a

rejected When Callback form is already
closed. 'already closed'

rejected
When user has entered some
details on the form and trying to
close it without confirming
cancellation.

'User must confirm close'

minimize

Minimize or unminimize Callback UI.

Example
oMyPlugin.command('Callback.minimize');

Options
Option Type Description

minimized boolean
Rather than toggling the current
minimized state you can specify
the minimized state directly: true

Genesys Widgets Reference Callback

Widgets Reference 203

Option Type Description
= minimized, false =
unminimized.

Resolutions
Status When Returns

resolved Always n/a
rejected Never n/a

showOverlay

A slide-down overlay opens over the Callback's content. You can fill this overlay with content such as
disclaimers, articles, and other information.

Example
oMyPlugin.command('Callback.showOverlay', {

html: '<div>Example text</div>'

});

Options
Option Type Description

html string or HTML reference The HTML content you want to
display in the overlay.

hideFooter boolean

Normally the overlay appears
between the titlebar and footer
bar. Set this to true to have the
overlay overlap the footer to gain
a bit more vertical space. This
should only be used in special
cases. For general use, don't set
this value.

Genesys Widgets Reference Callback

Widgets Reference 204

Resolutions
Status When Returns

resolved When Callback is open and the
overlay opens. n/a

rejected When Callback is not currently
open.

Callback is not currently open.
Ignoring command.

hideOverlay

Hides the slide-down overlay.

Example
oMyPlugin.command('Callback.hideOverlay');

Resolutions
Status When Returns

resolved When Callback is open and the
overlay closes. n/a

rejected When Callback is not currently
open.

Callback is not currently open.
Ignoring command.

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Genesys Widgets Reference Callback

Widgets Reference 205

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Callback.ready', function(e){});

Name Description Data Introduced / Updated

opened The Callback widget has
appeared on screen. metadata

ready
The Callback widget is
initialized and ready to
accept commands.

n/a

started
When the user has
started filling out the
Callback widget form or
auto pre-filled it.

metadata

submitted When the user has
submitted the form. metadata 9.0.002.06

completed
When the Callback
widget form is
submitted successfully.

metadata

cancelled

When the user has
abandoned the
interaction by closing
the Callback widget
before scheduling a
callback.

metadata

closed
The Callback widget has
been removed from the
screen.

metadata

Genesys Widgets Reference Callback

Widgets Reference 206

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Metadata

Interaction Lifecycle

Every Callback interaction has a sequence of events we describe as the 'Interaction Lifecycle'. This is
a sequence of events that tracks progress and choices from the beginning of an interaction (opening
Callback), to the end (closing Callback), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
submitted
cancelled
completed
closed

Lifecycle Scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with Callback. Here are
several sequences of events in the lifecycle that correspond to different scenarios.

The user opened Callback but changed their mind and closed it without entering any information:

ready -> opened -> cancelled -> closed

The user started filling out the form but closed Callback without submitting the callback request:

ready -> opened -> started -> cancelled -> closed

The user started filling out the form and submitted it successfully:

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all Callback events, see API Events.

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values

Genesys Widgets Reference Callback

Widgets Reference 207

are set to false. As the user progresses through the lifecycle of a Callback interaction, these values
will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with callback interactions. During run-time,
the metadata can help you offer a smart and dynamic experience to your users.

Reference
Name Type Description Introduced / Updated

proactive boolean
Indicates Callback was
offered and accepted
proactively.

prefilled boolean
Indicates the form was
prefilled with info
automatically.

autoSubmitted boolean
Indicates the form was
submitted
automatically, usually
after being prefilled.

errors array/boolean

An array of error codes
encountered after
submitting the form. If
no errors, this value will
be false.

form object
An object containing the
form parameters when
the form is submitted.

9.0.002.06

opened integer (timestamp)
Timestamp indicating
when Callback was
opened.

started integer (timestamp)
Timestamp indicating
when the user started
entering information
into the form.

cancelled integer (timestamp)

Timestamp indicating
when the callback
request is cancelled.
Cancelled refers to
when a user abandoned
the interaction by
closing Callback before
scheduling a callback.

completed integer (timestamp)
Timestamp indicating
when the callback
request was sent
successfully.

closed integer (timestamp)
Timestamp indicating
when Callback was
closed.

Genesys Widgets Reference Callback

Widgets Reference 208

Name Type Description Introduced / Updated

elapsed integer (milliseconds)

Total elapsed time in
milliseconds from when
the user started
entering information to
when the user cancelled
or completed the
interaction.

Genesys Widgets Reference Callback

Widgets Reference 209

Customizable Callback Registration Form
Introduced: 9.0.001.04

Callback allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.callback.form configuration option. Alternately, you can pass a new registration
form definition through the Callback.open command:

_genesys.widgets.bus.command("Callback.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default Example

The following example is the default object used to render Callback's registration form. This is a very
simple definition that does not use many properties.

Important
You can define any number of inputs here, of any supported type, in any combination.
Our example below simply demonstrates how WebChat defines its default form
internally.

Important
The Phone Number field with name "phonenumber" is required for all Callback custom
forms. This field value is required by Genesys Callback API to schedule a Callback.

Genesys Widgets Reference Callback

Widgets Reference 210

{
wrapper: "<table></table>",
inputs: [

{
id: "cx_form_callback_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"

},

{
id: "cx_form_callback_lastname",
name: "lastname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackLastName"

},

{
id: "cx_form_callback_phone_number",
name: "phonenumber",
maxlength: "14",
placeholder: "@i18n:callback.CallbackPlaceholderRequired",
label: "@i18n:callback.CallbackPhoneNumber",

onkeypress: function(event) {

// To allow only number inputs
return (event.charCode >= 48 && event.charCode <= 57) ||

(event.charCode == 43)
}

},

{
id: "cx_form_callback_subject",
name: "subject",
type: "textarea",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackNotes"

}
]

}

Using this definition will result in this output:

Genesys Widgets Reference Callback

Widgets Reference 211

Important
Form fields with id cx_form_schedule_options and cx_form_schedule_time are not
customizable.

Properties

Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input

Genesys Widgets Reference Callback

Widgets Reference 212

element.

Special Properties
Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

label string

Set the text for the
label. If no value
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string “<table></table>"

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is "

validate function

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your

Genesys Widgets Reference Callback

Widgets Reference 213

Property Type Default Description
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{name: ‘Option 1’,
value: ‘1’} for a
selectable option, and
{name: "Group 1",
group: true} for an
option group).

HTML Attributes
With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a text
input.

HTML Output

<input type="text" id="cx_callback_form_firstname" name="firstname" maxlength="100"

Genesys Widgets Reference Callback

Widgets Reference 214

placeholder="Optional"></input>

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, Form
Wrappers and Input Wrappers:

Form Wrapper
You can specify the parent wrapper for the overall form in the top-level "wrapper" property. In the
example below, we specify this value as "<table></table>". This is the default wrapper for the
Callback form.

{
wrapper: "<table></table>", /* form wrapper */
inputs: []

}

Input Wrapper
Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"
wrapper: "<tr><th>{label}</th><td>{input}</td></tr>" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,

Genesys Widgets Reference Callback

Widgets Reference 215

or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form.You can change the form wrapper to
"<div></div>" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table wrappers, you are
responsible for styling and aligning your layout. Only the default table-row wrapper is supported by
default Themes and CSS.

Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how a validation function is defined:

{
id: "cx_callback_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:callback.CallbackPlaceholderOptional",
label: "@i18n:callback.CallbackFirstName"

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

if(input && input.val()) { // to validate some input exits in the
firstname input field (required field)

return true; // validation passed

}else{

return false; // no input exists, validation failed
}

}
}

You can perform any validation you like in the validate function but it must return true or false to
indicate that validation has passed or failed, respectively. If you return false, the Callback form will
not submit, and the input will be highlighted in red. This is achieved by adding the CSS class "cx-
error" to the input.

Validation Function Arguments
Argument Type Description

event JavaScript event object
The input event reference object
related to the form input field.
This event data can be helpful to
perform actions like active

Genesys Widgets Reference Callback

Widgets Reference 216

Argument Type Description
validation on an input field while
the user is typing.

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Form Submit

Custom input field form values are submitted to the server as key value pairs in the form submit
request, where the input field names are the property keys and the input field values are the property
values.

Form Prefill

You can prefill the custom form using Callback.open command by passing the form (form data) and
formJSON (custom registration form), provided the form input names in the formJSON must match
with the property names in the form data.

The following example will open the Callback form with the phone number already entered in the
Phone input field.

_genesys.widgets.bus.command("Callback.open", {

formJSON: {
wrapper: "<table>",
inputs: [{

id: "cx_form_phone_number",
name: "phonenumber",
maxlength: "12",
placeholder: "@i18n:callback.CallbackPlaceholderPhoneNumber",
label: "@i18n:callback.CallbackPhoneNumber"

}]
},

form: {

Genesys Widgets Reference Callback

Widgets Reference 217

phonenumber: 9453222222
}

});

Genesys Widgets Reference Callback

Widgets Reference 218

CallUs

• Configuration
• Localization
• API Commands
• API Events

Overview

The CallUs Widget provides an overlay screen showing one or more phone numbers for a customer
service as well as the hours that this service is available. The arrangement of numbers in this layout
starts with a main phone number followed by optional alternative or additional phone numbers. Each
can be named and there is no limit on the amount of phone numbers you can include. If the list of
numbers cannot fit in the widget, the user can scroll to see the remaining numbers.

Usage

CallUs can be launched manually by the following methods:

Genesys Widgets Reference CallUs

Widgets Reference 219

• Calling the command "CallUs.open"
• Configuring ChannelSelector to show CallUs as a channel
• Create your own custom button or link to open CallUs (using the "CallUs.open" command)

Important
By default a user has no way of launching the CallUs Widget. You must choose a
suitable method for launching this widget.

Co-browse link

Desktop overlay view with Co-browse

Co-browse is integrated into CallUs and can be indicated on the bottom right of the CallUs Widget.
CallUs will detect if Co-browse is available based on your configuration. If Co-browse is available the
link will be visible, if not the link will not be visible.

Customization

All text, titles, names and numbers shown in the CallUs Widget are fully customizable and localizable
by adding entries into your configuration and localization options. There are no formatting
requirements. Text will appear as you entered it.

Genesys Widgets Reference CallUs

Widgets Reference 220

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

Important
If you do not configure the CallUs Widget it will appear as an empty overlay. You must
configure this Widget before using it.

CallUs supports themes. You may create and register your own themes for Genesys Widgets.

Namespace

CallUs plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration callus
i18n - Localization callus
CXBus - API Commands & API Events CallUs
CSS .cx-call-us

Mobile Support

CallUs supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, CallUs switches to special fullscreen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

"Dark" theme

•

Desktop overlay view

Genesys Widgets Reference CallUs

Widgets Reference 221

•

Mobile fullscreen view in portrait
orientation

•

Mobile fullscreen view in
landscape orientation

•

Desktop overlay view with Co-
browse

•

Mobile fullscreen view with Co-
browse in portrait orientation

•

Genesys Widgets Reference CallUs

Widgets Reference 222

Mobile fullscreen view with Co-
browse in landscape orientation

"Light" theme

•

Desktop overlay view

•

Mobile fullscreen view in portrait
orientation

•

Mobile fullscreen view in
landscape orientation

•

Desktop overlay view with Co-
browse

Genesys Widgets Reference CallUs

Widgets Reference 223

•

Mobile fullscreen view with Co-
browse in portrait orientation

•

Mobile fullscreen view with Co-
browse in landscape orientation

Genesys Widgets Reference CallUs

Widgets Reference 224

Configuration

Description

CallUs uses the configuration property '_genesys.widgets.callus'. You must specify all numbers and
labels that appear in the CallUs UI.

Example
window._genesys.widgets.callus = callus: {

contacts: [

{
displayName: 'Payments',
i18n: 'Number001',
number: '1 202 555 0162'

},
{

displayName: 'Local',
i18n: 'Number002',
number: '202 555 0134'

},
{

displayName: 'International',
i18n: 'Number003',
number: '0647 555 0131'

}
],

hours: [

'8am - 8pm Mon - Fri',
'10am - 6pm Sat - Sun'

]
};

Options
Name Type Description Default Required

contacts array

An array of objects
that represent
phone numbers
and their labels.
The first number in
this list will display
as the larger, main

[] true

Genesys Widgets Reference CallUs

Widgets Reference 225

Name Type Description Default Required
number. Phone
labels can be set
directly using the
'displayName'
property or you
can use String
Names from your
localization file by
setting the String
Name in the 'i18n'
property. 'i18n'
overrides
'displayName'.
Ex:

{

"displayName":
"Payments",

"i18n":
"Number001",

"number": "1
202 555 0162"
}

hours array

Array of strings to
show stacked in
the business hours
section. Strings
here are freeform.
See screenshots
for ideas.

[]

Genesys Widgets Reference CallUs

Widgets Reference 226

Localization

Important
For information on how to setup localization, please refer to the Localization Guide

Usage

'callus' namespace should be used when defining localization strings for CallUs plugin in your i18n
JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"callus": {

"CallUsTitle": "Call Us",
"SubTitle": "You can reach us at any of the following NUMBERS...",
"CancelButtonText": "Cancel",
"CoBrowseText": "Already on a call?

Let us browse with you",
"CoBrowse": "Start Co-browse",
"CoBrowseWarning": "Co-browse allows your agent to see and control

your desktop, to help guide you. When on a live call with an Agent, request a code to start
Co-browse and enter it below. Not yet on a call? Just cancel out of this screen to return to
Call Us page.",

"AriaWindowLabel": "Call Us Window",
"AriaCallUsClose": "Call Us Close",
"AriaBusinessHours": "Business Hours",
"AriaCallUsPhoneApp": "Opens the phone application",
"AriaCobrowseLink": "Opens the Co-browse Session",
"AriaCancelButtonText": "Call Us Cancel"

}
}

}

Genesys Widgets Reference CallUs

Widgets Reference 227

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('CallUs.open');

open

Opens the CallUs UI.

Example
oMyPlugin.command('CallUs.open').done(function(e){

// CallUs opened successfully

}).fail(function(e){

// CallUs failed to open
});

Resolutions
Status When Returns

resolved When CallUs is successfully
opened n/a

rejected When CallUs is already open 'Already opened'

Genesys Widgets Reference CallUs

Widgets Reference 228

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

close

Closes the CallUs UI.

Example
oMyPlugin.command('CallUs.close').done(function(e){

// CallUs closed successfully

}).fail(function(e){

// CallUs failed to close
});

Resolutions
Status When Returns

resolved When CallUs successfully closed n/a
rejected When CallUs is already closed 'Already closed'

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('CallUs.configure', {

contacts: [
{

displayName: 'Payments',
i18n: 'Number001',
number: '1 888 436 3797'

}
],
hours: ['8am - 8pm Mon - Fri']

}).done(function(e){

// CallUs configred successfully

}).fail(function(e){

Genesys Widgets Reference CallUs

Widgets Reference 229

// CallUs failed to configure
});

Options
Option Type Description

contacts Array

An array of objects that represent
phone numbers and their labels.
The first number in this list will
display as the larger, main
number.

hours Array
Array of strings to show stacked
in the business hours section.
Strings here are freeform.

Resolutions
Status When Returns

resolved When CallUs configuration is
provided n/a

rejected When no configuration provided 'Invalid Configuration'

Genesys Widgets Reference CallUs

Widgets Reference 230

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('CallUs.ready', function(e){});

Name Description Data

ready CallUs is initialized and ready to
accept commands

opened CallUs UI has been opened
closed CallUs UI has been closed

Genesys Widgets Reference CallUs

Widgets Reference 231

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

ChannelSelector

• Configuration
• Localization
• API Commands
• API Events

Overview

The ChannelSelector widget provides a configurable list of channels as an entry point for customers
to contact customer service. In additional to showing multiple channels, ChannelSelector can show
the Estimated Wait Time (EWT) for each channel when configured. You can also configure channels to
hide or show as disabled based on EWT value. Channels are not limited to Genesys Widgets, you can
add your own custom channels to launch applications or open new windows as necessary.

See the screenshots below and visit the configuration page for more information.

Genesys Widgets Reference ChannelSelector

Widgets Reference 232

Usage

ChannelSelector can be launched manually by the following methods:

• Calling the command "ChannelSelector.open"
• Create your own custom button or link to open ChannelSelector (using the "ChannelSelector.open"

command)

Important
By default ChannelSelector has no channels configured. The UI will appear empty if
not configured. Please see the configuration for examples and information on how to
setup your own custom channels.

Customization

All static text shown in the ChannelSelector Widget is fully customizable and localizable by adding
entries into your configuration and localization options.

ChannelSelector supports Themes. You may create and register your own themes for Genesys
Widgets.

Namespace

Channel Selector plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration channelselector
i18n - Localization channelselector
CXBus - API Commands & API Events ChannelSelector
CSS .cx-channel-selector

Mobile Support

ChannelSelector supports both desktop and mobile devices. Like all Genesys Widgets, there are two
main modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, ChannelSelector switches to special full-
screen templates that are optimized for both portrait and landscape orientations.

Genesys Widgets Reference ChannelSelector

Widgets Reference 233

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

"Dark" Theme

•

Desktop overlay view showing
EWT available

•

Desktop overlay view showing
EWT maximum & unavailable

•

Desktop overlay view showing
EWT minimum

•

Genesys Widgets Reference ChannelSelector

Widgets Reference 234

Desktop overlay view showing
Co-browse channel

•

Mobile full-screen view in
landscape orientation showing
EWT available

•

Mobile full-screen view in
landscape orientation showing
EWT maximum & unavailable

•

Mobile full-screen view in
landscape orientation showing
EWT maximum

•

Mobile full-screen view in
landscape orientation showing
EWT minimum

Genesys Widgets Reference ChannelSelector

Widgets Reference 235

•

Mobile full-screen view in
portrait orientation showing
EWT available

•

Mobile full-screen view in
portrait showing EWT maximum
& unavailable

•

Mobile full-screen view in
portrait orientation showing
EWT maximum

•

Mobile full-screen view in
portrait orientation showing
EWT minimum

"Light" Theme

Genesys Widgets Reference ChannelSelector

Widgets Reference 236

•

Desktop overlay view showing
EWT available

•

Desktop overlay view showing
EWT maximum & unavailable

•

Desktop overlay view showing
EWT minimum

•

Desktop overlay view showing
Co-browse channel

•

Genesys Widgets Reference ChannelSelector

Widgets Reference 237

Mobile full-screen view in
landscape orientation showing
EWT available

•

Mobile full-screen view in
landscape orientation showing
EWT maximum & unavailable

•

Mobile full-screen view in
landscape orientation showing
EWT maximum

•

Mobile full-screen view in
landscape orientation showing
EWT minimum

•

Mobile full-screen view in
portrait orientation showing
EWT available

Genesys Widgets Reference ChannelSelector

Widgets Reference 238

•

Mobile full-screen view in
portrait showing EWT maximum
& unavailable

•

Mobile full-screen view in
portrait orientation showing
EWT maximum

•

Mobile full-screen view in
portrait orientation showing
EWT minimum

Genesys Widgets Reference ChannelSelector

Widgets Reference 239

Configuration

Description

ChannelSelector shares the configuration namespace '_genesys.widgets.channelselector'.
ChannelSelector has UI options to enable/disable channels, hide channels, add new channels, and
display Estimated Wait Time (EWT) details. All the channels are displayed based on the array of
objects order defined in channels config. To hide a particular channel, simply remove the
corresponding array object.

Important
EWT can only be configured for WebChat, Callback, ClickToCall, and CallUs channels. It
may not be applicable for other channels. If configured for Send Message channel, it
will always be shown as available regardless of any EWT value.

Example
window._genesys.widgets.channelselector = {

ewtRefreshInterval: 10,

channels: [{

enable: true,
clickCommand: 'CallUs.open',
displayName: 'Call Us',
i18n: 'CallusTitle',
icon: 'call-outgoing',
html: '',
ewt: {

display: true,
queue: 'callus_ewt_test_eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}

},

{
enable: true,
clickCommand: 'WebChat.open',
displayName: 'Web Chat',
i18n: 'ChatTitle',
icon: 'chat',
html: '',
ewt: {

Genesys Widgets Reference ChannelSelector

Widgets Reference 240

display: true,
queue: 'chat_ewt_test_eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}

},

{
enable: true,
clickCommand: 'SendMessage.open',
displayName: 'Send Message',
i18n: 'EmailTitle',
icon: 'email',
html: ''
},

{
enable: true,
clickCommand: 'Callback.open',
displayName: 'Receive a Call',
i18n: 'CallbackTitle',
icon: 'call-incoming',
html: '',
ewt: {

display: true,
queue: 'callback_ewt_test_eservices',
availabilityThresholdMin: 300,
availabilityThresholdMax: 480,
hideChannelWhenThresholdMax: false
}

},

{
enable: true,
name: 'CoBrowse',
clickCommand: 'CoBrowse.open',
displayName: 'Co-browse',
i18n: 'CobrowseTitle',
icon: 'cobrowse',
html: ''
}]

};

Options
Name Type Description Default Required

ewtRefreshInterval number
EWT is updated for
every time interval
(seconds) defined
here.

10 n/a

channels[].enable boolean Enable/disable a
channel. true n/a

channels[].clickCommandstring
The CXBus
command name
for opening a
particular widget

none Always

Genesys Widgets Reference ChannelSelector

Widgets Reference 241

Name Type Description Default Required
when this channel
is clicked on.

channels[].displayNamestring
A channel name to
display on
ChannelSelector
Widget.

none Always

channels[].i18n string

To support
localization of
channel display
name, this takes a
key parameter of
channelselector
section in
language pack file.
Overrides above
displayName.

none n/a

channels[].icon string

Select from one of
the Genesys
Widgets icons by
specifying icon css
class name.

none Always

channels[].html string

Overrides and
replaces the icon
section of a
channel with the
html (image tag)
defined here.

none n/a

channels[].ewt.displayboolean To display EWT
details. true n/a

channels[].ewt.queuestring
EWT service
channel virtual
queue.

none Always

channels[].ewt.availabilityThresholdMinnumber (seconds)

If EWT is greater
than 0 min and
less than this
minimum
threshold value (in
minutes), then the
EWT is shown with
a yellow warning
icon.

Note:
Comparison is
made after
converting the
threshold value
in seconds to
minutes.

300 n/a

channels[].ewt.availabilityThresholdMaxnumber (seconds) If EWT is greater 480 n/a

Genesys Widgets Reference ChannelSelector

Widgets Reference 242

Name Type Description Default Required
than this minimum
threshold value (in
minutes) and less
than the maximum
threshold value (in
minutes), then the
EWT is shown with
a red alert icon.

Note:
Comparison is
made after
converting the
threshold value
in seconds to
minutes.

channels[].ewt.hideChannelWhenThresholdMaxboolean

Hides this channel
when EWT is
greater than the
maximum
threshold value.

true n/a

Genesys Widgets Reference ChannelSelector

Widgets Reference 243

Localization

Important
For information on how to setup localization, please refer to the Localization Guide

Usage

'channelselector' namespace should be used when defining localization strings for ChannelSelector
plugin in your i18n JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"channelselector": {

"Title": "Live Assistance",
"SubTitle": "How would you like to get in touch?",
"WaitTimeTitle": "Wait Time",
"AvailableTitle": "Available",
"AriaAvailableTitle": "Available",
"UnavailableTitle": "Unavailable",
"CobrowseButtonText": "CobrowseSubTitle",
"CallbackTitle": "Receive a Call",
"CobrowseSubTitle": "Agent connection is required for this.",
"AriaClose": "Live Assistance Close",
"AriaWarning": "Warning",
"AriaAlert": "Alert",
"minute": "min",
"minutes": "mins",
"AriaWindowLabel": "Live Assistance Window"

}
}

}

Genesys Widgets Reference ChannelSelector

Widgets Reference 244

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('ChannelSelector.open');

close

Closes the ChannelSelector UI.

Example
oMyPlugin.command('ChannelSelector.close').done(function(e){

// ChannelSelector closed successfully

}).fail(function(e){

// ChannelSelector failed to close
});

Resolutions
Status When Returns

resolved When ChannelSelector is
successfully closed n/a

rejected When ChannelSelector is already
closed Already closed

Genesys Widgets Reference ChannelSelector

Widgets Reference 245

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

open

Opens the ChannelSelector UI.

Example
oMyPlugin.command('ChannelSelector.open').done(function(e){

// ChannelSelector opened successfully

}).fail(function(e){

// ChannelSelector failed to open
});

Resolutions
Status When Returns

resolved When ChannelSelector Widget is
successfully opened n/a

rejected When ChannelSelector Widget is
already open 'Already open'

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('ChannelSelector.configure', {

channels: [
{

enabled: true,
clickCommand: 'CallUs.open',
displayName: 'Call Us',
i18n: 'CallusTitle',
icon: 'call-outgoing',
html: '',
ewt:{

display: true,
queue:'chat_ewt_test_eservices',
availabilityThresholdMin:60,

Genesys Widgets Reference ChannelSelector

Widgets Reference 246

availabilityThresholdMax:600
}

}
]

}).done(function(e){

// ChannelSelector configured successfully

}).fail(function(e){

// ChannelSelector failed to configure
});

Options
Option Type Description

ewtRefreshInterval number EWT is updated for every time
interval (seconds) is defined.

channels array
Array containing each channel
configuration object. The order of
channels is displayed based on
the order defined here.

channels[].enable boolean Enable/disable chat channel.

channels[].clickCommand string
The CXBus command name for
opening a particular Widget
when clicked on this channel.

channels[].displayName string A channel name to display in
ChannelSelector Widget.

channels[].i18n string

To support localization of channel
display name, this takes a key
parameter of channelselector
section in language pack file.
Overrides above displayName.

channels[].icon string
Select from one of the Genesys
Widgets icons by specifying icon
css class name.

channels[].html string
Overrides and replaces the icon
section of a channel with the
html (image tag) defined here.

channels[].ewt.display boolean To display EWT details.

channels[].ewt.queue string EWT service channel virtual
queue name.

channels[].ewt.availabilityThresholdMinnumber (seconds)

If the EWT is greater than 0
minutes and less than the
minimum threshold value (in
minutes), then the EWT is shown
with a yellow warning icon.

Genesys Widgets Reference ChannelSelector

Widgets Reference 247

Option Type Description

Note: Comparison is made
after converting the
threshold value in seconds
to minutes.

channels[].ewt.availabilityThresholdMaxnumber (seconds)

If the EWT is greater than the
minimum threshold value (in
minutes) and less than the
maximum threshold value (in
minutes), then the EWT is shown
with a red alert icon.

Note: Comparison is made
after converting the
threshold value in seconds
to minutes.

channels[].ewt.hideChannelWhenThresholdMaxboolean
Hides this channel when the EWT
is greater than the maximum
threshold value.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

displayStats

Estimated Wait Time (EWT) and availability details are displayed for each channel.

Example
oMyPlugin.command('ChannelSelector.displayStats').done(function(e){

// ChannelSelector displayed stats successfully

}).fail(function(e){

// ChannelSelector failed to display stats

Genesys Widgets Reference ChannelSelector

Widgets Reference 248

});

Resolutions
Status When Returns

resolved When EWT is displayed
successfully n/a

rejected When StatsService fails to
retrieve EWT data

'Unable to display EWT Stats in
ChannelSelector'

rejected
When enableEwt config is
disabled or when required
channel plugins are not ready

'Either EWT config is disabled or
plugins not yet ready'

disableStats

UI is cleared of any EWT. Fetching it for the defined time interval is also disabled.

Example
oMyPlugin.command('ChannelSelector.disableStats').done(function(e){

// ChannelSelector disabled stats successfully

}).fail(function(e){

// ChannelSelector failed to disable stats
});

Resolutions
Status When Returns

resolved When ChannelSelector Widget is
successfully opened n/a

rejected When ChannelSelector Widget is
not opened

'ChannelSelector not opened to
disable stats details'

rejected When EWT is disabled for all
channels 'Stats already disabled'

Genesys Widgets Reference ChannelSelector

Widgets Reference 249

enableStats

UI is shown back with EWT and availability details. Fetching it for the defined time interval is also
enabled.

Example
oMyPlugin.command('ChannelSelector.enableStats').done(function(e){

// ChannelSelector enabled stats successfully

}).fail(function(e){

// ChannelSelector failed to enable stats
});

Resolutions
Status When Returns

resolved When ChannelSelector Widget is
successfully opened n/a

rejected When EWT details are already
displayed 'Stats already enabled'

rejected When ChannelSelector Widget is
not opened

'ChannelSelector not opened to
enable stats details'

Genesys Widgets Reference ChannelSelector

Widgets Reference 250

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ChannelSelector.ready', function(e){});

Name Description Data

ready
ChannelSelector plugin is
initialized and ready to accept
commands

n/a

opened ChannelSelector widget has
appeared on screen n/a

closed ChannelSelector widget has been
removed from the screen n/a

Genesys Widgets Reference ChannelSelector

Widgets Reference 251

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

ChatDeflection

Genesys Widgets Reference ChatDeflection

Widgets Reference 252

Genesys Widgets Reference ChatDeflection

Widgets Reference 253

• Configuration
• Localization
• API Commands
• API Events

Overview

Important
ChatDeflection Widget is available starting from the 8.5.004.09 version of the Genesys
Widgets

The ChatDeflection widget allows a customer to address a question while waiting for a customer
service agent to join a live chat. ChatDeflection does not introduce new UI, it is just adding additional
functionality to the WebChat widget. ChatDeflection widget uses the KnowledgeCenterService widget
to match a customer's question to the corporate knowledge base and come up with the most
relevant knowledge for that question. ChatDeflection stops any interactions with the customer as
soon as the customer service agent joines the live chat session. The customer service agent who
joins the session after the deflection attempt, now has some context of the customer issue ready for
review, as well as the information on the suggested knowledge and the customer's interactions with
it.

Usage

ChatDeflection will be launched automatically when the live chat session started. It can also be
manually enabled or disabled by the following methods:

• Enabled by calling the command "ChatDeflection.enable"
• Disabled by calling the command "ChatDeflection.disable"

Deployment Notes

ChatDeflection Configuration
ChatDeflection utilizes the Genesys Knowledge Center Server Knowledge API accessible through the
KnowledgeCenterService widget.

Genesys Widgets Reference ChatDeflection

Widgets Reference 254

Does deflection attempt will be shown in the transcript?
The ChatDeflection widget has several different modes of reporting chat deflection actions to the
chat transcript:

• none - deflection actions are not visible in transcript
• readable (default) - deflection actions shown in human-readable format in the chat transcript
• JSON - deflection actions stored as the JSON object with all the technical details

Customization

All static text shown during chat deflection session is fully customizable and localizable by adding
entries into your configuration and localization options.

ChatDeflection supports Themes. You may create and register your own themes for Genesys Widgets.

Namespace

Chat Deflection plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration knowledgecenter
i18n - Localization knowledgecenter
CXBus - API Commands & API Events ChatDeflection
CSS .cx-kc-article

Mobile Support

ChatDeflection supports both desktop and mobile devices. Like all Genesys Widgets, there are two
main modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, ChatDeflection switches to special
fullscreen templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

"Dark" Theme

Genesys Widgets Reference ChatDeflection

Widgets Reference 255

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

•

Mobile fullscreen view in portrait
orientation showing deflection
invitation message

•

Desktop docked view showing
deflection response

•

Mobile fullscreen view in
Landscape orientation showing
deflection response

•

Mobile fullscreen view in portrait
orientation showing deflection
response

Genesys Widgets Reference ChatDeflection

Widgets Reference 256

•

Desktop docked view showing
document details (since
8.5.004.19)

•

Mobile fullscreen view in portrait
orientation showing document
details (since 8.5.004.19)

"Light" Theme

•

Mobile fullscreen view in portrait
orientation showing deflection
invitation message

•

Desktop docked view showing
deflection response

Genesys Widgets Reference ChatDeflection

Widgets Reference 257

•

Mobile fullscreen view in
Landscape orientation showing
deflection response

•

Mobile fullscreen view in portrait
orientation showing deflection
response

•

Desktop docked view showing
document details (since
8.5.004.19)

•

Mobile fullscreen view in portrait
orientation showing document
details (since 8.5.004.19)

Genesys Widgets Reference ChatDeflection

Widgets Reference 258

Configuration

Description

cx-chat-deflection uses '_genesys.widgets.knowledgecenter' configuration namespace and has
connection and chat-deflection options.

Example
window._genesys.widgets.knowledgecenter = {

deflection:{
enabled:true,
agentTranscript:'readable'

}
}

Options
Name Type Description Default Required

enabled boolean

Enables/disables
chat deflection
functionality. Can
be changed
programmatically
using enable/
disable commands
of the widget.

true

agentTranscript string

Defines how the
Knowledge Center
responses will be
stored in chat
transcript. Valid
values: none,
readable (default)

readable

workspace.enabled boolean

Enables/disables
context data of
chat deflection to
be attached to the
chat interaction
user data. This
data is consumed
by Workspace to
show agent
information about

true

Genesys Widgets Reference ChatDeflection

Widgets Reference 259

Name Type Description Default Required
knowledge session
Note: available
since 8.5.004.19

workspace.sessionKeystring

User data key that
will contain
knowledge session
id associated with
the deflection
session. Valid
values: valid user
data key name
Note: available
since 8.5.004.19

gks_session

workspace.languageKeystring

User data key that
will contain
language id
associated with
the deflection
session. Valid
values: valid user
data key name
Note: available
since 8.5.004.19

gks_lang

workspace.questionKeystring

User data key that
will contain last
searched question.
Valid values: valid
user data key
name
Note: available
since 8.5.004.19

gks_question

reporting.enabled boolean

Enables/disables
chat deflection
progress status to
be attached to the
chat interaction
user data. This
data can be used
in reporting to
analyze deflection
sessions and their
outcomes
Note: available
since 8.5.004.19

true

Genesys Widgets Reference ChatDeflection

Widgets Reference 260

Localization

Important
For information on how to setup localization, please refer to the Localization Guide

Usage

'knowledgecenter' namespace should be used when defining localization strings for ChatDeflection
plugin in your i18n JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"knowledgecenter": {

"KnowledgeAgentName": "Knowledge Center",
"WelcomeMessage": "Hello and Welcome! A Live agent will be with you

shortly. In the meantime, can I assist you with any questions you may have? Please type a
question into the input field below.",

"SearchResult": "While waiting for an Agent to connect, here are the
most relevant answers to your query:",

"NoDocumentsFound": "I'm sorry. No articles matched your question.
Would you like to ask another question?",

"Yes": "Yes",
"No": "No",
"Back": "Back",
"FeedbackQuestion": "Was this helpful?",
"FeedbackAccept": "Yes",
"FeedbackDecline": "No",
"ArticleHelpfulnessYes": "Article Helpfulness - 'Yes'",
"ArticleHelpfulnessYesDesc": "Great! We're very pleased to hear that

the article assisted you in your search. Have a great day!",
"ArticleHelpfulnessNo": "Article Helpfulness - 'No'",
"ArticleHelpfulnessNoDesc": "We're sorry that the article wasn't a

good match for your search. We thank you for your feedback!",
"TranscriptMarker": "KnowledgeCenter: ",
"SearchMessage": "Search with query '<%SearchQuery%>'↲",
"VisitMessage": "Visit for document '<%VisitQuery%>'",
"AnsweredMessage": "Results for query '<%AnsweredQuery%>' have been

marked as relevant.",

Genesys Widgets Reference ChatDeflection

Widgets Reference 261

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

"UnansweredMessage": "Results for query '<%UnansweredQuery%>' have
been marked as unanswered.",

"PositiveVoteMessage": "Positive voting for document '<%VoteQuery%>'",
"NegativeVoteMessage": "Negative voting for document '<%VoteQuery%>'"

}
}

}

Genesys Widgets Reference ChatDeflection

Widgets Reference 262

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('ChatDeflection.enable');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('ChatDeflection.configure', {

enable: true,
agentTranscript: 'readable'

}).done(function(e){

// ChatDeflection configured successfully

}).fail(function(e){

// ChatDeflection failed to confugure
});

Genesys Widgets Reference ChatDeflection

Widgets Reference 263

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

enable boolean
Enables/disables chat deflection
functionality. Can be changed
programmatically using enable/
disable commands of the widget.

agentTranscript string
Defines how the Knowledge
Center responses will be stored
in chat transcript.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

enable

Enable chat deflection

Example
oMyPlugin.command('ChatDeflection.enable').done(function(e){

// ChatDeflection enabled successfully

}).fail(function(e){

// ChatDeflection failed to be enabled
});

Resolutions
Status When Returns

resolved Chat deflection has been enabled n/a

Genesys Widgets Reference ChatDeflection

Widgets Reference 264

disable

Disable chat deflection

Example
oMyPlugin.command('ChatDeflection.disable').done(function(e){

// ChatDeflection disabled successfully

}).fail(function(e){

// ChatDeflection failed to be disabled
});

Resolutions
Status When Returns

resolved Chat deflection has been
disabled n/a

Genesys Widgets Reference ChatDeflection

Widgets Reference 265

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ChatDeflection.ready', function(e){});

Name Description Data

ready ChatDeflection is initialized and
ready to accept commands n/a

enabled
ChatDeflection has been
enabled. It will happen for
ongoing and any new chat
session

n/a

disabled
ChatDeflection has been disable.
It is stopped for any ongoing
session as well as for future chat
sessions

n/a

started ChatDeflection attempt has been
started for current active session n/a

ended ChatDeflection attempt has been
ended for the current session n/a

Genesys Widgets Reference ChatDeflection

Widgets Reference 266

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

ClickToCallService
• Configuration
• API Commands
• API Events

Overview

ClickToCallService exposes a high-level API for utilizing Genesys callback services. You can use these
services for requesting a customer service number and access code for your user to dial.

Usage

ClickToCallService and the matching ClickToCall widget work together right out of the box and they
share the same configuration object. Using ClickToCall uses ClickToCallService .

You can also use ClickToCallService as a high-level API using bus commands and events to build your
own ClickToCall widget or other UI features based on ClickToCallService events.

Namespace

ClickToCallService plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration clicktocall
CXBus - API Commands & API Events ClickToCallService

Customization

ClickToCallService has configuration options but no customization options. It is meant as a plug-n-play
type of plugin and works as-is.

Genesys Widgets Reference ClickToCallService

Widgets Reference 267

Configuration

Description

ClickToCall and ClickToCallService share the configuration namespace '_genesys.widgets.clicktocall'.
ClickToCall has UI options while ClickToCallService has connection options.

Example
window._genesys.widgets.clicktocall = {

'ajaxTimeout' : 3000,
'provideAccessCode' : true,
'dataURL' : 'http://www.myphoneservice.org',
'apikey' : 'YOUR_API_KEY',
'userData' : {}

};

Options
Name Type Description Default Required

ajaxTimeout Number
Sets the default
ajax timeout in
milliseconds.

3000 false

provideAccessCode boolean

Enables or
disables the use of
a dial in access
code for user
verification.

true false

dataURL string
URL of GMS
ClickToCall API
endpoint.

n/a true

apikey string or number Apigee Proxy
secure token. n/a Yes, if using

Apigee Proxy.

userData object

Arbitrary JSON
attached data to
include while
requesting
ClickToCall phone
number.

{} n/a

Genesys Widgets Reference ClickToCallService

Widgets Reference 268

Localization
No localization options

Genesys Widgets Reference ClickToCallService

Widgets Reference 269

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('ClickToCallService.requestNumber', {

userData: {
firstname: 'Bob',
lastname: 'Jones'

},
phonenumber: '415XXXXXXX'

});

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

restore

Tries to return saved session data to the UI plugin to restore the widget to its previous state.

Example
oMyPlugin.command('ClickToCallService.restore');

Genesys Widgets Reference ClickToCallService

Widgets Reference 270

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Resolutions
Status When Returns

resolved When ClickToCallService
attempts to restore data. Restored data or empty object.

rejected Never n/a

requestNumber

Requests a phone number, access code and expiration time through the GMS Callback Service API
(Voice - User Originated).

Example
oMyPlugin.command('ClickToCallService.requestNumber', {

userData: {
firstname: 'Bob',
lastname: 'Jones'

},
phonenumber: '415XXXXXXX'

});

Options
Option Type Description

phonenumber string ClickToCall Entry Form Data:
'phonenumber'.

userData object

Arbitrary data that is attached
with ClickToCall phone number
request. Properties defined here
are be merged with default
userData set in the configuration
object. If Genesys Web
Engagement (GWE) is enabled,
this userData also includes
visitID, globalVisitID and pageID.

Genesys Widgets Reference ClickToCallService

Widgets Reference 271

Resolutions
Status When Returns

resolved Always (AJAX response data)
rejected When AJAX exception occurs (AJAX Response Object)

Genesys Widgets Reference ClickToCallService

Widgets Reference 272

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ClickToCallService.ready', function(e){});

Name Description Data

ready ClickToCallService is initialized
and ready to accept commands. n/a

restored
ClickToCallService has restored
the currently active phone
number.

{bRestoreSuccess: (boolean),
sPhoneNumber: (string),
sPhoneTelHref: (string),
sAccessCode: (string),
iExipreTime: (number)}

numberReceived ClickToCallService has received a
phone number from the server.

{sPhoneNumber: (string),
sPhoneTelHref: (string),
sAccessCode: (string),
iExipreTime: (number)}

Genesys Widgets Reference ClickToCallService

Widgets Reference 273

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

ClickToCall
Introduced: 9.0.001.04

• Configuration
• Localization
• API Commands
• API Events
• API Metadata
• Customizable Registration Form

Genesys Widgets Reference ClickToCall

Widgets Reference 274

Overview

The ClickToCall Widget allows customers to request a phone number to dial-in to customer service,
and supports initiating the call by a single click on the button.

Usage

The ClickToCall widget can be launched manually by the following methods:

• Calling the command "ClickToCall.open".
• Configuring Sidebar to show ClickToCall in it.

Customization

All text shown in the ClickToCall Widget is fully customizable and localizable by adding entries into
your configuration and localization options.

ClickToCall supports themes. You may create and register your own themes for Genesys Widgets.

Namespace

ClickToCall plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration clicktocall
i18n - Localization clicktocall
CXBus - API Commands & API Events ClickToCall
CSS .cx-clicktocall

Mobile Support

ClickToCall has full mobile support in both landscape and portrait modes, as well as being able to
click the displayed phone number to dial it.

Genesys Widgets Reference ClickToCall

Widgets Reference 275

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

Screenshots

"Dark" Theme

•

Desktop docked view showing
the default form

•

Desktop view showing the
custom form with phone
number pre-filled

•

Desktop view showing the
phone number, access code
and expiration timer

•

Desktop view showing the
phone number expiration
message

Genesys Widgets Reference ClickToCall

Widgets Reference 276

•

Mobile portrait view showing the
default form

•

Mobile landscape view showing
the phone number, access code
and expiration timer

"Light" Theme

•

Desktop docked view showing
the default form

•

Desktop view showing the
custom form with phone
number pre-filled

Genesys Widgets Reference ClickToCall

Widgets Reference 277

•

Desktop view showing the
phone number, access code
and expiration timer

•

Desktop view showing the
phone number expiration
message

•

Mobile portrait view showing the
default form

•

Mobile landscape view showing
the phone number, access code
and expiration timer

Genesys Widgets Reference ClickToCall

Widgets Reference 278

Configuration

Description

ClickToCall and ClickToCallService share the configuration namespace '_genesys.widgets.clicktocall'.
ClickToCall has UI options while ClickToCallService has connection options.

Example
{

clicktocall: {

'enableCountdown' : true,
'provideAccessCode' : true,
'autoDialAccessCode' : true,
'ariaNumberExpirationIntervals' : [100, 75, 50, 25, 10],

'ewt': {

'display': true,

'queue': 'QUEUE_NAME',

'threshold': 30,

'refreshInterval': 10
},

'confirmFormCloseEnabled' : true,

'dataURL' : 'http://www.myphoneservice.org',

'formJSON' : {},

'userData' : {}
}

}

Options

Name Type Description Default Required Introduced /
Updated

enableCountdownboolean
Shows or hides
the phone
number
expiration

true false

Genesys Widgets Reference ClickToCall

Widgets Reference 279

Name Type Description Default Required Introduced /
Updated

counter.

provideAccessCodeboolean

Enables or
disables the
use of a dial in
access code for
user
verification.

true false

autoDialAccessCodeboolean

Enables or
disables auto
dialing the
access code
that is
provided along
with the dial in
number.

true false

ariaNumberExpirationIntervalsarray/boolean

An array
containing the
intervals in a
percentage at
which the
screen reader
will announce
the remaining
expiry time for
the phone
number. By
default, it is
enabled with
the following
time intervals,
and is
customizable
according to
user needs.
Configuring a
value of 'false'
will let the
screen reader
read the phone
number expiry
time for every
change.

[100, 75, 50,
25, 10] false 9.0.016.11

ewt.display boolean

Enables or
disables
showing of
Estimated Wait
Time (EWT) for
an agent to be
available.

true false

ewt.queue string
A virtual queue
name for the
EWT API

none
Always
required if EWT
has to be

Genesys Widgets Reference ClickToCall

Widgets Reference 280

Name Type Description Default Required Introduced /
Updated

service
channel. displayed.

ewt.threshold integer

Display
threshold for
EWT in
seconds. Does
not display
EWT if below
threshold.

30 n/a

ewt.refreshIntervalinteger
EWT refresh
interval in
seconds.

10 n/a

confirmFormCloseEnabledboolean

Enable or
disable
displaying a
confirmation
message
before closing
ClickToCall, if
information
has been
entered into
the registration
form.

true n/a

formJSON object

An object
representing
the custom
form to render.
The definition
placed here
becomes the
default
registration
form layout for
ClickToCall. See
Customizable
ClickToCall
Registration
Form

A basic
registration
form is defined
internally by
default.

n/a

userData object

A custom
object to be
merged in with
all network
requests.

{} n/a

Genesys Widgets Reference ClickToCall

Widgets Reference 281

Localization

Important
For information on how to setup localization, please refer to the Localization section in
the Deployment Guide

Usage

'clicktocall' namespace should be used when defining localization strings for ClickToCall plugin in your
i18n JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Default i18n JSON
{

"en": {
"clicktocall": {

"Title": "ClickToCall",
"FirstName": "First Name",
"PlaceholderRequired": "Required",
"PlaceholderOptional": "Optional",
"LastName": "Last Name",
"PhoneNumber": "Phone",
"WaitTime": "Wait Time",
"FormCancel": "Cancel",
"AriaFormCancel": "Cancel",
"FormSubmit": "Request a number",
"AriaFormSubmit": "Request a number",
"PhoneLabel": "Dial in now",
"AriaPhoneTitle": "Opens the phone application",
"AccessLabel": "Access Code",
"ExpireLabel": "Number Expires in",
"AriaExpireLabel": "Number Expires in Timer",
"DisplayClose": "Close",
"AriaDisplayClose": "Close",
"NetworkFail": "Something went wrong, we apologize for the

inconvenience. Please check your connection settings and try again.",
"NetworkRetry": "OK",
"AriaNetworkRetry": "OK",
"InvalidAccept": "OK",
"AriaInvalidAccept": "OK",

Genesys Widgets Reference ClickToCall

Widgets Reference 282

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

"PhoneExpired": "Phone number has expired!",
"PhoneReRequest": "Request a new number",
"AriaPhoneReRequest": "Request a new number",
"LocalFormValidationEmptyPhoneNumber": "Please enter a phone number",
"ConfirmCloseWindow": "You have unsubmitted form data. Are you sure

you want to quit?",
"AriaConfirmCloseCancel": "No",
"ConfirmCloseCancel": "No",
"AriaConfirmCloseConfirm": "Yes",
"ConfirmCloseConfirm": "Yes",
"AriaWindowLabel": "Click To Call Window",
"AriaMaximize": "Click To Call Maximize",
"AriaMinimize": "Click To Call Minimize",
"AriaClose": "Click To Call Close"

}
}

}

Genesys Widgets Reference ClickToCall

Widgets Reference 283

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('ClickToCall.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

open

Opens the ClickToCall UI.

Example
oMyPlugin.command('ClickToCall.open', {

userData: {},
form: {

autoSubmit: false,
firstname: 'John',
lastname: 'Smith',
phonenumber: 9256349345

},
formJSON: {...}

}).done(function(e){

Genesys Widgets Reference ClickToCall

Widgets Reference 284

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

// ClickToCall opened successfully

}).fail(function(e){

// ClickToCall failed to open
});

Options
Option Type Description

form string
Object containing form data to
prefill the ClickToCall form and
optionally auto-submit the form.

form.autoSubmit boolean Automatically submit the
ClickToCall form.

form.firstname string Value for the first name input
entry field.

form.lastname string Value for the last input name
entry field.

form.phonenumber number Value for the phone number
input entry field.

formJSON object
A JSON object containing a
custom registration form
definition. See Customizable
ClickToCall Registration Form

userData object

Arbitrary data that is attached
with ClickToCall form submit
request. Properties defined here
are merged with default
userData set in the configuration
object.

Resolutions
Status When Returns

resolved When ClickToCall is successfully
opened n/a

rejected When ClickToCall is already open 'already opened'

close

Closes the ClickToCall UI.

Genesys Widgets Reference ClickToCall

Widgets Reference 285

Example
oMyPlugin.command('ClickToCall.close').done(function(e){

// ClickToCall closed successfully

}).fail(function(e){

// ClickToCall is already closed
});

Resolutions
Status When Returns

resolved When ClickToCall is successfully
closed n/a

rejected When ClickToCall is already
closed 'already closed'

minimize

Minimize or unminimize ClickToCall UI.

Example
oMyPlugin.command('ClickToCall.minimize').done(function(e){

// ClickToCall minimized successfully

}).fail(function(e){

// ClickToCall ignores command
});

Resolutions
Status When Returns

resolved Always n/a
rejected Never n/a

Genesys Widgets Reference ClickToCall

Widgets Reference 286

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('ClickToCall.ready', function(e){ /* sample code */ });

Name Description Data Introduced / Updated

ready
ClickToCall is initialized
and ready to accept
commands.

API Metadata

opened The ClickToCall Widget
has been opened. API Metadata

closed The ClickToCall Widget
has been closed. API Metadata

started
The user has started to
fill out the ClickToCall
form.

API Metadata

cancelled
The user has stopped
filling out the ClickToCall
form and closed.

API Metadata 9.0.002.06

submitted The user has submitted
the form. API Metadata 9.0.002.06

completed
The ClickToCall Widget
form was filled out and
a phone number
requested.

API Metadata

expired
The Phone number
ClickToCall widget
requested has expired.

API Metadata

minimized
The ClickToCall widget
has been changed to a
minimized state.

n/a

Genesys Widgets Reference ClickToCall

Widgets Reference 287

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Name Description Data Introduced / Updated

unminimized
The ClickToCall widget
has been restored from
a minimized state to the
standard view.

n/a

Genesys Widgets Reference ClickToCall

Widgets Reference 288

Metadata

Interaction Lifecycle

Every ClickToCall interaction has a sequence of events we describe as the 'Interaction Lifecycle'. This
is a sequence of events that tracks progress and choices from the beginning of an interaction
(opening ClickToCall), to the end (closing ClickToCall), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
started
submitted
cancelled
completed
closed

Lifecycle Scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with ClickToCall. Here
are several sequences of events in the lifecycle that correspond to different scenarios.

The user opened ClickToCall but changed their mind and closed it without entering any information:

ready -> opened -> cancelled -> closed

The user started filling out the form but closed ClickToCall without submitting the phone number
request:

ready -> opened -> started -> cancelled -> closed

The user started filling out the form and submitted it successfully:

ready -> opened -> started -> submitted -> completed -> closed

Tip
For a list of all ClickToCall events, see API Events.

Genesys Widgets Reference ClickToCall

Widgets Reference 289

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of a ClickToCall interaction, these
values will be updated.

The metadata block contains boolean state flags, counters, timestamps, and elapsed times. These
values can be used to track and identify trends or issues with ClickToCall interactions. During run-
time, the metadata can help you offer a smart and dynamic experience to your users.

Reference
Name Type Description Introduced / Updated

ready integer (timestamp)
Timestamp indicating
when ClickToCall is
ready.

opened integer (timestamp)
Timestamp indicating
when ClickToCall was
opened.

started integer (timestamp)
Timestamp indicating
when user started filling
out the form.

cancelled integer (timestamp)
Timestamp indicating
when the ClickToCall
was cancelled without a
phone request.

completed integer (timestamp)
Timestamp indicating
when ClickToCall
successfully filled out
and submitted a form.

closed integer (timestamp)
Timestamp indicating
when ClickToCall was
closed.

expired integer (timestamp)
Timestamp indicating
when the requested
phone number expired.

form object
An object containing the
form parameters when
the form is submitted.

9.0.002.06

Genesys Widgets Reference ClickToCall

Widgets Reference 290

Customizable ClickToCall Registration Form
ClickToCall allows you to customize the registration form shown to users prior to starting a session.
The following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.clicktocall.formJSON configuration option. Alternately, you can pass a new
registration form definition through the ClickToCall.open command:

_genesys.widgets.bus.command("ClickToCall.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default Example

The following example is the default object used to render ClickToCall ’s registration form. This is a
very simple definition that does not use many properties.

Important
You can define any number of inputs here, of any supported type, in any combination.
Our example below simply demonstrates how WebChat defines its default form
internally.

Important
The Phone Number field with name "phonenumber" is required for all custom
ClickToCall forms. This field value is needed to request a phone number from the
Genesys callback API.

formJSON : {
wrapper: "<table>",

Genesys Widgets Reference ClickToCall

Widgets Reference 291

inputs: [

{
id: "cx_clicktocall_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:clicktocall.PlaceholderOptional",
label: "@i18n:clicktocall.FirstName"

},

{
id: "cx_clicktocall_form_lastname",
name: "lastname",
maxlength: "100",
placeholder: "@i18n:clicktocall.PlaceholderOptional",
label: "@i18n:clicktocall.LastName"

},

{
id: "cx_clicktocall_form_phonenumber",
name: "phonenumber",
maxlength: "100",
placeholder: "@i18n:clicktocall.PlaceholderRequired",
label: "@i18n:clicktocall.PhoneNumber",

onkeypress: function(event) {
return (event.charCode >= 48 &&

event.charCode <= 57) || (event.charCode == 43);
}

}
]

}

Using this definition will result in this output:

Genesys Widgets Reference ClickToCall

Widgets Reference 292

Properties

Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input
element.

Special Properties
Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

label string Set the text for the
label. If no value

Genesys Widgets Reference ClickToCall

Widgets Reference 293

Property Type Default Description
provided, no label will
be shown. You may use
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string "<tr><th>{label}</th><td>{input}</td></tr>"

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is
"<tr><th>{label}</th><td>{input}</td></tr>"

validate function

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false
Execute validation on
keypress in addition to
blur and change. This

Genesys Widgets Reference ClickToCall

Widgets Reference 294

Property Type Default Description
ignores non-character
keys like shift, ctrl, and
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1’} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML Attributes
With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:clicktocall.PlaceholderOptional",
label: "@i18n:clicktocall.FirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a text
input.

HTML Output

<input type="text" id="cx_form_firstname
name="firstname" maxlength="100" placeholder="Optional"></input>

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Genesys Widgets Reference ClickToCall

Widgets Reference 295

Labels can be defined as static strings or localization queries.

Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, Form
Wrappers and Input Wrappers:

Form Wrapper
You can specify the parent wrapper for the overall form in the top-level "wrapper" property. In the
example below, we specify this value as "<table></table>". This is the default wrapper for the
ClickToCall form.

{
wrapper: "<table></table>", /* form wrapper */
inputs: []

}

Input Wrapper
Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:clicktocall.PlaceholderOptional",
label: "@i18n:clicktocall.FirstName",
wrapper: "<tr><th>{label}</th><td>{input}</td></tr>" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form.You can change the form wrapper to
"<div></div>" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table wrappers, you are
responsible for styling and aligning your layout. Only the default table-row wrapper is supported by
default Themes and CSS.

Genesys Widgets Reference ClickToCall

Widgets Reference 296

Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how a validation function is defined:

{
id: "cx_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:clicktocall.PlaceholderOptional",
label: "@i18n:clicktocall.FirstName",

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

return true; // or false
}

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the form will not submit, and the input will be highlighted in red. This is achieved by
adding the CSS class "cx-error" to the input.

Validation Function Arguments
Argument Type Description

event JavaScript event object

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Genesys Widgets Reference ClickToCall

Widgets Reference 297

Form Submit

Custom Input field form values are submitted to the server as key value pairs in the form submit
request, where the input field names are the property keys and the input field values are the property
values.

Please note the Phone Number field - with 'name: "phonenumber"', this field is required for all custom
ClickToCall forms as this field value is needed to request a phone number from the Genesys Callback
API.

Form Prefill

You can prefill the custom form using ClickToCall.open command by passing the form (form data) and
formJSON (custom registration form), provided the form input names in the formJSON must match
with the property names in the form data.

The following example will open the ClickToCall form with the phone number already entered in the
Phone input field.

_genesys.widgets.bus.command("ClickToCall.open", {

formJSON: {
wrapper: "<table>",
inputs: [{

id: "cx_form_phone_number",
name: "phonenumber",
maxlength: "12",
placeholder: "@i18n:clicktocall.PlaceholderRequired",
label: "@i18n:clicktocall.PhoneNumber"

}]
},

form: {
phonenumber: 9453222222

}
});

Genesys Widgets Reference ClickToCall

Widgets Reference 298

Common
Common is a utility object available for import into Plugins/Widgets and Extensions. It is also
accessible directly from the path window._genesys.widgets.common.

Common provides utility functions and dynamically generates common HTML Containers used
throughout Genesys Widgets.

For all examples below, assume that _genesys.widgets.common has been stored in a local variable
named 'Common'.

var Common = _genesys.widgets.common;

Common.Generate.Container({options})

Dynamically generates a new HTML Container in matching the style of Genesys Widgets with the
selected components you request in your options object. Returns the generated container HTML as a
jQuery wrapped set.

Example
'Generate an Overlay Container'

var ndContainer = Common.Generate.Container({

type: 'overlay',
title: 'My Overlay',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'call-outgoing',
controls: 'close',
buttons: false

}),

'Generate a Toast Container'

var ndContainer = Common.Generate.Container({

type: 'generic',
title: 'My Toast',body: 'Some HTML here as a string or jQuery wrapped set',
icon: 'chat',
controls: '',
buttons: {

type:'binary',
primary: 'OK',
secondary:'cancel'

}
}),

Genesys Widgets Reference Common

Widgets Reference 299

Arguments
Argument Type Description

options object An object containing options to
apply to the generated container.

options.type string

'generic' or 'overlay'. Overlay
containers have special CSS
properties for appearing inside
the Overlay widget. Default is
'generic'.

options.title string Title to apply to the container's
titlebar area.

options.body string or jQuery wrapped set The HTML body you want the
container to wrap.

options.icon string CSS Classname of icon to use.

options.controls string

Select from a set of window
control buttons to show at the
top right. 'close' = Show only the
close button. 'minimize' = Show
only the minimize button. 'all' =
Show both close and minimize
buttons.

options.buttons object
Options for displaying action
buttons at the bottom of the
container, such as OK and Cancel
buttons.

options.buttons.type string

Currently 'binary' is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
'binary' as the type here if you
wish to show typical 'accept' and
'dismiss' buttons.

options.buttons.primary string
Display name on the primary
button. (for example 'OK', 'Yes',
'Accept', 'Continue', etc)

options.buttons.secondary string
Display name on the secondary
button. (for example 'Cancel',
'No', 'Dismiss', 'Reject', etc)

Common.Generate.Buttons({options})

Dynamically generates a new HTML Binary Button set in matching the style of Genesys Widgets with

Genesys Widgets Reference Common

Widgets Reference 300

the selected options in your options object. Returns the buttons as a jQuery wrapped set.

Example
'Generate Binary Buttons'

var ndButtons = Common.Generate.Buttons({

type: 'binary',
primary: 'OK',
secondary: 'Cancel'

}),

Arguments
Argument Type Description

options object Options for generating buttons,
such as OK and Cancel buttons.

options.type string

Currently 'binary' is the only
supported button set at this time.
Additional sets and
arrangements will be available in
a later release. Please pass
'binary' as the type here if you
wish to show typical 'accept' and
'dismiss' buttons.

options.primary string
Display name on the primary
button. (for example 'OK', 'Yes',
'Accept', 'Continue', etc)

options.secondary string
Display name on the secondary
button. (for example 'Cancel',
'No', 'Dismiss', 'Reject', etc)

Common.Generate.Icon(name)

Dynamically generates an icon from the included icon set. Icons are in SVG format.

Example
'Generate Chat Icon'

var ndChatIcon = Common.Generate.Icon('chat');

Genesys Widgets Reference Common

Widgets Reference 301

'Insert Chat Icon'

$('#your_icon_container').append(Common.Generate.Icon('chat'));

Arguments
Argument Type Description

name string
Select the icon you want to
generate by name. See the icon
reference page for icon names.

Common.config(object)

Configure some debug options for Common at runtime.

Example
'Enable full debug logging'

Common.config({debug: true, debugTimestamps: true});

Arguments
Argument Type Description

object object

Supported options are 'debug'
and 'debugTimestamps'. Setting
debug to true will enable debug
messages created by
Common.log(). Setting
debugTimestamps to true will
add timestamps to the front of
each debug message created by
Common.log(). Default value for
both is false.

Genesys Widgets Reference Common

Widgets Reference 302

Common.checkPath(object, path)

Check for the existence of a sub-property of an object at any depth. Returns the value of that
property if found otherwise it returns undefined. Useful for checking configuration object paths
without having to check each sub-property level individually.

Example
'Check for window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.checkPath(window, '_genesys.main')){
//... Utilize oMainConfig

}

Arguments
Argument Type Description

object object
An Object you want checked for a
particular sub property at any
depth.

path string The object path in dot notation
you wish to search for.

Common.createPath(object, path, value)

Related to checkPath, createPath lets you specify a target object and path string but lets you create
the path and set a value for it. This saves you the pain of defining each node in the path individually.
All nodes in your path will be created as objects. Your final node, the property you are trying to
create, will be whatever value you assign it.

Example
'Create window._genesys.main'

var oMainConfig = false;

if(oMainConfig = Common.createPath(window, '_genesys.main', {debug:true})){
//... Utilize oMainConfig

}

Genesys Widgets Reference Common

Widgets Reference 303

Arguments
Argument Type Description

object object An Object you want to add your
new path to.

path string The object path in dot notation
you wish to create.

value any
The value you want to assign to
the final node (property) in your
path.

Common.linkify(string, options)

Search for and convert URLs within a string into HTML links. Returns transformed string.

Example
'Check for window._genesys.main'

var sString = 'Please visit www.genesys.com';
sString = Common.linkify(sString, {target: 'self'});
// sString == 'Please visit www.genesys.com

Arguments
Argument Type Description

string string Any string you want to check for
URLs and have them converted.

options object A list of options to apply to the
linkify operation.

options.target string

Choose the HTML TARGET
attribute to apply to the
generated links. Default is
'_blank'. Set this option to 'self'
to apply the target '_self' to the
generated links.

Genesys Widgets Reference Common

Widgets Reference 304

Common.log(mixed, type)

Log something to the browser's console. When using Common.log, _genesys.main.debug must be set
to true to see your logs. This allows you to add debug logging to your code without worrying about
unwanted debug messages in production. If timestamps are enabled, they will be prefixed to all
messages printed through Common.log.

Example
'Check the contents of window._genesys.main'

var Common = _genesys.widgets.common;
Common.log(window._genesys.main);

if(!window._genesys.main){
Common.log('window._genesys.main is not defined', 'error');

}

Arguments
Argument Type Description

mixed Any Any value or message you'd like
to log.

type string

You can specify the log type,
such as 'log', 'debug' and 'error'.
Default type is 'log'. Note, if your
browser doesn't support the
'debug' or 'error' log type, use
'log' instead.

Common.sanitizeHTML(string)

Search for and escape < and > characters within a string. Returns transformed string. Useful for
escaping HTML.

Example
'Check for window._genesys.main'

var sString = 'Please visit <a href='www.genesys.com'
target='_self'>www.genesys.com';

sString = Common.sanitizeHTML(sString);

Genesys Widgets Reference Common

Widgets Reference 305

// sString == 'Please visit www.genesys.com''

Arguments
Argument Type Description

string string Any string you want to be
transformed.

Common.updateTemplateI18n(element, object)

Searches through an element's contents for i18n string elements to update with new strings. Used
when updating the language in real-time. Works by searching for elements with the CSS classname
'i18n' and reading the custom attribute 'data-message' to match the string name in the language
object. See example below.

Example
'Check for window._genesys.main'

var ndContainer = $('<div><button class='i18n' data-message='CustomButton001'>
</button></div>');

Common.updateTemplateI18n(ndContainer, {CustomButton001: 'Accept'});

// ndContainer == <div><button class='i18n' data-
message='CustomButton001'>Accept</button></div>

Arguments
Argument Type Description

element jQuery wrapped set Element you want to search
within to replace i18n strings.

object Object of i18n Strings

The list of languages strings you
want to update your UI with. This
object comes from the App.i18n
event or you can define your own
custom object inline or using
some other system. Object
format is a simple name:value
pair format. the 'data-message'
attribute on your HTML element

Genesys Widgets Reference Common

Widgets Reference 306

Argument Type Description
must match one of these
property names to be updated.

Common.debugIcons

Returns the list of all the Icons with their names that Widgets support.

Example
'Fetch and Display list of icons present in Widgets'

Common.debugIcons()

Common.debug

Adds debug logs in to the browser's console. When using Common.debug, _genesys.main.debug
must be set to true to see your logs. This allows you to add debug logging to your code without
worrying about unwanted debug messages in production. If timestamps are enabled, they will be
prefixed to all messages printed through Common.debug.

Example
'Check the File upload limits in WebChatService'

Common.debug(data_server_returned_file_limits);

Arguments
Argument Type Description

mixed Any
Any value or message you'd like
to add debug log. Note: This is
only supported if your browser
supports debug log type.

Genesys Widgets Reference Common

Widgets Reference 307

Common.error

Adds error logs in to the browser's console. When using Common.error, _genesys.main.debug must
be set to true to see your logs. This allows you to add error logging to your code without worrying
about unwanted error messages in production.

Example
'Logging error messages'

Common.error('A widget plugin did not receive the following config:');

Arguments
Argument Type Description

mixed Any
Any value or message you'd like
to add error log. Note: This is
only supported if your browser
supports error log type.

Common.populateAllPlaceholders

Adds place holder content to the input elements in a form with the given text strings.

Example
'Show placeholders strings in a form'

Common.populateAllPlaceholders($('#your_form'), {strings})

Arguments
Argument Type Description

Form Selector jQuery DOM selector for a form

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute 'data-message-type'
with value 'placeholder' for the
place holder details to appear.

Genesys Widgets Reference Common

Widgets Reference 308

Argument Type Description

Key/Value pairs object

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where, key
should be equal to the 'data-
message' attribute value of an
input element and value can be
any text that you would like to
display.

Common.populateLanguageStrings

Adds the preferred language place holder text to the given input elements in a form.

Example
'Show placeholders strings in a form'

Common.populateLanguageStrings($('#your_form'), {strings})

Arguments
Argument Type Description

Form Selector jQuery DOM selector for a form

Form containing input elements.
Note: Input elements should
contain i18n class name and data
attribute 'data-message-type'
with value 'placeholder' for the
place holder details to appear.

Key/Value pairs object

Placeholder messages that needs
to be displayed. This is an object
with key-value pairs where, key
should be equal to the 'data-
message' attribute value of an
input element and value can be
any text that you would like to
display.

Genesys Widgets Reference Common

Widgets Reference 309

Common.populateIcons

Show all the Icons on a Widget.

Example
'Populate all Widget Icons'

Common.populateIcons($('#your_continer'));

Arguments
Argument Type Description

element jQuery DOM selector
Specify the Widget container for
which all the Icons have to be
displayed.

Common.insertIcon

Adds an icon before the selected element.

Example
'Insert a check mark icon to an element you desire.'

Common.insertIcon($('#your_element'), 'alert-checkmark', 'alert')

Arguments
Argument Type Description

element jQuery DOM selector An html element to which Icon is
to be displayed.

Icon name string

Name of the Icon that you would
like to display. Note: Refer to
Common.debugIcons method to
find out all the icons names that
widgets supports.

Icon Aria Name string Name for the Icon to be read by

Genesys Widgets Reference Common

Widgets Reference 310

Argument Type Description
screen readers.

Common.injectScript

Injects javascript code dynamically into widgets with the help of a script tag.

Example
'Inject your Widget WebChat extension plugin.'

Common.injectScript('path/to/LoadWebChat.ext.js')

Arguments
Argument Type Description

Script file name string path to JavaScript file JavaScript file name that needs
to be injected into widgets.

Common.mobileScreenScale

Re-sizes and fits Widget to any mobile screen.

Example
'Fit your widget to any mobile screen.'

var mobileScaledWidget = Common.mobileScreenScale($('#your_widget'));

Arguments
Argument Type Description

element jQuery DOM Selector Your main Widget wrapper
container selector that contains

Genesys Widgets Reference Common

Widgets Reference 311

Argument Type Description
the entire Widget with 'cx-
titlebar', 'cx-body', 'cx-footer',
'cx-button-container' and 'cx-
message-container' classes in it.

Common.showLoading

Show loading spinner Icon.

Example
'Show loading spinner during an Ajax request'

Common.showLoading($('#your_container'))

Arguments
Argument Type Description

element jQuery DOM Selector
An html container where loading
spinner should appear. This adds
a class name 'cx-loading'.

Common.hideLoading

Remove loading spinner Icon.

Example
'Remove loading spinner after the Ajax request'

Common.hideLoading($('#your_container'))

Genesys Widgets Reference Common

Widgets Reference 312

Arguments
Argument Type Description

element jQuery DOM Selector An html container which contains
the loading spinner.

Common.showWaiting

Show waiting Icon.

Example
'Show waiting Icon when uploading a file.'

Common.showWaiting($('#your_container'), 'waiting')

Arguments
Argument Type Description

element jQuery DOM Selector
An html container where waiting
symbol should appear. This adds
a class name 'cx-waiting'.

Aria Label string
The value of the aria-label
attribute for the loading screen
icon. The default value is
‘waiting’

Common.hideWaiting

Remove waiting Icon.

Example
'Remove waiting Icon after file upload is done.'

Common.hideWaiting($('#your_container'))

Genesys Widgets Reference Common

Widgets Reference 313

Arguments
Argument Type Description

element jQuery DOM Selector An html container which contains
the waiting symbol.

Common.watch

Repeat your function execution for every 'x' milliseconds (default 1 second) up to a maximum
number of times (default - infinite) or till your function returns true.

Example
'Make Request Notifications till none are pending.'

Common.watch(function(iteration, maxIterations){

if(bRequestNotificationsPending){
// ..POST Request

}
return !bRequestNotificationsPending;

}, 3000, 30)

Arguments
Argument Type Description

function name function
The function that you would like
to execute. It should return true/
false.

frequency milliseconds
Execute the function for every 'x'
milliseconds till the it returns
true.

limit number The maximum number of times
function is executed.

Genesys Widgets Reference Common

Widgets Reference 314

Common.addDialog

Create your own dialog box and append it in to the Widget.

Example
'Add a dialog box on your preferred container div

Common.addDialog($('#your_container'), $('#your_dialog_box'), 'my_warning')

Arguments
Argument Type Description

element jQuery selector The parent container that holds
the dialog box.

element jQuery selector

The actual dialog box that you
would like to display. This should
contain the data-dialog attribute
with the value equal to the dialog
box name.

name string Dialog box name.

Common.showDialog

Show the dialog box that you prefer, using the dialog box name created with Common.addDialog().

Example
'Show the dialog box created using Common.addDialog()'

Common.showDialog($('#your_container'), 'your_dialog_box_name');

Arguments
Argument Type Description

element jQuery Selector The parent container which has
the Dialog box appended in to it.

Genesys Widgets Reference Common

Widgets Reference 315

Argument Type Description
name string The actual dialog box name.

Common.hideDialog

Hide the dialog box that you showed using Common.showDialog().

Example
'Hide dialog box'

Common.hideDialog($('#your_container'), 'your_dialog_box_name);

Arguments
Argument Type Description

element jQuery Selector The parent container which is
showing the dialog box.

name string The actual dialog box name.

Common.hideDialogs

Hide all the dialog boxes. Dialog box name is not needed here.

Example
'Hide all dialog boxes.'

Common.hideDialogs($('#your_container'));

Genesys Widgets Reference Common

Widgets Reference 316

Arguments
Argument Type Description

element jQuery Selector The parent container which is
showing all the dialog boxes.

Common.showAlert

Show an native alert dialog box on the Widget you prefer with your own text message. By default, a
primary button is added to dismiss the alert dialog.

Example
'Show an alert dialog box on the Widget you prefer. But default it adds the dismiss button.

Common.showAlert($('.cx-widget.cx-webchat'), {text: 'your alert message', buttonText: 'Ok'})

Arguments
Argument Type Description

element jQuery selector

The Widget plugin container that
should display the alert dialog.
This should be the top level
container wrapper holding the
Widget.

options object
The data options containing the
text to be shown on the Alert
dialog box.

options.text string Display text on the Alert dialog
box.

options.buttonText string Display text on the primary
button. (for example 'OK')

Common.bytesToSize

Convert any number in bytes to Kilobytes, Megabytes, Gigabytes and Terabytes.

Genesys Widgets Reference Common

Widgets Reference 317

Example
'bytes to KB, MB, GB or TB.'

var fileSize = Common.bytesToSize(parseInt(fileSizeInBytes));

Arguments
Argument Type Description

bytes number Number in bytes size.

Common.getFormattedTime

Returns time in 12 hrs or 24 hrs format from the actual date timestamp. If no timestamp is provided,
it uses current time.

Example
'convert date timestamp to return time in 12 hrs format'

var formattedTime = Common.getFormattedTime(timestamp, 12);

Arguments
Argument Type Description

timestamp Date JavaScript Date timestamp
object.

format number Time format with value 12 or 24.

Genesys Widgets Reference Common

Widgets Reference 318

Console

• Configuration
• Localization
• Commands
• Events

Overview

The Console Widget is a tool for debugging commands and events on the widget bus. You can test,
debug, or demo all commands using dynamically populated lists and create event watchlists that
alert you when an event has fired.

Console provides an easy to use interface for debugging the widget bus that compliments the
standard command line methods. You can drag and drop the console anywhere on your screen and

Genesys Widgets Reference Console

Widgets Reference 319

when you refresh the page or move to another one, Console reappears right where you left it, as you
left it. It is a great tool for getting to know the widget bus, the API for each widget, and debugging
issues.

Usage

WebChat can be launched manually by the following methods:

• Calling the command "Console.open"
• Configuring settings to show Console upon opening the browser.
• Creating your own custom button or link to open Console (using the "Console.open" command)

Genesys Widgets Reference Console

Widgets Reference 320

Configuration

Description

Console option to open on initial loading

Example
window._genesys.widgets.console = {open: true};

Options
Name Type Description Default Required

open boolean
Set to true for
console to open at
start.

false false

Genesys Widgets Reference Console

Widgets Reference 321

Localization

Important
For information on how to set up localization, please refer to the Localization Guide

Strings
{

"ConsoleTitle": "CXBus Console",
"Commands": "Commands",
"Plugin": "Plugin",
"ConsoleErrorButton": "OK",
"Execute": "Execute",
"Event": "Event",
"SubscribeTo": "Subscribe to",
"Unsubscribe": "Unsubscribe",
"ReturnData": "Return Data",
"EventsSubscriber": "Events Subscriber",
"Watch": "Watch",
"pluginNameEvent": "PluginName.Event",
"ClearAll": "Clear All",
"OptionsSample": "JSON Formatted Options {'option': value}"

}

Genesys Widgets Reference Console

Widgets Reference 322

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Console.open');

open

Opens the Console UI.

Example
oMyPlugin.command('Console.open').done(function(e){

// Console opened successfully

}).fail(function(e){

// Console failed to open
});

Resolutions
Status When Returns

resolved When Console is successfully
opened n/a

rejected When Console is already open 'Already opened'

Genesys Widgets Reference Console

Widgets Reference 323

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

close

Closes the Console UI.

Example
oMyPlugin.command('Console.close').done(function(e){

// Console closed successfully

}).fail(function(e){

// Console failed to close
});

Resolutions
Status When Returns

resolved When Console successfully
closed n/a

rejected When Console is already closed 'Already closed'

configure

Modify configuration options for Console. See configuration page for Console

Example
oMyPlugin.command('Console.configure', {

open: false

}).done(function(e){

// Console configured successfully

}).fail(function(e){

// Console failed to configure
});

Genesys Widgets Reference Console

Widgets Reference 324

Options
Option Type Description

open boolean
If setting is open: true, the
console will automatically be
open when widgets is launched
and the console is ready.

Resolutions
Status When Returns

resolved When Console configuration is
provided n/a

rejected When no configuration provided 'Invalid Configuration'

Genesys Widgets Reference Console

Widgets Reference 325

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Console.ready', function(e){});

Name Description Data

ready Console is initialized and ready to
accept commands n/a

opened The Console widget has
appeared on screen n/a

closed The Console widget has been
removed from the screen n/a

Genesys Widgets Reference Console

Widgets Reference 326

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Engage
Introduced: 9.0.002.06

• Configuration
• Localization
• API Commands
• API Events

Overview

The Engage plugin can integrate any Engage solution with Widgets. This plugin is generic and
contains commands that automate engagement within Widgets. Starting with version 9.0.015.11, the
Engage plugin includes Offers, which allows a customer to view a product or promotion on a page. It

Genesys Widgets Reference Engage

Widgets Reference 327

https://docs.genesys.com/Documentation/RN/9.0.x/gwc-wgt90rn/gwc-wgt9001511

comes with many display modes and rendering options, such as overlay/toaster mode with text or
image-only layouts, or both.

Usage

The Engage plugin can be used to show either an invite or an offer via the following methods:

• Calling the Engage.invite command
• Calling the Engage.offer command

Namespace

The Engage plugin has the following namespaces tied to each of the following types.

Type Namespace
i18n - Localization Engage
CXBus - API Commands & API Events Engage
CSS .cx-engage

Screenshots

Engage Invite

•

Mobile mode Engage Invite view
with dark theme

•

Genesys Widgets Reference Engage

Widgets Reference 328

Mobile mode Engage Invite view
with light theme

Engage Offer

•

Desktop Toast view with both
image and text

•

Desktop Modal Overlay view
with text on top

•

Desktop Overlay view with text
at bottom

•

Desktop Toast view with text
content on right side

Genesys Widgets Reference Engage

Widgets Reference 329

•

Desktop Toast view with text
content on left side

•

Desktop Overlay view with text
on right side

•

Desktop Modal Overlay view
with text on left side

•

Mobile Offer inserted onto the
top of a web page

•

Genesys Widgets Reference Engage

Widgets Reference 330

Mobile Offer view in modal
overlay with background area
grayed out

•

Mobile Offer view in modal
overlay

Genesys Widgets Reference Engage

Widgets Reference 331

Configuration

Description

No Configuration options

Genesys Widgets Reference Engage

Widgets Reference 332

Localization
No Localization options

Genesys Widgets Reference Engage

Widgets Reference 333

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Engage.invite');

invite

Opens the Engage Widget and renders the text based on the options provided. If no options are
provided, it will not open.

Example
oMyPlugin.command('Engage.invite', {

'type':'toast',
'timeout':3000,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',
'accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close',
'command': 'WebChat.open',
'options':{'proactive': true, 'userData': {'category': 'shoes'}}

});

oMyPlugin.command('Engage.invite',{
'type':'toast',
'timeout':3000,
'force': true,
'title':'Engage Title',
'ariaTitle':'Engage Invite',
'body':'Engage invite body content',

Genesys Widgets Reference Engage

Widgets Reference 334

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

'accept':'Yes',
'decline':'No, thanks',
'ariaAccept':'Yes',
'ariaDecline':'No, thanks',
'ariaClose':'Close'

}).done(function(response){

// Act upon the received response code

switch(response){
case 'accepted':oMyPlugin.command('WebChat.open');

break;
case 'declined': break;
case 'closed': break;
case 'timeout': break;

}

});

Options

Option Type Description Accepted
Values Default Introduced /

Updated

type string Widget display
type. toast

timeout number
Timeout
integer in
milliseconds.

n/a

title string String for
widget title. n/a

ariaTitle string
Aria label text
for the Engage
invite window.

n/a 9.0.015.04

body string String for offer
body text. n/a

accept string
String for
Accept button
text.

n/a

ariaAccept string
Aria label text
for the Accept
button.

n/a 9.0.016.10

decline string
String for
Decline button
text.

n/a

ariaDecline string
Aria label text
for the Decline
button.

n/a 9.0.016.10

ariaClose string
Aria label text
for the Engage
Close button.

n/a 9.0.016.10

Genesys Widgets Reference Engage

Widgets Reference 335

Option Type Description Accepted
Values Default Introduced /

Updated

command string Command to
execute. n/a

options object
Options related
to the
command
provided.

n/a

priority number

Replace the
active lower
priority Engage
invite with the
higher priority
Engage invite.

n/a 0 9.0.015.11

force boolean

Replace the
active Engage
invite with the
new Engage
invite
irrespective of
priorities.

n/a false 9.0.015.11

Resolutions
Status When Returns

resolved When engage invite is accepted
by user. accepted

resolved When engage invite is declined
by user. declined

resolved When engage invite widget is
closed by user. closed

resolved When engage invite widget
closes due to timeout. timeout

offer

Opens an Offer Widget using the data sent through the command options provided below. It can
include both rendering options and the actual data that needs to be displayed in the Offer Widget. If
no options are provided, it will not open.

Example
oMyPlugin.command('Engage.offer', {

Genesys Widgets Reference Engage

Widgets Reference 336

mode:'overlay',
modal:true,
layout:'leftText',
priority: 1,
title: 'GRAB WHAT YOU NEED!!',
ariaTitle: 'Offers',
headline:'We Got All!',
description:'Get free NextDay delivery on orders of $35 or more. Start shopping now!',

cta:{
text:'Join',
url:'https://www.genesys.com',
target:'_blank'

},

image:{
src:'https://picsum.photos/id/237/300/300',
alt:'Alternate Text for Image'

},

styles:{
closeButton:{

'color':'red'
}

},
ariaCTA:'Join',
ariaClose:'Close Offer'

});

Options

Option Type Description Accepted
Values Default Introduced /

Updated

mode string Display type of
Offer Widget.

overlay,
toaster toaster 9.0.015.04

modal boolean

Applicable only
when mode is
'overlay'. A
smokescreen
will be shown
in the
background of
overlay modal
window. This
window can be
dismissed by
clicking
anywhere in
the
smokescreen
area.

n/a false 9.0.015.04

layout string
Additional
layout options
supported for
all modes.

minimal,
leftText,
rightText,
topText,

leftText 9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 337

Option Type Description Accepted
Values Default Introduced /

Updated
bottomText

headline string Offer title
header text. n/a n/a 9.0.015.04

ariaTitle string
Aria label text
for the Offer
window.

n/a n/a 9.0.015.04

description string
Offer body
description
text.

n/a n/a 9.0.015.04

cta object

An object
containing
html attributes
and/or CXBus
command for
the CTA (call to
action) button.

n/a n/a 9.0.015.04

cta.text string CTA button
text. n/a n/a 9.0.015.04

cta.url string

URL string for
the CTA button.
Note: The
URL must be
properly
defined with
the complete
Protocol URL
Address. For
example,
https://www.genesys.com.

_blank,
_parent, _self,
_top,
framename

n/a 9.0.015.04

cta.target string
To specify
where the URL
should be
opened.

n/a n/a 9.0.015.04

cta.command string
A CXBus
command to
execute.

n/a n/a 9.0.015.04

cta.commandOptionsstring
Options related
to CXBUs
command.

n/a n/a 9.0.015.04

image object
An object
containing
image tag
attributes.

n/a n/a 9.0.015.04

image.src string URL of the
image. n/a n/a 9.0.015.04

image.alt string Alternate text
for the image. n/a n/a 9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 338

Option Type Description Accepted
Values Default Introduced /

Updated

image.title string

To indicate the
screen reader
user whether
the image
opens the URL
in a new
window.

n/a n/a 9.0.016.10

insertAfter string

Applicable only
in mobile
mode. An id or
class name of
an html
selector from
the host page.
The Offer will
be inserted
after this
element. The
value
mentioned
here should be
preceded with
the standard
Class ('.') and
ID selector
('#') character.

n/a n/a 9.0.015.04

insertBefore string

Applicable only
in mobile
mode. An id or
class name of
an html
selector from
the host page.
The Offer will
be inserted
before this
element. The
value
mentioned
here should be
preceded with
the standard
Class ('.') and
ID selector
('#') character.

n/a n/a 9.0.015.04

insertInto string

Applicable only
in mobile
mode. An id or
class name of
an html
selector from
the host page.
The Offer will

n/a n/a 9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 339

Option Type Description Accepted
Values Default Introduced /

Updated
be appended
inside this
element. The
value
mentioned
here should be
preceded with
the standard
Class ('.') and
ID selector
('#') character.

styles object
An Object
containing
styles for the
Offer content.

n/a n/a 9.0.015.04

styles.closeButtonobject
An Object
containing
styles for the
close button.

n/a n/a 9.0.015.04

styles.closeButton.colorstring Color of the
close button. n/a n/a 9.0.015.04

styles.closeButton.opacitynumber
CSS 'opacity'
property for
the close
button.

n/a n/a 9.0.015.04

styles.overlay object

An Object
containing
styles for the
overlay
container.

n/a n/a 9.0.015.04

styles.overlay.top string
CSS 'top'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.rightstring
CSS 'right'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.bottomstring
CSS 'bottom'
property for
the overlay
container.

n/a n/a 9.0.015.04

styles.overlay.left string

CSS 'left'
property for
the overlay
container.
Note: When
all the
position

n/a n/a 9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 340

Option Type Description Accepted
Values Default Introduced /

Updated

values are
provided,
the order of
precedence
will be Top,
Right,
Bottom and
Left.

styles.overlay.centerboolean
Aligns overlay
container to
the center of
the screen.

n/a true 9.0.015.04

styles.offer object
An Object
containing
styles for the
Offer window.

n/a n/a 9.0.015.04

styles.offer.backgroundColorstring
Background
color of the
Offer.

n/a n/a 9.0.015.04

styles.offer.color string Text color of
the Offer. n/a n/a 9.0.015.04

styles.offer.paddingstring Padding for the
Offer container. n/a 0 9.0.015.04

styles.title object
An Object
containing
styles for the
title.

n/a n/a 9.0.015.04

styles.title.font string
CSS 'font'
property for
the title.

n/a n/a 9.0.015.04

styles.title.textAlignstring
CSS 'text-align'
property for
the title.

n/a n/a 9.0.015.04

styles.headline object
An Object
containing
styles for the
header text.

n/a n/a 9.0.015.04

styles.headline.fontstring
CSS 'font'
property for
the header
text.

n/a n/a 9.0.015.04

styles.headline.textAlignstring
CSS 'text-align'
property for
the header
text.

n/a n/a 9.0.015.04

styles.description object
An Object
containing
styles for the

n/a n/a 9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 341

Option Type Description Accepted
Values Default Introduced /

Updated
Offer
description
text.

styles.description.fontstring
CSS 'font'
property for
the description
text.

n/a n/a 9.0.015.04

styles.description.textAlignstring
CSS 'text-align'
property for
the description
text.

n/a n/a 9.0.015.04

styles.ctaButton object

An Object
containing
styles for call
to action
button in the
Offer window.

n/a n/a 9.0.015.04

styles.ctaButton.fontstring

CSS 'font'
property for
the text in call
to action
button.

n/a n/a 9.0.015.04

styles.ctaButton.textAlignstring

CSS 'text-align'
property for
the text in call
to action
button.

n/a n/a 9.0.015.04

styles.ctaButton.backgroundstring

CSS
'background'
property for
the call to
action button.

n/a n/a 9.0.015.04

styles.ctaButton.colorstring

CSS 'color'
property for
the text in call
to action
button.

n/a n/a 9.0.015.04

styles.ctaButton.fontSizestring

CSS 'font-size'
property for
the text in call
to action
button.

n/a n/a 9.0.015.04

ariaCTA string
Aria label text
for the Offer
CTA button.

n/a n/a 9.0.016.10

ariaClose string
Aria label text
for the Offer
Close button.

n/a n/a 9.0.016.10

priority number Replace the n/a 0 9.0.015.11

Genesys Widgets Reference Engage

Widgets Reference 342

Option Type Description Accepted
Values Default Introduced /

Updated
active lower
priority Engage
Offer with the
higher priority
Engage Offer.

force boolean

Replace the
active Engage
Offer with the
new Engage
Offer
irrespective of
priorities.

n/a false 9.0.015.11

Genesys Widgets Reference Engage

Widgets Reference 343

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Engage.ready', function(e){});

Name Description Data Introduced / Updated

ready
The Engage Widget is
initialized and ready to
accept commands on
the bus.

n/a

opened

The Engage Widget has
opened.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

CTA

When the user clicks on
the CTA button in
Engage Widget.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

hover

When the user first
hovers over the Engage
Widget.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

dismissed When the user closes
the Engage Widget by Metadata 9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 344

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Name Description Data Introduced / Updated
clicking on the close
button.
Note: Applicable
only to Engage.offer
command

closed

The Engage Widget has
closed.
Note: Applicable
only to Engage.offer
command

Metadata 9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 345

Metadata

Important
Applicable only for Engage.offer command

Interaction Lifecycle

Every Offer Engage interaction has a sequence of events we describe as the 'Interaction Lifecycle'.
This is a sequence of events that tracks progress and choices from the beginning of an interaction
(opening Engage Offers), to the end (closing Offers), and every step in between.

The following events are part of the Interaction Lifecycle:

ready
opened
CTA
hover
dismissed
closed

Lifecycle Scenarios

An Interaction Lifecycle can vary based on each user's intent and experience with the Offer Engage
Widget. Here are several sequences of events in the lifecycle that correspond to different scenarios.

The user opened the Offer Engage Widget but changed their mind and closed it without seeing the
Offer details:

ready -> opened -> dismissed -> closed

The user opened the Offer Engage Widget, hovered over Offer details then closed it:

ready -> opened -> hover -> dismissed -> closed

The user opened the Offer Engage Widget and clicked on the button, which triggers CTA:

ready -> opened -> CTA -> closed

Tip
For a list of all Offer Engage events, see API Events.

Genesys Widgets Reference Engage

Widgets Reference 346

Metadata

Each event in the Interaction Lifecycle includes the following block of metadata. By default, all values
are set to false. As the user progresses through the lifecycle of an Offer Engage interaction, these
values are updated.

The metadata block contains boolean state flags, timestamps, and elapsed times. These values can
be used to track and identify trends or issues with interactions. During run-time, the metadata can
help you offer a smart and dynamic experience to your users.

Reference
Name Type Description Introduced / Updated

opened integer (timestamp)
Timestamp indicating
when the Offer was
opened.

9.0.015.04

closed integer (timestamp)
Timestamp indicating
when the Offer was
closed.

9.0.015.04

dismissed integer (timestamp)

Timestamp indicating
when the user
dismissed the Offer by
clicking the close
button.

9.0.015.04

triggeredCTA integer (timestamp)
Timestamp indicating
when the CTA was
triggered.

9.0.015.04

timeBeforeCTA integer (milliseconds)

Total time in
milliseconds from when
the user opened the
Offer to when the CTA is
triggered.

9.0.015.04

timeFirstHover integer (timestamp)
Timestamp indicating
when the user first
hovered over Offer.

9.0.015.04

timeBeforeHover integer (milliseconds)

Total time in
milliseconds from when
the user opened the
Offer to when the user
first hovered over Offer.

9.0.015.04

timeElapsedHover integer (milliseconds)
Total time in
milliseconds when the
user hovered over Offer.

9.0.015.04

elementClicked string
Name of CTA element
that was clicked
('button').

9.0.015.04

Genesys Widgets Reference Engage

Widgets Reference 347

KnowledgeCenterService
• Configuration
• Localization
• API Commands
• API Events

Overview

Important
KnowledgeCenterService Widget is available starting from the 8.5.004.09 version of
the Genesys Widgets

KnowledgeCenterService exposes a high-level API for utilizing Genesys Knowledge Center services.
You can use these services for exposing corporate knowledge on the web site via standard widgets or
for developing your own custom knowledge-aware widgets. KnowledgeCenterService provides a
unified way for all widgets utilizing bus communication to access the corporate knowledge easily.

Usage

KnowledgeCenterService and the matching Search and ChatDeflection widgets work together right
out of the box and they share the same configuration object. Using Search or ChatDeflection requires
use of KnowledgeCenterService.

You can also use KnowledgeCenterService as a high-level API using bus commands and events to
build your own knowledge-aware widget or other UI features based on KnowledgeCenterService
events.

Namespace

Knowledge Center Service plugin has the following namespaces tied-up with each of the following
types.

Type Namespace
Configuration knowledgecenter
CXBus - API Commands & API Events KnowledgeCenterService

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 348

Customization

KnowledgeCenterService has many configuration options but no customization options. It is meant as
a plug-n-play type of plugin and works as-is.

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 349

Configuration

Description

KnowledgeCenterService, Search, and ChatDeflection share the configuration namespace
'_genesys.widgets.knowledgecenter'. KnowledgeCenterService defines connection options and
default values for content retrieval options while other plugins have configuration specific for every
particular function.

Example
window._genesys.widgets.knowledgecenter = {

host:'http://gks-dep-stbl:9092/gks-server/v1',
knowledgebases:['knowledgefaq','knowledgeartiсles'],
lang:'en',
media:'chat',
maxTrendingResults:5,
maxSearchResults:3,
apiClientId:'widget',
apiClientMediaType:'selfservice'

}

Options
Name Type Description Default Required

host string Knowledge Center
Server API URL. n/a Always

knowledgebases object

List of knowledge
base IDs that
knowledge will be
searched in. Empty
value will allow
search in all
knowledge bases
that are publicly
available.

Always

lang string
Language in which
knowledge search
will be executed.

en Always

enableHTML boolean

By default, articles
are fetched in
plain-text. To
enable HTML-
formatted articles,

false

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 350

Name Type Description Default Required
set this value to
true.

media string

Media that content
needs to be
searched for.
Empty value
allows any
available content
to be searched.

all

maxTrendingResults number
Maximum number
of documents in
trending response.

5

maxSearchResults number
Maximum number
of documents in
search response.

3

apiClientId string

Client ID of the
application using
knowledge (for
reporting
purposes).

widgets

apiClientMediaType string
Media type that
knowledge uses
(for reporting
purposes).

selfservice

tenantId number

Specifies tenantId
that needs to be
used in requests to
Knowledge Center.
If not defined, this
parameter is not
added to requests.

not defined

apiVersion string

Knowledge Center
Server API Version.
'v2' for 9.0
Knowledge Center,
'v1' for 8.5
Knowledge Center.
(since 9.0.002.06)

v2

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 351

Localization
No Localization options

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 352

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('KnowledgeCenterService.search');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('KnowledgeCenterService.configure', {

host: 'http://localhost:8080/foo/bar',
knowledgebases: [1, 2, 3, 4, 5],
lang: 'eng'

}).done(function(e){

// KnowledgeCenterService configured successfully

}).fail(function(e){

// KnowledgeCenterService failed to configure
});

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 353

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

host string Knowledge Center Server API
URL

knowledgebases object Array of knowledge base IDs for
all further requests

lang string Default language for all further
requests

media string Media that content needs to be
searched for

apiClientId string Default Client ID of application
using knowledge

apiClientMediaType string Default Media knowledge is used
on

apiVersion string
Knowledge Center Server API
Version. 'v2' for 9.0 Knowledge
Center, 'v1' for 8.5 Knowledge
Center.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

getTrending

Fetch trending documents

Example
oMyPlugin.command('KnowledgeCenterService.getTrending', {size: 25}).done(function(e){

// KnowledgeCenterService got trending documents successfully
// e == Object with trending categories and documents

}).fail(function(e){

// KnowledgeCenterService failed to get trending documents
});

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 354

Options
Option Type Description

size number Maximum number of returned
items

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response Object with trending categories

rejected When KC Server returns error 'KC Server error'

search

Search documents relevant to query

Example
oMyPlugin.command('KnowledgeCenterService.search', {

query: 'topic',
size: 10,
categories: [1, 2, 3, 4, 5]

}).done(function(e){

// KnowledgeCenterService search executed successfully
// e == Object with search results

}).fail(function(e){

// KnowledgeCenterService failed to execute search
});

Options
Option Type Description

query string Search query
size number Maximum number of returned

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 355

Option Type Description
items

categories object Array of Category IDs for
additional filter

knowledgebases object
Array of knowledge base IDs for
all further requests. Overwrites
knowledgeCenterServer widget
settings

lang string
Default language for all further
requests. Overwrites
knowledgeCenterServer widget
settings

media string
Media that content needs to be
searched for. Overwrites
knowledgeCenterServer widget
settings

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response n/a

rejected When KC Server returns error 'KC Server error'

getSuggestions

Search suggestions for autocomplete functionality

Example
oMyPlugin.command('KnowledgeCenterService.getSuggestions', {

query: 'topic',
size: 10,
categories: [1, 2, 3, 4, 5]

}).done(function(e){

// KnowledgeCenterService got suggested documents successfully
// e == Object with suggestions

}).fail(function(e){

// KnowledgeCenterService failed to get suggested documents
});

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 356

Options
Option Type Description

query string Search query

size number Maximum number of returned
items

categories object Array of Categories ID for
additional filter

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response n/a

rejected When KC Server returns error 'KC Server error'

getCategories

Get list of categories

Example
oMyPlugin.command('KnowledgeCenterService.getCategories').done(function(e){

// KnowledgeCenterService got categories successfully
// e == Object with categories

}).fail(function(e){

// KnowledgeCenterService failed to get categories
});

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response Object containing categories

rejected When KC Server returns error 'KC Server error'

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 357

getFullContent

Get full document content

Example
oMyPlugin.command('KnowledgeCenterService.getFullContent', {

docId: '12345',
kbId: '1'

}).done(function(e){

// KnowledgeCenterService got full content successfully
// e == Object with content of a document

}).fail(function(e){

// KnowledgeCenterService failed to get full content
});

Options
Option Type Description

docId string Document ID

kbId string Knowledge base ID where the
document is located

lang string Default language for all further
requests

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response n/a

rejected When KC Server returns error 'KC Server error'

visit

Mark a document as opened

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 358

Example
oMyPlugin.command('KnowledgeCenterService.visit', {

docId: '12345',
kbId: '1'

}).done(function(e){

// KnowledgeCenterService marked as visited successfully

}).fail(function(e){

// KnowledgeCenterService failed to mark as visited
});

Options
Option Type Description

docId string Document ID

kbId string Knowledge base ID where the
document is located

query string Used query for prior search

categories object Used categories filter for prior
search

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response n/a

rejected When KC Server returns error 'KC Server error'

vote

Provide relevancy feedback (relevant/irrelevant)

Example
oMyPlugin.command('KnowledgeCenterService.vote', {

docId: '12345',
kbId: '1',

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 359

query: 'search',
relevant: 'true'

}).done(function(e){

// KnowledgeCenterService voted successfully

}).fail(function(e){

// KnowledgeCenterService failed to vote
});

Options
Option Type Description

docId string Document ID

kbId string Knowledge base ID where the
document is located

query string Used query for prior search

categories object Used categories filter for prior
search

relevant boolean Whether the document was
relevant

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response n/a

rejected When KC Server returns error 'KC Server error'

unanswered

Mark search result as the one that does not contain relevant documents

Example
oMyPlugin.command('KnowledgeCenterService.unanswered', {

kbId: '12345',
query: 'text'

}).done(function(e){

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 360

// KnowledgeCenterService marked search result as irrelevant successfully

}).fail(function(e){

// KnowledgeCenterService failed mark search result as irrelevant
});

Options
Option Type Description

kbId string Knowledge base ID where search
were executed

query string Used query
categories object Used categories filter

Resolutions
Status When Returns

resolved When KC Server returns
appropriate response n/a

rejected When KC Server returns error 'KC Server error'

sessionInfo

Retrieves parameters of the current knowledge session

Example
oMyPlugin.command('KnowledgeCenterService.sessionInfo').done(function(e){

// KnowledgeCenterService got session info successfully
// e == {sessionId: "<sessionId>", language: "<languageCode>", media: "<mediaType>"}

}).fail(function(e){

// KnowledgeCenterService failed to get session info
});

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 361

Resolutions
Status When Returns

resolved When there is existing knowledge
session

{sessionId: "<sessionId>",
language: "<languageCode>",
media: "<mediaType>"}

rejected When knowledge session is not
established yet

'Knowledge center session is not
started yet'

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 362

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('KnowledgeCenterService.ready', function(e){ /* sample code */ };

Name Description Data

ready The KnowledgeCenterService
widget is loaded. n/a

online
The KnowledgeCenterService
widget is configured and ready to
execute requests.

n/a

sessionChanged The session started or one of its
parameters had changed.

{sessionId: (string), language:
(string), media: (string),
customer: (string)}

noResultsFound Search did not return results or
results are empty

{query: (string), language:
(string), media: (string),
knowledgebases: (list of string),
sessionId: (string), tenantId:
(string)}

documentOpened Full document content has been
requested

{language: (string),
knowledgebase: (string),
sessionId: (string), tenantId:
(string), documentId: (string),
document: (object)}

searched Query has been searched and
results provided

{query: (string), language:
(string), media: (string),
knowledgebases: (list of strings),
sessionId: (string), documents:
(list of objects)}

suggested Autocomplete queries have been
suggested

{language: (string), sessionId:
(string), tenantId: (string), query:
(string), categories: (list of

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 363

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Name Description Data
objects), filters: (object), media:
(string), knowledgebases: (list of
strings)}

voted Relevancy feedback has been
provided for the search result

{language: (string), sessionId:
(string), tenantId: (string),
relevant: (boolean),
knowledgebase: (string),
documentId: (string)}

Genesys Widgets Reference KnowledgeCenterService

Widgets Reference 364

Overlay
• Configuration
• Localization
• API Commands
• API Events

Overview

The Overlay plugin provides an Overlay window control that widgets can inject their UI into. The
Overlay plugin accepts the HTML UI and puts it inside an Overlay control and displays the UI onscreen
in a uniform overlay window fashion. This prevents individual widgets from managing the overlay
themselves and each widget's UI can be moved between different container types.

Overlay provides these benefits:

• Shows UI in center of window.
• Opens and closes transition animations.
• No overlapping overlays. Only one at a time. Automatically managed by the Overlay plugin.
• Auto-recenter as browser window size is changed.
• Automatic application of mobile styles when running in mobile mode.

Usage

Overlay is very easy to use; you simply open and close it. When you call Overlay.open, you pass-in
the HTML content you want to show. If you call Overlay.open again while an overlay is already open, it
will automatically close the previous overlay before showing yours (unless the previous overlay has
reserved the overlay to prevent new overlays).

Important
By default the overlay has no visible styles or content. You must pass in the HTML you
want to show inside the Overlay area. Typically you should create an overlay-type
container using Common.Generate.Container, put your content inside that, then send
it all to Overlay.open.

Genesys Widgets Reference Overlay

Widgets Reference 365

Customization

Overlay does not have customization options.

Mobile Support

Overlay will automatically apply mobile CSS styles to its outer container to affect the content within
the overlay view. It is up to the content inside the overlay view to dynamically change when the
Genesys Widgets .cx-mobile CSS classname is applied to an outer container.

Screenshots

Genesys Widgets Reference Overlay

Widgets Reference 366

Configuration
No configuration options

Genesys Widgets Reference Overlay

Widgets Reference 367

Localization
No localization options

Genesys Widgets Reference Overlay

Widgets Reference 368

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Overlay.close');

open

Opens the provided HTML in an Overlay View. When successful, it returns back the HTML and a
custom close event for you to subscribe to. This alerts you when your overlay instance has been
closed. You can also make your overlay immutable so that new overlay instances don't close yours.
Only your widget can close its overlay when immutable is set to true.

Example
oMyPlugin.command('Overlay.open', {

html: '<div>Template</div>',
immutable: false,
group: false

}).done(function(e){

// Overlay opens successfully

}).fail(function(e){

// Overlay failed to open
});

Genesys Widgets Reference Overlay

Widgets Reference 369

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

html string HTML String template for overlay
window.

immutable boolean When set to true, overlay cannot
be closed by other plugins.

group string
The name of the overlay window
group you want to add a new
overlay view into.

Resolutions
Status When Returns

resolved When overlay is successfully
opened

{html: <template>, events:
<Object>, group: <String>}

rejected When no html template is passed
'No HTML content was provided.
Overlay has ignored your
command.'

rejected When overlay is already opened 'Overlay view is currently
reserved.'

close

Closes the Overlay UI. Publishes the appropriate custom close event for current overlay being closed.

Example
oMyPlugin.command('Overlay.close').done(function(e){

// Overlay closed successfully

}).fail(function(e){

// Overlay failed to close
});

Resolutions
Status When Returns

resolved When Overlay is successfully n/a

Genesys Widgets Reference Overlay

Widgets Reference 370

Status When Returns
closed.

rejected When Overlay is already closed. 'Overlay view is already closed'

rejected When Overlay view is immutable. 'Overlay view is currently
reserved'

Genesys Widgets Reference Overlay

Widgets Reference 371

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Overlay.ready', function(e){});

Name Description Data

ready Overlay plugin is initialized and
ready to accept commands n/a

Genesys Widgets Reference Overlay

Widgets Reference 372

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Search

• Commands
• Events
• API Configuration
• API Localization

Genesys Widgets Reference Search

Widgets Reference 373

Overview

Important
Search Widget is available starting from the 8.5.004.09 version of the Genesys
Widgets

The Search widget allows a customer to address his question to the corporate knowledge. The UI
appears within the page. Customers can ask a question (search), review provided results, and provide
feedback on whether the results addressed the problem.

Usage

Search can be launched manually by the following methods:

• Calling the command "Search.open"
• Enable the built-in launcher button for Search that appears on the right side of the screen
• Create your own custom button or link to open Search (using the "Search.open" command)

Namespace

Search plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration knowledgecenter.search
i18n - Localization knowledgecenter
CXBus - API Commands & API Events Search
CSS .cx-search

Deployment Notes

Search Configuration
Genesys Search utilizes the Genesys Knowledge Center Server Knowledge API.

For more information on Genesys Knowledge Center and its APIs, please see the following links:

Genesys Widgets Reference Search

Widgets Reference 374

• Genesys Knowledge Center documentation
• Knowledge API
• Genesys Knowledge Center Developer's Guide

Can I open the Search Widget with search results pre-populated?
The Search Widget allows "Search.open" command to execute with optional parameter "question"
which contains the initial question the Search Widget needs in order to pre-populate answers.

Customization

All static text shown in the Search Widget are fully customizable and localizable by adding entries
into your configuration and localization options.

Search supports Themes. You may create and register your own themes for Genesys Widgets.

Mobile Support

Search supports both desktop and mobile devices. Like all Genesys Widgets, there are two main
modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Search switches to special fullscreen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Screenshots

"Dark" Theme

•

Desktop Search Widget with
contextual help when typing

Genesys Widgets Reference Search

Widgets Reference 375

https://docs.genesys.com/Documentation/KC/KnowledgeAPI/latest/API
https://docs.genesys.com/Documentation/KC/Welcome/latest/Developer
https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

•

Desktop Search Widget showing
search results

•

Desktop Search Widget showing
document details

•

Mobile fullscreen view in portrait
orientation showing search
results

•

Mobile fullscreen view in
landscape orientation showing
search results

•

Genesys Widgets Reference Search

Widgets Reference 376

Mobile fullscreen view in
landscape orientation showing
document details

"Light" Theme

•

Desktop Search Widget with
contextual help when typing

•

Desktop Search Widget showing
search results

•

Desktop Search Widget showing
document details

•

Mobile fullscreen view in portrait
orientation showing search
results

Genesys Widgets Reference Search

Widgets Reference 377

•

Mobile fullscreen view in
landscape orientation showing
search results

•

Mobile fullscreen view in
landscape orientation showing
document details

Genesys Widgets Reference Search

Widgets Reference 378

Configuration

Description

Search reads its configuration from the subnode of the KnowledgeCenterService configuration
namespace '_genesys.widgets.knowledgecenter.search'.

Example
window._genesys.widgets.knowledgecenter.search = {SearchButton: {

enabled: true,
template: <div class='cx-icon' data-icon='search'></div>,
effect: 'fade',
openDelay: 1000,
effectDuration: 300

}
};

Options
Name Type Description Default Required

SearchButton.enabledboolean

Enable/disable
search button on
screen.

Note: In case
of running
Widgets in lazy
load mode, this
option requires
Search plugin
to be pre-loaded

false

SearchButton.templatestring
Custom HTML
string template for
search button.

<div class='cx-
widget cx-
search-button
cx-side-button'
data-
message='SearchButton'
data-gcb-
service-
node='true'><span

Genesys Widgets Reference Search

Widgets Reference 379

Name Type Description Default Required

class='cx-icon'
data-
icon='search'><span
class='i18n cx-
search-button-
label' data-
message='SearchButton'>

SearchButton.effect string

Type of animation
effect when
revealing chat
button. 'slide' or
'fade'.

fade

SearchButton.openDelaynumber

Number of
milliseconds
before displaying
chat button on
screen.

1000

SearchButton.effectDurationnumber
Length of
animation effect in
milliseconds

300

Genesys Widgets Reference Search

Widgets Reference 380

Localization

Important
For information on how to setup localization, please refer to the Localization Guide

Usage

'knowledgecenter' namespace should be re-used when defining localization strings for Search plugin
in your i18n JSON file.

In the example below, we demonstrate defining new strings for the 'en' (English) language. You may
use any language codes you wish; there is no standard format. When selecting the active language in
your configuration, you must match one of the language codes defined in your i18n JSON file. Please
note that you must only define a language code once in your i18n JSON file. Inside each language
object you should define new strings for each widget.

Example i18n JSON
{

"en": {
"knowledgecenter": {

"SidebarButton": "Search",
"SearchButton": "Search",
"Title": "Ask a Question",
"Ask": "Ask",
"Close": "Close",
"Categories": "Categories",
"NoResults": "No Results",
"NoResultsTextUnder": "We're sorry but we could not find a suitable

answer for you.",
"NoResultsTextRephrase": "Could you please try rephrasing the

question?",
"WasThisHelpful": "Was this helpful?",
"Yes": "Yes",
"No": "No",
"ArticleHelpfulnessYes": "Article Helpfulness - 'Yes'",
"ArticleHelpfulnessYesDesc": "Great! We're very pleased to hear that

the article assisted you in your search. Have a great day!",
"ArticleHelpfulnessNo": "Article Helpfulness - 'No'",
"ArticleHelpfulnessNoDesc": "We're sorry that the article wasn't a

good match for your search. We thank you for your feedback!",
"TypeYourQuestion": "Type your question",
"Back": "Back",
"More": "More",
"Error": "Error!",
"GKCIsUnavailable": "Knowledge Center Server is currently not

Genesys Widgets Reference Search

Widgets Reference 381

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

available.",
"AriaAsk": "Ask",
"AriaClose": "Search Close",
"AriaYes": "Yes",
"AriaNo": "No",
"AriaBack": "Back to the Search Results",
"AriaClear": "Clear the Search Text",
"AriaSearch": "Search",
"AriaWindowLabel": "Search Window",
"AriaSearchDropdown": "Suggested results",
"AriaSearchMore": "Read more about",
"AriaResultsCount": "Total number of results"

}
}

}

Genesys Widgets Reference Search

Widgets Reference 382

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Search.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('Search.configure', {

enabled: false,
hideDuringInvite: false,
template: 'Template',
effect: 'fade',
effectDuration: 1000,
openDelay: 1000

}).done(function(e){

// Search configured successfully

}).fail(function(e){

// Invalid configuration
});

Genesys Widgets Reference Search

Widgets Reference 383

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

enabled boolean Enable/disable Search button on
screen.

hideDuringInvite boolean
When auto-invite feature is
activated, hide the Search
button. When invite is dismissed,
reveal the Search button again.

template string Custom HTML string template for
Search button.

effect string Type of animation effect.

effectDuration string
Type of animation effect when
revealing Search button ('slide' or
'fade').

openDelay number
Number of milliseconds before
displaying Search button on
screen.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

open

Opens the Search Widget

Example
oMyPlugin.command('Search.open').done(function(e){

// Search opened successfully

}).fail(function(e){

// Search failed to open
});

Genesys Widgets Reference Search

Widgets Reference 384

Options
Option Type Description

query string Initial question searched when
window is opened.

knowledgebases object
Array of knowledge base IDs for
all further requests. Overwrites
knowledgeCenterServer widget
settings.

lang string
Default language for all further
requests. Overwrites
knowledgeCenterServer widget
settings.

media string
Allows you to search content for
media. Overwrites
knowledgeCenterServer widget
settings.

categories object Array of Category IDs for
additional filter.

maxSearchResults number Maximum number of most
relevant search results shown.

windowTitle string Overwrites default window title
Ask a question.

hideSearchBar boolean Allows you to hide search input
with the search button.

Resolutions
Status When Returns

resolved When Search is successfully
opened n/a

rejected When Search is already open 'already opened'

openDocument

Opens the Search Widget with the specified document shown.

Example
oMyPlugin.command('Search.openDocument').done(function(e){

// Document opened successfully

Genesys Widgets Reference Search

Widgets Reference 385

}).fail(function(e){

// Failed to open document
});

Options
Option Type Description

documentId string Document ID.

knowledgeBaseId string Knowledge base ID of the
document.

langId string Language ID of the document.

windowTitle string Overwrites default window title
Ask a question

Resolutions
Status When Returns

resolved When document is successfully
opened n/a

rejected When missing mandatory
arguments

'All mandatory arguments must
be provided'

close

Closes the Search Widget

Example
oMyPlugin.command('Search.close').done(function(e){

// Search closed successfully

}).fail(function(e){

// Search failed to close
});

Genesys Widgets Reference Search

Widgets Reference 386

Resolutions
Status When Returns

resolved When Search is successfully
closed n/a

rejected When Search is already closed 'already closed'

showSearchButton

Makes the standalone search button visible on the screen using either the default template and CSS
or customer-defined ones.

Example
oMyPlugin.command('Search.showSearchButton', {

openDelay: 1000,
duration: 1500

}).done(function(e){

// Search shows search button successfully

}).fail(function(e){

// Search button is already visible or search button is disabled in configuration
});

Options
Option Type Description

openDelay number
Duration in milliseconds to delay
showing the search buton on the
page.

duration number Duration in milliseconds for the
show and hide animation.

Resolutions
Status When Returns

resolved When the search button is
enabled in the configuration and n/a

Genesys Widgets Reference Search

Widgets Reference 387

Status When Returns
currently not visible.

rejected
When the search button is either
not enabled in the configuration,
or it's already visible

'Search button is not enabled in
the configuration, or already
visible. Ignoring command.'

hideSearchButton

Hides the standalone search button.

Example
oMyPlugin.command('Search.hideSearchButton', {duration: 1500}).done(function(e){

// Search hid search button successfully

}).fail(function(e){

// Search button is already hidden
});

Options
Option Type Description

duration number Duration in milliseconds for the
show and hide animation.

Resolutions
Status When Returns

resolved When the search button is
currently visible n/a

rejected When the search button is
already hidden

'Search button is already hidden.
Ignoring command.'

Genesys Widgets Reference Search

Widgets Reference 388

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Search.ready', function(e){});

Name Description Data

ready The Search widget is initialized
and ready to accept commands

opened The Search widget has appeared
on screen n/a

closed The Search widget has been
removed from the screen n/a

Genesys Widgets Reference Search

Widgets Reference 389

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

SideBar
Showing both when initially loaded on page and expanded.

• Configuration
• Localization
• API Commands
• API Events

Overview

The Sidebar widget is displayed to the right side of the screen by default. The purpose of this Widget
is to launch other Widgets with a single click. Customers can configure Widgets onto Sidebar, for
which they would like to add a launch button. Sidebar Widget also supports configuring custom
extension Widgets. The Sidebar UI is expanded when you hover your cursor over it. and then
contracted back when you move the cursor away. Other features include configuring position, mobile
support, and support adding new configuration on the fly which re-renders the sidebar.

Genesys Widgets Reference SideBar

Widgets Reference 390

Usage

SideBar can be launched manually by the following methods:

• Calling the command "SideBar.open"
• Configuring Configuration to show and launch custom widgets.

Dependency

The Sidebar Widget needs at-least one Widget to be configured.

Customization

All text shown in the Sidebar Widget is fully customizable and localizable by adding entries into your
configuration and localization options.

Sidebar supports themes. You may create and register your own themes for Genesys Widgets.

Namespace

Sidebar plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration sidebar
i18n - Localization sidebar
CXBus - API Commands & API Events SideBar
CSS .cx-sidebar

Mobile Support

Sidebar supports both desktop and mobile devices. In mobile mode, the sidebar launcher button is
displayed to the bottom of the screen. When triggered, it expands to the full screen of mobile and
shows all channels configured with scrollbar when necessary. Like all Genesys Widgets, there are two
main modes: Desktop & Mobile. Desktop is employed for monitors, laptops, and tablets. Mobile is
employed for smartphones. When a smartphone is detected, Sidebar switches to special fullscreen
templates that are optimized for both portrait and landscape orientations.

Switching between desktop and mobile mode is done automatically by default. You may configure
Genesys Widgets to switch between Desktop and Mobile mode manually if necessary.

Genesys Widgets Reference SideBar

Widgets Reference 391

Screenshots

"Dark" Theme

•

Sidebar in contracted mode -
desktop

•

Sidebar in expanded mode -
desktop

•

Sidebar in left side of the screen
- desktop

•

Sidebar launcher button in
Mobile screen.

Genesys Widgets Reference SideBar

Widgets Reference 392

•

Sidebar expanded to fullscreen
view in Mobile - portrait
orientation

•

Sidebar expanded to fullscreen
view in Mobile - landscape
orientation

"Light" Theme

•

Sidebar in contracted mode -
desktop

•

Sidebar in expanded mode -
desktop

Genesys Widgets Reference SideBar

Widgets Reference 393

•

Sidebar launcher button in
Mobile screen

•

Sidebar expanded to fullscreen
view in Mobile - portrait
orientation

•

Sidebar expanded to fullscreen
view in Mobile - landscape
orientation

Genesys Widgets Reference SideBar

Widgets Reference 394

Configuration

Description

SideBar shares the configuration namespace '_genesys.widgets.sidebar'. SideBar has UI options to
handle the position of sidebar on the screen, disable expand feature sidebar, hide sidebar and add
new channels on the fly. The display of channels order is based on the order defined in channels
configuration array.

Example
window._genesys.widgets.sidebar = {

showOnStartup: true,

position: 'left',

expandOnHover: true,

channels: [{

name: 'ChannelSelector',
clickCommand: 'ChannelSelector.open',
clickOptions: {},

//use your own static string or i18n query string for the below two
display properties

displayName: 'Live Assist',
displayTitle: 'Get live help',

icon: 'agent'
},

{
name: 'Search',
clickCommand: 'Search.open',
clickOptions: {},

// Example of i18n query string: '@i18n:search.SearchName' where
'search' refers to the plugin namepsace and 'SearchName' refers to the property key
containing the actual text.

displayName: '@i18n:search.SearchName',
displayTitle: '@i18n:search.SearchTitle',

icon: 'knowledge-center',
onClick: function ($, CXBus, Common) {

_genesys.widgets.bus.command('Search.open');
}

},

{

Genesys Widgets Reference SideBar

Widgets Reference 395

name: 'Offers',
displayName: '@i18n:sidebar.OffersName',
displayTitle: '@i18n:sidebar.OffersName'

},

{
name: 'ClickToCall',
displayName: '@i18n:sidebar.ClickToCallName',
displayTitle: '@i18n:sidebar.ClickToCallTitle'

},

{
name: 'WebChat'

}
]

};

Options
Name Type Description Default Required

showOnStartup boolean
Shows the sidebar
on the screen
when Widgets is
launched.

true false

position string

Defines the
position of sidebar
on the screen.
Acceptable values
are 'left' or 'right'.

right false

expandOnHover boolean

Enables the
expand (slide-out)
or contract (slide-
in) behavior of
sidebar.

true false

channels[index].namestring

Name of the
channel. It can be
found in the
namespace
section
documentation of
each Widget. Used
to identify official
channels vs
custom channels.
If a reserved name
is used here,
Sidebar will apply
default values for
that channel. A
plugin name
defined in the new
custom plugin can
also be given here.
To override the

n/a true

Genesys Widgets Reference SideBar

Widgets Reference 396

Name Type Description Default Required
default values or
when defining a
new custom
channel/plugin,
use the below
following
properties.

channels[index].clickCommandstring
Change the default
command that is
triggered when
clicked.

n/a false

channels[index].clickOptionsobject

Pass valid
command options
that are used in
above click
command
execution.

n/a n/a

channels[index].displayNamestring or i18n
query string

Change the default
display name for
this channel with
your own static
string or to
achieve
localization, use
i18n query string.
Syntax:
@i18n:<plugin
namespace>.<display
key>.

n/a false

channels[index].displayTitlestring or i18n
query string

Change the default
tooltip content for
this channel with
your own static
string or to
achieve
localization, use
i18n query string.
Syntax:
@i18n:<plugin
namespace>.<display
key>.

n/a false

channels[index].icon string

Change the default
Icon for this
channel. For the
list of Icon names
see Included Icons.

n/a false

channels[index].onClickfunction

Define a custom
onclick function,
this overrides
clickCommand and
clickOptions.

n/a false

Genesys Widgets Reference SideBar

Widgets Reference 397

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCIcons

Localization

Customer Defined Strings

For your own custom plugins, you can define string key names and values for Name and Title (tooltip)
to display on sidebar. Key format has to be with Plugin name followed by 'Title' or 'Name' (for
example, '< custom plugin name >Title'). As a case in point, a plugin named 'MyPlugin' will have
'MyPluginName' and 'MyPluginTitle' as keys.

Important
For information on how to setup localization, please refer to the Localization Guide

Example i18n JSON
{

"en": {
"sidebar": {

"SidebarTitle": "Need help?",
"ChannelSelectorName": "Live Assistance",
"ChannelSelectorTitle": "Get assistance from one of our agents right

away",
"SearchName": "Search",
"SearchTitle": "Search",
"CallUsName": "Call Us",
"CallUsTitle": "Call Us details",
"CallbackName": "Callback",
"CallbackTitle": "Receive a Call",
"SendMessageName": "Send Message",
"SendMessageTitle": "Send Message",
"WebChatName": "Live Chat",
"WebChatTitle": "Live Chat",
"ClickToCallName": "Click To Call",
"ClickToCallTitle": "Request a customer service phone number",
"AriaClose": "Close the menu Need help"

}
}

}

Genesys Widgets Reference SideBar

Widgets Reference 398

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCInternat

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('SideBar.open');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. Sidebar widget has to be configured atleast with one channel. The configure
command can also be called at runtime with new configuration, this will override the existing
configuration showing new channels on the screens.

Example
oMyPlugin.command('SideBar.configure', {

showOnStartup: false,
position: 'left',
expandOnHover: false,
channels: [

{
name: 'ChannelSelector',
clickCommand: 'ChannelSelector.open',
clickOptions: {},

//use your own static string or i18n query string for the below two
display properties. Example for i18n query string: '@i18n:sidebar.ChannelSelectorName' where
'sidebar' refers to plugin namespace and 'ChannelSelectorName' name refers to the property
key containing the actual text.

displayName: '@i18n:sidebar.ChannelSelectorName',
displayTitle: 'Get assistance from one of our agents right away', //

Your own static string
icon: 'agent',
onClick: function($, CXBus, Common) {

Genesys Widgets Reference SideBar

Widgets Reference 399

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

_genesys.widgets.bus.command('MyPlugin.open');
}

}
...

]

}).done(function(e){

// Sidebar configured successfully

}).fail(function(e){

// Sidebar failed to configure properly
});

Options
Option Type Description

showOnStartup boolean Shows the sidebar on the screen
when Widgets is launched.

position string Defines the position of sidebar on
the screen.

expandOnHover boolean Enables the expand or contract
behavior of sidebar.

channels array
Array containing each channel
configuration object. The order of
channels are displayed based on
the order defined here.

channels[index].name string

Name of the channel. It can be
found in the namespace section
documentation of each Widget.
Used to identify official channels
vs custom channels. If a reserved
name is used here, Sidebar will
apply default values for that
channel. To override the default
values or when defining a new
custom channel, use the below
following properties.

channels[index].clickCommand string Change the default command
that is triggered when clicked.

channels[index].clickOptions object
Pass valid command options that
are used in above click command
execution.

channels[index].displayName string or i18n query string

Change the default display name
for this channel with your own
static string or to achieve
localization, use i18n query
string. Syntax: @i18n:<plugin
namespace>.<display key>.

channels[index].displayTitle string or i18n query string Change the default tooltip

Genesys Widgets Reference SideBar

Widgets Reference 400

Option Type Description
content for this channel with
your own static string or to
achieve localization, use i18n
query string. Syntax:
@i18n:<plugin
namespace>.<display key>.

channels[index].icon string
Change the default Icon for this
channel. For the list of Icon
names see Included Icons.

channels[index].onClick function
Define a custom onclick function,
this overrides clickCommand and
clickOptions.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided

'Invalid configuration. Please
ensure at least one channel is
configured.'

open

Opens the Sidebar UI. In Desktop, it opens as an actual SideBar and shows the configured channels
where as in mobile it opens as a button at the bottom to start.

Example
oMyPlugin.command('SideBar.open');

Resolutions
Status When Returns

resolved When sidebar is successfully
opened n/a

rejected When sidebar is already opened 'Already opened'

Genesys Widgets Reference SideBar

Widgets Reference 401

https://docs.genesys.com/Documentation/GWC/Current/Deployment/GWCIcons

close

Closes the Sidebar UI.

Example
oMyPlugin.command('SideBar.close');

Resolutions
Status When Returns

resolved When sidebar is successfully
closed n/a

rejected When sidebar is already closed 'already closed'

expand

To show more details about the channels, it slides out from the sides of the screen in desktop but
expands to full screen in mobiles.

Example
oMyPlugin.command('SideBar.expand');

Resolutions
Status When Returns

resolved When sidebar is successfully
expanded n/a

rejected When sidebar is already
expanded 'sidebar already expanded'

contract

Slides back showing only the channel buttons in desktop and sidebar launcher button in mobile.

Genesys Widgets Reference SideBar

Widgets Reference 402

Example
oMyPlugin.command('SideBar.contract');

Resolutions
Status When Returns

resolved When sidebar is successfully
contracted n/a

rejected When sidebar is already
contracted sidebar already contracted

Genesys Widgets Reference SideBar

Widgets Reference 403

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('SideBar.ready', function(e){ /* sample code */ });

Name Description Data

ready Sidebar is initialized and ready to
accept commands n/a

opened

Sidebar widget has appeared on
screen. For desktop it is
displayed on the sides of the
screen and in mobiles at the
bottom corner as a button.

n/a

closed Sidebar widget has been
removed from the screen n/a

expanded Sidebar widget has expanded,
showing channel icon and name. n/a

contracted Sidebar widget has contracted
back, showing channel icons only. n/a

Genesys Widgets Reference SideBar

Widgets Reference 404

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

StatsService
• Configuration
• Localization
• API Commands
• API Events

Overview

StatsService exposes a high-level API for utilizing Genesys Stats services. You can use these services
to fetch estimated wait time details for each channel like Chat, Callus, etc. and display it across the
channels.

Usage

StatsService and Channel Selector widget works together right out of the box and display the
Estimated Wait Time details across the channels. Using Channel Selector uses StatsService.

You can also use StatsService as a high-level API with bus commands and events and integrate in
your own widget.

Namespace

Stats Service plugin has the following namespaces tied-up with each of the following types.

Type Namespace
Configuration stats
CXBus - API Commands & API Events StatsService

Customization

StatsService has no customization options. It is meant as a plug-n-play type of plugin and works as-is.

Genesys Widgets Reference StatsService

Widgets Reference 405

Configuration

Description

StatsService share the configuration namespace '_genesys.widgets.stats'. StatsService has
connection settings to fetch EWT details from each channel.

Example
window._genesys.widgets.stats = {

ajaxTimeout: 3000,

ewt: {

dataURL: 'http://10.0.0.121:7777/genesys/1/service/ewt-for-vq',
apikey: 'n3exxxxxXREBMYjGxxxx8VA',
apiVersion: 'v1',
mode: 'urs2'

}
};

Options

Name Type Description Default Required Accepted
Values

ajaxTimeout number
Number of
milliseconds to
wait before
AJAX timeout

3000 n/a n/a

ewt.apikey string

Apigee Proxy
secure token. If
apiVersion is
v3, this holds
the x-api-key
value.

n/a
Yes, if using
Apigee Proxy.
or v3 API.

n/a

ewt.dataURL URL String
URL to the API
endpoint for
Estimated Wait
Time (EWT)

n/a Always n/a

ewt.apiVersion string Version of EWT
API. 'v1'

Yes, if using
GMS EWT v2 or
EWT v3
dataURL

'v1', 'v2', 'v3'

Genesys Widgets Reference StatsService

Widgets Reference 406

https://docs.genesys.com/Documentation/GMS/8.5.2/API/StatServiceAPI#queryEWT

Name Type Description Default Required Accepted
Values

Note: This
value
determines
the version
of EWT API
in GMS/v3.
That is:
'v1' - GMS
EWT v1
'v2' - GMS
EWT v2
'v3' - EWT v3

Only GET
request type
with virtual
queue name
as query
parameters
are
supported.

ewt.mode string

EWT mode
parameter for
GMS/v3 API.
This value will
vary based on
the above
apiVersion.

Will vary based
on the above
apiVersion as
shown below.

'urs2' for
'v1'
'ewt2' for
'v2'
'mode2' for
'v3'

n/a

'urs','urs2'
or 'stat'
for 'v1'

'ewt1,'ewt2'
or 'ewt3'
for 'v2'

'mode1','mode2'
or 'mode3'
for 'v3'

Genesys Widgets Reference StatsService

Widgets Reference 407

https://docs.genesys.com/Documentation/GMS/8.5.1/API/StatServiceAPI#Query-EWT_for_Virtual_Queues
https://docs.genesys.com/Documentation/GMS/8.5.1/API/StatServiceAPI#Query-EWT_for_Virtual_Queues
https://docs.genesys.com/Documentation/GMS/8.5.2/API/StatServiceAPI#queryEWT
https://docs.genesys.com/Documentation/GMS/8.5.2/API/StatServiceAPI#queryEWT

Localization
No Localization options

Genesys Widgets Reference StatsService

Widgets Reference 408

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('StatsService.getStats');

configure

Internal use only. The main App plugin shares configuration settings to widgets using each widget’s
configure command. The configure command can only be called once at startup. Calling configure
again after startup may result in unpredictable behavior.

Example
oMyPlugin.command('StatsService.configure', {

ewt:{

apikey: '12345',
dataURL: 'http://localhost:8080/foo/bar'

},
ajaxTimeout: 10000

}).done(function(e){

// StatsService configured successfully

}).fail(function(e){

// StatsService failed to configure
});

Genesys Widgets Reference StatsService

Widgets Reference 409

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description

ewt.apikey string Apigee Proxy secure token
ewt.dataURL URL String URL of GMS server

ajaxTimeout number Number of milliseconds to wait
before AJAX timeout.

Resolutions
Status When Returns

resolved When configuration options are
provided and set n/a

rejected When no configuration options
are provided 'Invalid configuration'

getStats

Make a request to Genesys Stats server to fetch EWT details.

Example
oMyPlugin.command('StatsService.getStats', {

group: 'EWT',
vqName: 'chat_ewt_test_eservices',
mode: 'urs2'

}).done(function(e){

// StatsService got stats successfully

}).fail(function(e){

// StatsService failed to get stats
});

Options
Option Type Description

group string Mention specific group name you
would like to request like EWT,

Genesys Widgets Reference StatsService

Widgets Reference 410

Option Type Description
etc.

vqName string/array

Specify a single virtual queue
name as a string or a list of
virtual queue names as an array.
EWT will be fetched only for
these virtual queues specified
here. If nothing is specified, EWT
will be fetched for all the
available virtual queues.

mode string
Specify EWT mode. This will vary
based on apiVersion. Refer to
mode configuration option for
possible values.

Resolutions
Status When Returns

resolved When server returns EWT data (AJAX Response Object)

rejected When server fail request fails 'EWT request failed due to
unknown reason'

rejected When no EWT dataURL provided 'Invalid EWT configuration'

Genesys Widgets Reference StatsService

Widgets Reference 411

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('StatsService.ready', function(e){});

Name Description Data

ready StatsService is initialized and
ready to accept commands n/a

updated Latest Stats data is available EWT AJAX Response data

error.ewt An error occurred between the
client and the server for EWT {(AJAX data Response)}

Genesys Widgets Reference StatsService

Widgets Reference 412

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Estimated Wait Time
Estimated Wait Time (EWT) is displayed in the ChannelSelector, Callback and ClickToCall Widgets.
These Widgets use the getStats command to fetch EWT data from the GMS or GES server. These
servers support multiple API versions and this document will explain how to configure the
StatsService plugin to utilize version that you require.

Use the ewt.apiVersion configuration option to specify the API version. Each version value
corresponds to a particular API of GMS/GES. For all possible version values and their mapping, refer to
the description section of the ewt.apiVersion configuration option.

Sample configuration:

_genesys.widgets.stats.ewt.apiVersion = <version value>

API Versions

v1
If ewt.apiVersion is configured to 'v1' (this is also the default value), the ewt.dataURL configured must
be a valid GMS 8.5.1 EWT API url. If not, incorrect EWT may be displayed.

Depending on this API version, the ewt.mode configuration option can hold a set of predefined
possible values for this version. They are 'urs', 'urs2' and 'stat', where 'urs2' is the default value if not
specified.

Default Example

_genesys.widgets.stats = {
ewt: {

apiVersion: "v1"
dataURL: http://somedomain/genesys/1/service/ewt-for-vq
mode: "urs2"

}
}

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/genesys/1/service/ewt-for-vq?name=vq1&aqt=urs2

'vq1' is added to the URL via the vqName option passed into the getStats command.

Genesys Widgets Reference StatsService

Widgets Reference 413

https://docs.genesys.com/Documentation/GMS/8.5.1/API/StatServiceAPI#Query-EWT_for_Virtual_Queues

v2
If ewt.apiVersion is configured to 'v2', the ewt.dataURL configured must be a valid GMS 8.5.2 EWT API
url. If not, incorrect EWT may be displayed. For this apiVersion, the possible values for ewt.mode are
'ewt1', 'ewt2' and 'ewt3'. 'ewt2' is the default value.

Example

_genesys.widgets.stats = {
ewt: {

apiVersion: "v2"
dataURL: http://somedomain/genesys/2/ewt
mode: "ewt2"

}
}

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/genesys/2/ewt/ewt2?vq=vq1,vq2

'vq1' and 'vq2' are added to the URL via the vqName option passed into the getStats command.

v3
If ewt.apiVersion is set to 'v3', the ewt.dataURL configured must be a valid GES EWT API url. If not,
incorrect EWT may be displayed. For this apiVersion, the possible values for ewt.mode are 'mode1',
'mode2' and 'mode3', where 'mode2' will be the default value if not specified.

Example

_genesys.widgets.stats = {
ewt: {

apiVersion: "v3"
dataURL: http://somedomain/engagement/v3/estimated-wait-time
mode: "mode2"

}
}

For the above configuration, the StatsService plugin will construct the relevant dataURL as shown
below.

http://somedomain/engagement/v3/estimated-wait-time?virtual-queues=vq1,vq2&mode=mode2

'vq1' and 'vq2' are added to the URL via the vqName option passed into the getStats command.

Where to look for EWT data

When the getStats command is called, it fetches the EWT data from either GMS/GES server based on
the configuration. This response data is included in the updated event in a standard format as shown
below. In this data format, the ewt section will contain the virtual queue name and the estimated

Genesys Widgets Reference StatsService

Widgets Reference 414

https://docs.genesys.com/Documentation/GMS/8.5.2/API/StatServiceAPI#queryEWT
https://docs.genesys.com/Documentation/GMS/8.5.2/API/StatServiceAPI#queryEWT

wait time as a key value pair. The response section contains the original raw data from the server
and may vary between each server API.

{
ewt: {

"VQ_GMS_Callback_Out": 9.999 // consolidated standardized EWT data for each
virtual queue.

"VQ_GMS_Callback": 5.12
...

},
response: { // Original raw data from GMS.

"VQ_GMS_Callback_Out": {
"time": 1506021728,
"wt": 0,
"calls": 0,
"wcalls": 0,
"pos": 1,
"wpos": 1,
"aqt": 9.999,
"ewt": 9.999,
"hit": 0

},
"VQ_GMS_Callback": {

...
}

}
}

Genesys Widgets Reference StatsService

Widgets Reference 415

Toaster
• Configuration
• Localization
• API Commands
• API Events

Overview

The Toaster plugin provides a toast view control that widgets can inject their UI into. The Toaster
plugin accepts an HTML UI and puts it inside a toast view and displays the UI onscreen in the lower-
bottom-right of the screen. When it is opened it will slide up from the bottom. When it is closed it will
slide down until it is offscreen.

Toaster provides these benefits:

• Shows UI as a slide-up toast view in the lower-bottom-right of the screen.
• Open and close transition animations.
• No overlapping toasts, only one at a time. Automatically managed by the Toaster plugin.

Usage

Toaster is very easy to use; you simply open and close it. When you call Toaster.open, you pass-in the
HTML content you want to show. If you call Toaster.open again while a toast is already open, it will
automatically close the previous toast before showing yours (unless the previous toast has reserved
the view to prevent new toasts).

Important
Only one toast can be shown at a time. If you attempt to open a second toast, the first
toast will be dismissed automatically before showing the second toast.

Namespace

Toaster plugin has the following namespaces tied-up with each of the following types.

Genesys Widgets Reference Toaster

Widgets Reference 416

Type Namespace
CXBus - API Commands & API Events Toaster
CSS .cx-toaster

Customization

Toaster does not have customization options.

Mobile Support

Toaster does not have mobile-specific styles at this time.

Screenshots

Genesys Widgets Reference Toaster

Widgets Reference 417

Configuration
No configuration options.

Genesys Widgets Reference Toaster

Widgets Reference 418

Localization
No localization options.

Genesys Widgets Reference Toaster

Widgets Reference 419

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('Toaster.close');

open

Opens the Toaster UI.

Example
oMyPlugin.command('Toaster.open', {

type: 'generic',
title: 'Toaster Title',
body: 'Toaster Body',
icon: 'chat',
controls: 'close',
immutable: false,
buttons:{

type: 'binary',
primary: 'Accept',
secondary: 'Decline'

}

}).done(function(e){

// Toaster opened successfully

}).fail(function(e){

// Toaster failed to open properly
});

Genesys Widgets Reference Toaster

Widgets Reference 420

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Options
Option Type Description Accepted Values

type string

Specifies the type of
body content that can
be provided to toaster
window. Generic type
shows the default body
content and custom
type overrides the
default html body
content.

Important
The value generic places
your content inside the
common container style
so the look and feel
matches widgets. The
value custom places your
content inside a div
container. It is then up to
you to style your content.

generic, custom

title string Heading title to display
on the toaster window. n/a

body string

Holds text value for
Generic toaster type
and html string
template for Custom
toaster type.

n/a

icon string The CSS class name for
an icon. n/a

controls string
Show close and
minimize controls on
toaster window.

close, minimize, all

buttons object Define the type of
buttons. n/a

buttons.type string Shows two buttons on
the toaster. binary

buttons.primary string Text to be shown on
primary button. n/a

buttons.secondary string Text to be shown on
secondary button. n/a

immutable boolean
When set to true,
toaster cannot be
closed by other plugins.

true, false

Genesys Widgets Reference Toaster

Widgets Reference 421

Resolutions
Status When Returns

resolved When Toaster is successfully
opened n/a

rejected When no toaster type is specified
'No content was provided.
Toaster has ignored your
command'

rejected When toaster is already opened 'Toaster view is currently
reserved'

close

Closes the Toaster UI.

Example
oMyPlugin.command('Toaster.close').done(function(e){

// Toaster closed successfully

}).fail(function(e){

// Toaster failed to close
});

Resolutions
Status When Returns

resolved When toaster is successfully
closed. n/a

rejected When Toaster is already closed. 'Toaster view is already closed'

rejected When Toaster view is immutable. 'Toaster view is currently
reserved'

Genesys Widgets Reference Toaster

Widgets Reference 422

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('Toaster.ready', function(e){});

Name Description Data

ready Toaster plugin is initialized and
ready to accept commands n/a

closed Toaster plugin has been removed
from the screen n/a

opened Toaster plugin has appeared on
the screen n/a

Genesys Widgets Reference Toaster

Widgets Reference 423

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

WindowManager
• Configuration
• Localization
• API Commands
• API Events

Overview

The WindowManager plugin provides a controller for several different types of window groups. HTML
UIs added to these WindowManager groups will be arranged and managed in accordance with each
group's purpose.

One group type is "Dock View". Both WebChat and SendMessage utilize this group to show their
toast-like UI docked in the lower-bottom-right of the screen. This group automatically arranges the
two widgets stacked horizontally and when one widget closes, the stack collapses towards the right.
Widgets can register themselves into these WindowManager groups and let it do all the work.

Another group type is "Side Button". WebChat and SendMessage also utilize this group to show their
launcher buttons on the right side of the screen. Like the dock view, buttons are stacked, but in this
case they are stacked vertically. As buttons are added and removed from the group, the button stack
will collapse to fill in the gaps.

Usage

WindowManager has "register" commands for registering your UI into different groups. They all
accept one argument, the HTML you want to be handled by WindowManager. You can use
'registerDockView' or 'registerSideButton' at this time. More window management groups will be
added in upcoming releases.

Customization

Toaster does not have customization options.

Genesys Widgets Reference WindowManager

Widgets Reference 424

Screenshots

•

Side button group

•

Dock view group

Genesys Widgets Reference WindowManager

Widgets Reference 425

Configuration
No configuration options.

Genesys Widgets Reference WindowManager

Widgets Reference 426

Localization
No localization options.

Genesys Widgets Reference WindowManager

Widgets Reference 427

API Commands
Once you've registered your own plugin on the bus, you can call commands on other registered
plugins. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.command('WindowManager.registerDockView', {html: '<div>HTML</div>'});

registerDockView

Creates a docked view container to show a widget on the bottom right corner. Its position is adjusted
(stacked) to show side by of a widget if already present and is indexed with a tabindex.

Example
oMyPlugin.command('WindowManager.registerDockView', {html:
'<div>Template</div>'}).done(function(e){

// WindowManager registered a dockView successfully

}).fail(function(e){

// WindowManager failed to register a dock view
});

Options
Option Type Description

html string
A Widget HTML string template
that needs to be shown in dock
view.

Genesys Widgets Reference WindowManager

Widgets Reference 428

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

Resolutions
Status When Returns

resolved
When the html template is
successfully opened and
registered in dock view

n/a

rejected When no html template is found 'No html content'

registerSideButton

Registers a button to show on the right side of the screen for a particular plugin. Its position is based
on the respective plugin order defined in the array configuration. Currently, this is not supported for
external plugins.

Example
oMyPlugin.command('WindowManager.registerSideButton', {template: '<div>Button
Text</div>'}).done(function(e){

// WindowManager registered a side button successfully

}).fail(function(e){

// WindowManager failed to register a side button
});

Options
Option Type Description

template string Custom HTML string template for
a button.

Resolutions
Status When Returns

resolved When the html button is
successfully registered n/a

rejected When no html template is found 'No button template found to
register'

Genesys Widgets Reference WindowManager

Widgets Reference 429

API Events
Once you've registered your own plugin on the bus, you can subscribe and listen for published
events. Below we'll quickly register a new plugin on the bus using the global bus object.

Important
The global bus object is a debug tool. When implementing Widgets on your own site,
do not use the global bus object to register your custom plugins. Instead, see Widgets
Extensions for more information about extending Genesys Widgets.

var oMyPlugin = window._genesys.widgets.bus.registerPlugin('MyPlugin');

oMyPlugin.subscribe('WindowManager.ready', function(e){});

Name Description Data

ready WindowManager is initialized and
ready to accept commands. n/a

changed
WindowManager publishes this
event when there is any change
in the position of widgets on the
screen.

{registry: (object)}

Genesys Widgets Reference WindowManager

Widgets Reference 430

https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions
https://docs.genesys.com/Documentation/GWC/Current/CXWBusAPI/GWCGWCCXBusExtensions

	Widgets Reference
	Table of Contents
	Genesys Widgets Reference
	WebChatService
	Configuration
	Localization
	API Commands
	API Events

	WebChat
	Configuration
	Localization
	API Commands
	API Events
	Metadata
	Customizable Chat Registration Form
	Customizable Emoji Menu

	SendMessageService
	Configuration
	Localization
	API Commands
	API Events

	SendMessage
	Configuration
	Localization
	API Commands
	API Events
	Metadata
	Customizable SendMessage Registration Form

	GWE
	Configuration
	Localization
	API Commands
	API Events

	CoBrowse
	Configuration
	Localization
	API Commands
	API Events

	App
	Configuration
	Localization
	API Commands
	API Events

	Calendar
	Configuration
	Localization
	API Commands
	API Events

	CallbackService
	Configuration
	Localization
	API Commands
	API Events

	Callback
	Configuration
	Localization
	API Commands
	API Events
	Metadata
	Customizable Callback Registration Form

	CallUs
	Configuration
	Localization
	API Commands
	API Events

	ChannelSelector
	Configuration
	Localization
	API Commands
	API Events

	ChatDeflection
	Configuration
	Localization
	API Commands
	API Events

	ClickToCallService
	Configuration
	Localization
	API Commands
	API Events

	ClickToCall
	Configuration
	Localization
	API Commands
	API Events
	Metadata
	Customizable ClickToCall Registration Form

	Common
	Console
	Configuration
	Localization
	API Commands
	API Events

	Engage
	Configuration
	Localization
	API Commands
	API Events
	Metadata

	KnowledgeCenterService
	Configuration
	Localization
	API Commands
	API Events

	Overlay
	Configuration
	Localization
	API Commands
	API Events

	Search
	Configuration
	Localization
	API Commands
	API Events

	SideBar
	Configuration
	Localization
	API Commands
	API Events

	StatsService
	Configuration
	Localization
	API Commands
	API Events
	Estimated Wait Time

	Toaster
	Configuration
	Localization
	API Commands
	API Events

	WindowManager
	Configuration
	Localization
	API Commands
	API Events

