
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Customizable Chat Registration Form

Widgets Reference

3/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Customizable Chat Registration Form
• 1.1 Default Example
• 1.2 Properties
• 1.3 Labels
• 1.4 Wrappers
• 1.5 Validation
• 1.6 Form Submit

Widgets Reference 2



Customizable Chat Registration Form
Introduced: 9.0.000.08

WebChat allows you to customize the registration form shown to users prior to starting a session. The
following form inputs are currently supported:

• Text
• Select
• Hidden
• Checkbox
• Textarea

Customization is done through an object definition that defines the layout, input type, label, and
attributes for each input. You can set the default registration form definition in the
_genesys.widgets.webchat.form configuration option. Alternately, you can pass a new registration
form definition through the WebChat.open command:

_genesys.widgets.bus.command("WebChat.open", {formJSON: oRegFormDef});

Inputs are rendered as stacked rows with one input and one optional label per row.

Default Example

The following example is the default object used to render WebChat’s registration form. This is a very
simple definition that does not use many properties.

Important
You can define any number of inputs here, of any supported type, in any combination.
Our example below simply demonstrates how WebChat defines its default form
internally.

{
wrapper: "<table></table>",
inputs: [

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",

Customizable Chat Registration Form

Widgets Reference 3

https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatConfiguration


placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

},

{
id: "cx_webchat_form_lastname",
name: "lastname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderLastName",
label: "@i18n:webchat.ChatFormLastName"

},

{
id: "cx_webchat_form_email",
name: "email",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderEmail",
label: "@i18n:webchat.ChatFormEmail"

},

{
id: "cx_webchat_form_subject",
name: "subject",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderSubject",
label: "@i18n:webchat.ChatFormSubject"

}
]

}

Using this definition will result in this output:

Customizable Chat Registration Form

Widgets Reference 4



Properties

Each input definition can contain any number of properties. These are categorized in two groups:
"Special Properties", which are custom properties used internally to handle rendering logic, and
"HTML Attributes" which are properties that are applied directly as HTML attributes on the input
element.

Special Properties
Property Type Default Description

type string "text"

Sets the type of input to
render. Possible values
are currently "text",
"hidden", "select",
"checkbox", and
"textarea".

label string
Set the text for the
label. If no value
provided, no label will
be shown. You may use

Customizable Chat Registration Form

Widgets Reference 5



Property Type Default Description
localization query
strings to enable
custom localization (for
example, label:
"@i18n:namespace.StringName").
Localization query
strings allow you to use
strings from any widget
namespace or to create
your own namespace in
the localization file
(i18n.json) and use
strings from there (for
example, label:
"@i18n:myCustomNamespace.myCustomString001").
For more information,
see the Labels section.

wrapper HTML string "<tr><th>{label}</th><td>{input}</td></tr>"

Each input exists in its
own row in the form. By
default this is a table-
row with the label in the
left cell and the input in
the right cell. You can
redefine this wrapper
and layout by specifying
a new HTML row
structure. See the
Wrappers section for
more info.

The default wrapper for
an input is
"<tr><th>{label}</th><td>{input}</td></tr>"

validate function

Define a validation
function for the input
that executes when the
input loses focus (blur)
or changes value. Your
function must return
true or false. True to
indicate it passed, false
to indicate it failed. If
your validation fails, the
form will not submit and
the invalid input will be
highlighted in red. See
the Validation section
for more details and
examples.

validateWhileTyping boolean false

Execute validation on
keypress in addition to
blur and change. This
ignores non-character
keys like shift, ctrl, and

Customizable Chat Registration Form

Widgets Reference 6



Property Type Default Description
alt.

options array []

When ‘type’ is set to
‘select’, you can
populate the select by
adding options to this
array. Each option is an
object (for example,
{text: ‘Option 1’, value:
‘1’} for a selectable
option, and {text:
"Group 1", group: true}
for an option group).

HTML Attributes
With the exception of special properties, all properties will be added as HTML attributes on the input
element. You can use standard HTML attributes or make your own.

Example

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName"

}

In this example, id, name, maxlength, and placeholder are all standard HTML attributes for the text
input element. Whatever values are set here will be applied to the input as HTML attributes.

Note: the default input type is "text", so type does not need to be defined if you intend to make a text
input.

HTML Output

<input type="text" id="cx_webchat_form_firstname
name="firstname" maxlength="100" placeholder="Required"></input>

Labels

A label tag will be generated for your input if you specify label text and if your custom input wrapper
includes a ‘{label}’ designation. If you have added an ID attribute for your input, the label will
automatically be linked to your input so that clicking on the label selects the input or, for checkboxes,
toggles it.

Labels can be defined as static strings or localization queries.

Customizable Chat Registration Form

Widgets Reference 7



Wrappers

Wrappers are HTML string templates that define a layout. There are two kinds of wrappers, Form
Wrappers and Input Wrappers:

Form Wrapper
You can specify the parent wrapper for the overall form in the top-level "wrapper"
property. In the example below, we specify this value as "
". This is the default wrapper for the WebChat form.
{

wrapper: "<table></table>", /* form wrapper */
inputs: []

}

Input Wrapper
Each input is rendered as a table row inside the Form Wrapper. You can change this by defining a new
wrapper template for your input row. Inside your template you can specify where you want the input
and label to be by adding the identifiers "{label}" and "{input}" to your wrapper value. See the
example below:

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",
wrapper: "<tr><th>{label}</th><td>{input}</td></tr>" /* input row wrapper */

}

The {label} identifier is optional. Omitting it will allow the input to fill the row. If you decide to keep
the label, you can move it to any location within the wrapper, such as putting the label on the right,
or stacking the label on top of the input. You can control the layout of each row independently,
depending on your needs.

You are not restricted to using a table for your form.You can change the form wrapper to
"<div></div>" and then change the individual input wrappers from a table-row to your own
specification. Be aware though that when you move away from the default table wrappers, you are
responsible for styling and aligning your layout. Only the default table-row wrapper is supported by
default Themes and CSS.

Customizable Chat Registration Form

Widgets Reference 8



Validation

You can apply a validation function to each input that lets you check the value after a change has
been made and/or the user has moved to a different input (on change and on blur). You can enable
validation on key press by setting validateWhileTyping to true in your input definition.

Here is how a validation function is defined:

{
id: "cx_webchat_form_firstname",
name: "firstname",
maxlength: "100",
placeholder: "@i18n:webchat.ChatFormPlaceholderFirstName",
label: "@i18n:webchat.ChatFormFirstName",

validateWhileTyping: true, // default is false

validate: function(event, form, input, label, $, CXBus, Common){

return true; // or false
}

}

You must return true or false to indicate that validation has passed or failed, respectively. If you
return false, the WebChat form will not submit, and the input will be highlighted in red. This is
achieved by adding the CSS class "cx-error" to the input.

Validation Function Arguments
Argument Type Description

event JavaScript event object

form HTML reference A jquery reference to the form
wrapper element.

input HTML reference A jquery reference to the input
element being validated.

label HTML reference A jquery reference to the label
for the input being validated.

$ jquery instance
Widget’s internal jquery instance.
Use this to help you write your
validation logic, if needed.

CXBus CXBus instance
Widget’s internal CXBus
reference. Use this to call
commands on the bus, if needed.

Common Function Library
Widget’s internal Common library
of functions and utilities. Use if
needed.

Customizable Chat Registration Form

Widgets Reference 9



Form Submit

Custom Input field form values are submitted to the server as key value pairs under the userData
section of the form submit request, where input field names will be the property keys. During the
submit, this data is merged along with the userData defined in the WebChat open command.

Customizable Chat Registration Form

Widgets Reference 10

https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatCommands#open

	Widgets Reference
	Customizable Chat Registration Form

