
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

High Availability Support

Genesys Rules System Deployment
Guide

5/7/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



High Availability Support

Contents

• 1 High Availability Support
• 1.1 GRE
• 1.2 GRAT

High Availability Support

Genesys Rules System Deployment Guide 2



GRE

The Genesys Rules Engine (GRE) can be set up in a cluster in order to provide a highly available
configuration. GRE is considered a critical path application because the execution of rules depends
upon at least one node in the system being available. Since GRE is stateless, each rule execution
request can be dispatched to any node in the cluster, and should a node fail, another node could
execute the request.

The load balancer can be set up to dispatch requests to each GRE node at random, or in a round-
robin fashion. There is no need to configure "session stickiness" as there are no sessions to maintain
between rule execution requests. The load balancer should only route rule evaluation requests to a
node that returns an HTTP 200/ SYSTEM_STATUS_OK, as described in GRE Status below.

GRE Status
GRE has a status.jsp URL that can be used for a health check. The following statuses are available
via /genesys-rules-engine/status.jsp.

Status Response Text/Meaning

HTTP 503

• SYSTEM_STATUS_CONFIG_SERVER_NOT_CONNECTE
D—Configuration Server is not connected (same
as pre-8.5.2 response)

• SYSTEM_STATUS_ENGINE_NOT_INITIALIZE
D—Engine is not initialized

• SYSTEM_STATUS_CLUSTER_SYNCHING—Engine
synching with Cluster

HTTP 200
• SYSTEM_STATUS_OK—Ready to take rule

execution requests (same as pre-8.5.2
response)

GRAT

Single GRAT instance
GRAT is not considered a critical path application because it only handles the creation, editing and
deployment of rules. Where only one GRAT instance is connected to a particular rules repository
database at a time, if GRAT should fail, rule execution continues uninterrupted. Only rule editing
becomes unavailable.

High Availability Support

Genesys Rules System Deployment Guide 3



GRAT Status

GRAT has a status.jsp URL that can be used for a health check.

Status Response Text/Meaning

HTTP 200 • SYSTEM_STATUS_OK—GRAT server is up and
running

HTTP 503

• SYSTEM_STATUS_CONFIG_SERVER_NOT_CONNECTE
D—GRAT server is not connected to
Configuration Server

• SYSTEM_STATUS_DB_INITIALIZING—GRAT
server is currently initializing local cache from
repository database. This can take several
minutes for a large repository.

• SYSTEM_STATUS_DB_NOT_CONNECTED—GRAT
Server cannot connect to the repository
database. Check the database status and/or
check the database credentials that are
specified in the DAP on the GRAT application
object.

• SYSTEM_STATUS_UNKNOWN—GRAT server is down.
Check logs for more details.

Configuring GRAT clusters
You can configure clusters of GRAT servers which deliver much greater resilience and availability,
enabling instant switchovers between GRAT nodes that are members of the cluster. All cluster
members connect to the same database repository. No single GRAT node is considered primary—they
are all equal partners in the n-node cluster.

An n-node cluster configuration can be used to deliver High Availability and Load Balancing. For
example, 2 or 3 GRATs can be configured in a cluster. It is not recommended to have more than 4
GRATs in a cluster, due to the network demands on the repository database. It is also not
recommended to have GRATs which are geographically distant from the repository database server,
due to the high network demands placed on the database. It is recommended to have all nodes of a
GRAT cluster in the same region as the database server. Users can access the GRAT cluster from
different regions via browser (the browser's GRAT bandwidth requirement is insignificant compared to
the GRAT's databse bandwidth, so it is best to have users remote via browser and have GRAT close to
the DB).

A load balancer can front-end the GRAT UI, and evenly distribute the load across the available healthy
GRAT nodes in the cluster. The load balancer must provide session stickiness for the GRAT user
interface requests by sending all the requests pertaining to a session to the same GRAT node that
initiated the session after successful login. Similarly, in the case of the GRAT REST API, after
successful login, the load balancer must send the subsequent requests to the same GRAT node that
handled the login request. More information on the GRAT REST API Authentication mechanism is
available here.

High Availability Support

Genesys Rules System Deployment Guide 4

https://docs.genesys.com/Documentation/GRS/latest/GRSRESTAPI/GRSAPIAuthenticationTable


The load balancer can poll each node’s “health check” URL (/genesys-rules-authoring/status.jsp)
to determine the health of that node in the cluster. In the event of a failure (or planned maintenance)
of one of the GRAT nodes in the cluster, the load balancer will detect this (via the healthcheck URL)
and no longer send traffic to the node that is down. Any users that were currently logged into that
node would be reassigned to another node. They would be prompted to log in again to resume their
work: however, any “unsaved” changes at the time of the node failure would be lost.

When a GRAT node is part of a cluster, you should in general set the value of its clear-repository-
cache option to false.

High Availability Support

Genesys Rules System Deployment Guide 5


	Genesys Rules System Deployment Guide
	High Availability Support

