
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Rules System 8.5.1

GRS Best Practice Guide

2/25/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
GRS Best Practice Guide 3
New Features by Release 5
GRS/Composer Process Flow 15
Working with Rule Templates 17

Rule Template Components 18
Rule Language Mapping 23
DROOLS5 Keywords 25

Creating a Template in GRDT 27
Publish Template 29
Video Series - Building a Rule Template in GRDT 30

Working with Rules 31
Quickest Way to Create New Rule 34
Creating a Linear Rule 35

Linear Rules—Examples 37
Creating a Decision Table 39

Decision Tables—Examples 42
Deploying a Rules Package 45
Video Series - Building a Rule Package and Rule in GRAT 49

Working with Composer's Business Rules Block 50
Video Series - Using Composer to execute a rule block 55

Genesys Rules System 101—Video Topics 56
Examples of Rule Template Development 59

Example 1— 60
Example 2—Function 65
Example 3—Using a JSON Object 67

Solution-Specific Templates 69

GRS Best Practice Guide
This document describes how, once GRS is installed, to:

• Develop templates
• Author, test, deploy rules packages
• Work with the Composer Business Rules Block
• Work with supplied solution-specific templates
• Understand use cases and worked examples

Please read the GRS Overview document if you are unfamiliar with GRS.

To install Genesys Rules System, please refer to the Deployment Guide.

Introduction

New Features by Release
GRS/Composer Process Flow

Working with Rule Templates

Working with Templates
Rule Template Components
Creating a Template in GRDT
Publishing a Template
Video Series - Building a Rule Template in
GRDT

Working with Rules

Working with Rules
Quickest Way to Create a New Rule
Creating a Linear Rule
Creating a Decision Table
Deploying a Rules Package

Working with Composer's Business
Rules Block

Using Composer's Business Rules Block
Video Series - Using Composer to
Execute a Rule Block

GRS Best Practice Guide

GRS Best Practice Guide 3

https://docs.genesys.com/Documentation/GRS/8.1.4/User/Welcome
https://docs.genesys.com/Documentation/GRS/latest/Deployment/Welcome

Video Series - Building a Rule Package
and Rule in GRAT

Genesys Rules System 101 Worked
Example

Genesys Rules System 101 - Video Topics

Solution-Specific Templates

Solution-Specific Templates

Other Documents

Deployment Guide
GRS Overview

GRS Best Practice Guide

GRS Best Practice Guide 4

https://docs.genesys.com/Documentation/GRS/8.5.0/Deployment/Welcome
https://docs.genesys.com/Documentation/GRS/8.1.4/User/Welcome

New Features by Release

New in 8.5.1

Support for Conversation Manager Templates in Test Scenarios
In the initial 8.5.001 release of GRS, the Test Scenario feature did not support rules that were created
using the Conversation Manager (CM) template. This is because the Test Scenario feature in release
8.5.001 works by taking the input data (a set of one or more facts with different fields) that is
configured by the user and building the appropriate Fact model, then running the rules under GRAT
using that set of data. In release 8.5.1, the Test Scenario feature now supports rules based on the CM
template.

Data Structure in CM

With Conversation Manager, the data is in a hierarchical JSON format of Customer -> Service ->
State -> Task. Any given Customer may have one or more Services. Each Service may be in at
most one State at a time. Each State may have one or more Tasks. Tasks may also be associated
directly with Services.

So the Customer, Services, States and Tasks Facts have now been added the lists of Facts that can
be defined as Given fields, and the RulesResults Fact has been added to the list of Facts that can

New Features by Release

GRS Best Practice Guide 5

be defined as an Expectation.

Important
The current CM Template is only interested in the Type, Start Time, and Completion
Time (if any) of Services, States, and Tasks.

Each of the new values is represented by a JSON string which will be the value for that field.

Now, when the type of rule for which you want to create a test scenario is a Conversation Manager
rule (based on the Conversation Manager template), a series of different values for the Given and
Expectation elements that reflect these more complex data structures are available. In the example
below you can see the Customer > Service > State > Task structure is reflected by the four
@class entries in the drop-down list of Givens and the @class:RulesResults entry in the drop-down
list of Expectations.

When you select an @class entry, a new column is added. Click on a grid cell under the new column
to bring up the edit dialog for that entry. The additional data listed below can be selected as either a
Given or an Expectation.

Additional CM Template Objects

Givens
The list below shows the additional provided data.

• Available by selecting one of the @class entries:
• Add Customer Attribute

• Add Service

New Features by Release

GRS Best Practice Guide 6

• Add Service Type

• Add Service Start Time

• Add Service Completion Time

• Add State

• Add State Type

• Add State Start Time

• Add State Completion Time

• Add Task

• Add Task Type

• Add Task Start Time

• Add Task Completion Time

• Available for direct selection from Givens:
• Add Interaction Media Type

• Add Contract End Date

Expectations
The list below shows the additional expected results:

• Update Customer Attribute

• Request Specific Agent

• Request Agent Group

• Request Place Group

• Request Skill

• Send Communication to Customer

• Block Communication to Customer

• Offer Service Resumption

• Offer Survey to Customer

Edit Dialogs

To create entries for the Givens and Expectations of your Conversation Manager test scenario, select
the relevant @class item and use the sample additional edit dialogs shown below.

New Features by Release

GRS Best Practice Guide 7

Givens

New Features by Release

GRS Best Practice Guide 8

Expectations

Nested Solution Business Hierarchy
In release 8.5.1 of Genesys Rules Authoring tool, if you have permission to create a new rule (Rule
Package - Create) you can now add a new Rule Package at any node in the business hierarchy (a
nested solution), rather than just at the first level.

[+] FULL DESCRIPTION

Non-Nested Solution Nested Solution

This means that:

• Your business hierarchy can be more easily organized.
• The need for lots of duplication and repetition at the Solution level in more complex business

hierarchies is now removed.
• Individual users can be restricted using Role-Based Access Control to specific sub-nodes (for

New Features by Release

GRS Best Practice Guide 9

example, Departments and Processes).

Importing Rule Packages

Because rules can be associated with sub-nodes in a nested hierarchy, when a rule package is
imported, GRAT ensures that the business structure is compatible, and prevents an import if it is
not. If GRAT finds an incompatibility, an error such as the following is displayed:

Important
Even if the Auto-create business hierarchy during import button is selected,
GRAT prevents the same node name from being created anywhere in the
hierarchy—uniqueness of business node names across the entire hierarchy is still
enforced.

Test Scenarios

For Test Scenarios, the Business Hierarchy drop-down displays the relative path underneath the
selected rule package:

New Features by Release

GRS Best Practice Guide 10

Deleting Business Nodes

Be careful never to delete any business structure nodes that contain active rule packages or
rules, without first backing up the rule packages as XML files. While it is OK to add new nodes, or
to "rename" nodes, proper permissions should be set up to prevent a GA/GAX user from
accidentally deleting nodes which could cause rule packages / rules to become unreachable.

Enabling and Disabling the Feature

Because some customers might want to restrict their users to creating rule packages only under
the Solution node, in release 8.5.100.21 a new configuration option—enable-nested-
solutions—has been implemented to allow users to enable or disable this feature. Disabling
this feature is recommended for iWD users.

• Option name—enable-nested-solutions

• Valid values—true/false

• Default value—true

• Description—Controls whether users can create new rule packages under any node in the
hierarchy. For iWD, it is recommended to set this option to false.

New in 8.5.001.21

New Features by Release

GRS Best Practice Guide 11

Business Calendar Enhancements
Business calendars have been enhanced in GRS release 8.5.2 to allow:

• Dynamic Timezone Support
• Differentiation between holidays and non-working days.

[+] FULL DESCRIPTION

Dynamic Timezone Support

When the GRAT user configures a business calendar, a timezone is chosen along with the other
attributes of the calendar (normal work week, exceptions, holidays). Business calendars have
been enhanced to allow the timezone to be provided dynamically at rule-evaluation time. This
feature enables you to configure a standard set of business calendars that can be re-used in any
timezone.

In this release, the standard methods that can be accessed from within the rule template have
been extended to allow the timezone ID to be passed in at rule evaluation time. If the timezone
ID is not passed in in this way, then the "saved" timezone is used. If the timezone ID is passed
in, then it overrides the saved timezone and the calculations will be done using the provided
timezone.

Example

A rule, such as in the example below, asks which business calendar to use in evaluating the rule
conditions;

and this can answer questions about whether today is a working day (by using the
isWorkingDay method), or whether this time is in business hours, and so on. Now, you can
configure the calling application (that is calling for the rule evaluation) to pass in a timezone ID
as a parameter to the relevant business calendar function, and if present, this will override the
configured timezone of the business calendar that the rule was created with.

For example, for the isWorkingDay method, the addition of the timezoneID parameter
(highlighted below in the GRST template) enables this override to occur if the parameter is
passed in:

New Features by Release

GRS Best Practice Guide 12

The isWorkingDay condition is then evaluated based on the dynamic timezone passed in by the
calling application.

New Method Signatures to the BusinessCalendar Object
The following new method signatures have been added to the BusinessCalendar object, and
can be invoked from within a rule function:

• public boolean isWorkingDay(Date theDate, String timeZoneID);

• public boolean isHoliday(Date theDate, String timeZoneID);

• public boolean isException(Date theDate, String timeZoneID);

• public boolean isWorkingTime(Date theTime, String timeZoneID);

• public int diffWorkingDays(Date date1, Date date2, String timeZoneID);

• public int diffWorkingHours(Date date1, Date date2,String timeZoneID);

• public int diffWorkingMinutes(Date date1, Date date2, String timeZoneID);

• public long diffWorkingSeconds(Date time1, Date time2, String timeZoneID);

New Features by Release

GRS Best Practice Guide 13

• public Date beginningOfWorkingDay (Date time, String timeZoneID);

• public Date endOfWorkingDay (Date time, String timeZoneID);

Differentiation between Holidays and Non-Working Days

Business calendars have been enhanced to distinguish between holidays and non-working days.
Four new methods have been added to the business calendar object:

• isHoliday()—Returns whether this calendar day is a holiday. Holidays are always non-working
days.

• isHoliday(date)—As for isHoliday() but allows you to specify the date to check.
• isException()—Returns whether the day is an exception to the standard work schedule. An

exception includes either a time change or a holiday.
• isException(date)—As for isException() but for a specified day.

New Features by Release

GRS Best Practice Guide 14

GRS/Composer Process Flow

Basic Relationships and Flow

Create a template using the GRDT.

GRS/Composer Process Flow

GRS Best Practice Guide 15

Create a rule package in GRAT and deploy it to the GRE.

The deployed rule package arrives to GRE and awaits evaluation requests from Composer's
Business Rules block.

Composer's Business Rules block sends evaluation requests to GRE.

GRE returns the results in a variable to Composer's Business Rule block.

Variations

It is possible to:

• Create a template from scratch in GRDT and publish to GRAT.
• Import a template project into GRDT, optionally make some modifications, publish to GRAT (for

example, the sample from Genesys Proactive Engagement).
• Import a template XML file into GRAT (eg, sample from Conversation Rules or iWD) and use it directly. If

you want to modify the template, you can import into GRDT using the GRS Server Explorer window,
modify, the publish it to GRAT.

+ DETAIL Importing/Exporting Templates

GRS/Composer Process Flow

GRS Best Practice Guide 16

Working with Rule Templates
The topics in this section describes in detail how to work with GRS rule templates.

Working with Rule Templates

GRS Best Practice Guide 17

Rule Template Components

There are a number of components that can be created in a rule template.

Actions and Conditions

Actions and conditions define WHEN/THEN scenarios, such as WHEN a customer is a Gold customer,
THEN target the GoldAgentGroup. The WHEN statement is the condition, and the THEN statement is
the action. A rule may have zero or more conditions, and one or more actions. This example also
includes parameters: the status of the customer (Gold) and the name of the Agent Group
(GoldAgentGroup).

Whenever a condition contains a rule language mapping that begins with eval(...), you must
enclose the entire expression in parenthesis, as follows:

(eval(....))

This will ensure it will compile properly when used with the NOT operator.

Enumerations

Enumerations are used to define lists of possible choices that will be displayed to the business rule
author, when the author is creating rules that are based on the rule template. In some cases, the list
of possible choices will be selected dynamically from Genesys Configuration Server objects or from
external data sources. For WFM Activities and Multi-Site Activities, the list of possible choices is
retrieved dynamically from the Genesys WFM Server. Thus, enumerations are used during definition
of a discrete list of choices that will not change dynamically.

Fact Models

A fact model structures basic knowledge about business operations from a business perspective. A
fact model focuses on logical connections (called facts) between core concepts of the business. It
indicates what you need to know about the business operations in order to support (or actually do)
those operations.

A good fact model tells you how to structure your basic thinking (or knowledge) about the business
process based on a standard vocabulary. By using standard, business-focused vocabulary, it ensures
that the business rules themselves can be well-understood by key stakeholders such as business

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 18

analysts. For example, in your business you may have a Fact that represents a Customer, and
another Fact that represents an Order.

The Customer could have fields such as name, age, location, credit rating, and preferred language.
The Order may have fields such as order amount and order date. A rule could be constructed using
these values such as:

When Customer is at least 21 years old and his order is > 100.00 then invite customer to participate
in survey.

Events

In release 8.1.2, in order to support Complex Event Processing, template developers need to be able
to designate certain facts as events, and rules authors need to change the way that the DRL is
generated when a fact is designated as an event.

So the fact model was enhanced to include events, and the fact model dialog now includes a Create
Event button. An event has the following fields:

• Name
• Description
• An optional list of Properties.
• User-defined expiration metadata for the event

In GRAT, the @role meta-data tag determines whether we are dealing with a fact or an event. The
@role meta-data tag can accept two possible values:

• fact—Assigning the fact role declares the type is to be handled as a regular fact. Fact is the default
role.

• event—Assigning the event role declares the type is to be handled as an event.

Functions

Functions are used to define elements other than Conditions and Actions. The Functions editor
enables you to write specific Java functions for different purposes for use in rule templates. The
specified functions may then be used in the rule language mappings (see Rule Language Mapping).

When the rule templates are created, the rule developer publishes them to the Rule Repository,
making them available in the GRAT for business users to create rules.

Actions and conditions can contain parameters. Various types of parameters are supported. Refer to
the Genesys Rules Development Tool Help for detailed information about creating parameters in the
Genesys Rules Development Tool, including examples of parameters.

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 19

Certain dynamic parameter types that refer to external data sources require a Profile to be selected.
The Profile is defined as a Script object of Data Collection type, and it provides connection
information that enables the GRAT to retrieve this dynamic data from the external data source. The
next sections describe how to configure Profiles for database, Web Service, and Workforce
Management parameters.

Database Parameters
Database Parameter Properties

Property Mandatory/optional Description

driver Mandatory
The name of the jdbc driver to be
used. For example,
com.mysql.jdbc.Driver

url Mandatory
The url for the database in the
correct format for the jdbc driver
to be used.

username Mandatory A valid username to connect to
the database.

password Mandatory The password needed for the
user to connect to the database.

initSize Optional The initial size of the connection
pool. The default is 5.

maxSize Optional
The maximum size of the
connection pool. The default is
30.

waitTime Optional
The maximum time (in
milliseconds) to wait for
obtaining a connection. The
default is 5000.

In general, the optional values do not need to be set or changed.

In the Genesys Rules Development Tool, you can only configure database parameters with an SQL
SELECT statement. Any other type of statement will fail when configured.

Web Service Parameters

In Configuration Server, Web Service Scripts must have a section called webservice. The table below
lists the properties that you can specify for web service parameters.

Web Service Parameter Properties

Property Mandatory/optional Description

host Mandatory The host for the service.

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 20

Property Mandatory/optional Description

base-path Mandatory The base path to access the
service.

protocol Optional The default is http.
port Optional The default is 80.

headers Optional Any custom HTTP headers that
are needed for the service.

parameters Optional
Any custom HTTP settings that
are needed to tune the
connection.

In general, the parameters values do not need to be set or changed. Headers and parameters are
lists in the following format:

key:value[,key:value]

Warning:

You cannot specify headers or parameters that
contain "," in the value.
Warning: If you are sending a message to the service, it is
expected that Content-Type is specified in the header since it
defines the overall message interaction with the server. An
optional charset can be included. For example, Content-
Type:applicaton/json;charset=UTF-8.

In the Genesys Rules Development Tool, you have to completely define the message to be sent and it
must be constant. No variable substitution is done. The XPath Query is used to pull values out of the
response from the server. The response must be in XML or JSON, otherwise this will not work. A valid
XPath query for the response must be specified. This depends entirely on the service you interface
with.

Note:
The message is sent to the server only once per
session. This is done both for performance reasons
and because the values in the response are
expected to be relatively constant.

In the Genesys Rules Development Tool, the path for the parameter is added to the base_path in the
script.

For example:

If the Script contains:

host = api.wunderground.com
base_path = /auto/wui/geo/ForecastXML/

and the GRDT specifies:

query type = List
XPath Query = //high/fahrenheit/text()
HTTP Method = GET
path = index.xml?query=66062
message (not set)

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 21

then the message that is sent is:

GET /auto/wui/geo/ForecastXML/index.xml?query=66062 HTTP/1.1

This will return the week's highs in Fahrenheit:

81
77
81
81
83
85

Workforce Management Parameters

In Configuration Server, Workforce Management Scripts must have a section called wfm. Table 4 lists
the properties that you can specify for Workforce Management parameters.

Workforce Management Parameter Properties

Property Mandatory/optional Description

wfmCfgServerApplName Mandatory Configuration Server application
name for the WFM server.

wfmCfgServerUserName Mandatory Configuration Server user name.
wfmCfgServerPassword Mandatory Configuration Server password.
wfmServerUrl Mandatory URL of WFM Server.

When configuring a new parameter of type “Workforce Management” under the Genesys Rules
Development Tool, simply name the parameter and choose the WFM profile (script object just
created) from the drop-down list. When the author is using this parameter, the GRAT will fetch the
current list of WFM Activities from the WFM Server and display them to the rule author.

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 22

Rule Language Mapping
When rule developers create the conditions or actions in a rule template, they enter the rule
language mapping. Up to and including Genesys Rules System 8.1.2, the 5.1 Drools Rule Language is
used. Details of this can be found here:

http://downloads.jboss.com/drools/docs/5.1.1.34858.FINAL/drools-expert/html/ch04.html

However, for use in JBOSS environments, you should reference the 5.2 version here:

http://downloads.jboss.com/drools/docs/5.2.FINAL/drools-expert/html/ch05.html

For GRS 8.1.3 and higher, use the 5.5 versions, found here:

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/#d0e4033

Because URLs change frequently, search the Drools web site for the Drools Expert User Guide, and
then look at the table of contents of that guide for the information on the Drools Rule Language.

The rule language mapping is not visible to the business user when they are authoring rules in the
Genesys Rules Authoring Tool. Instead, the rule authors will see the Language Expression that the
rule template developer enters. The language expression is a plain-language description that uses
terminology that is relevant to the business user, instead of low-level code. Rule language mapping is
provided in the examples in the following section.

Language Expressions

When building a rule template in GRDT, the Language Expression cannot use the open or closed
parenthesis character. For example, the expression:

More than "{parCallLimit}" calls within "{parDayLimit}" day(s)

will result in an error when you try to save the rule in GRAT. But if you want the business user to see a
parenthesis in GRAT, you can use backslash characters in your Language Expression. For example:

More than "{parCallLimit}" calls within "{parDayLimit}" day\(s\).

HTML Constructs

For security reasons, GRAT does not allow any HTML commands to be entered as parameters of a
rule. For example, if a condition is:

Customer requests a callback on "{day}"

and "{day}" is defined as a string, we would not allow a rule author to enter the string:

Customer requests a callback on ‹b›Tuesday‹/b›.

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 23

All HTML constructs will be removed from the string. This applies to string parameters as well as
dynamic list parameters such as business attributes, database or web service.

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 24

DROOLS5 Keywords
Drools 5 introduces the concept of hard and soft keywords.

Hard Keywords

Hard keywords are reserved—you cannot use any hard keyword when naming domain objects,
properties, methods, functions and other elements that are used in the rule text. The following list of
hard keywords must be avoided as identifiers when writing rules:

• true
• false
• null

Soft Keywords

Soft keywords are just recognized in their context, enabling you to use these words in any other place
if you wish, although Genesys recommends avoiding them if possible to prevent confusion. The list of
soft keywords is:

• lock-
on-
active

• date-
effective

• date-
expires

• no-
loop

• auto-
focus

• activation-
group

• agenda-
group

• ruleflow-
group

• entry-
point

• duration

• package
• import
• dialect
• salience
• enabled

• attributes
• rule
• extend
• when
• then

• template
• query
• declare
• function
• global

• eval
• not
• in
• or
• and

• exists
• forall
• accumulate
• collect
• from

• action
• reverse
• result
• end
• over

• init

You can use these (hard and soft) words as part of a method name in camel case, for example
notSomething() or accumulateSomething() without any issues.

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 25

Escaping Hard Keywords

Although the three hard keywords above are unlikely to be used in your existing domain models, if
you absolutely need to use them as identifiers instead of keywords, the DRL language provides the
ability to escape hard keywords on rule text. To escape a word, simply enclose it in grave accents,
like this:

Holiday(`true` == "yes") //

Please note that Drools will resolve that reference to the method:

Holiday.isTrue()

Working with Rule Templates Rule Template Components

GRS Best Practice Guide 26

Creating a Template in GRDT
Rule Templates are created as Projects in GRDT. The New Project Wizard is used to create new
templates.

New Project Wizard

The New Project Wizard guides you through the steps to create a new Rule Template Project. This
wizard can be accessed in the following ways:

• Select File > New > Rule Template Project from the menu bar.
• Right-click within the Project Explorer and select New > Project from the context-sensitive menu.

The wizard leads you through the following steps:

1. The first screen prompts you to select which wizard you need that is, which type of project you wish to
create. If it is not already selected, navigate to Genesys Rules System > Rule Template Project
and click Next.

2. Enter a name for the new template project. Template names must be unique within a tenant. Either use
the default location, or clear the check-box and select a new location. Click Next.

3. Verify the type of template you are creating in the drop-down list. The default template type is
Stateless. To create an iWD template, select iWD. To create a template for Genesys Web Engagement,
select type CEP.

Important
CEP support requires the presence of GWE to function.

Important
The iCFD template type has been removed. The iWD template type is the only
reserved template type. Any other new template types required can be created by
using the Configure Types link (see step 4).

4. Click the Configure Types link to create new template types or maintain existing ones.
5. Use the Enable event support check box to indicate whether the template will support events. In

templates that support events, the Fact Model editor can be used to create both facts and events.
6. Select the appropriate Tenant, and enter a description of the template.
7. Click Finish. The new template project will now appear in the Project Explorer.

Working with Rule Templates Creating a Template in GRDT

GRS Best Practice Guide 27

Editing and Configuring Rule Templates

Once it is created, the rule template appears in the Project Explorer. Expanding the template displays
a list of components that can be configured. Double-click the component type in the Project Explorer
to open the appropriate Editor and begin configuring components.

Renaming Rule Templates

Renaming rule templates does not change the name within the repository. When you publish the
renamed rule template, it will be added to the repository as a new template, and the template with
the old name will still exist.

You can rename your template by right-clicking the template in the Project Explorer and selecting
Rename from the context-sensitive menu, by selecting the template and navigating to File >
Rename, or by selecting the F2 key on your keyboard. Many features can be accessed in similar
ways.

Important
In release 8.1.2, duplicate template names are not allowed within tenants, but are
allowed in different tenants. Creating such a duplicate name will rename the project,
but the name as published in GRAT is set via Project/Properties/Template
Properties.

Copying Rule Templates

Existing rule templates can be copied to be used as a basis for a new template. Right-click the
template in the Project Explorer, and select Copy. As with renaming, there are multiple ways to
access the Copy functionality, such as the Ctrl + C keyboard shortcut, Edit > Copy, and so on.

Deleting Rule Templates

Rule templates can be deleted using the GRS Server Explorer, provided that:

• The user has rule template delete permissions, and;
• The rule is not used in any rule package.

Working with Rule Templates Creating a Template in GRDT

GRS Best Practice Guide 28

Publish Template
You must publish the template in order for it to be available to business users to create rules.
Publishing is also the preferred mechanism for sharing the templates so other template developers
can edit or modify the templates, if necessary. The visibility of the template is determined by access
permissions. These permissions are defined in Configuration Manager or Genesys Administrator by an
Administrator. Each template has a corresponding Script object in Genesys Configuration Server for
which access control can be configured.

Since release 8.1.3, rule authors can select prior versions of published rule templates. You can
optionally publish a version comment for a specific template in order to inform rule authors about the
specific differences between individual versions of a template.

To publish the template to the repository:

1. Select the template in the Project Explorer and right-click.
2. Add a version comment.
3. Select Publish.
4. Click Next to enter a publish comment.
5. Click Finish to publish the template.

Imported Templates

If you plan to import a Genesys-supplied template (such as for IWD or GPE or Conversation Rules)
directly into GRAT, no Publish step from GRDT is required.

Templates imported into GRDT must still be published to GRAT before they can be used to create
rules.

Working with Rule Templates Publish Template

GRS Best Practice Guide 29

Video Series - Building a Rule Template in
GRDT

Name Description Link Duration

Creating a template
project

Setting up the Eclipse/
Composer environment,
initial configuration and
creating a template
project

7.59

Building the Fact Model

Building the Facts (data)
that will be passed in by
the application for
evaluation by the rules
engine.

5.32

Creating Enumerations

Creating Enumerations
(static lists) that the
rule author will select
from in GRAT to build a
rule.

2:13

Creating Parameters
Creating the Parameters
that will be used in
Conditions and Actions

7:11

Creating Conditions
Creating the Conditions
that the rule author will
select from in GRAT to
build a rule.

5:23

Creating Actions
Creating the Actions
that the rule author will
select from in GRAT to
build a rule.

6:18

Publishing
Publishing the template
from GRDT to GRAT to
enable the rule author
to use it.

2:11

Working with Rule Templates Video Series - Building a Rule Template in GRDT

GRS Best Practice Guide 30

Working with Rules

Rules Package Overview

Rule packages are bundles of rules. Rule packages are used to group, manage, and deploy rules. The
rules in a rule package provide a set of functionality (like an iWD solution). The Genesys Rules
Authoring Tool (GRAT) allows you to create, edit, and delete rule packages.

Rule packages provide the following capabilities:

• The ability to partition rules and facts so that they are small, well-defined, and apply only to a particular
application or use. This makes them easier to debug and understand. The fact model is a description of
the data. It contains field names and types which are grouped into tables/classes. Facts are input/
output to rule execution and are instances of the tables/classes defined in the fact model.

• The ability to isolate rule packages from one another when executing rules. This also improves
performance because the Rules Engine has fewer candidates to examine during the evaluation.

• The ability to update individual rule packages without affecting other deployed packages.
• The ability to import and export an entire rule package containing the rule definitions, business

calendars, and also the templates that the rule package is dependent on.
• A rule package contains one or more rules plus the fact model that is needed to support the rules. You

deploy rule packages individually to the Rules Engine.

When you select an existing rule package in the Explorer Tree, four tabs are displayed in the Details
Panel:

• The General tab displays the basic information for the rule package, such as name, type, and the
associated templates.

• The Rules tab allows you to create, edit, and view rules. When you click the rule package node and
then the Rules tab, you can create, edit and view rules at the global level for that package. Clicking on
the other nodes (which represent various business contexts) enables you to modify the rules defined
for that specific business context.

• The Audit Trail tab allows you to view the history of the individual rules, such as when they were
updated or deployed, and by whom.

• The Package History tab allows you to view the history of a package and its versions and snapshots,
including changes to rules, templates, calendars, test scenarios, imports/exports and deployments.
History for all packages across one tenant can also be displayed at the tenant level.

As well as creating a rule package, the GRAT enables you to import and export existing rule
packages. This ability enables you, for example, to import a rules package from a test environment to
a production environment, or to export a rules package for backup prior to upgrading.

Working with Rules Video Series - Building a Rule Template in GRDT

GRS Best Practice Guide 31

Rules Overview

A business rule is a piece of logic that defines, on a small scale, what a business does. For the
Genesys Rules System, a rule is an external piece of logic that can be customized by business
analysts, and invoked by applications. This allows you to tune specific business behaviors as needed.

Types of Rule
GRAT allows you to configure two types of rules:

Linear rules follow the following basic format:

WHEN {condition} THEN {action}

When the condition is true, the action will occur. This form of rule is best for simple actions, such as
assigning a value to return back to the application. Note, however, that linear rules can have multiple
conditions and actions, or only actions with no conditions. The conditions and actions that are
available depend upon the rule templates that are included in the rule package.

Decision tables allow you to join a number of Linear Rules with the same set of conditions (when)
and actions (then) to be used for a complex (structured) business case. Use decision tables to avoid
dozens of linear rules with identical structure in the system.

Order of Execution
You can configure rules for various business contexts (nodes representing the various elements in
your business structure hierarchy), or, for global rules, at the rule package level. In the Explorer
panel, each business context within the configured business structure is represented at a different
node level. The order of execution of rules within a rule package depends on the node level: rules
execute first at package/global level, then at each level of the hierarchy in turn.

So if you have defined this hierarchy:

• Package
• Sales Department

• Finance

and during execution, you specify “Sales Department” / “Finance”, then the order of execution is:

1. Rules at Package level (according to priority).
2. Rules at Sales Department (according to priority).
3. Rules in Finance (according to priority).

Within a given node, you can modify the order of execution by using the up or down arrows on
each rule.

Only rules on a particular node path are executed in any given rules run. The path of execution is
determined by input to the Rules Engine on the execution request.

Working with Rules Video Series - Building a Rule Template in GRDT

GRS Best Practice Guide 32

Important
The business structure is defined in Configuration Manager or Genesys Administrator.

Important
Before release 8.5.0, rules in Decision Tables were executed from the bottom up. From
release 8.5.0, system administrators can configure rule execution to be "bottom-up"
or "top-down". The Rule Evaluation Order indicator at the bottom of the screen
shows you which of these is selected, and a ToolTip is available when you hover your
cursor over this indicator. Any changes made to this configuration will apply
dynamically, but only take effect after a restart or a browser refresh.

Locking of Rules
When you make any modifications to the body of a rule, you "lock" the rule, which prevents others
from being able to make changes to the same rule at the same time. The unsaved changes icon
will appear on the Rule Summary to alert you that you need to save your changes. For any other
user, the Lock icon appears on the rule summary and the Save and Cancel buttons are disabled.
In addition, other users are unable to make changes to the rule because it is marked "read only".

You can modify multiple rules at a time, without explicitly saving your changes as you move from one
rule to the next. The Rule Summary will indicate whether there are any unsaved changes that need
to be saved. Once the rule is saved, it is "unlocked" and other users will be able to modify it. You can
also Cancel any unsaved changes, reverting the rule back to the last saved state.

If you log out of your session, you will be prompted if you have unsaved changes. You may then
either go back and save your changes, or continue with the logout. In the latter case, the changes
you made will be lost and not committed, and the rules will be unlocked.

Audit Trail
The Audit Trail tab allows you to view the history of the individual rules, such as when they were
updated or deployed, and by whom. When accessed within a business context (a node on the
Explorer Tree), the Audit Trail tab lists the rules that exist for that business context.

Working with Rules Video Series - Building a Rule Template in GRDT

GRS Best Practice Guide 33

Quickest Way to Create New Rule
The quickest way to create a new rule is to copy an existing one that you know works correctly.

For Linear Rules, click here.

For Decision Tables, click here.

Working with Rules Quickest Way to Create New Rule

GRS Best Practice Guide 34

Creating a Linear Rule
Follow these steps to create a linear rule:

1. Navigate to the rule package to which the new rule will belong in the Explorer Tree (verify that you
have selected the correct Tenant from the Tenant drop-down list). Navigate to the correct node of the
business structure under the rule package, which will define the node at which your linear rule will be
created. If you create the linear rule at the rule package level, it will be a global rule. Select the node in
the Explorer Tree and click on the Rules tab.

2. Click New Linear Rule.
3. In the Rule Summary, the ID field is populated automatically. It cannot be edited.
4. Enter a Name for the rule (for example, Gold).
5. Enter a brief Description for the rule (for example, If the customer is a Gold member, then increase the

priority).
6. Select the Phase at which this rule will be applied (classification, prioritization, or archiving for iWD.

Refer to the Genesys Rules System Deployment Guide for more information about phases).
7. Select the Business Calendar to use with this rule (optional).
8. The Pending Snapshot field is displayed with a tick symbol indicating that the contents of this rule

have not yet been included in a package snapshot. See Deployment for details of how to work with
snapshots.

9. Enter a Start Date and an End Date for the rule (optional). If the End Date is earlier than the current
date, the rule is marked with a flag () to indicate that the rule is out of date.

10. In the lower panel, fill in the When and Then rows.
a. To add a Condition (When), click Add Condition and select from the list (for example, a condition

for this scenario might be When the customer is a Gold member). The rule condition includes the
name of the rule template from which the condition is derived.

b. To add an Action (Then), click Add Action and select from the list (for example, an action for this
scenario might be Increase the priority by 100). The rule action includes the name of the rule
template from which the action is derived.

c. Insert values for the parameters into the table under the Condition and Action columns.
Depending on how the parameters were configured by the rule template developer in GRDT, there
may be constraints on the values that can be entered.

11. Click Validate to validate the syntax of the linear rule. The Validate option appears in the drop-down
located in the lower left side of panel.

12. Click Save to save your changes.

Important
When you make any modifications to the body of a rule, you "lock" the rule, which prevents others from being
able to make changes to the same rule at the same time. The unsaved icon will appear on the rule summary
to alert you that you need to save your changes. For any other user, the locked icon appears on the rule

Working with Rules Creating a Linear Rule

GRS Best Practice Guide 35

summary and the Save and Cancel buttons are disabled. In addition, other users are unable to make changes
to the rule because it is marked "read only".

When editing rules, be careful not to clear your browsing history or cookie data, as this might cause
the rule to be stuck in a locked state. Unsaved changes could be lost.

Working with Rules Creating a Linear Rule

GRS Best Practice Guide 36

Linear Rules—Examples
The Add Condition and Add Action drop-down lists are populated with all of the conditions and
actions that were created in the rule templates that are included in the rule package. The drop-down
lists contain the language expressions that the rule developers used during creation of the
components, and not the rule language mapping. This makes it possible to create rules without
knowing the rule language mapping or being familiar with Drools.

The parameters that are contained in each condition and action are represented by the names that
are entered for them. The business rule author must replace this name either by entering a value
(such as for an age range) or by selecting an option from the drop-down list (such as for an Agent
Group).

Example 1—Route Age Range to Agent Group

WHEN a customer’s age is within the range of 30-40 years, THEN the customer’s interaction will be
routed to Agent Group 1. In GRAT, create a new linear rule. Enter the name, phase, and so on, as
desired, and then add a condition and an action. The phases from which the rules author can select
are dictated by the rule template that the rules author is using.

There is an enumeration called Phases within the _GRS_Environment fact, that will be created
whenever a new rules template project is created in the GRDT. If the Phases enumeration is not
present, the rules author will simply see * in the Phase dropdown. In this case, Phase will not be
considered when evaluating the rule package.

To create this rule, the rules author would select Age Range as the condition and enter 30 as the
{ageLow} parameter and 40 as the {ageHigh} parameter. The action would be Target Agent
Group, and Agent Group 1 would be selected from the {agentGroup} drop-down list. The figure
below shows the linear rule in the Genesys Rules Authoring Tool.

Working with Rules Creating a Linear Rule

GRS Best Practice Guide 37

Example 2—Route from Voice to E-mail

This example is typical of a Conversation Manager scenario. WHEN a customer calls in (media
type=voice) and they are a Gold segment customer whose phone number starts with 919, THEN
offer a survey to the customer and send it by e-mail.

Working with Rules Creating a Linear Rule

GRS Best Practice Guide 38

Creating a Decision Table

Important
Decision tables can have a maximum of 30 columns.

Follow these steps to create a new decision table:

1. Navigate to the rule package to which the new decision table will belong in the Explorer Tree (verify that
you have selected the correct Tenant from the Tenant drop-down list). Navigate to the correct node of
the business structure under the rule package, which will define the node at which your decision table
will be created. If you create the decision table at the rule package level, it will be a global rule. Select
the node in the Explorer Tree and click on the Rules tab.

2. Click New Decision Table.
3. In the Rule Summary, the ID field is populated automatically. It cannot be edited.
4. Enter a Name for the decision table (for example, Status).
5. Enter a brief Description for the rule (for example, Adjust the priority, depending upon the customer's

status).
6. Select the Phase at which this rule will be applied (classification, prioritization, or archiving for iWD.

Refer to the Genesys Rules System Deployment Guide for more information about phases).
7. Select the Business Calendar to use with this rule (optional).
8. Enter a Start Date and an End Date for the rule (optional). If the End Date is earlier than the current

date, the rule is marked with a flag () to indicate that the rule is out of date.
9. Use the up and down arrows in the far right-hand column to control the ordering of the decision table

rows. In some complex cases, rules can be designed so that multiple rows will evaluate as true. In this
case, the order of the rows becomes important, so in release 8.5.0 you can re-order the rows when
creating and editing a decision table.

Important
By default, up to release 8.5.0, rules were executed from the bottom up. In release 8.5.0, your system
administrators can configure rule execution to be "bottom-up" or "top-down". The Rule Evaluation Order
indicator at the bottom of the screen shows you which of these is selected, and a ToolTip is available when
you hover your cursor over this indicator. Any changes made to this configuration will apply dynamically, but
only take effect after a restart or a browser refresh.

10. Add Conditions and Actions in the lower panel.

Working with Rules Creating a Decision Table

GRS Best Practice Guide 39

Important
In release 8.5.001, you can now use a wildcard symbol (*) in row data in a decision table (if the feature is configured by administrators).
The wild card indicates that, for this row, the value for the parameter where it is used is unimportant and not to be evaluated. A wildcard
selection now appears at the top of all lists, regardless of whether they are enumerations, business attributes, Configuration Server,
database, and so on. In the case of numeric parameters, you must type in the wildcard value—GRAT now accepts that as a valid number
field. For any condition that contains one or more wildcards, its evaluation will not be considered in the rule logic. There are some
restrictions:

• The wildcard values will work only for strings and numeric fields—fields of type date,
time and Boolean are not supported.

• Wildcard values are "all or nothing" for conditions with multiple parameters. For
example:

Customer age is between 40 and 60

is ONE condition, and it will be excluded for that row if one or more of the fields contains a wildcard value.

a. Select one or more Conditions from the list (for example, a condition for this scenario might be
named Customer's age is ...).

b. Select one or more Actions from the list (for example, an action for this scenario might be named
Increase priority by xxx).

c. Insert values for the parameters into the table under the Condition and Action columns.
Depending on how the parameters were configured by the rule template developer in GRDT, there
may be constraints on the values that can be entered.

d. Repeat Step c, adding more condition and action values.
e. Re-order the rows as appropriate.

11. Click Validate to validate the syntax of the linear rule.
12. Click Save to save your changes.

Important
When you make any modifications to the body of a rule, you "lock" the rule, which
prevents others from being able to make changes to the same rule at the same time.
The unsaved icon will appear on the rule summary to alert you that you need to
save your changes. For any other user, the locked icon appears on the rule
summary and the Save and Cancel buttons are disabled. In addition, other users are
unable to make changes to the rule because it is marked "read only".

Important
When editing rules, be careful not to clear your browsing history or cookie data, as
this might cause the rule to be stuck in a locked state. Unsaved changes could be lost.

Working with Rules Creating a Decision Table

GRS Best Practice Guide 40

Important
The Pending Snapshot field indicates whether any snapshot of this rule has yet
been created. See Deploying Rule Packages for information on snapshots.

Working with Rules Creating a Decision Table

GRS Best Practice Guide 41

Decision Tables—Examples

Important
Decision Tables can have a maximum of 30 columns.

Example 1—Pre–8.5.0

Decision tables allow you to create a number of rules that have the same set of conditions (WHEN)
and actions (THEN) that are to be used for a complex (structured) business case. Use decision tables
to avoid dozens of linear rules that have an identical structure in the system.

Choices in decision tables must be mutually exclusive to avoid ambiguity. This ensures that there is
only one outcome per evaluation. If the choices are not mutually exclusive, multiple rows may be
executed in no guaranteed order. The last row that is executed will determine the final result.

Sample Decision

When you are editing rules, be careful not to clear your cookie data, as this might cause the rule to
become stuck in a locked state until the session times out (the default is 30 minutes). Consult the
documentation for the browser that you are using for more information about how to prevent a user
from clearing cookie data.

Example 2—Post–8.5.0 Rule Evaluation Order

By default, up to release 8.5.0, rules were executed from the bottom up (a DROOLS constraint). In
release 8.5.0, system administrators can configure rule execution to be "bottom-up" or "top-down".
The Rule Evaluation Order indicator at the bottom of the screen shows you which of these is selected,
and a ToolTip is available when you hover your cursor over this indicator. Any changes made to this
configuration will apply dynamically, but only take effect after a restart or a browser refresh. A new

Working with Rules Creating a Decision Table

GRS Best Practice Guide 42

configuration option (evaluate-decision-table-rows-top-down) allows the administrator to set the
order of evaluation (top to bottom or bottom to top).

Decision Table with Rule Evaluation Order

Configuration Info
The evaluate-decision-table-rows-top-down configuration option controls this behavior. This
determines the order that the Decision Table rows are written out to the DRL. If you changes this
default option, you will see a change in behavior immediately when using GRAT's Test Scenario
feature, but will need to re-deploy the rule package in order for the change to be observed in GRE.

• Section: settings
• Option Name: evaluate-decision-table-rows-top-down
• Values: true, false
• Default: false (to maintain backwards compatibility)

Example 3—Wildcards

In release 8.5.001.00, you can now use a wildcard symbol (*) in row data in a decision table (if the
feature is configured by administrators). The wild card indicates that, for this row, the value for the
parameter where it is used is unimportant and not to be evaluated. A wildcard selection now appears
at the top of all lists, regardless of whether they are enumerations, business attributes, Configuration

Working with Rules Creating a Decision Table

GRS Best Practice Guide 43

Server, database, and so on. In the case of numeric parameters, you must type in the wildcard
value—GRAT now accepts that as a valid number field. For any condition that contains one or more
wildcards, its evaluation will not be considered in the rule logic. There are some restrictions:

• The wildcard values will work only for strings and numeric fields—fields of type date, time and Boolean
are not supported.

• Wildcard values are "all or nothing" for conditions with multiple parameters. For example:

Customer age is between 40 and 60

is ONE condition, and it will be excluded for that row if one or more of the fields contains a wildcard
value.

Decision Table with Wildcards

Working with Rules Creating a Decision Table

GRS Best Practice Guide 44

Deploying a Rules Package

Summary

In order for rules to be invoked by Genesys applications, you must deploy the rule package to one or
more Genesys Rules Engines (or for Genesys Web Engagement, to the GWEB backend server). The
deployment process (whether you choose to deploy immediately or to schedule the deployment for
later) attempts to compile the rule package and informs you of the result via the Deployment
Pending pop-up message. You can check on the status of your deployment by looking at the
Deployment History tab, which shows the status Pending. When deployment is in pending status,
you will not be able to cancel or undo it.

This process enables you to correct any errors before deployment. In addition, if you attempt a
deployment that would duplicate either;

• An already scheduled deployment or;
• An attribute of an already scheduled deployment, such as;

• The same rule package
• For the same snapshot
• For the same destination server/cluster

an appropriate message is displayed. You can then either change the attributes of your deployment,
or go to Deployment History and change/delete the scheduled deployment.

To use the deployment screen, you must have deploy permissions set up in Genesys Administrator.

To deploy a rule package:

1. Select the Tenant to which the rule package belongs from the drop-down list.
2. In the Explorer Tree, select the name of the rule package.
3. Under the rule package, select Deploy Rules. (The number of rules as yet not included in a snapshot

appears in parentheses.) The Details Panel contains two tabs:

• The Outstanding Deployments tab allows you to select from a list of snapshots of the package
including the LATEST version of the package (if configured by an administrator), create a new snapshot,
export a snapshot (as an XML file downloadable to the user’s local file system), delete a snapshot,
deploy the rule package, schedule a deployment to occur at a future time, and show the source of the
package. (Show Package Source displays the actual contents of the package snapshot you are
deploying. The fact model, calendar definitions, and rule definitions will be coded into the rule language
and displayed.)

Working with Rules Deploying a Rules Package

GRS Best Practice Guide 45

Important
When you create a snapshot, you can choose to check the Run as Background Task
option. For very large rule packages, it can take a long time to create a snapshot.
When this option is checked, this operation will be completed in the background. This
allows you to do other things or log off. When the snapshot is complete, it appears
under Package Snapshots.
Even if Run as Background Task is checked, the package will first be built and validated to ensure there
are no errors. Once the validation is successful, the snapshot will be queued to a background task.

You cannot delete the LATEST snapshot, and you cannot delete a snapshot for which
there is a scheduled deployment.

• The Deployment History tab shows details about when the package snapshot was deployed in the
past, and by whom. Failed deployments also appear in the list. In addition, the Deployment History
displays scheduled deployments, and allows you to cancel or change the schedule of upcoming
deployments.

To deploy the package immediately:

1. Select the package snapshot, or the LATEST version (if available).

Important
The LATEST version is available only if configured in Genesys Administrator. Your
organization may choose not to make it available because its contents may vary
over time, for example between scheduled deployments.

2. Click Deploy Now in the Outstanding Deployments tab.
3. Select the Location to which the package snapshot will be deployed. Locations can include application

clusters configured in Genesys Administrator, or the GWEB backend server for Genesys Web
Engagement.

4. Enter some comments about the deployment (these will appear in the Deployment History).
5. Click Deploy.

A message will be displayed indicating whether the deployment was successful.

To deploy the package later:

1. Click Schedule Deployment in the Outstanding Deployments tab.

Working with Rules Deploying a Rules Package

GRS Best Practice Guide 46

2. Select the Location (the name of the Rules Engine application or application cluster, or the GWEB
backend server for Genesys Web Engagement) to which the package snapshot will be deployed.

3. Enter the date and time you would like the package snapshot to be deployed.
4. Enter some comments about the deployment (these will appear in the Deployment History).
5. Click Schedule.

A message will be displayed indicating whether the deployment was successfully scheduled.

If you wish to reschedule a previously scheduled deployment, or wish to cancel a scheduled
deployment, you may do so from the Deployment History tab.

To refresh the display of a deployment history, click the Refresh button, or click in the relevant node
in the Explorer Tree.

To display details of a deployment to a cluster:

If you are deploying to a cluster, you can now display a detailed report of the deployment, whether it
succeeded or failed. This gives useful information on how a deployment has progressed: you can see,
for example, whether a server connection was temporarily down at a critical moment, or whether a
server timeout setting might need to be changed.

Important
When deploying to a cluster, GRAT uses a two-phase commit protocol to ensure that
all GRE nodes running in the cluster are running the same version of the deployed rule
package. If any of the nodes in the cluster fails during Phase 1, the Phase 2 is not
committed.

• Phase 1 - (Deploy) All GREs in the cluster are notified about the new rule package. Each
GRE downloads the new rule package and compiles it.

• Phase 2 - (Commit) Once all GREs have successfully completed Phase 1, GRAT notifies
each GRE to activate and commit the new rule package.

The Deployment Status shows the detail of each node in the cluster and whether or
not any errors occurred.

To show the report:

1. Click on the Failed/Successful link in the Status column.
2. The details of each deploy action to each server in the cluster are displayed, including:

• The GRE Server Name
• The server status
• The success or error message generated by the server

Working with Rules Deploying a Rules Package

GRS Best Practice Guide 47

• The Phase 1 (and Phase 2) deployment times in seconds

Important
The time zone for scheduled deployments is always the time zone of the server on
which the Genesys Rules Authoring Tool is installed.

Working with Rules Deploying a Rules Package

GRS Best Practice Guide 48

Video Series - Building a Rule Package and
Rule in GRAT

Name Description Link Duration

Getting Started Creating a rule package. 5.32

Creating a Linear Rule How to create a simple
linear rule. 6.43

Creating a Decision Tale
Rule

How to create a
Decision Table rule. 4.35

Creating Test Scenarios Creating scenarios for
testing rules. 8.31

Deploying the Rule
Package

How to deploy the rule
package to a rules
engine that will execute
the rule(s).

3.10

Working with Rules Video Series - Building a Rule Package and Rule in GRAT

GRS Best Practice Guide 49

Working with Composer's Business Rules
Block

Working with Composer Workflows

Once the Rule Package (created from Rule Templates) that you want to work with is deployed to the
Genesys Rules Engine, you can use the Business Rule block on the Composer Server Side palette to
create voice and routing applications that use business rules.

Important
In the process flow diagram at the beginning of this document, we used a schematic
to indicate how the Composer Business Rule block fits into a workflow. In the graphic
below you can see that we are not concerned with the details of the workflow
application, only in how a rule that a rule author has created is consumed by the
Composer/ORS application that the workflow represents.

Working with Composer's Business Rules
Block

Video Series - Building a Rule Package and Rule in
GRAT

GRS Best Practice Guide 50

To edit the Business Rule block in Composer, double-click it.

Important
Because you will specify a rules package and a rule engine in this block, you must
have already deployed a rules package to the relevant rules engine and configured a
connection to the rule engine before the Business Rule block can be completed.

Business Rule Block Parameters and Properties

When you open the Business Rule block, it looks something like this:

Working with Composer's Business Rules
Block

Video Series - Building a Rule Package and Rule in
GRAT

GRS Best Practice Guide 51

Use this block to have Composer query the Genesys Rules Authoring Tool (GRAT) for deployed
packages. For the Rule Package that you specify, Composer will query the GRAT for the Facts
associated with the Rule Package. You can then set values for the Facts, call the Genesys Rules
Engine for evaluation, and save the results in a variable.

Important
This last step (evaluation) happens as part of a strategy or workflow application that
Composer developer creates.

The Business Rule block has, among others, the following properties:

Business Rule
Business Rule Package Property

Use to select the Rule Package (collection of related rules) you would like to execute. The rule
package must have already been deployed to the GRE. You will only be able to select deployed rule
packages.

Packaging rules together allows the business analyst to define which rules will support a particular
application. Before using this property, you must request Composer to connect to the Genesys Rules
Authoring Tool Server using the information specified in Business Rule Preferences. After a successful
connection, the Business Rule Package dialog appears.

Select a Rule Package and click OK. The dialog closes and the name of the Rule Package appears
under Value.

Working with Composer's Business Rules
Block

Video Series - Building a Rule Package and Rule in
GRAT

GRS Best Practice Guide 52

Facts Property

Once you have selected the rule package, the Fact model associated with the template that the rule
package is based on will automatically populate as selections in a drop-down menu in the Fact Class
field.

Example:

Select a Fact class and create a new Fact based on it. This Fact will display all the fields that were
defined in the template. At this point you can assign values to those Fact fields.

These values can be literals or variables that the workflow application is using. The available values
are displayed in the Values drop-down menu.

You must also define here the output Fact (Output Result Property below)—the Fact that will contain
the decision made by the rules engine and is passed back to the rule block in the workflow
application to be processed by the workflow logic.

Rules Engine URL

Select the variable containing the Genesys Rules Engine URL.

Output Result Property
Use this property to save the results of the business rule execution to a variable.

Working with Composer's Business Rules
Block

Video Series - Building a Rule Package and Rule in
GRAT

GRS Best Practice Guide 53

The format of returned data is JSON. Any post-processing work to be done on returned results can be
done in the existing Assign Block which provides access to ECMAScript functions. It supports writing
simple or complex expressions to extract values out of JSON strings and arrays. In a workflow, the
Output Result can be attached to User Data.

Important
The Output Result property takes effect only during application runtime. Its purpose
is to take the output of the rule execution (at runtime) and store returned results back
in the specified application variable so other parts of the application can access the
data.

Working With Returned Data

Below is an example (using output variable callTreatmentResults) on how to work with data
returned by the Business Rules block. A sample of the output can look like the snippet below, which
will be stored in callTreatmentResults.

callTreatmentResults='({
'knowledgebase-response':{

"InOutFacts":{'named-fact':[
{

"id":"customer",
"fact":{

"@class':"call.treatment.Customer",
"segment":"gold"

}
},
{

"id":"callinfo",
"fact":{

"@class':"call.treatment.CallInfo",
"intention":"Address Change"

}
},
{

"id":"callTreatment",
"fact":{

"routeToAgentGroup":"Accounts"
"@class':"call.treatment.CallTreatment",
"maxWaitTime":"10"
"offerCallBack":"false"

}
}

]}
}}

)

This data structure contains the evaluation of the rule(s) as determined by the rules engine. These
results are passed back to the Composer application for decision-making and onward processing.

Working with Composer's Business Rules
Block

Video Series - Building a Rule Package and Rule in
GRAT

GRS Best Practice Guide 54

Video Series - Using Composer to execute
a rule block

Name Description Link Duration

Getting Started
First steps in creating a
Composer workflow that
will use the rule.

3.26

Creating a New
Composer Project

Setting up the
Composer workflow
project.

10.16

Testing the Rule Block Testing the new rule
block 2:21

Working with Composer's Business Rules Block Video Series - Using Composer to execute a rule block

GRS Best Practice Guide 55

Genesys Rules System 101—Video Topics
The following video topics show how to create a simple template from scratch in GRDT, publish it to
GRAT, create a rule package and finally connect with the Composer Business Rules block to use the
evaluation decision in a workflow. The use case is a simple call treatment flow which uses the
customer's segment and call intention to make business decisions about how to route the contact.

You can follow the videos in sequence as they appear on these tabs.

<tabber>

Part 1 - Building a template in GRDT=

Building a template in GRDT
Name Description Link Duration

Creating a template
project

Setting up the Eclipse/
Composer environment,
initial configuration and
creating a template
project

7.59

Building the Fact Model

Building the Facts (data)
that will be passed in by
the application for
evaluation by the rules
engine.

5.32

Creating Enumerations

Creating Enumerations
(static lists) that the
rule author will select
from in GRAT to build a
rule.

2:13

Creating Parameters
Creating the Parameters
that will be used in
Conditions and Actions

7:11

Creating Conditions
Creating the Conditions
that the rule author will
select from in GRAT to
build a rule.

5:23

Genesys Rules System 101—Video Topics Video Series - Using Composer to execute a rule block

GRS Best Practice Guide 56

Name Description Link Duration

Creating Actions
Creating the Actions
that the rule author will
select from in GRAT to
build a rule.

6:18

Publishing
Publishing the template
from GRDT to GRAT to
enable the rule author
to use it.

2:11

|-| Part 2 - Building a Rule Package and Rule in GRAT =

Building a Rule Package and Rule
Name Description Link Duration

Getting Started Creating a rule package. 5.32

Creating a Linear Rule How to create a simple
linear rule. 6.43

Creating a Decision
Table Rule

How to create a
Decision Table rule. 4.35

Creating Test Scenarios Creating scenarios for
testing rules. 8.31

Deploying the Rule
Package

How to deploy the rule
package to a rules
engine that will execute
the rule(s).

3.10

|-| Part 3 - Using Composer to execute a rule block=

Genesys Rules System 101—Video Topics Video Series - Using Composer to execute a rule block

GRS Best Practice Guide 57

Using Composer to execute a rule block
Name Description Link Duration

Getting Started
First steps in creating a
Composer workflow that
will use the rule.

3.26

Creating a New
Composer Project

Setting up the
Composer workflow
project.

10.16

Testing the Rule Block Testing the new rule
block 2:21

Genesys Rules System 101—Video Topics Video Series - Using Composer to execute a rule block

GRS Best Practice Guide 58

Examples of Rule Template Development
This section provides some examples of what a rule developer might configure in the Rules
Development Tool. More detailed information about how to configure rule templates is provided in the
Genesys Rules Development Tool Help. For specific information about how rule templates are
configured to be used with the Genesys intelligent Workload Distribution (iWD) solution, refer to iWD
and Genesys Rules System.

Examples of Rule Template Development Video Series - Using Composer to execute a rule block

GRS Best Practice Guide 59

https://docs.genesys.com/Documentation/IWD/8.1.0/IWDGRS/Welcome
https://docs.genesys.com/Documentation/IWD/8.1.0/IWDGRS/Welcome

Example 1—Condition & Action
Age Range Condition
If a customer’s age is within a specific range, a specific Agent Group will be targeted. In this scenario,
the Condition is whether the customer’s age falls within the range. In the Genesys Rules
Development Tool, the conditions would be configured as follows:

Name: Age Range
Language Expression: Customer’s age is between "{ageLow}" and "{ageHigh}"
Rule Language Mapping: Customer(age >= '{ageLow}' && age <= '{ageHigh}')

Do not use the word ‘end’ in rule language expressions. This causes rule parsing errors.

The figure below shows how this condition would appear in the Genesys Rules Development Tool.

Age Range Condition

Mapping Multiple Instances of a Rule Parameter to a Single Parameter Definition
At the point of creating parameters, instead of creating the "{ageLow}" and "{ageHigh}"
parameters, the rule template developer could instead create a single "{age}" parameter and use
the underscore notation shown in the example below to create indices of it for scenarios in which
multiple instances of parameter with the same type (age) are required (most commonly used with
ranges). For example:

Examples of Rule Template Development Example 1—Condition & Action

GRS Best Practice Guide 60

"{age_1}", "{age_2}"...."{age_n}"

These will become editable fields. This feature is most typically used for defining ranges more
efficiently.

Caller Condition
In addition to testing that the Caller exists, the next condition also creates the $Caller variable
which is used by actions to modify the Caller fact. The modified Caller will be returned in the results
of the evaluation request.

You cannot create a variable more than once within a rule, and you cannot use variables in actions if
the variables have not been defined in the condition.

Name: Caller
Language Expression: Caller exists
Rule Language Mapping: $Caller:Caller

The figure below shows how this condition would appear in the Genesys Rules Development Tool.

Caller Condition

Target Agent Group Action
The action would be configured as follows:

Name: Route to Agent Group
Language Expression: Route to agent group {agentGroup}
Rule Language Mapping: $Caller.targetAgentGroup='{agentgroup}'

Examples of Rule Template Development Example 1—Condition & Action

GRS Best Practice Guide 61

The figure below shows how this action would appear in the Genesys Rules Development Tool.

Target Agent Group

The condition in this example has two parameters:

• "{ageLow}"

• "{ageHigh}"

The action has the "{agentGroup}" parameter. Parameters are also configured in the Genesys Rules
Development Tool. The Parameters Editor screenshot shows a sample "{ageHigh}" parameter. Refer
to the Genesys Rules Development Tool Help for more details about how to configure parameters.

Examples of Rule Template Development Example 1—Condition & Action

GRS Best Practice Guide 62

Parameters Editor Screen

The way the preceding example would work is as follows:

1. The rule developer creates a fact model (or the fact model could be included as part of a rule template
that comes out of the box with a particular Genesys solution). The fact model describes the properties
of the Customer fact and the Caller fact. In this case we can see that the Customer fact has a
property called age (probably an integer) and the Caller fact has a property called targetAgentGroup
(most likely a string).

2. The rule developer creates the ageLow and ageHigh parameters, which will become editable fields that
the business user will fill in when they are authoring a business rule that uses this rule template. These
parameters would be of type Input Value where the Value Type would likely be integer. The rule
developer optionally can constrain the possible values that the business user will be able to enter by
entering a Lower Bound and/or an Upper Bound.

3. The rule developer also creates the agentGroup parameter, which will likely be a selectable list whereby
the business user would be presented with a drop-down list of values that are pulled from Genesys
Configuration Server or from an external data source. The behavior of this parameter depends on the
parameter type that is selected by the rule developer.

4. The rule developer creates a rule action and rule condition as previously described. The action and
condition include rule language mappings that instruct the Rules Engine as to which facts to use or
update based on information that is passed into the Rules Engine as part (of the rule evaluation request
coming from a client application such as an SCXML application).

5. The rule developer publishes the rule template to the Rules Repository.
6. The rules author uses this rule template to create one or more business rules that utilize the conditions

and actions in the combinations that are required to describe the business logic that the rules author
wants to enforce. In this case, the previously described conditions and action above likely would be
used together in a single rule, but the conditions and action could also be combined with other
available conditions and actions to create different business policies.

7. The rules author deploys the rule package to the Rules Engine application server or cluster.

Examples of Rule Template Development Example 1—Condition & Action

GRS Best Practice Guide 63

8. A client application such as a VXML or SCXML application invokes the Rules Engine and specifies the
rule package to be evaluated. The request to the Rules Engine will include the input and output
parameters for the fact model. In this example, it would have to include the age property of the
Customer fact. This age might have been collected through GVP or extracted from a customer database
prior the Rules Engine being called. Based on the value of the Customer.age fact property that is
passed into the Rules Engine as part of the rules evaluation request, the Rules Engine will evaluate a
particular set of the rules that have been deployed. In this example, it will evaluate whether
Customer.age falls between the lower and upper boundaries that the rules author specified in the rule.

9. If the rule evaluates as true by the Rules Engine, the targetAgentGroup property of the Caller fact will
be updated with the name of the Agent Group that was selected by the business rules author when the
rule was written. The value of the Caller.targetAgentGroup property will be passed back to the client
application for further processing. In this example, perhaps the value of Caller.targetAgentGroup will
be mapped to a Composer application variable which will then be passed into the Target block to ask
the Genesys Universal Routing Server to target that Agent Group.

Examples of Rule Template Development Example 1—Condition & Action

GRS Best Practice Guide 64

Example 2—Function
Functions are used for more complex elements and are written in Java. In this example, the function
is used to compare dates. It would be configured as follows:

Name: compareDates
Description: This function is required to compare dates.
Implementation:
import java.util.Date;
import java.text.SimpleDateFormat;

function int _GRS_compareDate(String a, String b) {
// Compare two dates and returns:
// -99 : invalid/bogus input
// -1 : if a < b
// 0 : if a = b
// 1 : if a > b

SimpleDateFormat dtFormat = new SimpleDateFormat(“dd-MMM-yyyy”);
try {

Date dt1= dtFormat.parse(a);
Date dt2= dtFormat.parse(b);
return dt1.compareTo(dt2);

} catch (Exception e) {
return -99;

}
}

For user-supplied classes, the .jar file must be in the CLASSPATH for both the GRAT and the GRE.

The figure below shows how this function would appear in the Genesys Rules Development Tool.

Examples of Rule Template Development Example 2—Function

GRS Best Practice Guide 65

compareDate Function

Examples of Rule Template Development Example 2—Function

GRS Best Practice Guide 66

Example 3—Using a JSON Object
Since release 8.1.3, template developers can create templates that enable client applications to pass
Facts to GRE as JSON objects without having to map each field to the fact model explicitly.

Important
Rules based on templates that use this functionality do not support the creation of
test scenarios at present.

This example shows how to create a template containing a class (called MyJson) for passing a JSON
object.

Start

1. Create the following class and import it into a rule template:
package simple;
import org.json.JSONObject;
import org.apache.log4j.Logger;

public class MyJson {
private static final Logger LOG = Logger.getLogger(MyJson.class);
private JSONObject jsonObject = null;

public String getString(String key) {
try {

if (jsonObject != null)
return jsonObject.getString(

key);
} catch (Exception e) {
}
LOG.debug("Oops, jsonObect null ");
return null;

}

public void put(String key, String value) {
try {
if (jsonObject == null) {

jsonObject = new JSONObject();
}
jsonObject.put(key, value);
} catch (Exception e) {
}

}
}

2. Create a dummy fact object with the same name (MyJson) in the template.
3. Add the MyJson.class to the class path of both GRAT and GRE.
4. Create the following condition and action:

Examples of Rule Template Development Example 3—Using a JSON Object

GRS Best Practice Guide 67

Is JSON string "{key}" equal "{value}"
eval($MyJson.getString("{key}").equals("{value}"))
Set JSON string "{key}" to "{value}" $MyJson.put("{key}", "{value}");

5. Use this condition and action in a rule within the json.test package. The following will be generated:
rule "Rule-100 Rule 1"
salience 100000

agenda-group "level0"
dialect "mvel"
when

$MyJson:MyJson()
and (
eval($MyJson.getString("category").equals("test"))
)

then
$MyJson.put("newKey", "newValue");

end

6. Deploy the json.test package to GRE.
7. Run the following execution request from the RESTClient:

{"knowledgebase-request":{
"inOutFacts":{"anon-fact":{"fact":{"@class":"simple.MyJson", "jsonObject":
{"map":{"entry":[{"string":["category","test"]},{"string":["anotherKey","anotherValue"]}]}}}}}}}

8. The following response is generated:
{"knowledgebase-response":{"inOutFacts":{"anon-
fact":[{"fact":{"@class":"simple.MyJson","jsonObject":
{"map":{"entry":[{"string":["category","test"]},{"string":["newKey","newValue"]},
{"string":["anotherKey","anotherValue"]}]}}}}],
"executionResult":{"rulesApplied":{"string":["Rule-100 Rule 1"]}}}}}

End

Examples of Rule Template Development Example 3—Using a JSON Object

GRS Best Practice Guide 68

Solution-Specific Templates
Click on these links for information about the standard templates supplied out-of-box with the
relevant products:

• Conversation Rules Template Guide
• Genesys Proactive Engagement
• intelligent Workload Distribution

Solution-Specific Templates Example 3—Using a JSON Object

GRS Best Practice Guide 69

https://docs.genesys.com/Documentation/GRS/8.5.0/CR/Welcome

	GRS Best Practice Guide
	Table of Contents
	GRS Best Practice Guide
	New Features by Release
	GRS/Composer Process Flow
	Working with Rule Templates
	Rule Template Components
	Rule Language Mapping
	DROOLS5 Keywords

	Creating a Template in GRDT
	Publish Template
	Video Series - Building a Rule Template in GRDT

	Working with Rules
	Quickest Way to Create New Rule
	Creating a Linear Rule
	Linear Rules—Examples

	Creating a Decision Table
	Decision Tables—Examples

	Deploying a Rules Package
	Video Series - Building a Rule Package and Rule in GRAT

	Working with Composer's Business Rules Block
	Video Series - Using Composer to execute a rule block

	Genesys Rules System 101—Video Topics
	Examples of Rule Template Development
	Example 1—Condition & Action
	Example 2—Function
	Example 3—Using a JSON Object

	Solution-Specific Templates

