
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Predictive Routing 9.0.0

Predictive Routing Deployment and
Operations Guide

2/9/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Welcome to the Deployment and Operations Guide 3
Quick Start 5
New Features Log 8
Code Samples 26
System Requirements, Pre-Requisites, and Planning 47

System Requirements and Interoperability 48
Architecture and Security 53
Sizing Guide 62
Prepare Your Data 63
Appendix: Supported Encodings 70

Install and Configure Predictive Routing 71
AI Core Services Single-Host Deployment 72
Deploying in High Availability Environments 90
Scale AI Core Services 116
Deploy Agent State Connector 123
Configuration Options 134

Start and Stop All GPR Components 167
How Does GPR Score Agents? 171
Integrate with Genesys Routing 180

Routing Scenarios Using GPR 181
Deploy the URS Strategy Subroutines 191
Deploying the Composer Strategy Subroutines 199

Integrate with Genesys Reporting 208
Operations: Updating, Maintenance, Logging, Troubleshooting 223

Agent State Connector 224
AI Core Services Monitoring and Logging 227
Database Maintenance 239
Troubleshooting 242

Welcome to the Deployment and
Operations Guide
This guide covers the following topics, enabling you to plan, set up, and maintain your Genesys
Predictive Routing (GPR) environment. Predictive Routing enables you to match interactions with
agents for optimal outcomes.

• Planning: system requirements, architecture and security, sizing, data preparation
• Configuring and installing single-server and HA environments:

• AI Core Services Single-Host Deployment
• Deploy in High Availability Environments: HA deployment prerequisites and procedures for all GPR

components
• Deploy Agent State Connector (ASC)
• Configuration Options
• Start and Stop All GPR Components

• Operations: logging, backing up and restoring, troubleshooting
• Genesys Routing integration: deploying and optimizing the GPR subroutines components
• Genesys Reporting integration: configuring GPR to work with the Genesys Reporting components
• Quick Start: to get new users up and running
• New Features: lists all new features by release and includes links to documentation describing them
• The Genesys Predictive Routing Overview video presents a high-level picture of what Predictive Routing

can do for you:
Link to video

• Conceptual topics go in-depth on certain aspects of GPR functionality:
• How does GPR Score Agents?
• Routing Scenarios Using GPR

Looking for something else?

Consult the following guides for other GPR topics:

• Genesys Predictive Routing Help shows how to use the GPR application and gives in-depth explanations
of the following GPR functionality:
• The Lift Estimation, Feature Analysis, and Agent Variance Reports
• Agent Profile and Customer Profile schemas
• Datasets

Welcome to the Deployment and Operations Guide

Predictive Routing Deployment and Operations Guide 3

https://player.vimeo.com/video/312195823?title=0&byline=0&portrait=0
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome

• Predictors and Models
• Accounts, User Management, Password Management, and Auditing

• Predictive Routing API Reference (Requires a password for access. Please contact your Genesys
representative if you need to view this document.)

The home page provides links to the following resources:

• Release Notes for all GPR components
• GPR Read Me

Welcome to the Deployment and Operations Guide

Predictive Routing Deployment and Operations Guide 4

Quick Start
To use Genesys Predictive Routing (GPR), you'll need to install and configure the following products
and components:

Install

1. Install any Genesys components that aren't already part of your environment. You'll need:
• Genesys Framework
• Genesys Administrator Extension
• Stat Server
• Universal Routing Server and Interaction Routing Designer

OR

Orchestration Server, Universal Routing Server and Interaction Routing Designer, and
Composer

• Interaction Concentrator
• Genesys Info Mart

2. Install Genesys Predictive Routing, which consists of the following components:
• Agent State Connector (ASC)—Synchronizes agent state data from Stat Server (agent availability)

and Configuration Server (agent profile) for use by AICS.
In ASC release 9.0.015.04 and later, you can choose to have ASC read agent availability
information from Universal Routing Server (URS) rather than from Stat Server, minimizing the
number of components ASC connects to.

• Integrate with Genesys Routing
• AI Core Services (AICS)—Provides the Genesys Predictive Routing scoring engine, the user interface,

and the API.

Configure
To complete your setup of Predictive Routing, configure the following components:

1. Set the desired values for the configuration options.
You use configuration options to configure a wide range of application behavior, including:

• The mode GPR is running in, which might be off

• Login parameters and access URLs
• KPI criteria to decide what makes for a better match
• Scoring thresholds, agent hold-out, and dynamic interaction priority.
• Many other important functions

Quick Start

Predictive Routing Deployment and Operations Guide 5

2. To configure how the match between interactions and agents is determined, configure Predictors and
Models, as explained in the Predictive Routing Help.

Import Data
Using the Predictive Routing interface, you import a dataset that is available in CSV format. A dataset
is a collection of raw event data. The primary purpose of a Dataset is to be the source of Predictor
data.

• GPR automatically analyzes the data and creates a schema, identifying the various types of data you
are importing.

• You can adjust the schema during the import process.
• After the Dataset has been imported, you can append additional data as long as it is consistent with the

schema that has already been established.

Create Predictors and Models
Predictors are based on the dataset information that you have imported and that has been analyzed
into a schema.

• A Predictor defines a view on that underlying dataset. It can select from some or all of the data in the
dataset; you can use a predictor with multiple datasets.

• A Model is based on a Predictor, and uses the same target metric or KVP as that Predictor. You can
configure multiple Models for each Predictor. These Models can use different selections of the features
available in the underlying dataset. Models are the objects actually used to perform agent scoring and
interaction matchups.

As you configure a Predictor, you can choose which metric you want to work with, what kinds of
situations you want to evaluate, and other parameters, constructing a way to determine the Next
Best Action in the specified situation, based on the possible actions available at that time. As you
gather more data, you can add that new data to your dataset, and have the Predictor test against the
actual results coming in, enabling you to refine how successful your Predictor is.

Reporting and Analysis
You can report on various parameters, such as:

• The success of your predictors.
• The results of A/B testing.
• The factors affecting a KPI you are trying to influence.

Reports are available through the following reporting applications:

• The Predictive Routing interface. See Creating and Interpreting Reports in the Predictive Routing Help
for specific information.

• Genesys Interactive Insights/GCXI, as part of the Genesys historical reporting offering. The following
reports are available in the Genesys Customer Experience Insights User's Guide:

Quick Start

Predictive Routing Deployment and Operations Guide 6

https://docs.genesys.com/Documentation/GPM/9.0.0/help/ConfigPredictModels
https://docs.genesys.com/Documentation/GPM/9.0.0/help/ConfigPredictModels
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports

• Predictive Routing - AHT & Queue Dashboard
• Predictive Routing - Model Efficiency Dashboard
• Predictive Routing Agent Occupancy Dashboard
• Predictive Routing A/B Testing Report
• Predictive Routing Detail Report
• Predictive Routing Operational Report
• Predictive Routing Queue Statistics Report

• Pulse, where the Agent Group KPIs by Predictive Model and Queue KPIs by Predictive Model templates
for real-time reporting are available from the Genesys Dashboard Community Center.

Quick Start

Predictive Routing Deployment and Operations Guide 7

https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIGPRAHTQ
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIGPRMdlEfcncy
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIGPRAgntOcpncy
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveABTstng
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveDtl
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveOprtnl
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveQStat

New Features Log
This topic provides a single point to find new feature information included in Genesys Predictive
Routing (GPR). It includes the software version number and release date, and includes links to the
related documentation updates (if any were needed).

List of New Features and Modifications

The following significant changes in functionality were made in 9.0.0 releases.

Feature Description Type of
Change

Occurred in
Release Documentation Updates

The addition of nine new KVPs
enables detailed reporting on
scoring results. In addition, the
gpmResult and gpmMode KVPs
have new valid values, enabling
more precision in reporting on
routing outcomes.

New feature
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• GPR KVPs for Genesys
Reporting

You can now log scoring details
that you can then use to monitor
and better understand the scoring
process and outcomes. This
release also includes scripts to
clean up unneeded score logs from
MongoDB.

New feature
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• View the Scoring Logs

The URS strategy subroutines
include the new GPRIxnSetup and
GPRIxnCleanup subroutines, as
well as some modifications to
existing subroutines. These enable
you to pin-point when GPR started
handling interactions.

New feature
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• Deploy the URS Strategy
Subroutines

The gpmWaitTime value is now
calculated using START_TS rather
than gpm-ixn-timestamp.

Improvement
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• Deploy the URS Strategy
Subroutines

The GetActionFilters subroutine
was enhanced to identify the list of
agents matching the target skill
group along with the configured
login status expression. This
information is also reported in the
action filters of the scoring
request. This functionality is
invoked only when the use-
action-filters configuration option

New feature
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• use-action-filters

New Features Log

Predictive Routing Deployment and Operations Guide 8

Feature Description Type of
Change

Occurred in
Release Documentation Updates

is set to false.

Two new documentation pages,
Routing Scenarios Using GPR and
How Does GPR Score Agents?
provide detailed discussions of
those aspects of GPR functionality.

New feature

AICS
9.0.015.03/
ASc
9.0.015.04/
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• Routing Scenarios Using GPR
• How Does GPR Score Agents?

The Deployment and Operations
Guide now contains complete
instructions for configuring HTTPS
connections among all GPR
components.

New feature

AICS
9.0.015.03/
ASc
9.0.015.04/
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• Configure GPR to Use HTTPS

New API endpoints have been
added, enabling you to use the
MinIO container to upload Agent
Profile and Customer Profile data.
Previously, only Dataset data used
the MinIO container, which
provides a performance
improvement over the data_upload
worker alone.

New feature AICS
9.0.015.03

Genesys Predictive Routing API
Reference

• Predictive Routing API
Reference (Requires a
password for access. Please
contact your Genesys
representative if you need to
view this document.)

The numeric datatype now
replaces both float and integer
datatypes in Agent and Customer
Profiles. This change resolves
confusion about when to use float
and integer datatypes.

Important
This change has been made in both
AICS 9.0.015.03 and ASC 9.0.015.04.
Neither AICS 9.0.015.03 nor ASC
9.0.015.04 is compatible with earlier
releases of these components. If you
upgrade one, you must also upgrade
the other.

New feature
AICS
9.0.015.03;
ASC
9.0.015.04

Deployment and Operations Guide

• GPR KVPs for Genesys
Reporting

The connection between ASC and
Stat Server is now optional. ASC
can now read agent availability
information from URS, reducing the
number of connections necessary
in your environment.

Important
This increases the load on URS.
Contact your Genesys representative
for sizing guidelines.

If you use custom statistics for Predictive

New feature ASC
9.0.015.04

Deployment and Operations Guide

• Deploy Agent State Connector

New Features Log

Predictive Routing Deployment and Operations Guide 9

Feature Description Type of
Change

Occurred in
Release Documentation Updates

Routing, such as Agent Occupancy, you
must retain the connection to Stat Server.

ASC now validates the values you
enter in the include-skills and
include=groups configuration
options. If ASC detects a skill name
or Agent Group specified in these
options that does not exist in
Configuration Server, ASC triggers
a Standard-level log message
(Message Server log event number
60401).

New feature ASC
9.0.015.04

Deployment and Operations Guide

• include-skills
• include-groups

The GPR API now returns a
file_path parameter in the
response message when you
request a presigned URL, which
replaces the uploaded file name.
You must now pass this file_path
parameter in requests to create
Datasets or the Agent Profile or
Customer Profile instead of the
uploaded file name, used in
previous releases.

New feature AICS
9.0.015.03

Genesys Predictive Routing API
Reference

• Predictive Routing API
Reference (Requires a
password for access. Please
contact your Genesys
representative if you need to
view this document.)

The GPR web application has
enhanced security by logging out
inactive users.

New feature AICS
9.0.015.03

Predictive Routing Help

• Welcome

GPR now accepts only CSV and
zipped CSV files for upload to
Datasets, the Agent Profiles, and
the Customer Profile. JSON file
uploads are no longer supported.

Discontinued
support

AICS
9.0.015.03

The NGINX container has been
removed from AICS. NGINX is an
optional load balancer that had
been provided only for use only in
test environments.

Discontinued
support

AICS
9.0.015.03

Deployment and Operations Guide

• High-Level Architecture

The method for configuring HTTPS
for Agent State Connector has
been changed. Previously
configuration was done by setting
the desired value in the USE_HTTP
environment variable, a procedure
that was applicable only for Linux-
based environments. Now, HTTPS
is configured in the jop-base-url
configuration option.

Improvement
URS Strategy
Subroutines
9.0.015.00

Deployment and Operations Guide

• Configure HTTP/HTTPS
Connections

This release includes an updated
and improved version of the
Predictive Routing API Reference.

Improvement AICS
9.0.015.00

Genesys Predictive Routing API
Reference

New Features Log

Predictive Routing Deployment and Operations Guide 10

https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome

Feature Description Type of
Change

Occurred in
Release Documentation Updates

In particular, there are now cURL
request examples for each
endpoint.

• Predictive Routing API
Reference (Requires a
password for access. Please
contact your Genesys
representative if you need to
view this document.)

AI Core Services now requires
Docker version 18.09.2, which
addresses important security
issues.

New
supported
platform

AICS
9.0.015.00

See the Release Notes for AI Core
Services 9.0.015.00 for important
information about the reason for
this change and for Docker
deployment information.

You can now convert a regular
account into an LDAP account. New feature 9.0.015.00

Predictive Routing Help

• Configuring Accounts

This release includes the following
improvements to the user
interfaces in the GPR web
application:

• A new navigation panel
provides a tree view of all
Datasets, Predictors, and
Models configured for the
current Tenant. This tree-view
pane is available from the
Settings > Datasets and
Settings > Predictors windows.
Each item in the tree view links
to the specified object,
enabling easy access to the
entire hierarchy of Datasets,
Predictors, and Models.

• For simplified navigation,
breadcrumb links now appear
at the top of windows in the
GPR web application if you
have drilled-down past a top-
level window.

New features 9.0.015.00

Predictive Routing Help

• Navigating the Predictive
Routing Interface

You can now upload Dataset, Agent
Profile, and Customer Profile data
to Genesys Predictive Routing
(GPR) from CSV files that use
certain legacy encodings (listed
below). By default, GPR always
assumes the CSV files are encoded
with UTF-8. This change applies to
uploads using both the GPR web
application and the GPR API. The
following encodings are supported:

New feature 9.0.014.00
Deployment and Operations Guide

• Supported Encodings

New Features Log

Predictive Routing Deployment and Operations Guide 11

https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001500
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAccounts
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome#navUI
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome#navUI

Feature Description Type of
Change

Occurred in
Release Documentation Updates

• UTF-8
• Shift JIS

All data returned from GPR uses UTF-8
encoding.

GPR has optimized how
cardinalities are stored.
Cardinalities are now written into a
dedicated database collection, so
that the cardinalities for each field
are stored in their own document.
Previously, the cardinalities were
stored along with the schema data.
With high-cardinality features, this
could lead to performance
degradation due to additional
conversions needed to extract the
cardinality data.

Improvement 9.0.014.00

The schema management
workflow for Agent and Customer
Profiles has been simplified and
streamlined. The Discovered
Fields tab has been removed and
cardinality counts have been
added to the schema view. This
change ensures GPR always
presents up-to-date Profile
information. The schema tab
always presented updated
information, if available, but the
Discovered Fields tab display
was generated only once and did
not reflect changes to the Profile
schema.

Improvement 9.0.014.00

Predictive Routing Help

• Configuring Agent Profiles
• Configuring Customer Profiles
• Importing and Managing

Datasets

The explanation for how to
configure and interpret the Agent
Variance Report has been clarified
and expanded.

Improvement 9.0.014.00
Predictive Routing Help

• Agent Variance Report

AICS now supports deployment in
an environment running on a
Kubernetes cluster.

New feature 9.0.014.00

Deployment and Operations Guide

• (Optional) Installing AICS on a
Kubernetes Cluster.

AI Core Services supports Security
Enhanced Linux (SELinux) on
CentOS 7.

New Feature 9.0.014.00

If the ASC configuration contains
non-empty values for the new
filter-by-skills and/or filter-by-
groups configuration options, ASC

New Feature 9.0.014.00
At present, these new options are
documented only in the Agent
State Connector Release Note.

New Features Log

Predictive Routing Deployment and Operations Guide 12

https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAgents
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgCustomers
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Datasets
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Datasets
https://docs.genesys.com/Documentation/GPM/9.0.0/help/AgtVarReport
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-asc90rn/gpm-asc9001401
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-asc90rn/gpm-asc9001401

Feature Description Type of
Change

Occurred in
Release Documentation Updates

subscribes to Stat Server for agent
statistics only for the agents
included in the specified Agent
Groups or those satisfying the
configured skill expression. If both
options are configured, the agents
are subscribed for statistics if they
either satisfy the skill expression
specified in the filter-by-skills
option or are included in one of the
Agent Groups specified in the
filter-by-groups option.
This functionality enables you to limit the
number of agents monitored by GPR or to
use GPR in environments where multiple
Stat Servers are deployed to monitor
different groups of agents.

Agent State Connector (ASC) now
supports email interactions, as well
as voice.

New Feature 9.0.014.00
At present, the procedures for
enabling email support are
documented only in the Agent
State Connector Release Note.

Dataset handling has been made
significantly faster by means of the
following improvements:

• For the initial data upload, this
release introduces the MinIO
container. Set the new
S3_ENDPOINT environment
variable to take advantage of
this faster processing.

• The Dataset import to MongoDB
now uses a multithreaded
process.

New feature 9.0.013.01

Deployment and Operations Guide

• High-Level Architecture
• Set Values for Environment

Variables

The sizing worksheets for Genesys
Predictive Routing (GPR) have been
entirely reworked and expanded.

Improvement 9.0.013.01
Deployment and Operations Guide

• Sizing Guide

The explanation for how to use
Composite Predictors has been
revised and clarified.

Improvement 9.0.013.01
Predictive Routing Help

• Composite Predictors

The GPR web application and GPR
API now use the same process to
create Agent and Customer Profile
schemas. In addition, the
instructions for creating the Agent
Profile schema have been revised
and expanded.

Improvement 9.0.013.01
Predictive Routing Help

• Configuring Agent Profiles

The LOG_LEVEL environment Improvement 9.0.013.01 Deployment and Operations Guide

New Features Log

Predictive Routing Deployment and Operations Guide 13

https://docs.genesys.com/Documentation/RN/9.0.x/gpm-asc90rn/gpm-asc9001401
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-asc90rn/gpm-asc9001401
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Predictors#composite
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAgents

Feature Description Type of
Change

Occurred in
Release Documentation Updates

variable has been added to the
tango.env configuration file. By
default, it is set to INFO, which is a
minimal logging level, adequate for
most circumstances.

• Set Values for Environment
Variables

This release upgrades AICS to
Python 3.6 from Python 2.7. Improvement 9.0.013.01

AI Core Services Release Note -
Upgrade Notes

• Upgrade Notes

AICS now performs automatic
clean up processes which should
maintain an adequate amount of
free disk space.

New feature 9.0.013.01
Deployment and Operations Guide

• Clean Up Disk Space

Memory handling for MongoDB was
improved In this release. Improvement 9.0.013.01

Deployment and Operations Guide

• Scaling AICS

The Lift Estimation report has been
improved, adding Export
functionality, the ability to toggle
between graph and table displays,
and showing the Aggregated view
as the first tab listed.

Improvement 9.0.013.01
Predictive Routing Help

• Lift Estimation report

This release includes a number of
changes to the look and feel of the
GPR web application interface, as
well as multiple user experience
improvements to provide more
intuitive workflows and better
presentation of information. For a
complete list, refer to the AICS
Release Note.

Improvement 9.0.013.01

AI Core Services Release Note

• AI Core Services Release Note
for release 9.0.013.01

This release provides a number of
improvements and additions to the
GPR API, including the ability to
check job status and support for
nesting dictionary fields. For a
complete list, refer to the AICS
Release Note and the GPR API
Reference

Improvement 9.0.013.01

AI Core Services Release Note and
Genesys Predictive Routing API
Reference

• AI Core Services Release Note
for release 9.0.013.01

• Predictive Routing API
Reference (Requires a
password for access. Please
contact your Genesys
representative if you need to
view this document.)

The Quality column in the Models
list table on the Model
configuration window now includes
a new metric, Local models. The
metric displays the number of local

Improvement 9.0.012.01

Predictive Routing Help

• Configuring, Training, and
Testing Models

New Features Log

Predictive Routing Deployment and Operations Guide 14

https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001301#upgradeNotes
https://docs.genesys.com/Documentation/GPM/9.0.0/help/LEReport
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001301
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001301
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001301
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001301
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Models
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Models

Feature Description Type of
Change

Occurred in
Release Documentation Updates

models generated for agents in the
dataset on which the predictor is
built.
AI Core Services (AICS) has
improved handling of UTF-8
characters. Data ingestion, model
training, and analysis reports are
all correctly processed for data
containing non-ASCII UTF-8
characters.

Improvement 9.0.012.01

The GPR API now enables you to
run Feature Analysis reports. The
API returns a JSON response
containing a list of features
ordered by weight--that is, by the
strength of the impact that feature
has on the value of the target
metric. The resulting report is also
automatically available for view
from the GPR web application.

New feature 9.0.012.01

Genesys Predictive Routing API
Reference

• Predictive Routing API
Reference (access requires a
password; contact your
Genesys representative for
assistance)

The GPR API now enables you to
run Lift Estimation reports. The API
returns a JSON response containing
the Lift Estimation results. The
resulting report is also
automatically available for view
from the GPR web application.

New feature 9.0.012.01

Genesys Predictive Routing API
Reference

• Predictive Routing API
Reference (access requires a
password; contact your
Genesys representative for
assistance)

The Lift Estimation report now uses
the scoring expression configured
for the predictor (if any) to decide
whether the target metric should
be minimized or maximized.

Improvement 9.0.012.01

Predictive Routing Help

• Understanding Score
Expressions

You can now configure Agent State
Connector (ASC) to monitor the
StatAgentOccupancy Stat Server
statistic.

New feature 9.0.012.01

Deployment and Operations Guide

• (Optional) Configure ASC to
Monitor Statistics

You can now configure ASC to
monitor a subset of the total list of
agent groups present in agent
profiles.

New feature 9.0.012.01
Deployment and Operations Guide

• include-groups

You can now choose to have ASC
ignore the following unsupported
ASCII characters: [Space], -, <, >.

New feature 9.0.012.01
Deployment and Operations Guide

• ignore-ascii-characters

You can now configure ASC to
monitor a subset of the total list of
skills present in agent profiles.

New feature 9.0.012.01
Deployment and Operations Guide

• include-skills

New Features Log

Predictive Routing Deployment and Operations Guide 15

https://docs.genesys.com/Documentation/GPM/9.0.0/help/metricsMinMax
https://docs.genesys.com/Documentation/GPM/9.0.0/help/metricsMinMax

Feature Description Type of
Change

Occurred in
Release Documentation Updates

ASC now supports a connection to
Stat Server running in single-server
mode, without a backup.

Improvement 9.0.012.01

You can configure the Predictive
Routing application to display
custom messages on the login
screen.

New feature 9.0.011.00

Deployment and Operations Guide

• Set Values for Environment
Variables

New supported platforms:

• Mongo DB 3.6 (requires a
special upgrade procedure; see
the AI Core Services Release
Note for details)

• Oracle Linux 7.3

New feature 9.0.011.00

AI Core Services Release Note,
Upgrade Notes

• Upgrade Notes

You can now configure parameters
to control password-related
behavior such as how often users
must change them, blocking users
after a specified number of login
attempts, and adding a custom
message when users are blocked.

New feature 9.0.011.00
Predictive Routing Help

• Password policy configuration

The audit trail functionality has
been improved to record additional
actions and provide the ability to
specify how long audit trail records
are kept.

Improvement 9.0.011.00
Predictive Routing Help

• Audit Trails

This release includes a number of
updates to the functionality offered
through the Predictive Routing API:

• You can now generate and
purge predictor data.

• You can now create a new
predictor by copying an
existing one. To do so, send a
POST request to the new
copy_predictor endpoint.

• You can now use GET
commands to retrieve dataset
and predictor details.

• The way Predictive Routing
recomputes cardinalities when
you append data to Agent or
Customer Profiles using the API
has been changed:
• Cardinalities are no longer

New feature 9.0.011.00

Genesys Predictive Routing API
Reference

• Predictive Routing API
Reference (access requires a
password; contact your
Genesys representative for
assistance)

New Features Log

Predictive Routing Deployment and Operations Guide 16

https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001100#upgradeNotes
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAccounts#acctPasswordMgmt
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAccounts#audit

Feature Description Type of
Change

Occurred in
Release Documentation Updates

recomputed automatically
across the whole collection
each time you append data.
Full automatic computation
happens only once, when
an Agent or Customer
Profile is uploaded the first
time for schema discovery.
When you append data to
an Agent or Customer
Profile via the API,
cardinalities are computed
only for the appended data
portion and only when the
number of agents or
customers set in the
ADD_CARDINALITIES_EVERY_N_RECORDS
parameter is reached. The
results of computation are
added to the already-stored
cardinality values. This new
behavior significantly
improves speed when
loading new data by
avoiding simultaneous
recomputations on the full
data collection when there
are multiple frequent
appends done in small
batches.

• The
ADD_CARDINALITIES_EVERY_N_RECORDS
parameter has been added
to the tango.env file with
the default value of 1000.
Each time the counter for
appended agents/
customers reaches this
number, computation for
the last appended 1000
records takes place. The
default value can be
changed in the tango.env
file, which is located in the
IP_<version>/conf
directory. When you change
the value, restart the
application to have the new
value take effect.

• You can force recomputation
of cardinalities on the full
Agent or Customer Profiles

New Features Log

Predictive Routing Deployment and Operations Guide 17

Feature Description Type of
Change

Occurred in
Release Documentation Updates

collection using the new
POST
compute_cardinalities
API endpoint.

• You can now retrieve
information on the currently
deployed platform using the
new version endpoint.

Predictive Routing now correctly
recognizes columns with any
combination of the following
Boolean values: y/n, Y/N, Yes/No.
Previously, only columns with
true/false and 0/1 values were
discovered as Booleans. The
identification is case insensitive.

Improvement 9.0.011.00

You can now upload data (agent,
customer, and dataset) using zip-
archived .csv files. Only one .csv
file per archive is supported.

Improvement 9.0.011.00

GPR complies with GDPR
requirements for handling sensitive
customer information.

New feature 9.0.010.01

Genesys Security Deployment
Guide

• Genesys Security Deployment
Guide

Deployment and Operations Guide

• Handling Personally Identifiable
Information in Compliance with
General Data Protection
Regulation (EU)

Genesys Predictive Routing API Reference

• Predictive Routing API
Reference (access requires a
password; contact your
Genesys representative for
assistance)

The Lift Estimation report now
offers Advanced Group By
functionality, which provides more
flexibility in customizing the report.

Improvement 9.0.010.01
Predictive Routing Help

• Lift Estimation Report Overview

GPR now supports LDAP
authentication when users log in. New feature 9.0.009.00

Predictive Routing Help

• Configuring LDAP-Enabled
Accounts

New Features Log

Predictive Routing Deployment and Operations Guide 18

https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports#potentialLift
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAccounts#LDAP
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAccounts#LDAP

Feature Description Type of
Change

Occurred in
Release Documentation Updates

The following improvements have
been made to the Lift Estimation
report:

• When generating the Lift
Estimation report, GPR now
provides the option to produce
a report for each unique value
for a selected column (feature).
Previously, any feature with a
cardinality of more than 20 was
excluded, which meant that
you could not produce reports
with a granularity higher than
20 unique features.

• The agent pool for lift
estimation is now constructed
on a per-day basis for the
interactions in the dataset.
Previously, you might have
observed a negative lift for
higher agent availability or an
unexpectedly high lift for low
agent availability due to
overcorrection caused by a
mismatch between the input
sample size and the actual
sizes encountered through
daily simulation.

New feature/
Enhancement 9.0.009.00

Predictive Routing Help

• Lift Estimation report

Journey Optimization Platform (JOP)
was renamed to AI Core Services
(AICS).

Update 9.0.009.00

You can now enable GPR to look up
updated values for certain agent
attributes, based on customer or
interaction attributes during a
scoring request. For instance, you
can look up agent performance by
virtual queue, enabling you to
evaluate the agent’s previous
performance when handling
interactions from that queue. This
avoids comparing agent
performance for a specific queue
against other agents who handle
interactions from a different
mixture of virtual queues.

New feature/
Enhancement 9.0.008.00

Predictive Routing Help

• Gather Updated Scoring Data
Using Profile Look Ups

You can now view an entire Agent
Profile or Customer Profile record
from the Agents Details and
Customers Details tabs or an
entire record on the Datasets

New feature/
Enhancement 9.0.008.00

Predictive Routing Help

• Analyzing Agents

New Features Log

Predictive Routing Deployment and Operations Guide 19

https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports#potentialLift
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Predictors#lookup
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Predictors#lookup
https://docs.genesys.com/Documentation/GPM/9.0.0/help/AgentsPage

Feature Description Type of
Change

Occurred in
Release Documentation Updates

Details tab. Click a single record
to open a new window containing a
table with all the related key-value
pairs.

• Analyzing Customers
• Analyzing Dataset Trends and

Details

Agent State Connector now
supports connection to a secured
Configuration Server port and TLS
1.2 connections to Stat Server.

New feature/
Enhancement 9.0.008.00

Deployment and Operations Guide

• Secure Connections

You can now configure Agent State
Connector to automatically create
an Agent Profile schema, if none
exists, or to verify the existing
schema.

New feature/
Enhancement 9.0.008.00

Deployment and Operations Guide

• Create the Agent Profile
Schema

You can now have Agent State
Connector collect call connId data
from Stat Server and write it to the
Agent Profile schema for use in
Predictive Routing.

New feature/
Enhancement 9.0.008.00

Deployment and Operations Guide

• Enable Collection and Storage
of Call ConnIds

Agent State Connector is now
supported on Windows and Linux
64-bit systems.

New feature/
Enhancement 9.0.008.00

For the exact Windows and Linux
versions supported, see the
Genesys Supported Operating
Environment Reference Guide.

• For Windows and Linux 64-bit
deployment instructions, see
Installing on Windows and
Installing on RedHat Linux 7
64-Bit in the Deployment and
Operations Guide.

Predictive Routing now supports
datasets of up to 250 columns for
predictor data generation, model
training, and analysis.

New feature/
Enhancement 9.0.008.00

Deployment and Operations Guide

• Data Size Guidelines - Data
Import, Model Training, and
Feature Analysis

Model training speed has been
considerably improved.

New feature/
Enhancement 9.0.008.00

Predictive Routing now provides
progress indicators when loading
predictor data and generating
predictors. The progress indicators
show the percent complete and the
number of data rows already
loaded.

New feature/
Enhancement 9.0.008.00

The maximum supported
cardinality for the Group By
functionality in the Lift
Estimation report has been
increased to 20. All features with

New feature/
Enhancement 9.0.008.00

Predictive Routing Help

• Lift Estimation Report Overview

New Features Log

Predictive Routing Deployment and Operations Guide 20

https://docs.genesys.com/Documentation/GPM/9.0.0/help/CustomersPage
https://docs.genesys.com/Documentation/GPM/9.0.0/help/DatasetsPage
https://docs.genesys.com/Documentation/GPM/9.0.0/help/DatasetsPage
https://docs.genesys.com/Documentation/System/Current/SOE/GPM
https://docs.genesys.com/Documentation/System/Current/SOE/GPM
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports#potentialLift

Feature Description Type of
Change

Occurred in
Release Documentation Updates

cardinalities between 1 and 20 are
now available in the Group By
selection menu.
You can now enter a maximum
value of 500 simulations in the Lift
Estimation analysis report
settings. This prevents you from
entering numbers too large to
efficiently analyze and which can
lead to an out-of-memory situation.
The Number of Simulations field
accepts any value larger than 0
and less than or equal to 500.

New feature/
Enhancement 9.0.008.00

Predictive Routing Help

• Lift Estimation Report Overview

Predictive Routing now provides a
text search field for use when
selecting attributes for analysis.

New feature/
Enhancement 9.0.008.00

Predictive Routing Help

• Creating and Interpreting
Analysis Reports

The documentation and the user
interface have been updated to
reflect the new product name
(changed from Genesys Predictive
Matching to Genesys Predictive
Routing).

Update 9.0.007.01

The product name has changed
from Genesys Predictive Matching
to Genesys Predictive Routing.

New Feature 9.0.007.00
The documentation and the user
interface are scheduled to be
updated as a post-release activity.

Support for both single-site and
multi-site high availability
architectures.

New Feature AICS and ASC
9.0.007.00

Deployment and Operations Guide:

• Deploying: High Availability

Support for historical reporting,
provided by the Genesys Reporting
solution. The following reports are
available in Genesys Interactive
Insights: Predictive Routing AB
Testing Report, Predictive Routing
Agent Occupancy Report,
Predictive Routing Detail Report,
Predictive Routing Operational
Report, and Predictive Routing
Queue Statistics Report.

Important
This functionality requires Genesys
Info Mart 8.5.009.12 or higher,
Reporting and Analytics Aggregates
8.5.002 or higher, and Genesys
Interactive Insights 8.5.001 or higher.

New Feature
AICS and
Strategy
Subroutines
9.0.007.00

Deployment and Operations Guide:

• Deploying: Integrating with
Genesys Reporting

• send-user-event (new)
• vq-for-reporting (new)

Real-time reporting templates are
available for use in Pulse
dashboards: Agent Group KPIs by

New Feature
AICS and
Strategy
Subroutines

Deployment and Operations Guide:

New Features Log

Predictive Routing Deployment and Operations Guide 21

https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports#potentialLift
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports

Feature Description Type of
Change

Occurred in
Release Documentation Updates

Predictive Model and Queue KPIs
by Predictive Model. 9.0.007.00 • Deploying: Integrating with

Genesys Reporting

Two new analysis reports have
been added to the Genesys
Predictive Routing application:
Agent Variance and Lift Estimation.

New Feature AICS
9.0.007.00

Help File:

• Agent Variance Report
• Lift Estimation Report

The Model creation interface now
includes additional model quality
and agent coverage reporting.

New Feature AICS
9.0.007.00

Help File:

• Receiver Operating
Characteristic (ROC) Curve

The Feature Analysis report, the
model creation and training
functionality, and the dataset
import functionality have been
improved to handle large datasets.

Improvement AICS
9.0.007.00

Deployment and Operations Guide:

• Data Size Guidelines - Data
Import, Model Training, and
Feature Analysis

You can now combine simple
predictors to create composite
predictors.

New Feature AICS
9.0.007.00

Help File:

• About Composite Predictors

Agent State Connector now
enables you to set alarms if there
are persistent connection issues
with Configuration Server or Stat
Server.

New Feature ASC
9.0.007.00

Deployment and Operations Guide:

• Monitoring Agent State
Connector

Improved logging for the AICS
Tango container when you train a
model. The relevant log message
now includes the model ID and
feature size.

New Feature AICS
9.0.007.00

Deployment and Operations Guide:

• Model Training Logs

The agent occupancy control
feature was improved. Improvement

Strategy
Subroutines
9.0.007.00

Deployment and Operations Guide:

• agent-occupancy-factor
(new)

• use-agent-occupancy
(updated)

• agent-occupancy-threshold
(updated)

The behavior of the time-sliced A/B
testing mode (the prr-mode
option is set to ab-test-time-
sliced) has been improved.

Improvement
Strategy
Subroutines
9.0.007.00

Deployment and Operations Guide:

• ab-test-time-slice (new
default value)

You can now set a timeout value
that enables Genesys Predictive New Feature Strategy

Subroutines Deployment and Operations Guide:

New Features Log

Predictive Routing Deployment and Operations Guide 22

https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports#agentVar
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Reports#potentialLift
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Models#ROC
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Models#ROC
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Predictors#composite

Feature Description Type of
Change

Occurred in
Release Documentation Updates

Routing to tell whether URS is
overloaded, at which point
Predictive Routing turns itself off.

9.0.007.00 • overload-control-timeout
(new)

When you are training a model,
new status indicators immediately
inform you of the progress of
model training, from "IN QUEUE",
to a blinking "IN TRAINING" when
the training job starts being
processed, to "TRAINED" after job
has been completed.

Improvement AICS
9.0.007.00

Predictive Routing now enforces
conversion of non-string ID values
into strings in the Agent and
Customer Profile schemas.

Improvement AICS
9.0.007.00

The Predictive Routing strategy
integration with URS now
automatically deletes interaction
scoring data stored in the URS
global map once the interaction is
routed or abandoned. As a result,
the PrrIxnCleanup subroutine is no
longer needed. This change
requires URS version 8.1.400.37 or
higher.

Improvement
Strategy
Subroutines
9.0.007.00

Apache Kafka is no longer used for
triggering the execution of model
training or analysis jobs. This
functionality has been taken over
by MongoDB. As a result, the kafka
container is no longer part of the
AICS installation package.

Discontinued
container

AICS
9.0.007.00

Deployment and Operations Guide:

• Deploying AICS on a Single Host

In the Predictive Routing interface,
the Action Features label is now
Agent Features; Context Features
is now Customer Features; Action
Type is now Agent Identifier;
Context Type is now Customer
Identifier.

Improvement AICS
9.0.007.00

Help File:

• Settings: Creating and Updating
Predictors

Added support for updating,
deleting, and reading the indexes
on Agent and Customer Profile
collections through the Predictive
Routing API.

Improvement AICS
9.0.007.00

API Reference:

• Predictive Routing API
Reference

Models now show how many
versions have been created. In
addition, you can now copy
activated models.

Improvement AICS
9.0.007.00

Help File:

• Settings: Configuring, Training,
and Testing Models

The Composer Improvement Strategy Deployment and Operations Guide:

New Features Log

Predictive Routing Deployment and Operations Guide 23

https://docs.genesys.com/Documentation/GPM/9.0.0/help/Predictors
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Predictors
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Models
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Models

Feature Description Type of
Change

Occurred in
Release Documentation Updates

ActivatePredictiveMatching
subroutine now supports two types
of responses to score requests,
either containing both list and
list_ranks fields or just the list
field. These are controlled by the
request parameter
format_as_map.

Subroutines
9.0.007.00 • format-as-map (new)

The following two configuration
options are no longer supported as
of this release. The functionality
they enabled has been adjusted to
make them unnecessary.

Discontinued
Support

ASC
9.0.006.07

Deployment and Operations Guide:

• reset-jop-on-startup - This
option is no longer required,
and is now permanently set to
false. To delete agents, delete
your current agent profile
schema in the Predictive
Routing application, and then
upload an updated schema.

• stat-srv-ws-conn - This option
is no longer required, and is
now permanently set to true.
ASC now supports warm
standby connections by
default.

You can now deploy the AI Core
Services (AICS) in Docker
containers.

New Feature AICS
9.0.006.05

Deployment and Operations Guide:

• Deploying: AI Core Services

This release includes updates to
the Predictive Routing web
interface for improved usability.

Improvement AICS
9.0.006.05

Help File:

• Genesys Predictive Routing
Help

This release includes context-
sensitive Help. To open the Help
from the interface, click the ? icon
on the top menu bar.

Improvement AICS
9.0.006.05

Help File:

• Genesys Predictive Routing
Help

In ASC, you can now specify a
timeout between each subscription
to avoid overloading Stat Server.

Improvement ASC
9.0.006.06

Deployment and Operations Guide:

• A new option, ss-subscription-
timeout, enables this
functionality.

Agent State Connector and
Strategy Subroutines components
can be deployed in a high
availability configuration.

New Feature

ASC
9.0.006.06/
URS Strategy
Subroutines
9.0.006.00/
Composer
Strategy

Deployment and Operations Guide:

• Deploying: High Availability

New Features Log

Predictive Routing Deployment and Operations Guide 24

https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome
https://docs.genesys.com/Documentation/GPM/9.0.0/help/Welcome

Feature Description Type of
Change

Occurred in
Release Documentation Updates

Subroutines
9.0.006.01

Routing using Predictive Routing
can now take agent occupancy into
account when selecting the best
target.

Improvement

URS Strategy
Subroutines
9.0.006.00/
Composer
Strategy
Subroutines
9.0.006.01

Deployment and Operations Guide:

• The new use-agent-
occupancy and agent-
occupancy-threshold options
control this functionality.

You can customize how Predictive
Routing handles the authentication
tokens that enable the URS
Strategy Subroutines to request
agent scores from AICS.

New Feature

URS Strategy
Subroutines
9.0.006.00/
Composer
Strategy
Subroutines
9.0.006.01

Deployment and Operations Guide:

• Two new configuration options,
scoring-token-expiration
and emergency-scoring-
token, enable this
functionality.

Predictive Routing IRD strategy
subroutines now utilize the URS
TimeBehind[] function to detect
when URS is overloaded and adjust
their behavior accordingly.

New Feature

URS Strategy
Subroutines
9.0.006.00/
Composer
Strategy
Subroutines
9.0.006.01

Deployment and Operations Guide:

• Troubleshooting for a URS-
based Predictive Routing
Environment

The workflow for creating
Predictors has been made more
logical and straightforward.

Improvement AICS
9.0.006.05

Help File:

• Settings: Creating Predictors

Users can now reset their
passwords from the Predictive
Routing web interface.

Improvement AICS
9.0.006.05

Help File:

• User Profile: Managing
Passwords

New Features Log

Predictive Routing Deployment and Operations Guide 25

https://docs.genesys.com/Documentation/GPM/9.0.0/help/Predictors
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgUserProfile
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgUserProfile

Code Samples
The code samples included in this topic are for use with the Predictive Routing API.

cURL Examples

The Predictive Routing API Reference includes cURL examples. The Reference requires a password for
access. Please contact your Genesys representative if you need to view this document.

Important
If you copy and past the cURL example code into a Windows-based code editor, you
must remove the \ characters at the ends of the lines.

Python Examples

The following examples provide a guideline for how to implement GPR API calls using Python. The
examples are presented in the same groupings as in the Predictive Routing API Reference.

Authenticate Example
#POST / authenticate

response = requests.post(
'%s/api/v2.0/authenticate' % HOST,
data={

'username': USERNAME,
'password': PASSWORD,
'api_key': API_KEY

}
)
token = response.json()['token']
print token

Datasets Examples
GET /datasets (get presigned URL) Get Dataset presigned URL for uploading file to S3
def get_presigned_url(token):

response = requests.get(
'%s/api/v2.0/datasets' % HOST,
json={

'token': token,
'command': 'presigned_url',
'filename': 'dataset.csv.zip'

}

Code Samples

Predictive Routing Deployment and Operations Guide 26

)
return response.json()['signed_url']

PUT /presigned URL (upload to S3) Upload dataset to S3
def upload_dataset_s3(presigned_url):

response = requests.put(presigned_url,
data = open(DATASET_PATH, 'rb').read()

)
return response.json()

POST /datasets (create using S3) Create a dataset using S3
def create_dataset_s3(token):

response = requests.post(
'%s/api/v2.0/datasets' % HOST,
json={

'token': token,
'name': 'DatasetName',
's3_separator': 'TAB',
's3_filename': 'dataset.csv.zip',
'encoding': 'shift-jis'

}
)
return response.json()

PUT /datasets/{id}/ (using s3) Append a dataset using a file uploaded to S3.
def append_dataset_s3(token):

response = requests.put(
'%s/api/v2.0/datasets/%s/append' % (HOST, DATASET_ID),
json={

'token': token,
's3_separator': 'TAB',
's3_filename': 'dataset.csv.zip',
'encoding': 'shift-jis'

}
)
return response.json()

POST /datasets (create using file system)
def create_from_csv(token):

response = requests.post(
'%s/api/v2.0/datasets' % HOST,
data={

'token': token,
'sep': 'TAB',
'name': 'TestDataset ' + str(datetime.datetime.now())

},
files={

'csv_file': open(SMALL_FILE, 'rb')
}

)
return response.json()

GET /datasets Get all datasets details
def get_all_ds_details(token):

response = requests.get(
'%s/api/v2.0/datasets' % HOST,
json={

'token': token,
'fields2show': ['name', 'id', 'sync_status']

}
)
return response.json()

Code Samples

Predictive Routing Deployment and Operations Guide 27

GET /datasets/{id} Get Dataset details.
def get_dataset_details(token):

response = requests.get(
'%s/api/v2.0/datasets/%s' % (HOST, DATASET_ID),
json={

'token': token,
'include_cardinalities': 'false'

}
)
return response.json()

PUT /datasets/{id} Edit dataset.
def edit_dataset(token):

response = requests.put(
'%s/api/v2.0/datasets/%s' % (HOST, DATASET_ID),
data={

'token': token,
'name': 'NR TestDataset 2019-07-02 16:33:12.116667',

}
)
return response.json()

DELETE /datasets/{id} Delete dataset.
def delete_dataset(token):

response = requests.delete(
'%s/api/v2.0/datasets/%s' % (HOST, DATASET_ID),
data={

'token': token,
}

)
return response.json()

GET /datasets/{id}/data Get Dataset details using a filter or search.
def filter_ds(token):

response = requests.get(
'%s/api/v2.0/datasets/%s/data' % (HOST, DATASET_ID),
json={

'token': token,
'skip': 0,
'limit': 100,
"filter": "Agent_Age>30&Agent_Skill2=Billing",
"search": "Buyer"

}
)
return response.json()

PUT /datasets/{id}/append (using file system) Append a dataset using a CSV file or a zipped
CSV file.

def append_data_csv(token):
response = requests.put(

'%s/api/v2.0/datasets/%s/append' % (HOST, DATASET_ID),
data={

'token': token,
'sep': 'TAB',

},
files={

'csv_file': open(SMALL_FILE, 'rb')
}

)
return response.json()

PUT /datasets/{id}/append (using JSON) Append a dataset using JSON batch data.

Code Samples

Predictive Routing Deployment and Operations Guide 28

def append_data_batch(token, dataset_id):
response = requests.put(

'%s/api/v2.0/datasets/%s/append' % (HOST, dataset_id),
json={

'token': token,
'batch_data': [

{
"a": "1",
"b": "abc",
"ts": "12345"

}]
}

)
return response.json()

PUT /datasets/{id}/apply_sync Sync dataset.
def sync_dataset(token):

response = requests.put(
'%s/api/v2.0/datasets/%s' % (HOST, DATASET_ID),
json={

'token': token,
'command': 'apply_sync'

}
)
return response.json()

PUT /datasets/{id}/accept_sync Accept dataset.
def accept_sync(token):

response = requests.put(
'%s/api/v2.0/datasets/%s' % (HOST, DATASET_ID),
json={

'token': token,
'command': 'accept_sync'

}
)
return response.json()

PUT /datasets/{id}/cancel_sync Cancel dataset synchronization.
def cancel_sync(token):

response = requests.put(
'%s/api/v2.0/datasets/%s' % (HOST, DATASET_ID),
json={

'token': token,
'command': 'cancel_sync'

}
)
return response.json()

Schemas Examples
GET /schemas Get presigned URL
def get_presigned_url(token):

response = requests.get(
'%s/api/v2.0/schemas' % HOST
json={

'token': token,
'command': 'presigned_url',
'schema_type': 'customers', # or 'agents'
'filename': 'customers.csv'

},
)
tuplex = (response.json()['signed_url'], response.json()['file_path'])

Code Samples

Predictive Routing Deployment and Operations Guide 29

return tuplex

PUT /presigned_url Upload source file to s3(minio)

def upload_profile_s3(presigned_url):
response = requests.put(

presigned_url,
data=open(PROFILE_PATH, 'rb').read()

)
return response

POST /schemas Upload from s3 to the GPR platform
def upload_from_s3(token, file_path):

response = requests.post(
'%s/api/v2.0/schemas' % HOST,
data = {

'token': token,
'schema_type': 'customers',
'command': 'finish_s3_upload',
's3_separator': 'TAB',
's3_filename': file_path
}

)
return response.json()

def upload_from_s3(token, file_path):
response = requests.post(

'%s/api/v2.0/schemas' % HOST,
data = {

'token': token,
'schema_type': 'customers',
'command': 'finish_s3_upload',
's3_separator': 'TAB',
's3_filename': file_path
}

)
return response.json()

PUT /schemas (create schema from a sample
def create_schema_from_template(token):

response = requests.put(
'%s/api/v2.0/schemas' % (HOST),
json={

'token': token,
'schema_type': 'agents',
'sample_data': {

'string_field': 'string',
'integer_field': 1,
'boolean_field': False

}

}
)
return response.json()

PUT /schemas (create final schema)
def create_final_schema(token):

response = requests.put(
'%s/api/v2.0/schemas' % (HOST),
json={

'token': token,
'schema_type': 'agents',
'schema_info': [

Code Samples

Predictive Routing Deployment and Operations Guide 30

{
'name': 'boolean_field',
'type': 'boolean'

},
{

'name': 'string_field',
'type': 'string',
'is_id': True

},
{

'name': 'integer_field',
'type': 'integer'

}
]

}
)
return response.json()

POST /schemas Sync, Cancel sync, Accept schema
def manage_schemas(token):

response = requests.post(
'%s/api/v2.0/schemas' % HOST,
data={

'token': token,
'command': 'accept_sync',
'schema_type': 'agents'

}
)
return response.json()

DELETE /schemas Delete schema
def delete_schema(token):

response = requests.delete(
'%s/api/v2.0/schemas' % (HOST),
data={

'token': token,
'schema_type': 'agents'

}
)
return response.json()

GET /schemas Get schema details
def get_schema_details(token):

response = requests.get(
'%s/api/v2.0/schemas' % HOST,
json={

'token': token,
'schema_type': 'agents'

}
)
return response.json()

GET /schemas Get schema details
def get_schema_details(token):

response = requests.get(
'%s/api/v2.0/schemas' % HOST,
json={

'token': token,
'schema_type': 'agents'

}
)
return response.json()

Code Samples

Predictive Routing Deployment and Operations Guide 31

POST /schemas (change fields visibility)
def change_schema_visibility(token):

response = requests.post(
'%s/api/v2.0/schemas' % HOST,
json={

'token': token,
'command': 'fields_visibility',
'schema_type': 'agents',
'visible_fields': ['Agent_First']

}
)
return response.json()

Agents Examples
POST /agents (create using file)
def upload_agents_csv(token):

response = requests.post(
'%s/api/v2.0/agents' % HOST,
data={

'token': token,
'sep': 'COMMA',
'encoding': 'shift-jis'

},
files={

'csv_file': open(AGENTS_FILE, 'rb'),
}

)
return response.json()

POST /agents (create using json)
def upload_agents_batch(token):

response = requests.put(
'%s/api/v2.0/agents' % (HOST),
json={

'token': token,
'batch_data': [

{
'Agent_AgentID': '1000',
'Agent_First': 'Jane',
'Agent_Last': 'Doe'

}],
'return_objects': True,
'include_complex_attributes': True

}
)
return response.json()

GET /agents Get Agent details
def get_agent_details_id(token):

response = requests.get(
'%s/api/v2.0/agents' % HOST,
json={

'token': token,
'Agent_AgentID': '1000',
'include_complex_attributes': True

}
)
return response.json()

def get_agent_details_search(token):

Code Samples

Predictive Routing Deployment and Operations Guide 32

response = requests.get(
'%s/api/v2.0/agents' % HOST,
json={

'token': token,
'filter': 'Agent_Experience>10&Agent_Location_Country=US',
'search': 'John',
'include_complex_attributes': True

}
)
return response.json()

#PUT /agents Edit agent record
def edit_agent(token):

response = requests.put(
'%s/api/v2.0/agents' % (HOST),
json={

'token': token,
'batch_data': [

{
'Agent_AgentID': '1000',
'Agent_First': 'Joe',
'Agent_Last': 'Doe'

}]
}

)
return response.json()

#DELETE /agents Delete agent record.
def delete_agent(token):

response = requests.delete(
'%s/api/v2.0/agents' % (HOST),
data={

'token': token,
'Agent_AgentID': '1000'

}
)
return response.json()

POST /agents/compute_cardinalities
def agent_cardinalities(token):

response = requests.post(
'%s/api/v2.0/agents/compute_cardinalities' % HOST,
data={

'token': token
}

)
return response.json()

Customers Examples
#POST /customers (create using file)
def upload_customers_csv(token):

response = requests.post(
'%s/api/v2.0/customers' % HOST,
data={

'token': token,
'sep': 'TAB',
'encoding': 'shift-jis'

},
files={

'csv_file': open(SMALL_FILE, 'rb'),
}

Code Samples

Predictive Routing Deployment and Operations Guide 33

)
return response.json()

#POST /customers (create using JSON)
def upload_customers_batch(token):

response = requests.put(
'%s/api/v2.0/customers' % (HOST),
json={

'token': token,
'batch_data': [

{
'Customer_CustomerID': 'eafa71e9-85b9-4fa1-9395-2f6f3d7f1d65',
'Customer_AccountValue': 759696320,
'Customer_Age': 37,
'Customer_AgeBucket': 1,
'Customer_Location_Country': 'Canada',
'Customer_Location_State': 'BC',
'Customer_Intent': 'Opening Account',
'Customer_Income': 798884,
'Customer_Escalations': 3

}],
'return_objects': True,
'include_complex_attributes': True

}
)
return response.json()

GET /customers Get Customer details
def get_customer_details_id(token):

response = requests.get(
'%s/api/v2.0/customers' % HOST,
json={

'token': token,
'Customer_CustomerID': 'eafa71e9-85b9-4fa1-9395-2f6f3d7f1d65',
'include_complex_attributes': True

}
)
return response.json()

def get_customer_details_search(token):
response = requests.get(

'%s/api/v2.0/customers' % HOST,
json={

'token': token,
'filter': 'Customer_Age>20&Customer_Location_Country=US',
'search': 'male',
'include_complex_attributes': True

}
)
return response.json()

#PUT /customers Edit Customer record
def edit_customer(token):

response = requests.put(
'%s/api/v2.0/customers' % (HOST),
json={

'token': token,
'batch_data': [

{
'Customer_CustomerID': 'eafa71e9-85b9-4fa1-9395-2f6f3d7f1d65',
'Customer_Age': '35'

}]
}

Code Samples

Predictive Routing Deployment and Operations Guide 34

)
return response.json()

#DELETE /customers Delete customer record.
def delete_customer(token):

response = requests.delete(
'%s/api/v2.0/customers' % (HOST),
data={

'token': token,
'Customer_CustomerID': 'eafa71e9-85b9-4fa1-9395-2f6f3d7f1d65'

}
)
return response.json()

POST /customers/compute_cardinalities
def customer_cardinalities(token):

response = requests.post(
'%s/api/v2.0/customers/compute_cardinalities' % HOST,
data={

'token': token
}

)
return response.json()

Predictors Examples
POST /predictors (simple)
def create_predictor(token):

response = requests.post(
'%s/api/v2.0/predictors' % HOST,
json={

"token": token,
"name": "TestPredictor2",
"from_dt": int(time.mktime((2018, 1, 31, 0, 0, 0, 0, 0, 0))), # Dummy range to

fit my sample set
"to_dt": int(time.mktime((2020, 1, 31, 0, 0, 0, 0, 0, 0))),
"action_type": "agents",
"context_type": "customers",
"dataset": DATASET_ID,
"metric": "NPS",
"action_id_expression": "Agent_AgentID",
"kpi_type": "Sales",
"action_features_schema": [

{
"label": "Agent_Skill4",
"type": "string",
"field_expr": "Agent_Skill4"

},
{

"label": "Agent_SalesConversionRate",
"type": "integer",
"field_expr": "Agent_SalesConversionRate"

},
{

"label": "Agent_Skill4_Level",
"type": "integer",
"field_expr": "Agent_Skill4_Level"

}
],
"context_features_schema": [

{
"label": "Customer_Age",

Code Samples

Predictive Routing Deployment and Operations Guide 35

"type": "integer",
"field_expr": "Customer_Age"

},
{

"label": "Customer_Location_Country",
"type": "string",
"field_expr": "Customer_Location_Country"

},
{

"label": "Customer_Intent",
"type": "string",
"field_expr": "Customer_Intent"

}
],

}
)
return response.json()

POST /predictors (composite)
def create_composite_predictor(token):

response = requests.post(
'%s/api/v2.0/predictors' % HOST,
json={

"token": token,
"name": "composite_predictor",
"predictor_type": "Composite Predictor",
"predictors_list": [PREDICTOR_ID, PREDICTOR_ID2],
"raw_expression": "($predictor1Name1 + $predictor2Name)/2"

}
)
return response.json()

GET /predictors Get all predictors details
def get_predictors_info(token):

response = requests.get(
'%s/api/v2.0/predictors' % (HOST),
json={

'token': token,
'fields2show': ['name', 'id']

}
)
return response.json()

GET /predictors/{id} Get predictor details
def get_predictor_info(token):

response = requests.get(
'%s/api/v2.0/predictors/%s' % (HOST, PREDICTOR_ID),
json={

'token': token,
}

)
return response.json()

PUT /predictors/{id} Edit predictor record
def edit_predictor(token):

response = requests.put(
'%s/api/v2.0/predictors/%s' % (HOST, PREDICTOR_ID),
json={

'token': token,
'name': 'RenamedTestPredictor'

}
)
return response.json()

Code Samples

Predictive Routing Deployment and Operations Guide 36

#DELETE /predictors/{id} Delete predictor record.
def delete_predictor(token):

response = requests.delete(
'%s/api/v2.0/predictors/%s' % (HOST, PREDICTOR_ID2),
data={

'token': token
}

)
return response.json()

PUT /predictors/{id}/generate_data Generate predictor data.
def generate_training_data(token, from_timestamp, to_timestamp):

response = requests.put(
'%s/api/v2.0/predictors/%s' % (HOST, PREDICTOR_ID),
json={

'command': 'generate_data',
'from_dt': from_timestamp,
'to_dt': to_timestamp,
'token': token

}
)
return response.json()

PUT /predictors/{id}/purge_data Purge predictor data
def purge_training_data(token):

response = requests.put(
'%s/api/v2.0/predictors/%s' % (HOST, PREDICTOR_ID),
json={

'command': 'purge_data',
'token': token

}
)
return response.json()

GET /predictors/{id}/check_status Check status of predictor generate and purge jobs
def check_predictor_status(token):

response = requests.get(
'%s/api/v2.0/predictors/%s/check_status' % (HOST, PREDICTOR_ID),
json={

'token': token
}

)
return response.json()

GET /predictors/{id}/data Get predictor data
def get_predictor_data(token):

response = requests.get(
'%s/api/v2.0/predictors/%s/data' % (HOST, PREDICTOR_ID),
json={

'token': token,
'filter': 'act.Agent_Skill4_Level=1&ctx.Customer_Age>30'

}
)
return response.json()

POST /predictors/{id}/copy_predictor Copy predictor
def copy_predictor(token):

response = requests.post(
'%s/api/v2.0/predictors/%s/copy_predictor' % (HOST, PREDICTOR_ID),
json={

'token': token
}

)

Code Samples

Predictive Routing Deployment and Operations Guide 37

return response.json()

POST /predictors/{id}/score Score actions for predictor context
def predictor_score(token):

response = requests.post(
'%s/api/v2.0/predictors/%s/copy_predictor' % (HOST, PREDICTOR_ID),
json={

'token': token,
'context': {

'Customer_Location_Country': 'US'
},
'action_filters': "Agent_Skill4_Level in ['4','5']",
'format_as_map': True,
'warnings': True

}
)
return response.json()

POST /predictors/{id}/reset Reset predictor
def reset_predictor(token):

response = requests.post(
'%s/api/v2.0/predictors/%s/reset' % (HOST, PREDICTOR_ID),
json={

'token': token
}

)
return response.json()

POST /predictors/{id}/feedback Predictor feedback
def predictor_feedback(token):

response = requests.post(
'%s/api/v2.0/predictors/%s/feedback' % (HOST, PREDICTOR_ID),
json={

'token': token,
'action': {

'action_id': 'UUID_2',
'skill': 'testing2',
'age': '28',
'fluency': 'good2',
'seniority': 'veteran2'

},
'context': {

'age': '36',
'gender': 'M',
'location': 'San Francisco2',
'n_subs': '16',
'intention': 'closing an account',
'seniority': 'ancient2'

},
'reward': 0

}
)
return response.json()

POST /ab_testing/join A/B Test predictor
def ab_test(token):

response = requests.post(
'%s/api/v2.0/ab_testing/join' % (HOST),
json={

'token': token,
'prrPredictor': 'RenamedTestPredictor',
'from_date': '01/31/2018',
'to_date': '01/31/2020'

Code Samples

Predictive Routing Deployment and Operations Guide 38

}
)
return response.json()

Score Log Examples
POST /score_log Log your predictor score log data
def score_log(token):

response = requests.post(
'%s/api/v2.0/score_log' % (HOST),
json={

'token': token,
'prrPredictor': 'RenamedTestPredictor',
'context': {

'Customer_Location_Country': 'US'
},
'action_filters': "Agent_Skill4_Level in ['4','5']",
'format_as_map': True,
'warnings': True

}
)
return response.json()

GET /score_log View your previously logged score data
def get_score_log(token):

response = requests.get(
'%s/api/v2.0/score_log' % (HOST),
json={

'token': token,
'prrPredictor': 'RenamedTestPredictor',
'context': {

'Customer_Location_Country': 'US'
}

}
)
return response.json()

Models (PredictorsModels) Examples
POST /predictor_models Create predictor model.
def create_predictive_model(token):

response = requests.post(
'%s/api/v2.0/predictor_models' % HOST,
json={

"token": token,
"display_name": "TestModel_DISJOINT",
"predictor_id": PREDICTOR_ID,
"model_type": "DISJOINT",
"context_features": [

{
"label": "Customer_Age",
"type": "integer",
"field_expr": "Customer_Age"

},
{

"label": "Customer_Location_Country",
"type": "string",
"field_expr": "Customer_Location_Country"

},
{

Code Samples

Predictive Routing Deployment and Operations Guide 39

"label": "Customer_Intent",
"type": "string",
"field_expr": "Customer_Intent"

}
],
"action_features": [

{
"label": "Agent_Skill4",
"type": "string",
"field_expr": "Agent_Skill4"

},
{

"label": "Agent_SalesConversionRate",
"type": "integer",
"field_expr": "Agent_SalesConversionRate"

},
{

"label": "Agent_Skill4_Level",
"type": "integer",
"field_expr": "Agent_Skill4_Level"

}
],
"train_data_percentage": 80,

}
)
return response.json()

GET /predictor_models Get all predictor Models details
def get_models_info(token):

response = requests.get(
'%s/api/v2.0/predictor_models' % (HOST),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

GET /predictor_models/{id} Get predictor Model details
def get_model_info(token):

response = requests.get(
'%s/api/v2.0/predictor_models/%s' % (HOST, MODEL_ID),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

PUT /predictor_models/{id} Edit predictor model record
def edit_model(token):

response = requests.put(
'%s/api/v2.0/predictor_models/%s' % (HOST, MODEL_ID),
json={

"token": token,
"display_name": "NewTestModel",
"description": "Test model",
"predictor_id": PREDICTOR_ID,
"model_type": "HYBRID",
"context_features": [

{
"label": "Customer_Age",
"type": "integer",

Code Samples

Predictive Routing Deployment and Operations Guide 40

"field_expr": "Customer_Age"
},
{

"label": "Customer_Location_Country",
"type": "string",
"field_expr": "Customer_Location_Country"

},
{

"label": "Customer_Intent",
"type": "string",
"field_expr": "Customer_Intent"

}
],
"action_features": [

{
"label": "Agent_Skill4",
"type": "string",
"field_expr": "Agent_Skill4"

},
{

"label": "Agent_SalesConversionRate",
"type": "integer",
"field_expr": "Agent_SalesConversionRate"

},
{

"label": "Agent_Skill4_Level",
"type": "integer",
"field_expr": "Agent_Skill4_Level"

}
],
"train_data_percentage": 80,

}
)
return response.json()

DELETE /predictor_models/{id} Delete predictor model
def delete_model(token):

response = requests.delete(
'%s/api/v2.0/predictor_models/%s' % (HOST, MODEL_ID3),
json={

'token': token,
'predictor_id': PREDICTOR_ID,
'hard': True

}
)
return response.json()

DELETE /predictor_models (several models) Delete predictor models in batch
def delete_models_batch(token):

response = requests.delete(
'%s/api/v2.0/predictor_models' % (HOST),
json={

'token': token,
'predictor_id': PREDICTOR_ID,
'hard': True,
'model_id': [

MODEL_ID1,
MODEL_ID2

]
}

)
return response.json()

Code Samples

Predictive Routing Deployment and Operations Guide 41

PUT /predictor_models/{id}/train Train predictor model
def train_model(token):

response = requests.put(
'%s/api/v2.0/predictor_models/%s/train' % (HOST, MODEL_ID),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

PUT /predictor_models/{id}/retrain Retrain predictor model
def retrain_model(token):

response = requests.put(
'%s/api/v2.0/predictor_models/%s/retrain' % (HOST, MODEL_ID),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

PUT /predictor_models/{id}/activate Activate predictor model
def activate_model(token):

response = requests.put(
'%s/api/v2.0/predictor_models/%s/activate' % (HOST, MODEL_ID),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

PUT /predictor_models/{id}/deactivate Deactivate predictor model
def deactivate_model(token):

response = requests.put(
'%s/api/v2.0/predictor_models/%s/deactivate' % (HOST, MODEL_ID),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

PUT /predictor_models/{id}/copy Copy predictor model
def copy_model(token):

response = requests.put(
'%s/api/v2.0/predictor_models/%s/copy' % (HOST, MODEL_ID),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

Analysis Examples
GET /analysis Get analysis reports data
def get_analysis(token):

response = requests.get(
'%s/api/v2.0/analysis' % HOST,
json={

Code Samples

Predictive Routing Deployment and Operations Guide 42

'token': token
}

)
return response.json()

GET /analysis/{id} Get analysis report data by ID
def get_analysis_by_id(token):

response = requests.get(
'%s/api/v2.0/analysis/%s' % (HOST, REPORT_ID),
json={

'token': token
}

)
return response.json()

DELETE /analysis/{id} Delete analysis report
def delete_analysis_report(token):

response = requests.delete(
'%s/api/v2.0/analysis/%s' % (HOST, REPORT_ID),
json={

'token': token
}

)
return response.json()

POST /analysis/datasets/feature_analysis Generate Feature Analysis report for dataset
def generate_fa_report_dataset(token):

response = requests.post(
'%s/api/v2.0/analysis/datasets/feature_analysis' % HOST,
json={

'token': token,
'dataset_id': DATASET_ID,
'target_metric': 'HandleTime'

}
)
return response.json()

POST /analysis/predictors/feature_analysis Generate Feature Analysis report for predictor
def generate_fa_report_predictor(token):

response = requests.post(
'%s/api/v2.0/analysis/predictors/feature_analysis' % HOST,
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

POST /analysis/predictors/lift_estimation Generate Lift Estimation report for predictor
def generate_le_report(token):

response = requests.post(
'%s/api/v2.0/analysis/predictors/lift_estimation' % HOST,
json={

'token': token,
'predictor_id': PREDICTOR_ID,
'model_id': MODEL_ID

}
)
return response.json()

Code Samples

Predictive Routing Deployment and Operations Guide 43

Index Management Examples
GET /index_management Get existing indexes on a collection
def get_indexes(token):

response = requests.get(
'%s/api/v2.0/index_management' % HOST,
json={

'token': token,
'coll_type': 'agents'

}
)
return response.json()

PUT /index_management Edit indexes on a collection
def edit_indexes(token):

response = requests.put(
'%s/api/v2.0/index_management' % HOST,
json={

"token": token,
"coll_type": "agents",
"fields": [

"Agent_Status",
"Agent_Location_Country"

]
}

)
return response.json()

PUT /index_management Delete indexes on a collection
def delete_indexes(token):

response = requests.delete(
'%s/api/v2.0/index_management' % HOST,
json={

"token": token,
"coll_type": "agents",
"fields": [

"Agent_Status",
"Agent_Location_Country"

]
}

)
return response.json()

PURGE APIs
GET /purge/{purge_job_id} Get purge job details
def get_purge_status(token, purge_job_id):

response = requests.get(
'%s/api/v2.0/purge/%s' % (HOST, purge_job_id),
json={

'token': token
}

)
return response.json()

POST /purge/agents Add a purge job for agents
def purge_agents(token):

response = requests.post(
'%s/api/v2.0/purge/agents' % HOST,
json={

'token': token,

Code Samples

Predictive Routing Deployment and Operations Guide 44

'data_filter': '(Agent_Age>30)'
}

)
return response.json()

POST /purge/customers Add a purge job for customers
def purge_customers(token):

response = requests.post(
'%s/api/v2.0/purge/customers' % HOST,
json={

'token': token,
'data_filter': '(Customer_Income<200000)'

}
)
return response.json()

POST /purge/datasets/{id} Add a purge job for dataset with given id
def purge_dataset(token):

response = requests.post(
'%s/api/v2.0/purge/datasets/%s' % (HOST, DATASET_ID),
json={

'token': token,
'data_filter': '(CSAT=5)'

}
)
return response.json()

POST /purge/predictors/{id} Add a purge job for predictor with given id
def purge_predictor(token):

response = requests.post(
'%s/api/v2.0/purge/predictors/%s' % (HOST, PREDICTOR_ID),
json={

'token': token,
'data_filter': '(ctx.Customer_Age=56)'

}
)
return response.json()

def train_model(token):
response = requests.put(

'%s/api/v2.0/predictor_models/%s/train' % (HOST, MODEL_ID),
json={

'token': token,
'predictor_id': PREDICTOR_ID

}
)
return response.json()

Predictor Scoring Example
POST /predictors/{id}/score Score actions for predictor context
def get_scores(token):

response = requests.post(
'%s/api/v2.0/predictors/%s/score' % (HOST, PREDICTOR_ID),
json={

'token': token,
'context': {

'Customer_Location_Country': 'US'
},
'action_filters': "Agent_Skill4_Level in ['3','4','5']",
'format_as_map': True,
'warnings': True

Code Samples

Predictive Routing Deployment and Operations Guide 45

}
)
return response.json()

Code Samples

Predictive Routing Deployment and Operations Guide 46

System Requirements, Pre-Requisites, and
Planning
This section contains information to get you started with your planning for an implementation of
Predictive Routing. It contains the following topics:

• System Requirements and Interoperability
• Architecture and Interaction Flows
• Sizing for Premise Deployments
• The Data Pipeline

System Requirements, Pre-Requisites, and Planning

Predictive Routing Deployment and Operations Guide 47

System Requirements and Interoperability
Genesys Predictive Routing (GPR) includes several components. This topic provides an overview of
the prerequisite hardware and software required to run each component.

It also includes an Interoperability table, showing which versions of the Genesys components required
to run an end-to-end GPR solution are compatible.

Important
In addition to the prerequisites noted here, see the Genesys Supported Operating
Environment Reference Guide, which provides operating system, database, and
browser requirements information for most Genesys products.

The GPR Components: Hardware and Software Requirements

AI Core Services (AICS)

• Provides the Predictive Routing user interface, the API, and the scoring engine. This component consists
of a number of Docker containers deployed from a single IP.

Important Considerations

• You might need an active internet connection to download additional libraries when installing Docker.
• The GPR uses CentOS 7 as the base Docker image.
• If you are deploying AICS in an HA architecture, the system clocks on all target servers must be

synchronized. You can use Network Time Protocol (NTP) for this.
• For a list of ports required by the various Docker containers and components, see Required Ports for

AICS Servers.

Considerations Related to Third-Party Software

• If you are deploying AICS in an HA architecture and running VMWare VXLAN, you might encounter a port
conflict between VMWare VXLAN and Docker, both of which require port 4789. If you encounter this
issue, Genesys recommends that you use a networking application such as Weave Net to manage
networking among Docker containers. For additional information, consult the documentation for the
respective products:
• For the Docker Swarm port requirements: Use swarm mode routing mesh
• For VMWare VXLAN port requirements: Ports and Protocols Required by NSX

System Requirements, Pre-Requisites, and Planning System Requirements and Interoperability

Predictive Routing Deployment and Operations Guide 48

https://docs.genesys.com/Documentation/System/Current/SOE/GPM
https://docs.genesys.com/Documentation/System/Current/SOE/GPM

• For Weave Net: Introducing Weave Net

Agent State Connector (ASC)

• Connects to Configuration Server (or Configuration Server Proxy) and (optionally, in release 9.0.015.04
and higher) Stat Server to read real-time updates on agents, agent groups, and agent availability. ASC
passes these updates to AI Core Services, which connects to your Genesys Routing solution. With ASC
release 9.0.015.04 and higher, and URS Strategy Subroutines 9.0.015.00 and higher you can choose
the have GPR monitor agent availability through Universal Routing Server rather than Stat Server,
reducing the connections required.

The option to monitor agent availability from URS rather than Stat Server increases the load on
URS. See the Sizing Guide for guidelines.

URS Strategy Subroutines/Composer Subroutines

• Editable out-of-the-box strategy subroutines to use with your Genesys routing components. Genesys
Predictive Routing includes a set of subroutines created for use with Universal Routing Server (URS) and
Interaction Routing Designer (IRD), and an analogous set that supports the addition of Orchestration
Server (ORS) and Composer Universal Routing Server (URS) and Interaction Routing Designer (IRD).

Genesys Reporting Integration

• Configure GPR and your historical reporting components to ensure that the required data, in the form of
key-value pairs, is made available to support Genesys historical reporting on GPR performance and
outcomes.

General Recommendations

Genesys recommends that you set up at least two instances of Predictive Routing, a test or
development instance and a production instance.

• The production instance runs Predictive Routing applications for both pre-production and production
environments.

• The development instance runs a separate Predictive Routing application used for development and
testing of the data collection pipeline.

System Requirements and Required Components/Versions
The following table lists the hardware and software requirements that should be
in place before starting your deployment.

AI Core Services
Hardware/Software Type Requirement Comments

OS
• CentOS Linux7 (64-bit)
• RHEL 7 (64-bit)

System Requirements, Pre-Requisites, and Planning System Requirements and Interoperability

Predictive Routing Deployment and Operations Guide 49

AI Core Services

• Oracle Linux 7.3

RAM 32 GB
CPUs 8 cores minimum

Disk space 50 GB free space minimum
required, 100 GB recommended

Ideally, the root directory should
have at least 50 GB of free space
to be used for operating system
needs, Docker images,
containers, and so on.
The directory, /datadir, where MongoDB
stores data should be on a separate
volume with at least 50 GB, with the
option to grow as needed.

Docker
docker-ce version 18.09.2 or
higher; OR docker-ee 18.09.2 or
higher

The recommended version was
updated in March, 2019. For
security reasons, all deployments
should upgrade to the
recommended Docker version.

MongoDB version 3.6

The recommended version is
required for GPR release
9.0.011.00 and higher. Earlier
versions of AICS are compatible
with earlier versions of Mongo
DB.

Load Balancer Depends on your environment
For production HA environments,
Genesys recommends that you
use a specialized load balancer,
such as F5.

Agent State Connector (ASC)
Hardware/Software Type Requirement Comments

OS

• CentOS Linux 7 (64-bit)
• RHEL 7 (64-bit)
• Oracle Linux 7.3
• Windows Server

RAM 1 GB
Java Java JDK 1.8
Configuration Server 8.1.300.26
Stat Server 8.5.108.17
Message Server—for logging 8.1.300.11

URS Strategy Subroutines/Composer Strategy Subroutines
Hardware/Software Type Requirement Comments

See the Genesys Predictive

System Requirements, Pre-Requisites, and Planning System Requirements and Interoperability

Predictive Routing Deployment and Operations Guide 50

AI Core Services
Routing Sizing Worksheet to
calculate the memory and CPU
requirements for URS/ORS when
using Predictive Routing.

Interoperability

Among GPR components:

GPR Component Requirement Comments

AI Core Services
AI Core Services 9.0.015.03 and
higher requires Agent State
Connector 9.0.015.04 and higher.

Agent State Connector
Agent State Connector
9.0.015.04 and higher requires AI
Core Services 9.0.015.03 and
higher.

For Routing using the URS Strategy Subroutines:

Hardware/Software Type Requirement Comments
Universal Routing Server 8.1.400.57
Interaction Routing Designer 8.1.400.26 or higher

For Routing using the Composer Subroutines. The addition of Orchestration Server and Composer
enables you to use Composer to manage the routing workflow, but the Composer subroutine acts as
a wrapper for the functionality implemented in the URS Strategy Subroutines component.

Hardware/Software Type Requirement Comments
Universal Routing Server 8.1.400.57
Interaction Routing Designer 8.1.400.26 or higher
Orchestration Server 8.1.400.40 or higher
Composer 8.1.400.36 or higher

For integration with Genesys Reporting:

Hardware/Software Type Requirement Comments
Genesys Predictive Routing 9.0.007 or higher
Interaction Concentrator 8.1.5 or higher

Genesys Info Mart
8.5.009.12 or higher is the base
version. URS Strategy
Subroutines 9.0.015.00 and

System Requirements, Pre-Requisites, and Planning System Requirements and Interoperability

Predictive Routing Deployment and Operations Guide 51

Hardware/Software Type Requirement Comments
higher requires Genesys Info
Mart 8.5.014.09 and higher.

Reporting and Analytics
Aggregates 8.5.002 or higher

Genesys Interactive Insights/
GCXI 8.5.001 or higher

System Requirements, Pre-Requisites, and Planning System Requirements and Interoperability

Predictive Routing Deployment and Operations Guide 52

Architecture and Security
This topic presents Genesys Predictive Routing (GPR) architecture, first at a high-level overview,
followed by more detailed views of the connections used by AI Core Services (AICS), Agent State
Connector (ASC), URS Strategy Subroutines, and Composer Subroutines components.

This topic covers Genesys Predictive Routing architecture, with some additional Genesys components
included in the diagrams for completeness. For a full list of required components and versions, refer
to System Requirements and Interoperability.

In addition, you need to have adequate data source(s) and construct a well thought-out data pipeline.

• AI Core Services Architecture
• Agent State Connector Architecture
• Subroutines Architecture
• Security and Secure Connections

GPR Architecture

The following diagram shows a high-level view GPR, how it connects with other Genesys components,
and how non-Genesys data enters GPR.

Important
GPR architecture in a high availability (HA) environment is similar to that presented in the diagram except
for the following details:

• Your load balancer or Docker container management application distributes traffic to
AICS across the configured instances in whatever way your system architects choose.
Deploy GPR in an HA Environment explains how to configure AICS if you require HA.

• ASC is a Java application that can be monitored, started, and stopped in Solution Control
Interface. It supports a warm-standby high availability architecture.

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 53

AI Core Services Architecture

The following diagram shows the AI Core Services (AICS) internal structure and high-level connections
to the other GPR components in a single-server deployment.

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 54

• See Scaling AI Core Services for information on how to scale each type of container included in the AICS
deployment.

• See System Monitoring and Logging for information on how to access the logs for each container.

The Tango Container
Contains the Genesys platform that provides the GPR scoring engine, the Predictive Routing REST
API, and the web-based user interface.

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 55

Workers Containers
Contain function-specific processes, identifiable by the descriptive container names.

Important
In earlier releases, the Tango container included the workers listed below. The
functionality they provide has not changed. They have been relocated to separate
containers to facilitate scaling of specific functional aspects.

• workers_dataset_upload - Uploads agent profile and customer profile data to MongoDB in releases prior
to 9.0.015.03. Also uploads Dataset data in releases prior to 9.0.013.01, when the MinIO container was
introduced. In release 9.0.015.03 and higher, the MinIO container performs the initial upload for all
data, after which the workers_dataset_upload container moves the data from the server-based storage
provided by MinIO to MongoDB.

• workers_model_training - Performs Model training jobs.
• workers_analysis - Runs the Feature Analysis, Lift Estimation, and Agent Variance reports.
• workers_purging - Purges your Dataset data.

The MinIO Container
Contains MinIO, which is a high performance, distributed object storage server, designed for large-
scale data infrastructure. This container is available in releases 9.0.013.01 and higher, where it
improves processing times for the initial Dataset upload. In release 9.0.015.03 and higher, this
functionality has been expanded to include Agent Profile and Customer Profile uploads as well.

AICS handles data uploads without any need for you to handle configuration of MinIO. However, if you
are interested in more detailed information about this component, see the MinIO web site and
documentation.

The MongoDB Container
A highly scalable, highly available no-SQL database which is especially efficient at handling large
batches of JSON format data. It also supports fast, efficient queries of that data. Starting in MongoDB
3.2, WiredTiger is the default storage engine for MongoDB.

In high availability (HA) deployments, MongoDB uses replica sets split across two data centers. A
primary and secondary replica set are located in data center 1 (DC1) and a secondary replica set is
located in DC2. All writes go to the primary replica set, from which they are distributed to the
secondary replicas. Reads can be directed to either of the secondary sets. You can configure
MongoDB to prefer reads from local secondary sets. Cross-site data traffic is required, however,
because all writes are directed to the primary MongoDB in DC1 and the data then replicates across
sites. Note that sufficient bandwidth will be required for the data replication traffic between data
centers.

If the primary server fails, read operations can still continue. Another server can be elected as the
primary server to continue write operations. Ideally, an Arbiter node should be set up in a third data
center or availability zone. This facilitates the detection of a failed primary node when a data center

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 56

becomes inaccessible and the proper election of a primary in the other data center. If there are only
two data centers, manual intervention is required to force one of the secondary replicants to become
the primary replicant.

• Links to additional information about Mongo DB:
• WiredTiger Storage Engine
• https://eladnava.com/deploy-a-highly-available-mongodb-replica-set-on-aws/
• https://docs.mongodb.com/manual/core/replica-set-architecture-geographically-distributed/
• http://s3.amazonaws.com/info-mongodb-com/MongoDB_Multi_Data_Center.pdf
• https://stackoverflow.com/questions/43083246/requires-simple-explanation-on-arbiters-role-in-a-

givenmongodb-replica-set
• https://docs.mongodb.com/manual/reference/method/Mongo.setReadPref/

The NGINX Container

Important
• Genesys recommends that you use NGINX only in test (non-production) environments.
• The NGINX container was removed in release 9.0.015.03.

NGINX is open source software for web serving, reverse proxying, caching, load balancing, media
streaming, and more. In addition to its HTTP server capabilities, NGINX is also used as a reverse
proxy and load balancer for HTTP, TCP, and UDP traffic.

Agent State Connector Architecture

Agent State Connector (ASC) connects to Configuration Server Proxy for agent-related data to be
stored in the Agent Profile (agent configuration details, such as a location, languages, skills and skill
levels, and so on). You can use this connection to populate the entire Agent Profile or you can upload
the initial agent data from a CSV file. In either case, agent data is updated via the connection to
Configuration Server. See Configuring Agent Profiles in the Predictive Routing Help for additional
information and procedures.

Important
Genesys recommends that you connect to Configuration Server Proxy, to reduce
traffic on Configuration Server.

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 57

https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAgents

ASC is a Java application that can be monitored, started, and stopped in Solution Control Interface. It
supports a warm-standby high availability architecture. Certain architectural details about ASC
depend on the release you have deployed:

• In ASC 9.0.015.01 and lower, ASC connects to Stat Server to read agent availability data used in
determining the preferred target agent and to configure and read the output for custom statistics.

• In ASC 9.0.015.04 and higher, the connection to Stat Server is optional. If you do not add a Stat Server
to the Connections tab of the ASC Application object, agent availability data is taken from Universal
Routing Server (URS), reducing the number of connections required.

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 58

Subroutines Architecture

Predictive Routing supplies out-of-the-box subroutines for environments running either Interaction
Routing Designer (IRD) + Universal Routing Server (URS) or Composer + Orchestration Server (ORS)
+ URS.

• IRD requires you to use the Predictive Routing URS Strategy Subroutines component. Insert the strategy
subroutines into the appropriate position in your strategy flow.

• Composer requires the use of the Predictive Routing Composer Subroutines. Insert the subroutines into
the appropriate position in your workflow. If you are using Composer, you need Orchestration Server
(ORS) as well as URS in your environment.

Important
Predictive Routing is not supported for environments that use schedule-based routing.

The Subroutines invoke Predictive Routing in real time. They send a request to AICS, which performs
the scoring based on the information you configured in your Predictor and the Model or Models based

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 59

on it. AICS returns the projected scores for each agent in the target group, indicating how well they
would be expected to handle the specific interaction in question given the particular interaction type,
customer intent, agent skill level, and whatever other factors you anticipate to be relevant. URS then
chooses the optimal routing target.

Security

AI Core Services and Agent State Connector 9.0.015.05 and higher are delivered as a set of Docker
images. This ensures consistent environments from development to production as Docker containers
maintain all configurations and dependencies internally, without depending on software installed on
host server. With Docker, upgrades are easier and more predictable. Scaling across multiple hosts
requires starting the same Docker containers on multiple host servers. In addition, Docker provides
isolation; every part of GPR can be scaled separately and has guaranteed access to hardware
resources.

Genesys uses the following best practices when it comes to security:

• GPR supports TLS 1.2. To configure HTTPS connections, see Configuring GPR to Use HTTPS.
• GPR uses a CentOS 7 Docker image as the base image.

• Genesys supports Security Enhanced Linux (SELinux) on CentOS 7. For a discussion of this
functionality and how to configure it, see How to disable SELinux on the Linux web site.

• GPR Docker images containing Genesys software are continuously scanned for vulnerabilities as part of
the build and test pipelines.

• All GPR Docker containers run in unprivileged mode.
• Inside Docker containers, GPR software is executed as a non-root user.
• All ports and volumes that should be exposed by each container are specified in Required Ports for

Firewall Configuration.

The measures listed above, combined with properly secured host servers, ensures that GPR deployed
using Docker containers is as secure as a deployment using more traditional methods.

• GPR delivered as set of Docker containers does not require any additional ports to be open.
• GPR uses MongoDB as its database, which is also delivered as Docker image. GPR uses the official

MongoDB Docker image at https://hub.docker.com/_/mongo/.
• MongoDB inside the Docker container requires access to the same ports and same hardware resources

as MongoDB running outside of a Docker container.

To understand how Docker containers comply with various security regulations and best practices,
see the following pages on the Docker site:

• Docker standards and compliance.
• Docker Security

To understand how MongoDB databases comply with various security regulations and best practices,
see the following page on the MongoDB site:

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 60

• MongoDB Security

Secure Connections
Predictive Routing supports the following security and connection protocols:

• ADDP
• HTTPS
• Transport Layer Security (TLS) 1.2

The following protocols are supported for the specified connections:

• ASC to Config Server: TLS 1.2; you can specify an upgrade-mode Configuration Server port by updating
the -port command line parameter in the ASC Application object Start Info tab.

• ASC to Stat Server: TLS 1.2
• ASC to AICS: HTTPS
• URS or ORS to AICS: HTTPS

Configure GPR to Use HTTPS
GPR supports HTTPS by default. The procedures linked below provide the required configuration to
use HTTPS with GPR.

HTTPS configuration for other components in your Genesys environment is covered in the Genesys
Security Deployment Guide and in the product-specific documentation.

• Configure AICS to Use HTTPS
• Configure ASC to Use HTTPS
• Configure URS Strategy Subroutines/Composer Subroutines to Use HTTPS

Secure Logins
Predictive Routing supports LDAP authentication for user logins. See Settings: Configuring Accounts
and Account: User Management for procedures to configure LDAP authenticated accounts.

System Requirements, Pre-Requisites, and Planning Architecture and Security

Predictive Routing Deployment and Operations Guide 61

https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAccounts
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgUserMgmt

Sizing Guide
Use the Excel worksheet linked below to calculate hardware sizing guidelines for all GPR components
in your environment. This sizing guide provides guidelines for simple single-server deployments,
single-server HA deployments, and multi-server HA deployments.

How to fill out the Sizing Guide Worksheet

The worksheet includes the following two tabs:

• Cover, which has version number, copyright, and legal information.
• GPR Sizing, which has three main sections:

• Input values/customer sizing data - Enter the appropriate numbers for your environment. This is
the only section you should edit.

• Calculations/outputs - This provides a few key values generated from your input in the first section.
Check these first to ensure that you are getting output in line with your expectations for sizing.

• Hardware requirements - This section contains the detailed sizing recommendations for each
component.

The worksheet provides descriptions for each field to guide you in understanding what should be
entered or how to interpret the results. It also includes links that take you directly to relevant
pages in this Deployment and Operations Guide.

Click here for the worksheet: Genesys Predictive Routing Sizing Guide

System Requirements, Pre-Requisites, and Planning Sizing Guide

Predictive Routing Deployment and Operations Guide 62

Prepare Your Data
This topic addresses issues such as data sources, what kind of data Genesys Predictive Routing (GPR)
needs in order to function, how much data you need, and how best to structure it. See Supported
Encodings and Unsupported Characters for information about constraints on data formats. It also
includes data size guidelines and a list of Genesys Info Mart tables that provide data for GPR.

Because environments differ and the exact metrics you want to target for improvement are also
dependent on your environment and business needs, this topic offers only general guidelines.

GPR can use any relevant data available in your environment. Some data is automatically imported
into GPR, but the remainder must be combined into consistent schemas and saved as CSV files. You
can use either the GPR web application or the API to import this CSV data. You can upload your CSV
file itself or as a ZIP archive.

Important
• This Guide assumes you are using the GPR web application. For details about the API,

see the Predictive Routing API Reference.
• Genesys supports only the GPR application and the GPR API for uploading Dataset and

Agent and Customer Profile data to Genesys Predictive Routing.
• Once a Dataset schema is created and accepted in AICS, you cannot change the

schema. If you need to modify the schema, you must delete the Dataset and create a
new one with the desired schema.

In general, you need the following types of data:

Interaction data

• You must create a CSV file containing the required data and upload it, using either the GPR web
application or the GPR API.

Agent Profile data

• ASC automatically extracts Agent Profile data from Configuration Server. See Configuring Agent Profiles
in the Predictive Routing Help for how to configure an Agent Profile schema.

Customer Profile data

• You must create a CSV file and upload it, using either the GPR web application or the GPR API. See
Configuring Customer Profiles in the Predictive Routing Help for how to configure a Customer Profile
schema.

System Requirements, Pre-Requisites, and Planning Prepare Your Data

Predictive Routing Deployment and Operations Guide 63

https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgAgents
https://docs.genesys.com/Documentation/GPM/9.0.0/help/cfgCustomers

Important
If you are running AICS 9.0.015.00 or lower and your Customer Profile CSV file is very large, split your
CSV file. Upload one section, then perform as many separate append operations as necessary to upload
the entire Customer Profile. For example, in a medium-sized single-server deployment, (64 GB RAM; 16
CPU), each CSV upload should be no larger than 340 MB (approximately 100 features and 100000 rows).
AICS 9.0.015.03 and higher uses MinIO for uploads, which resolves this issue.

Outcome Data

• You must create a CSV file and upload it, using either the GPR web application or the GPR API.

Correctly Specifying Data Types in Your Dataset

GPR automatically determines the data types of the columns in your dataset during dataset
initialization by analyzing the first 1000 rows of each column. To ensure that GPR can make a correct
determination, Genesys recommends that you insert a "dummy" row at the beginning of your dataset
that contains values that can be unambiguously interpreted as the expected data types for each
column. This prevents cases in which the first 1000 rows may contain all NULL or 0 values, which
might lead to an incorrect data type assignment (since 0 can be a valid integer, float, or Boolean
value). If a column does contain meaningful values, the dummy row is analyzed along with the other
values and contributes to the data type determination. Genesys recommends you use the following
data type specifications in your dummy row:

• ‘a_string’ - Is recognized as a string.
• 2.1, or any integer or float value > 1 - Is recognized as a float.
• False or True - Is recognized as Boolean.
• Unix Timestamp (such as 1535538976) - Is recognized as a timestamp.

Supported Encodings

By default, GPR handles data using UTF-8 encoding. However, starting with release 9.0.014.00, GPR
supports importing of data that uses certain legacy encodings. Appendix: Supported Encodings lists
those encodings currently supported. This list is updated as new encodings are verified. If you use an
encoding type that is not listed, contact your Genesys representative for assistance.

Important
All responses and returned data is provided in UTF-8 encoding.

System Requirements, Pre-Requisites, and Planning Prepare Your Data

Predictive Routing Deployment and Operations Guide 64

Unsupported Characters in Agent and Customer Profiles and
Datasets

The following characters are not supported for column names in Datasets or Agent and Customer
Profile schemas. If GPR encounters these characters in a CSV file, it reads them as column delimiters
and parses the data accordingly.

• | (the pipe character)
• \t (the TAB character)
• , (the comma)

Workaround: To use these characters in column names, add double quotation marks (" ") around the
entire affected column name, except in the following situations:

• If you have a comma-delimited CSV file, add double quotations marks around commas within column
names; you do not need quotations for the \t (TAB) character.

• If you have a TAB-delimited CSV file, add double quotations marks around TAB characters within column
names; you do not need quotations for the , (comma) character.

• You must always use double quotations for the | (pipe) character.

Unsupported characters in releases prior to 9.0.014.00

In releases prior to 9.0.014.00, certain characters in column names are ignored, are unsupported, or
cause an upload to fail, as explained in the following points:

• Columns with the following symbols in their column names are not added to Agent Profiles or Customer
Profiles:

*, !, %, ^, (,), ', &, /, â, è, ü, ó, â, ï

• The following symbols in column names are ignored, and the column is added with the symbol dropped
out as though it had not been entered:

[Space], -, <

• Non-ASCII characters are not supported. How they are handled differs depending on what data you are
uploading:
• In Agent Profiles and Customer Profiles, columns with non-ASCII characters in the column name are

not added.
• In Datasets, when a column name contains a mix of ASCII and non-ASCII characters, GPR removes

the non-ASCII characters from the column name as though they had not been entered and correctly
uploads all column values.

• In Datasets, when a column name contains only non-ASCII characters, the column name is entirely
omitted. All the column values are preserved, but you cannot modify or save the schema. In this
scenario, GPR generates the following error message: An unhandled exception has occurred:
KeyError('name').

Logs for Unsupported Characters

The following Agent State Connector log messages record issues with unsupported characters:

System Requirements, Pre-Requisites, and Planning Prepare Your Data

Predictive Routing Deployment and Operations Guide 65

• <datetime> [47] ERROR <BOTTLE> schema_based.py:63 Invalid expression while parsing:
<fieldname> = None

• <datetime> [47] ERROR <BOTTLE> agents.py:172 Fields set([u'<fieldname>']) were ignored
because names were invalid.

Considerations

Important
Genesys testing has identified certain guidelines about data size to keep in mind while
creating datasets and planning modeling and feature analysis.

• What metrics of Contact Center operation do you want to optimize?
• What databases are available?
• Is it possible to join the data from those databases?
• Is the data clean and consistent in format? This is especially an issue if you are joining data from

various sources.
• Do you have enough data to draw conclusions about agents performance?
• What data is available from the IVR and the CRM database at runtime?

Note that when you create your CSV file, you will need to include a value, a context_id or customer
ID, that can be entered into your scoring request from your strategy and that enables you to retrieve
the relevant record.

Data Size Guidelines - Data Import, Model Training, and Feature
Analysis

Description Column Count Row Count/File Size
Size of data that can be uploaded
to create a dataset in a single
batch. You can append data; you
can load bigger datasets in
multiple batches. Data uploads
successfully for a file with 250
columns but with a smaller
number of total records so that
the total file size is less than the
250 MB limit.

250 columns maximum 250 MB file size

Minimum number of records
needed to train a DISJOINT model Not Applicable 10

System Requirements, Pre-Requisites, and Planning Prepare Your Data

Predictive Routing Deployment and Operations Guide 66

Description Column Count Row Count/File Size
for an agent.
Total Cardinality limit for model
training. Total Cardinality = the
number of numeric columns plus
the sum of the number of unique
values across all string columns
within a given dataset.

No specific column count; has
been tested up to 250 columns.

Total Cardinality should be less
than 2 to the power of 29.

Record count limit for GLOBAL
model training.

Not Applicable; from a model-
training perspective there is
virtually no limit on the number
of columns. The constraining
issue is the possibility of
compromising the Global model
quality by ending up with a
reduced number of samples for
training.

The total number of records
should be less than 2 to power of
29 (that is, 536870912) divided
by Total Cardinality as defined
above.

• Example 1:
You are required to use
ALL of the data for
training the GLOBAL
model (note that the
GLOBAL model is trained
even if you select
DISJOINT, so that the
scoring engine can rank
agents who do not yet
have data). The dataset
contains 1 million
records. Therefore the
maximum total
cardinality is 536
(536870912 divided by 1
million) .

• Example 2:
You can undersample the
data for training the
GLOBAL model—that is,
use fewer than the ideal
number of records for
training. You might take
10,000 as the total
cardinality, but only
53,687 of your total of 1
million records will be
used for training. The
calculation to determine
this is 10,000 * 53,687 =
536870912 (the
maximum cardinality).

Column count limitation on the
Feature Analysis report, Agent
Variance report, Lift Estimation
report, and Model Quality report.

250 Not Applicable

System Requirements, Pre-Requisites, and Planning Prepare Your Data

Predictive Routing Deployment and Operations Guide 67

Genesys Info Mart Data

The following table represents the data required from Genesys Info Mart (GIM) and the Genesys
Configuration Database.

Domain Fields Table
Agent Profile Agent username RESOURCE_
Agent Profile Employee ID RESOURCE_

Customer Profile CustomerID Attached Data to map with
interaction metadata record

Customer Profile SERVICE_TYPE Attached Data to map with
interaction metadata record

Interaction Metadata INTERACTION ID Interaction_Fact (IF)
Interaction Metadata INTERACTION TYPE IRF
Interaction Metadata MEDIA TYPE Media_Type
Interaction Metadata RESOURCE ROLE TECHNICAL_DESCRIPTOR
Interaction Metadata ROLE REASON TECHNICAL_DESCRIPTOR
Interaction Metadata TECHNICAL RESULT TECHNICAL_DESCRIPTOR
Interaction Metadata RESULT REASON TECHNICAL_DESCRIPTOR

Interaction Metadata MEDIA RESOURCE (VIRTUAL
QUEUE) RESOURCE_

Interaction Metadata RESOURCE GROUP COMBINATION RESOURCE_GROUP_COMBINATION
Interaction Metadata ROUTING TARGET ROUTING_TARGET
Interaction Metadata TARGET_OBJECT_SELECTED TARGET_OBJECT_SELECTED
Interaction Metadata SKILL EXPRESSION REQUESTED_SKILL
Interaction Metadata START_TS INTERACTION_FACT
Interaction Metadata END_TS INTERACTION_FACT
Interaction Metadata LAST ROUTING POINT RESOURCE_
Interaction Metadata LAST VQ
Interaction Metadata IS_LAST_RESOURCE IRF
Interaction Metadata SOURCE_ADRESS (ANI,..) SOURCE_ADDRESS
Interaction Metadata TARGET_ADRESS (DNIS,..) TARGET_ADDRESS

Interaction Metadata WAITING TIME
(QUEUE DURATION, ROUTING
POINT DURATION, MEDIATION
DURATION)

Interaction Metadata RINGING TIME RING_DURATION
Interaction Metadata HANDLE TIME (Talk_Duration, ACW Duration,..)
Interaction Metadata HOLD TIME HOLD_DURATION
Interaction Metadata HOLD COUNT HOLD_COUNT
Interaction Metadata ACW COUNT AFTER_CALL_WORK_COUNT
Interaction Metadata FOCUS TIME FOCUS_TIME

System Requirements, Pre-Requisites, and Planning Prepare Your Data

Predictive Routing Deployment and Operations Guide 68

Domain Fields Table

Interaction Metadata
CONSULTATION TIME
(CONS_RCV_TALK_DURATION,
POST_CONS_XFER_TALK_COUNT,…)

System Requirements, Pre-Requisites, and Planning Prepare Your Data

Predictive Routing Deployment and Operations Guide 69

Appendix: Supported Encodings
By default, GPR handles data using UTF-8 encoding. However, starting with release 9.0.014.00, GPR
supports importing of data that uses the legacy encodings listed below. This list is updated as new
encodings are verified.

Important
If you use an encoding type that is not listed, contact your Genesys representative for
assistance.

• UTF-8
• Shift-JIS

System Requirements, Pre-Requisites, and Planning Appendix: Supported Encodings

Predictive Routing Deployment and Operations Guide 70

Install and Configure Predictive Routing
This section provides deployment and configuration instructions for AI Core Services (AICS) and Agent
State Connector (ASC) in both single-server and high availability environments.

• For how to integrate the Predictive Routing Subroutines with your Genesys routing environment, see
Integrate with Genesys Routing

This section contains the following topics:

• Deploy AICS on a Single Host
• Deploy AICS and ASC in High Availability Environments
• Scale AI Core Services
• Deploy Agent State Connector
• Configuration Options
• Start and Stop All GPR Components

Install and Configure Predictive Routing Appendix: Supported Encodings

Predictive Routing Deployment and Operations Guide 71

AI Core Services Single-Host Deployment
AI Core Services (AICS) is deployed using Docker containers on hosts running Docker Service. It is
required that you deploy Docker Service in your environment, and Genesys provides the AICS
installation file, which includes the multiple Docker images packaged as .tgz files. These images are
loaded to the Docker Engine during the installation phase and are started in the desired pattern to
ensure services are configured properly.

Warning
The instructions on the majority of this topic are intended only for new
deployments. In particular, do not run the start.sh -l script if you have an existing
version of Predictive Routing running in your environment. It will clear all existing data
from your database and would result in data loss. To upgrade an existing deployment
of Predictive Routing, following the instructions in Install into an Existing AICS
Deployment.

Target Server Requirements and Recommendations

You must have the prerequisite hardware and software available and have performed the necessary
preliminary steps to install and start Docker before installing AICS. Note that some of the steps
require sudo access to the target servers.

• For hardware and software prerequisites, see AICS Prerequisites.
• You must have at least 50 GB free disk space on your root partition. For complete sizing requirements,

see the sizing worksheet linked from Sizing for Premise Deployments.
• The target server cannot be a Docker image. It can be a virtual machine.
• By default, AICS deployed on a single host uses port 443 to be open for access to the API and web

application. If you need to change the default port assignment, see Change the Default Port for AICS.
• For faster Dataset uploads (in release 9.0.013.01 and higher) and Agent and Customer Profiles (in

release 9.0.015.03 and higher), AICS uses a separate service, which requires that port 9000 be open
and accessible to external world on the public IP address of the target server. If port 9000 is not open
and available, you can still upload Datasets, but at a reduced upload speed.

• SELinux (Security Enhanced Linux) should be disabled or running in permissive mode. See How to
disable SELinux for instructions.

Preliminary Steps: Install and Start Docker

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 72

Important
• Genesys does not ship Docker as a part of AICS. You must install Docker in your

environment before you can load the AICS containers. See AI Core Services system
requirements for supported Docker versions.

• You might need an active internet connection to download additional libraries when
installing Docker.

1. Install Docker-ee or Docker-ce. Click the desired version to access the relevant deployment instructions
on the Docker site.
A Docker deployment provides a complete self-contained environment, so that you do not need to
manually configure ports or address compatibility issues for communication among the Docker
containers that comprise AICS. All of that is taken care of ahead of time, and the completed Docker
containers work together seamlessly upon deployment.

2. Create a new user to be used for installing and starting AICS. This user must be a member of the
docker Linux group that you created during the Docker installation process. In most cases, the
following set of Linux commands is enough to create the user needed for installing and starting AICS:
$ sudo useradd PR_USER
$ sudo usermod -aG docker PR_USER
$ sudo usermod -aG systemd-journal PR_USER
$ sudo passwd PR_USER

• You must have sudo rights to execute these commands.
• In the example commands, the user is given as PR_USER. You can replace this user name with any

valid Unix name. This topic refers throughout to PR_USER; if you choose a different name, substitute
that actual name in its place.

3. Grant SSH access to PR_USER so that you can copy the AICS installation package to the target server.
The AICS installation package should always be copied to the target server by PR_USER into the
PR_USER home directory.

4. To enable the Docker service, execute the following command:
$ sudo systemctl enable docker

5. To start the Docker service, execute the following command:
$ sudo service docker start

Preliminary Step: Create a Separate Disk for the MongoDB Database
Always use a separate disk partition for storing MongoDB data. This partition should be mounted as
/datadir. The size of partition depends on your expected data usage, but it must be at least 50 GB.
For disk partitioning, use standard Linux tools.

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 73

Important
The /datadir partition MUST exist before you install GPR and the user who is
executing the GPR installation should have write access to the partition.

Use the following command to check how much space MongoDB is currently using:

$ du -h /datadir

In HA scenarios, checking one node is enough because the same data is replicated on all nodes.

Installing and Configuring AICS

The following instructions are intended only for new installations into a fresh environment. If you
have previously installed AICS using Docker containers, see Install into an Existing AICS Deployment.

A fresh AICS installation consists of the following steps:

1. Unzip and Unpack the Repository File
2. Install AICS
3. Initialize the Application
4. Restart the Containers
5. Verify the Installation
6. Set Values for the AICS-Related Configuration Options - some configuration options are mandatory
7. Set Values for Environment Variables - some environment variables are mandatory
8. Configure AICS to Use HTTPS - mandatory
9. Scale the AICS Deployment (jumps to the Scaling AICS topic in this Guide)

10. Access the Logs for AICS (jumps to the Logging topic in this Guide)
11. Clean Up Disk Space
12. (Optional) Configuring AICS for Large Datasets
13. (Optional) Change the Default Port for AICS
14. (Optional) Turn on SSL for NGINX
15. (Optional) View Container Disc Usage
16. (Optional) Back Up Your Data
17. (Optional) Map a Local Volume to a Container
18. (Optional) Uninstall AICS

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 74

Important
• Genesys strongly recommends that you do NOT use the root user to install and start

AICS. On Linux, the root user should be used only for administrative tasks.
• You do not need to have sudo rights to install and start AICS. Sudo rights are required

only when executing the preparatory steps documented above.
• All steps required to install, start, restart, or upgrade AICS should be executed as

PR_USER.
• MongoDB connections among the Workers, MinIO, and Tango containers uses SSL (TLS

2.0).

Unzip and Unpack the Repository File

1. Copy the IP_JOptPlatform_<version_number>_ENU_dockerlinux.zip file to the desired installation
directory. Genesys recommends that you use the PR_USER home directory as destination for the AICS
installation package.

2. Unzip the IP_JOptPlatform_<version_number>_ENU_dockerlinux.zip file, using the Linux unzip
command, to access the IP_JOP_PRR_<version_number>_ENU_linux.tar.gz repository file.

3. To unpack the IP_JOP_PRR_<version_number>_ENU_linux.tar.gz repository file, execute the
following command:

$ tar -xvzf IP_JOP_PRR_<version_number>_ENU_linux.tar.gz

This creates the IP_JOP_PRR_<version_number>_ENU_linux directory.

All bash scripts required to install and operate AICS can be found in the
IP_JOP_PRR_<version_number>_ENU_linux/scripts/ directory.

The Predictive Routing scoring engine, API, and web interface are all deployed in a single container,
which has the internally-used informal name of Tango.

In addition, Gunicorn workers_* containers provide specific functionality, indicated by the container
names. The number and functions of the Workers containers differ in some releases. In earlier
versions of AICS, many of the functions later allocated to separate Worker containers were performed
within the Tango container.

The AICS package also includes various third-party components:

• MongoDB: Stores data needed for scoring agents and making matching predictions.
• NGINX: (The NGINX container was removed in release 9.0.015.03.) A front-end proxy serving content to

the Predictive Routing server. Can also be used in non-production environments only for load-balancing
in multi-server high-availability architectures.

• Gunicorn: A Python WSGI HTTP Server for UNIX, which is a pre-fork worker model. The Gunicorn server
is broadly compatible with various web frameworks, simply implemented, light on server resources, and
fairly speedy.

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 75

• MinIO: Starting in release 9.0.013.01, the MinIO container provides fast dataset uploads and for
temporary dataset storage after upload to GPR. In release 9.0.015.03 and higher, Agent Profile and
Customer Profile data is also uploaded using MinIO. (Data is stored in MongoDB in the long-term.)

Install AICS
Perform the installation using PR_USER (or the name you assigned in the Preliminary Steps , above).
Installation does not require sudo rights and should NOT be done by the root user.

To install AICS, execute the install.sh script:

$ cd IP_JOP_PRR_<version_number>_ENU_linux/scripts/
bash install.sh

If you are managing your MongoDB deployment externally, run the install.sh script with the
-externalMongo flag, as follows:

$ bash install.sh -externalMongo

The installation script verifies that the target server has sufficient hardware resources. If not, the
installation process terminates without performing the install.

The installation script also checks the following:

• Installed Docker package is docker-ce or docker-ee.
• Docker version is supported.
• Number of cores in the server is sufficient.
• Root partition free space is sufficient.
• PR_USER (or your username) belongs to the Docker group..
• PR_USER (or your username) belongs to the systemd-journal group (for container log checking).
• Docker service is running.

Configure AICS
After installation but before starting AICS, perform the following steps:

1. Configure the S3_ENDPOINT environment variable, as explained in Set Values for Environment Variables
(below).

2. Ensure that port 9000 is open and available (not blocked by a firewall).

These steps ensure that you can take full advantage of fast dataset uploading provided by MinIO.

Initialize the Application
Use the following command to initialize the application database and start the application. This
command also sets the password for your default user, super_user@genesys.com. Replace the

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 76

variable <'my_password'> in the command below with a strong password, and record it securely for
future reference.

$ cd scripts; bash start.sh -l -p <'my_password'>

Warning
Loading initial data erases any existing data stored in database!

Use the following information to access the Predictive Routing application from a browser:

• URL: https://<server_ip_address>
• username: super_user@genesys.com
• password: the password you specified

By default, the AICS installation procedure creates two instances of the model_training worker
container and one instance of each of the other worker containers. For a detailed discussion of how
and when to scale all the AICS containers, see Scaling AICS.

You can change the number of workers using the following commands:

$ cd IP_JOP_PRR_gpr_rc_ENU_linux
$./docker-compose -f scripts/docker-compose.yml -p workers scale model_training=4
$./docker-compose -f scripts/docker-compose.yml -p workers scale analysis=2
$./docker-compose -f scripts/docker-compose.yml -p workers scale purging=2

To stop the application run:

$ cd scripts; bash stop.sh

Troubleshooting the Initialization Process

If you need to troubleshoot execution of the start.sh script:

• Run the following script:

$ cd scripts; bash -x start.sh

It shows every command executed and the resulting output.

To turn on the DEBUG level of logging:

1. Add the line LOGLEVEL=DEBUG to the conf/tango.env file
2. Restart the application.

Restart the Containers
To restart the Docker containers run the restart.sh script:

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 77

$ cd scripts; bash restart.sh

Verify the Installation
To check the status of the containers, run the following command on the target server:

$ docker ps

You should see output similar to the following:

Check the AICS logs for the various containers, as described in Operations: System Monitoring and
Logging .

Set Values for the AICS-related Configuration Options
AICS-related options are configured on the Predictive_Route_DataCfg Transaction List object.

• For descriptions of the options, including default and valid values, see Deploying: Configuration Options
.

• For instructions on setting values for configuration options, which is done on the Configuration tab of
Genesys Administrator Extension, see Configuration Manager in the Genesys Administrator Extension
Help.

Set Values for Environment Variables
This section lists environment variables that must or should be configured for optimal GPR
performance, and the recommended values. Adjust these values as necessary, based on your specific
environment.

Warning
The tango.env file, which contains the environment variables, is overwritten when
you perform a software upgrade. Before upgrading, save a copy of the tango.env file
and refer to it to reset your variables. Note that if you simply overwrite the new
tango.env file with your existing one, any environment variables added in the new
release are removed.

Environment variables are defined in the IP_JOP_PRR_<version_number>_ENU_linux/conf/
tango.env file. The same file is used for both single node and HA deployments.

To add a new variable:

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 78

https://docs.genesys.com/Documentation/GA/latest/user/ConfigMgmt

1. Create a new line in the tango.env file.
2. Add the variable and its value, using the following format:

<NEW_ENV_VAR>=value

Important
• Do not use quotes for string parameters.
• Remove trailing spaces.

Changes take effect on restart of the tango container (run the bash scripts/restart.sh command
command). In an HA environment, with multiple instances of the containers running, restart is
performed sequentially (a rolling restart), so that there is no downtime of the GPR application.

Configurable Environment Variables

• ADD_CARDINALITIES_EVERY_N_RECORDS - When you append data to an Agent or Customer Profile
via the API, cardinalities are computed only for the appended data portion and only when the number
of agents or customers set in the ADD_CARDINALITIES_EVERY_N_RECORDS parameter is reached. The
results of computation are added to the already-stored cardinality values. This significantly improves
speed when loading new data by avoiding simultaneous recomputations on the full data collection
when there are multiple frequent appends done in small batches.enables you to specify how many
appended records are added to an Agent or Customer Profile before GPR recalculates cardinalities. The
default value is 1000.
• Notes:

• This functionality is available only when you use the Predictive Routing API. If you append using
the Predictive Routing application interface, all cardinalities are recalculated.

• Full automatic computation happens only once, when an Agent or Customer Profile is uploaded
the first time for schema discovery.

• You can force recomputation of cardinalities on the full Agent or Customer Profiles collection
using the POST compute_cardinalities API endpoint. For details, see the Predictive Routing API
Reference. (This file requires a password to open it. Contact your Genesys representative if you
need access.)

• AUTOGENERATE_INDEXES - Instructs GPR to create indexes on all Datasets, Agent Profile schemas,
and Customer Profile schemas. By default, set to True.

Important
Genesys strongly recommends you to leave the default value for this variable.

• HOST_DOMAIN - Use this variable to specify the public IP address or host name used for your
deployment. The value should be one of the following, depending on your environment type:
• For single-server deployments, specify the public IP address or the host name of the host where GPR

is deployed.

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 79

• For high availability (HA) deployments, specify the IP address of your load balancer.

• LOG_LEVEL
• INFO - Informational messages that highlight the progress of the application: LOG_LEVEL=INFO.

This setting is recommended for production deployments.
• DEBUG - Fine-grained informational events that are most useful to debug the application:

LOG_LEVEL=DEBUG. This setting should be used only for short periods of time because it can fill the
disk.

• LOGIN_MESSAGES enables you have the Predictive Routing application display a custom message on
the login screen.
• When you enter this message, make sure that all special characters are properly escaped. Special

characters are ones not part of the standard English alphabet, such as symbols, letters with
umlauts, cedillas, and other such marks, and letters from other alphabets, such as the Greek or
Cyrillic alphabets.

• To simplify the task of converting characters, Genesys recommends an online conversion tool, such
as https://www.freeformatter.com/html-escape.html.

• For example, make the following substitutions:
• & becomes &
• < becomes <
• > becomes >
• " becomes "
• ' becomes '

• OMP_NUM_THREADS (required for releases prior to 9.0.011.00; in releases 9.0.011.00 and higher, this
parameter is set automatically)
• Genesys recommends that you set the value to OMP_NUM_THREADS=1 for the best performance.
• If you do not specify a value, GPR spawns one thread for each core it detects in your environment.

The system assumes it can use all available cores for tasks such as analysis and model training,
leaving no CPU resources for other processes running on the same machine, such as reading/writing
to the database. The result is an overall slowdown of the application. Set this variable to allow the
operating system to properly distribute CPU threads among the various running processes.

• S3_ENDPOINT - (Mandatory) The endpoint for the Minio container, introduced in AICS release
9.0.013.01 for Dataset uploads and expanded to Agent and Customer Profile uploads in AICS
9.0.015.03. Specifies the public IP address or domain name of the server where AI Core Services is
installed, followed, optionally, by the port number.
• The port number must always be 9000, which is the mandatory port value allocated for the Minio

container.
• In HA environments, locate the server on which the Minio container is running and use the public IP

address or the domain name of that server. For example:
For an IP address - S3_ENDPOINT=https://<public_ip_address>:9000

For a domain name - S3_ENDPOINT=https://<your_domain_name>:9000

• The S3_ENDPOINT value must always use the HTTPS protocol. If you do not configure this variable,
the start.sh script generates a warning message and stops deploying AICS.

• (Optional) GUNICORN_TIMEOUT

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 80

• Adjust the timeout if you need to accommodate a large Dataset. The current default value is 600
seconds.

Configure AICS to Use HTTPS
The procedures here are those required to use HTTPS for connections among GPR components.
HTTPS configuration for other components in your Genesys environment is covered in the Genesys
Security Deployment Guide and in the product-specific documentation.

AICS supports HTTPS by default. Before you start using AICS, your organization should provide the
certificates appropriate for your environment to enable the HTTPS connection protocol to work
correctly. Genesys does not specify which certificates you should use.

After you have obtained the certificates, your procedure depends on your architecture:

• In a single-server environment, follow the procedure below.
• In a high availability (HA) environment, follow the instructions provided in the documentation for your

load balancer. In an HA environment, you do not need to deploy the certificates on the individual
nodes.

Single-Server Environment

1. Copy the certificates to the <GPR_IP_version>/conf folder.
2. Rename the default certificates originally located in that folder using the following commands:

$ mv tango.crt tango.crt_orig

$ mv public.crt public.crt_orig

$ mv tango.key tango.key_orig

$ mv private.key private.key_orig

3. Rename the new certificates using the following commands:
$ cp cert.pem tango.crt

$ cp cert.pem public.crt

$ cp priv_key.pem tango.key

$ cp priv_key.pem private.key

4. Open the tango.env file and change the value for the S3_ENDPOINT variable from the IP address to
the DNS name.

For example, replace S3_ENDPOINT=https://18.217.189.106:9000 to S3_ENDPOINT=
https://fce-u0009.us.int.genesyslab.com:9000

5. Restart AI Core Services.

Important

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 81

https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome

• When you use the GPR web application, check that the URL starts with https://.

Next Steps

• Configure ASC to Use HTTPS - When you configure HTTPS for Agent State Connector, use the same
certificate as for AICS

• Configure URS Strategy Subroutines/Composer Subroutines to Use HTTPS

Unusual HTTP/S Deployment Scenarios

• Default local certificate - Genesys ships AICS with a default local certificate. You can use that local
certificate to access the GPR web application for internal testing purposes. Note the following points
when using the local certificate:
• The browser displays a Not Secure connection warning.
• You cannot use the default certificate to configure connections from Agent State Connector or the

Subroutines components to AICS.

• Self-signed certificate - For lab environments only - You can use OpenSSL to generate a self-signed
certificate. You can use this self-signed certificate to configure secure connection between AICS and the
other GPR components, as explained in the instructions for configuring HTTPS for ASC and the URS
Strategy Subroutines.
1. Generate a self-signed certificate by executing a command following the format in the following

example:
$ openssl req -new -newkey rsa:4096 -days 365 -nodes -x509 -subj "/C=US/ST=US/
L=US/O=IT/OU=IT Department/CN=<ip address of the server where GPR is deployed>"
-keyout tango.key -out tango.crt

2. Accept the invalid certificate warning that appears when you open the GPR web application.
3. If Dataset uploads from the GPR web application fail, navigate to the GPR Minio container at

https://<path_to-minio>:9000 and accept the security warning about the invalid certificate. You
can then perform your Dataset uploads.

• HTTP connections in test environments - In AICS release 9.0.015.04 and higher, you can optionally
configure HTTP connections.

Warning
HTTP connections are supported only in test environments. Genesys strongly recommends using the
default HTTPS configuration in production environments and in lab environments that contain sensitive
data. Genesys is not responsible for any potential damage and/or data loss if the solution is
implemented without the recommended security practices and protocols.

To use HTTP connections, perform the following steps:

1. Comment out the following lines in the /scripts/docker-compose.yml file:

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 82

- ../conf/tango.key:/data/ssl/tango.key

- ../conf/tango.crt:/data/ssl/tango.crt

2. Edit the port configuration in the /scripts/docker-compose.yml file, as follows:
Change

443:3031

to

80:3031

3. Save your changes.
4. Restart GPR by running the following command:

$ bash scripts/restart.sh

Clean Up Disk Space
Starting in release 9.0.013.01, GPR performs automatic cleanup processes which should maintain an
adequate amount of free disk space. However, if you are running an earlier version of AICS, or are
running 9.0.013.01 or higher and continue to encounter disk space problems, refer to the instructions
in this section.

You might encounter performance issues if you do not clean up Docker data that is no longer
required. The Docker prune command enables you to clean up your Docker environment. The Docker
user documentation provides a detailed discussion of the prune command and how to use it to clean
up images, containers, and volumes; see Prune unused Docker objects.

Important
The clean-up process does not affect normal GPR operation. It does not require
downtime, there is no need to restart any component, and performance is unaffected.

Clean-Up Procedure

Genesys recommends that you use the following commands to remove unnecessary Docker data:

docker container prune -f
docker volume prune -f
docker network prune -f

To schedule regular cleanup jobs, use the crontab functionality to execute the appropriate command
on every server where GPR is installed. The following example schedules the cleanup job for every
Saturday at 1:00 am:

echo "0 1 * * Sat (docker container prune -f; docker volume prune -f; docker network prune
-f)") | crontab -

In an HA environment, Genesys recommends that you perform the cleanup on each node in turn.

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 83

If you need to configure your logging settings to avoid unacceptable log file sizes, see the following
information:

• The LOG_LEVEL environment variable
• Configure AICS Log Settings

(Optional) Configuring AICS for Large Datasets
A "large" dataset is one that contains more than 1.5 million rows/250 columns. No more than 100 of
the columns should contain high-cardinality values. Genesys recommends that you adjust your
dataset to stay within these size limits.

Reconfiguring the GUNICORN_TIMEOUT Parameter

To accommodate a large dataset, you might need to configure the GUNICORN_TIMEOUT environment
variable, which is located in the .../<installation_directory>/scripts/tango.env configuration file.
The current default value is 600 seconds.

Correcting an 413 (Request Entity Too Large) NGINX Error

Important
The NGINX container was removed in release 9.0.015.03.

1. Open the nginx.conf file.
2. Increase the value for the client_max_body_size parameter to 3g.
3. Restart NGINX by entering the following command:

$ docker restart nginx

(Optional) Change the Default Port for AICS

Important
If you change default port for AICS you have to make sure that port is opened to
anyone who needs to access AICS APIs or UI.

If you are using NGINX, you must also change the port in your NGINX configuration. This section
explains how to change the port for the Predictive Routing (Tango) application only.

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 84

Important
The NGINX container was removed in release 9.0.015.03.

Stop the application by running the following command:

$ bash stop.sh

Edit the scripts/docker-compose.yml file:

1. Locate the tango-no-nginx label.
2. Replace the listening port number with the new port number.

For example, to replace the default port, 443, by port 9090., replace ports: "443:3031" with ports:
"9090:3031".

Start the application by running the following command:. Note that you start the application without
NGINX (there is no -n flag).

$ bash start.sh

Use your browser to check that the application is running on the new port (9090).

(Optional) Turn on SSL/ HTTPS on NGINX

Important
The NGINX container was removed in release 9.0.015.03.

To turn on SSL and HTTPS on NGINX, perform the following steps:

1. Stop the application using the following command:
$ bash scripts/stop.sh

2. Create a certificate or add the certificate and key using a command in the following syntax:
$ openssl req -newkey rsa:2048 -nodes -keyout server.key -x509 -days 365 -out
server.crt openssl dhparam -dsaparam -out dhparams.pem 4096

3. Update the docker-compose.yml file using the following commands:
nginx:
image: nginx:1.11.9-alpine
container_name: nginx
restart: always
ports:

- 80:80
- 443:443

volumes:
- ./nginx-ssl.conf:/etc/nginx/nginx.conf

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 85

- ./server.crt:/etc/nginx/server.crt
- ./server.key:/etc/nginx/server.key
- ./dhparams.pem:/etc/nginx/dhparams.pem

4. Uncomment (remove the pound sign from) the entire second section of the nginx.conf file. This
sections contains the SSL configuration.

5. To enable HTTPS on NGINX, replace the following line in the nginx.conf file:
proxy_set_header X-Forwarded-Proto $scheme;
with: proxy_set_header X-Forwarded-Proto https;

6. Restart AICS using the following command. This is required to make the changes take effect:
$ bash scripts/start.sh -n</source>

7. Verify that you can access Predictive Routing via HTTPS by opening the following URL in your browser:
https://<SERVER_IP_ADDRESS>/

(Optional) View Container Disk Usage
AICS uses persistent storage for two containers: Tango and Mongo. This storage configuration is
defined in the docker-compose.yml file. Depending on your environment and its demands, you might
need to change its configuration.

Disk usage might vary depending of the size of the organization and the use, but as a general rule,
use a dedicated mount point at least for the Mongo container, because it is the fastest-growing
directory.

Tango Container

• Host directory: /opt/SP/jop/temp/Medallia
• Container directory: /data/medallia
• Usage: Contains the outcome of the call based on a survey.

• Host directory: /opt/SP/jop/temp/GIM
• Container directory: /data/gim
• Usage: Genesys Info Mart interaction records: interactions in the contact center, name of the agent, and

so on.

• Host directory: /opt/SP/jop/temp/CRM
• Container directory: /data/crm
• Usage: CRM contains caller and customer profile information, products they own, tenure, and so on.

Mongo Container

• Host directory: /datadir
• Container directory: /data/db
• Usage: Stores MongoDB data.

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 86

For extra information on Docker volumes, see Using Docker Volumes

(Optional) Back Up Your Data
Genesys recommends that you back up necessary data, especially MongoDB data.

• The Disk Usage section offers a general discussion of the directories. See the Mongo Container section
in Disk Usage to determine which directories should be backed up (the Host directory, for example) .

Important
For extra information about MongoDB backups: Backing Up MongoDB.

(Optional) Map a Local Volume to a Container
You can map local directories or files into any of the containers used by the application: tango,
workers, mongo, minio, or nginx.

To create the mapping follow these steps:

1. Update the IP_JOP_PRR_<version_number>_ENU_linux/scripts/docker-compose.yml file.
2. Edit the corresponding service section by adding a new line on the volumes declaration.
3. to make your changes take effect, stop and then restart the application, using the flags that may apply

for starting the application.
For example, to mount an existing local directory named /some_local_directory into the tango
container at /custom_mount_point configure the volume would as follows:

volumes:
- /opt/SP/jop/temp/Medallia:/data/medallia
- /opt/SP/jop/temp/GIM:/data/gim
- /opt/SP/jop/temp/CRM:/data/crm
- /some_local_directory:/custom_mount_point

Important
• In releases earler than 9.0.015.03, the tango container can be started with or without

NGINX. NGINX support was removed in release 9.0.015.03. It has two declaration
options in the docker-compose.yml file: tango and tango_no_nginx. You should
update both to avoid confusion.

• Additional information can be found at https://docs.docker.com/compose/compose-file/
compose-file-v2/#volumes

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 87

Install into an Existing AICS Deployment

It is easy to install a different version of AICS on your target server. You can use the steps here to
install either a newer or an older version of AICS.

Important
There is downtime during this process but no data is lost. Executing this script only
upgrades services and does not stop or upgrade MongoDB.

Important
Review the Upgrade Notes section of the Release Notes for all releases later than your
starting release, including your target release. Follow any procedures specified for the
interim releases, such as running scripts. If there is no Upgrade Notes section, or the
section is empty, no additional steps are required for the associated release. The
following AICS releases do require special upgrade procedures:

• • 9.0.007.00
• 9.0.007.01
• 9.0.007.03
• 9.0.011.00
• 9.0.013.01
• 9.0.014.00
• 9.0.014.02

To perform the upgrade:

1. If you have custom values for any environment variables, make a copy of the tango.env file before you
start your upgrade. For more about the environment variables, see Set Values for Environment
Variables, above.

2. Copy the IP_JOptPlatform_<version_number>_ENU_dockerlinux.zip file to the desired installation
directory. Genesys recommends that you use the PR_USER home directory as destination for the AICS
installation package.

3. Unzip the IP_JOptPlatform_<version_number>_ENU_dockerlinux.zip file, using the Linux unzip
command, to access the IP_JOP_PRR_<version_number>_ENU_linux.tar.gz repository file.

4. To unpack the IP_JOP_PRR_<version_number>_ENU_linux.tar.gz repository file, execute the
following command:

$ tar -xvzf IP_JOP_PRR_<version_number>_ENU_linux.tar.gz

After unpacking the new version of AICS in the PR_USER home directory, you will have multiple

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 88

https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9000700
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9000701
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9000703
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001100
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001301
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001400
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001402

different subdirectories named IP_JOP_PRR_<version_number>_ENU_linux. For example you
might have two subdirectories:

• IP_JOP_PRR_<old_version_number>_ENU_linux
• IP_JOP_PRR_<new_version_number>_ENU_linux

1. Assuming you are installing new_version of the application and removing old_version, execute the
following commands in the IP_JOP_PRR_<new_version_number>_ENU_linux directory:

$ bash scripts/install.sh

$ bash scripts/upgrade_gpr_services.sh

2. Configure any environment variables you require, using one of the following methods:
• Paste the copy you made of your previous tango.env file over the new one.
• To preserve any newly-added environment variables, open the new tango.env file and edit it.

Your updated version of AICS should now be ready for use.

(Optional) Uninstall AICS

The procedure given in this section should be used only on single-server deployments.

Important
If you need to remove AICS from an HA environment, contact Genesys Customer Care
for assistance.

To entirely remove AICS, enter the following commands:

1. $ bash IP_JOP_PRR_xyz/scripts/stop.sh # stop GPR

2. $ rm -rf IP_JOP_PRR_xyz # delete GPR installation

3. $ sudo docker system prune -a --volumes

or if this fails
$ sudo docker system prune -a

4. $ sudo rm -rf /datadir/*

AICS should now be entirely removed from your environment.

Install and Configure Predictive Routing AI Core Services Single-Host Deployment

Predictive Routing Deployment and Operations Guide 89

Deploying in High Availability Environments
Both AI Core Services (AICS) and Agent State Connector (ASC) support high availability (HA).

High availability (HA) is configured differently for each Predictive Routing component:

• AI Core Services (AICS) uses a multi-server architecture. It can be installed at a single site, or in a multi-
site architecture. Genesys recommends that you install AICS on three or five servers. More servers
mean higher availability: with three servers, the system can survive the failure of only one machine;
with five servers, the system can survive the failure of two machines.

Important
• AICS is installed in Docker containers. Genesys does not ship Docker as a part of AICS.

You must install Docker in your environment before you can load the AICS containers.
• You might need an active internet connection to download additional libraries when

installing Docker.

• Agent State Connector (ASC) is deployed in warm-standby mode, with primary and backup servers.
• The URS Strategy Subroutines and Composer Subroutines components run as part of your routing

solution, and therefore use the HA architecture established for that solution.

HA for AICS

The HA deployment and operating information for AICS is divided into the following sections:

• Hardware Requirements
• Installing HA AICS - Single Data Center Architecture
• Installing HA AICS - Multiple Data Center Architecture
• Set Values for Environment Variables
• Load Balancing and HTTPS Configuration for HA AICS
• Required Ports for AICS Servers
• Scaling the AICS Deployment (jumps to the Scaling AI Core Services topic in this Guide)
• Cleaning Up Disk Space
• Installing into an Existing HA AICS Deployment
• Checking the Logs for the AICS Containers (jumps to the Logging topic in this Guide)

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 90

• Troubleshooting an AICS HA Deployment
• (Optional) Backing Up Your Data
• (Optional) Installing AICS on a Kubernetes Cluster
• (Optional) Mapping a Local Volume to a Container

Hardware Requirements

• AICS HA requires a cluster of at least three servers. Genesys recommends that you deploy an odd
number of servers to be used for hosting highly available AICS system.

• Every server must meet the preconditions stated in Target Server Requirements and Recommendations
(in the AI Core Services Single-Host Deployment topic in this Guide). This will be verified during
installation.

• All servers must have networking set up between them, with the ports opened as specified in Required
Ports for AICS Servers.

• All servers must have synchronized system clocks. You can use Network Time Protocol (NTP) for this.
• On every target server, port 3031 must be reachable by the load balancer.
• On every target server, you MUST create a separate disk partition for storing MongoDB data. Mount

this partition as /datadir. The partition size depends on your expected data usage, but must be at
least 50 GB. For disk partitioning, use standard Linux tools. The /datadir partition MUST exist before
you install GPR and the user who is executing the GPR installation should have write access to the
partition. Preliminary Step: Create a Separate Disk for the MongoDB Database explains how to check
the free space in your mongodb directory.

• You must have at least 50 GB free disk space on the root partition.

Important
If you are running VMWare VXLAN, you might encounter a port conflict between
VMWare VXLAN and Docker, both of which require port 4789. If you encounter this
issue, Genesys recommends that you use a networking application such as Weave Net
to manage networking among Docker containers. For additional information, consult
the documentation for the respective products:

• For the Docker Swarm port requirements: Use swarm mode routing mesh
• For VMWare VXLAN port requirements: Ports and Protocols Required by NSX
• For Weave Net: Introducing Weave Net

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 91

Installing HA AICS - Single Data Center Architecture

Important
• The following instructions enable you to set up a new AICS HA deployment in a single

data center. If you already have a single-server deployment of AICS installed, contact
Genesys Customer Care for help migrating to an HA architecture.

• If you need to uninstall AICS from an HA environment, contact Genesys Customer Care
for assistance.

Installation Procedure

Important
• Some installation steps require you to know the hostnames of the target servers. You

can run the command hostname on each server in the cluster to get the hostnames.
This document uses the terms node-1-hostname, node-2-hostname, node-3-hostname,
and so on, to stand in for the real hostnames of the servers. You must use actual
hostnames when executing the example commands shown in the following sections.

• All scripts for installing and operating AICS in an HA setup are located in the
IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/ directory.

1. Copy the installation binary file:
Copy the *.tar.gz file to every server in the cluster. Make sure you follow recommendations about the
user PR_USER and the installation location described in single-host installation.

2. Unpack the installation binary file:
Unpack the file on every server in the cluster. To unpack, follow these steps:

1. Copy the IP_JOP_PRR_<version_number>_ENU_linux.tar.gz installation binary file to the desired
installation directory. Genesys recommends that you use the PR_USER home directory as the
destination for the AICS installation package.

2. From a command prompt, unpack the file using the following command to create the
IP_JOP_PRR_<version_number>_ENU_linux directory:
tar -xvzf IP_JOP_PRR_<version_number>_ENU_linux.tar.gz

3. Create a Docker Swarm cluster.
AICS uses Docker Swarm technology to ensure high availability of all its components. In order for
AICS to be deployed in highly available manner, you must properly format the Docker Swarm cluster
on your target servers.
1. On the target server with the hostname node-1-hostname, execute following command to

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 92

initiate the Docker Swarm cluster:
docker swarm init

Important
If the system has multiple IP addresses, specify the --advertise-addr parameter so the correct
address is chosen for communication between all nodes in the cluster. If you do not specify this
parameter, an error similar to the following is generated: Error response from daemon: could not
choose an IP address to advertise since this system has multiple addresses on
different interfaces (10.33.181.18 on ens160 and 178.139.129.20 on ens192) - specify
one with --advertise-addr.

The following is an example of the command to initiate the Docker Swarm cluster, specifying the address that is
advertised to other members of the cluster:

docker swarm init --advertise-addr YOUR_IP_ADDRESS

You can also specify a network interface to advertise the interface address, as in the following example:

docker swarm init --advertise-addr YOUR_NETWORK_INTERFACE

2. Still on the node with the hostname node-1-hostname, execute the following command:
docker swarm join-token manager

The output of this command should look similar to the following:

docker swarm join --token
SWMTKN-1-4d6wgar0nbghws5gx6j912zf2fdawpud42njjwwkso1rf9sy9y-
dsbdfid1ilds081yyy30rof1t 172.31.18.159:2377

3. Copy this command and execute it on all other nodes in cluster. This ensures that all other
nodes join the same cluster and coordinates AICS deployment.

4. Now execute following command on the node with the hostname node-1-hostname in order to
verify that cluster has been properly formed and that you can continue with installation:
docker node ls

The output of this command MUST show you all target servers in the cluster (node-1-hostname, node-2-hostname, ...,
node-X-hostname). If you do not see a complete list of servers, do not proceed with AICS installation. The following is an
example of output where all nodes joined the cluster and are all reachable:

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
vdxn4uzuvaxly9i0je8g0bhps *node-1-hostname Ready Active Leader
908bvibmyg9w87la6php11q96 node-2-hostname Ready Active Reachable
ersak4msppm0ymgd2y7lbkgne node-3-hostname Ready Active Reachable
shzyj970n5932h3z7pdvyvjes node-4-hostname Ready Active Reachable
zjy3ltqsp3m5uekci7nr06tlj node-5-hostname Ready Active Reachable

5.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 93

Label MongoDB nodes in the cluster:
Follow the steps below to define your MongoDB nodes:

1. Decide how many MongoDB instances to install in your deployment. You must install odd number
of MongoDB instances, and no fewer than three. A higher number means higher availability.

Important
Only one MongoDB instance can run per target server.

2. On the server with the host name node-1-hostname, execute following command to see all the
nodes currently in the cluster:
docker node ls

3. Choose the servers where MongoDB instances will run. In single data center deployment it does
not matter which servers you choose as long as they have fast disks (SSD) and enough disk
space.
The examples assume you chose the servers with the host names node-1-hostname,
node-2-hostname, and node-3-hostname to run MongoDB instances.

4. Label the selected nodes appropriately. To do this, execute following commands on
node-1-hostname:
docker node update --label-add mongo.replica=1 $(docker node ls -q -f
name=node-1-hostname)
docker node update --label-add mongo.replica=2 $(docker node ls -q -f
name=node-2-hostname)
docker node update --label-add mongo.replica=3 $(docker node ls -q -f
name=node-3-hostname)

For a cluster with five MongoDB instances, you would also run these two additional commands (and you would have to
have at least five servers in the cluster). Follow the established pattern to label additional nodes if you are using more
than five.

docker node update --label-add mongo.replica=4 $(docker node ls -q -f
name=node-4-hostname)
docker node update --label-add mongo.replica=5 $(docker node ls -q -f
name=node-5-hostname)

6. Label the Worker nodes in the cluster:
Decide how many workers you want to run and on which servers.

• The minimum number of servers marked to run worker instances is two, but you can have more
for increased scalability and high availability. This configuration is verified during AICS
installation.

• Each worker container scales independently and you can have multiple instances of the same
worker type running on the same server.

• Workers can be co-located with other containers (such as MongoDB).

1. Execute following commands on the node with the hostname node-1-hostname to ensure that
worker instances will run on nodes node-1-hostname, node-2-hostname, and node-3-hostname:
docker node update --label-add worker=true $(docker node ls -q -f

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 94

name=node-1-hostname)
docker node update --label-add worker=true $(docker node ls -q -f
name=node-2-hostname)
docker node update --label-add worker=true $(docker node ls -q -f
name=node-3-hostname)

You can choose to label more nodes and make them available to run worker instances. You cannot label fewer than two
nodes with worker = true

7. Label the MinIO nodes in the cluster:
You should always label at least one node to run MinIO container. MinIO container is used for faster
dataset uploads. We recommend to label two nodes to run MinIO.
1. Execute following commands on the node with the hostname node-1-hostname to ensure that a

MinIO instance will run on one of nodes node-1-hostname or node-2-hostname:
docker node update --label-add minio=true $(docker node ls -q -f
name=node-1-hostname)
docker node update --label-add minio=true $(docker node ls -q -f
name=node-2-hostname)

• There is always only one MinIO instance running and it only runs on one of the properly-
labeled nodes.

2. Find on what node MinIO container is running by executing following command:
docker service ps minio_server_minio --format {{.Node}}

3. Find the public IP address of the MinIO node and make sure that the S3_ENDPOINT configuration
parameter in IP_JOP_PRR_<version_number>_ENU_linux/conf/tango.env is configured in
the following way:
S3_ENDPOINT=https://PUBLIC_IP_OF_NODE_WHERE_MINIO_CONTAINER_RUNS:9000

• The MinIO container can be co-located with other containers (such as MongoDB or workers).

8. Note the Tango instances:
There is automatically one Tango instance running on every node (server) in the cluster. As you
expand the cluster, new Tango instances are installed and started on the newly-created nodes.

9. Install AICS in HA mode:
Your Docker Swarm cluster is now ready for AICS installation.
1. To make the Docker images needed by AICS available on every server in the cluster, execute the

following command on every server in the cluster:
bash ha-scripts/install.sh

If you are managing your MongoDB deployment externally, run the install.sh script with the -externalMongo flag, as
follows:

bash ha-scripts/install.sh -externalMongo

2. To initialize the HA AICS deployment and start the application, execute the following command.
This command also sets the password for your default user, super_user@genesys.com. Replace
the variable <'my_password'> in the command below with a strong password, and record it
securely for future reference.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 95

cd ha-scripts; bash start.sh -l -p <'my_password'>

10. Access AICS in HA mode:
Once your fully-installed AICS deployment has started up correctly, you can access AICS by using
the IP address of any server in the cluster on port 3031 as: https://<IP_ADDRESS>:3031

Important
Genesys recommends that you install a load balancer in front of the cluster to make it easier to access
AICS. See Load Balancing for HA AICS for details.

Installing HA AICS - Multiple Data Center Architecture

Important
The following instructions enable you to set up a new AICS HA deployment in a
multiple data center environment. If you already have a single-server deployment of
AICS installed, contact Genesys Customer Care for help migrating to an HA
architecture.

The basic procedure for installing AICS in multiple data centers is the same as installing AICS in single
data center. However, when deploying AICS in an environment with multiple data centers, there are
some considerations and requirements in addition to those for a single data center.

• Before starting, ensure that you have a fast LAN/WAN that connects all of the servers and that all ports
are open.

• Plan to spread all instances of the AICS components (Workers, MongoDB, Tango, MinIO) across your data
centers to ensure that AICS continues to operate correctly if a single data center fails. This is most
important for servers running MongoDB.

Special Considerations for MongoDB Instances

• Spread labels across the data centers when labeling servers to run MongoDB replica set members.

Important
The AICS installation procedure does not validate whether MongoDB instances are spread across data
centers. Failing to ensure this even distribution can compromise overall availability of the AICS
deployment.

• Every data center should have similar hardware capacity (RAM, CPU, disk).

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 96

• No data center should have a majority of the MongoDB servers running in it when using
three data centers.

Using Only Two Data Centers
You can use only two data centers when installing AICS in HA mode, but this reduces overall
availability of AICS. In this scenario, one data center always has the majority of the MongoDB servers
running in it. If that data center fails, the second data center goes into read-only mode. You must
then execute a manual recovery action, using the following procedure:

Execute Manual Recovery

To recover if your system enters read-only mode:

1. Find the current status of the MongoDB cluster by entering the following command:
docker exec -it $(docker ps -qf label=com.docker.swarm.service.name=mongo_mongo3)
mongo --ssl --sslCAFile /etc/ssl/mongodb.pem --sslAllowInvalidHostnames --eval "for
(i=0; i<rs.status().members.length; i++) { member = rs.status().members[i];
print(member.name + \" : \" + member.stateStr) }"

For example, you might enter:
[pm@hostname ha-scripts]$ docker exec -it $(docker ps -qf
label=com.docker.swarm.service.name=mongo_mongo3) mongo --ssl --sslCAFile /etc/ssl/
mongodb.pem --sslAllowInvalidHostnames --eval "for (i=0;
i<rs.status().members.length; i++)="" {="" member="rs.status().members[i];"
print(member.name="" +="" \"="" :="" member.statestr)="" }"<="" tt="">

And receive back the following:

MongoDB shell version: 3.2.18

connecting to: test

mongo_mongo1:27017 : SECONDARY

mongo_mongo2:27017 : SECONDARY

mongo_mongo3:27017 : PRIMARY

[pm@node-3 ha-scripts]$

The primary MongoDB node is mongo_mongo3. The following command shows the number of
members in the MongoDB cluster:
rs.status().members.length;

2. Remove any unreachable MongoDB members. If necessary, use the following command to change to
the primary node:

com.docker.swarm.service.name=mongo_mongo3

3. Run the following command on the primary MongoDB node to recover the MongoDB cluster:
docker exec -it $(docker ps -qf label=com.docker.swarm.service.name=mongo_mongo3)
mongo --ssl --sslCAFile /etc/ssl/mongodb.pem --sslAllowInvalidHostnames --eval
"members = rs.status().members; cfgmembers = rs.conf().members; for
(i=members.length; i>0; i--) { j = i - 1; if (members[j].health == 0) {

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 97

cfgmembers.splice(j,1) } }; cfg = rs.conf(); cfg.members = cfgmembers;
printjson(rs.reconfig(cfg, {force: 1}))"

For example, you might enter:
[pm@hostname ha-scripts]$ docker exec -it $(docker ps -qf
label=com.docker.swarm.service.name=mongo_mongo3) mongo --ssl --sslCAFile /etc/ssl/
mongodb.pem --sslAllowInvalidHostnames --eval "members = rs.status().members;
cfgmembers = rs.conf().members; for (i=members.length; i>0; i--) { j = i - 1; if
(members[j].health == 0) { cfgmembers.splice(j,1) } }; cfg = rs.conf(); cfg.members
= cfgmembers; printjson(rs.reconfig(cfg, {force: 1}))"

And receive back the following:

MongoDB shell version: 3.2.18

connecting to: test

{ "ok" : 1 }

[pm@node-3 ha-scripts]$

The minority members in the reachable data center can now form a quorum, which returns the
running data center to read-write mode.

For other useful commands, including commands for checking node status and removing non-
functional nodes, see Troubleshooting Your HA AICS Deployment, below.

Set Values for Environment Variables

This section lists environment variables that must or should be configured for optimal GPR
performance, and the recommended values. Adjust these values as necessary, based on your specific
environment.

Warning
The tango.env file, which contains the environment variables, is overwritten when
you perform a software upgrade. Before upgrading, save a copy of the tango.env file
and refer to it to reset your variables. Note that if you simply overwrite the new
tango.env file with your existing one, any environment variables added in the new
release are removed.

Environment variables are defined in the IP_JOP_PRR_<version_number>_ENU_linux/conf/
tango.env file. The same file is used for both single node and HA deployments.

To add a new variable:

1. Create a new line in the tango.env file.
2. Add the variable and its value, using the following format:

<NEW_ENV_VAR>=value

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 98

Important
• Do not use quotes for string parameters.
• Remove trailing spaces.

Changes take effect on restart of the tango container (run the bash scripts/restart.sh command
command). In an HA environment, with multiple instances of the containers running, restart is
performed sequentially (a rolling restart), so that there is no downtime of the GPR application.

Configurable Environment Variables

• ADD_CARDINALITIES_EVERY_N_RECORDS - When you append data to an Agent or Customer Profile
via the API, cardinalities are computed only for the appended data portion and only when the number
of agents or customers set in the ADD_CARDINALITIES_EVERY_N_RECORDS parameter is reached. The
results of computation are added to the already-stored cardinality values. This significantly improves
speed when loading new data by avoiding simultaneous recomputations on the full data collection
when there are multiple frequent appends done in small batches.enables you to specify how many
appended records are added to an Agent or Customer Profile before GPR recalculates cardinalities. The
default value is 1000.
• Notes:

• This functionality is available only when you use the Predictive Routing API. If you append using
the Predictive Routing application interface, all cardinalities are recalculated.

• Full automatic computation happens only once, when an Agent or Customer Profile is uploaded
the first time for schema discovery.

• You can force recomputation of cardinalities on the full Agent or Customer Profiles collection
using the POST compute_cardinalities API endpoint. For details, see the Predictive Routing API
Reference. (This file requires a password to open it. Contact your Genesys representative if you
need access.)

• AUTOGENERATE_INDEXES - Instructs GPR to create indexes on all Datasets, Agent Profile schemas,
and Customer Profile schemas. By default, set to True.

Important
Genesys strongly recommends you to leave the default value for this variable.

• HOST_DOMAIN - Use this variable to specify the public IP address or host name used for your
deployment. The value should be one of the following, depending on your environment type:
• For single-server deployments, specify the public IP address or the host name of the host where GPR

is deployed.
• For high availability (HA) deployments, specify the IP address of your load balancer.

• LOG_LEVEL
• INFO - Informational messages that highlight the progress of the application: LOG_LEVEL=INFO.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 99

This setting is recommended for production deployments.
• DEBUG - Fine-grained informational events that are most useful to debug the application:

LOG_LEVEL=DEBUG. This setting should be used only for short periods of time because it can fill the
disk.

• LOGIN_MESSAGES enables you have the Predictive Routing application display a custom message on
the login screen.
• When you enter this message, make sure that all special characters are properly escaped. Special

characters are ones not part of the standard English alphabet, such as symbols, letters with
umlauts, cedillas, and other such marks, and letters from other alphabets, such as the Greek or
Cyrillic alphabets.

• To simplify the task of converting characters, Genesys recommends an online conversion tool, such
as https://www.freeformatter.com/html-escape.html.

• For example, make the following substitutions:
• & becomes &
• < becomes <
• > becomes >
• " becomes "
• ' becomes '

• OMP_NUM_THREADS (required for releases prior to 9.0.011.00; in releases 9.0.011.00 and higher, this
parameter is set automatically)
• Genesys recommends that you set the value to OMP_NUM_THREADS=1 for the best performance.
• If you do not specify a value, GPR spawns one thread for each core it detects in your environment.

The system assumes it can use all available cores for tasks such as analysis and model training,
leaving no CPU resources for other processes running on the same machine, such as reading/writing
to the database. The result is an overall slowdown of the application. Set this variable to allow the
operating system to properly distribute CPU threads among the various running processes.

• S3_ENDPOINT - (Mandatory) The endpoint for the Minio container, introduced in AICS release
9.0.013.01 for Dataset uploads and expanded to Agent and Customer Profile uploads in AICS
9.0.015.03. Specifies the public IP address or domain name of the server where AI Core Services is
installed, followed, optionally, by the port number.
• The port number must always be 9000, which is the mandatory port value allocated for the Minio

container.
• In HA environments, locate the server on which the Minio container is running and use the public IP

address or the domain name of that server. For example:
For an IP address - S3_ENDPOINT=https://<public_ip_address>:9000

For a domain name - S3_ENDPOINT=https://<your_domain_name>:9000

• The S3_ENDPOINT value must always use the HTTPS protocol. If you do not configure this variable,
the start.sh script generates a warning message and stops deploying AICS.

• (Optional) GUNICORN_TIMEOUT
• Adjust the timeout if you need to accommodate a large Dataset. The current default value is 600

seconds.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 100

Load Balancing and HTTPS Configuration for HA AICS

Once AICS has been installed and started, you can access it using the IP address of any node in the
cluster on port 3031. To enable load balancing:

1. Your load balancer should have its health-check functionality turned on.
2. The load balancer should check for HTTP code 200 to be returned on https://IP:3031/login.

Important
• Genesys recommends a third-party highly-available load balancer, such as F5, to ensure

all requests to AICS platform are spread evenly across all nodes in the AICS cluster.
• If you need SSL, set it up on the third-party load balancer.
• If you are using a domain name instead of a numeric IP address, configure the

S3_ENDPOINT environment variable in the tango.env file as follows: S3_ENDPOINT=
https://<your_domain_name>:9000

Configure HTTPS in an HA Environment
In a high availability (HA) environment, follow the instructions provided in the documentation for your
load balancer. In an HA environment, you do not need to deploy the certificates on the individual
nodes.

Unusual HTTP/S Deployment Scenarios

• Default local certificate - Genesys ships AICS with a default local certificate. You can use that local
certificate to access the GPR web application for internal testing purposes. Note the following points
when using the local certificate:
• The browser displays a Not Secure connection warning.
• You cannot use the default certificate to configure connections from Agent State Connector or the

Subroutines components to AICS.

• Self-signed certificate - For lab environments only - You can use OpenSSL to generate a self-signed
certificate. You can use this self-signed certificate to configure secure connection between AICS and the
other GPR components, as explained in the instructions for configuring HTTPS for ASC and the URS
Strategy Subroutines. Generate a self-signed certificate by executing a command following the format
in the following example:

$ openssl req -new -newkey rsa:4096 -days 365 -nodes -x509 -subj "/C=US/ST=US/L=US/
O=IT/OU=IT Department/CN=<ip address of the server where GPR is deployed>" -keyout
tango.key -out tango.crt

• HTTP connections in test environments - In AICS release 9.0.015.04 and higher, you can optionally
configure HTTP connections.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 101

Warning
HTTP connections are supported only in test environments. Genesys strongly recommends using the
default HTTPS configuration in production environments and in lab environments that contain sensitive
data. Genesys is not responsible for any potential damage and/or data loss if the solution is
implemented without the recommended security practices and protocols.

To use HTTP connections, perform the following steps:

1. Comment out the following lines in the ha-scripts/swarm/tango-swarm.yml file on every node:
- ../../conf/tango.key:/data/ssl/tango.key

- ../../conf/tango.crt:/data/ssl/tango.crt

2. Save your changes.
3. Restart GPR by running the following command on any node:

$ bash ha-scripts/restart.sh

You do not need to restart each node separately. Running the restart command on one node
restarts the entire system.

4. On the load balancer in front of your Docker Swarm cluster, change https to http in your load
balancer configuration. For example, make a change similar to the following:

Change

https://your_node_ip:3031

to

http://your_node_ip:3031

Using the NGINX Load Balancer

Important
The NGINX container was removed from AICS in release 9.0.013.01.

In releases through 9.0.012.01, Genesys shipped the NGINX load balancer as part of AICS. It is
intended for use only in prototype scenarios.

Important
The NGINX load balancer is a single point of failure and should not be used in
production deployments.

To use the NGINX, follow the procedure below:

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 102

1. Edit the ha-scripts/nginx/nginx.conf file by putting the IP addresses of all nodes in your cluster into
the upstream tango section using syntax such as IP1:3031, IP2:3031, IP3:3031. For example, your
command might look similar to the following:
upstream tango {

server 18.220.11.120:3031;
server 18.216.235.201:3031;
server 13.59.93.192:3031;
}

2. Execute the following command in order to start the NGINX container:
bash ha-scripts/nginx/start.sh

3. Verify that you can access AICS by pointing your browser to IP address where NGINX is running.

To stop NGINX, run the following command:

bash ha-scripts/nginx/stop.sh

To fix a 413 (Request Entity Too Large) NGINX error, follow these steps:

1. Open the nginx.conf file.
2. Increase the value for the client_max_body_size parameter to 3g.
3. Restart NGINX using the command:

docker restart nginx

Required Ports for AICS Servers

The following ports are those required for communication between all target servers in the cluster.
Note that some ports are specific to high availability (HA) environments (such as the Docker swarm
port), while others apply to all deployments.

Component Protocol Port Number Type Description

Docker TCP 2377 Inbound/Outbound
Cluster
management
communications

Docker swarm TCP/UDP 7946 Inbound/Outbound
Required for
Docker Swarm for
communication
among nodes

Docker swarm UDP 4789 Outbound/Inbound For overlay
network traffic

MongoDB TCP 27017 Inbound/Outbound Default port for
MongoDB

Tango container TCP 3031 Inbound
Required to access
the Predictive
Routing API and
Predictive Routing

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 103

Component Protocol Port Number Type Description
web application

MinIO container TCP 32646 Inbound/Outbound Default port for
MinIO

SSH TCP 22 Inbound/Outbound
Required to access
all target servers
using SSH

To open a port, use the following syntax:

firewall-cmd --zone=public --add-port=<''port_number''>/<''protocol''> --permanent

Important
If you are running VMWare VXLAN, you might encounter a port conflict between
VMWare VXLAN and Docker, both of which require port 4789. If you encounter this
issue, Genesys recommends that you use a networking application such as Weave Net
to manage networking among Docker containers. For additional information, consult
the documentation for the respective products:

• For the Docker Swarm port requirements: Use swarm mode routing mesh
• For VMWare VXLAN port requirements: Ports and Protocols Required by NSX
• For Weave Net: Introducing Weave Net

Clean Up Disk Space

Starting in release 9.0.013.01, GPR performs automatic cleanup processes which should maintain an
adequate amount of free disk space. However, if you are running an earlier version of AICS, or are
running 9.0.013.01 or higher and continue to encounter disk space problems, refer to the instructions
in this section.

You might encounter performance issues if you do not clean up Docker data that is no longer
required. The Docker prune command enables you to clean up your Docker environment. The Docker
user documentation provides a detailed discussion of the prune command and how to use it to clean
up images, containers, and volumes; see Prune unused Docker objects.

Important
The clean-up process does not affect normal GPR operation. It does not require
downtime, there is no need to restart any component, and performance is unaffected.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 104

Clean-Up Procedure

Genesys recommends that you use the following commands to remove unnecessary Docker data:

docker container prune -f
docker volume prune -f
docker network prune -f

To schedule regular cleanup jobs, use the crontab functionality to execute the appropriate command
on every server where GPR is installed. The following example schedules the cleanup job for every
Saturday at 1:00 am:

echo "0 1 * * Sat (docker container prune -f; docker volume prune -f; docker network prune
-f)") | crontab -

In an HA environment, Genesys recommends that you perform the cleanup on each node in turn.

If you need to configure your logging settings to avoid unacceptable log file sizes, see the following
information:

• The LOG_LEVEL environment variable
• Configure AICS Log Settings

Installing into an Existing HA AICS Deployment

It is easy to install a different version of AICS on your target servers. Use the standard procedure
described below to install either a newer or an older version of AICS. For some releases, listed below,
you must also run additional scripts to complete the upgrade.

Special Upgrade Procedures
Some releases require special upgrade scripts or procedures. These procedures appear in the
Upgrade Notes section of the RN for that release.

• Review the Upgrade Notes section of the Release Notes for all releases later than your starting release,
including your target release.

• If special upgrade scripts are required for any releases between your current version and your target
version, they are all included in the IP for your target version.

• Follow any procedures specified for the interim releases, such as running scripts.
• If there is no Upgrade Notes section, or the section is empty, no additional steps are required for the

associated release.
• The following AICS releases do require special upgrade procedures:

• 9.0.007.00
• 9.0.007.01
• 9.0.007.03

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 105

https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9000700
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9000701
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9000703

• 9.0.011.00
• 9.0.013.01
• 9.0.014.00
• 9.0.014.02

Standard Upgrade Procedure
Follow the steps in this section to perform the standard upgrade:

Important
The standard process described below requires downtime, but does not result in loss
of data. The upgrade script updates only the various services running in the Tango
container and the Workers containers. It does not stop or upgrade MongoDB.

1. If you edited your tango.env file, save a copy of it in a separate location. Also save any other files you
might have customized, such as the docker-compose.yml file and the contents of your /datadir
directory.

2. Copy the new AICS release package (the *.tar.gz file) to all servers in the cluster. Use the same user
and procedure as if you are installing AICS for the first time. All the recommendations about the user
who performs the installation and operates AICS still apply.

3. After unpacking the new version of AICS in the PR_USER home directory that contains all target servers,
you will have multiple different subdirectories named IP_JOP_PRR_<version_number>_ENU_linux.
For example you might have two subdirectories:
• IP_JOP_PRR_<old_version_number>_ENU_linux
• IP_JOP_PRR_<new_version_number>_ENU_linux

4. Assuming you are installing new_version of the application and removing old_version, execute the
following command in the IP_JOP_PRR_<new_version_number>_ENU_linux directory on all target
servers:

bash ha-scripts/install.sh

5. Then in any one of the servers, execute the following command in the
IP_JOP_PRR_<new_version_number>_ENU_linux directory:

bash ha-scripts/upgrade_gpr_services.sh

This command executes the upgrade of Tango (AICS) on all nodes in the cluster, one by one, and
rolls back the change if there is a problem. There is no downtime during this upgrade, and no data
loss.

6. To restore your custom environment values, paste the copy you made of your previous tango.env file
over the new one, as well as any other files you might have customized, such as the docker-
compose.yml file and the contents of your /datadir directory.

Your upgrade should now be complete.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 106

https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001100
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001301
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001400
https://docs.genesys.com/Documentation/RN/9.0.x/gpm-jop90rn/gpm-jop9001402

Troubleshooting a AICS HA Deployment

The following sections offer information that can help you identify issues without your deployment.

Handling Server Failure
If a server (node) restarts, the HA deployment recovers automatically as long as the server keeps its
previous IP address and the data on the disk is not corrupted.

The following command identifies a non-working node as unreachable node:

docker node ls

If a server needs to be decommissioned and replaced with new one, the following manual step is
necessary to preserve the health of the cluster. After shutting down the server that is to be
decommissioned, execute the following two commands, where NODE_ID is the unique node identifier
of the server to be decommissioned:

docker node demote <NODE_ID>
docker node rm <NODE_ID>

After this, you can add a new server to your environment. Label it the same way as the
decommissioned server and execute the procedure for joining that server to the cluster as described
in Installation Procedure, above.

Handling Failover
When a server hosting MongoDB and the AICS application (the Tango container) experiences a
failover, a certain number of API requests to AICS might fail during the few seconds it takes for the
system to recover. The routing strategy attempts to resend any failed request, but Agent State
Connector (ASC) does not have this capability. As a result, there is a risk of a small data loss.

Note that error messages appear in the logs for both MongoDB and the AICS application when a
failover occurs.

Health Checks for Your Deployment
To check the health of your Predictive Routing HA deployment, perform the following steps:

1. Verify that all nodes are up and running. On any node in the cluster, execute the following command:
docker node ls

You should receive output similar to the following:

.

[pm@hostname ~]$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

mc0bgyueb3c0h9drsy3j0i2ty node-1-hostname Ready Active Leader

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 107

vm1csljly66vwguxzaz8ly98r *node-2-hostname Ready Active Reachable

z2vlnldcyh0y57jwns0bz9jxe node-3-hostname Ready Active Reachable

.

All nodes should be reachable.

2. Check that all services are running by executing the following command on any node in the cluster:
docker service ls

You should receive output similar to the following:

.

[pm@hostname ~]$ docker service ls

ID NAME MODE REPLICAS IMAGE PORTS

jzjitn8lp78t mongo_mongo1 replicated 1/1 mongo:3.2

iqntp5eabfnw mongo_mongo2 replicated 1/1 mongo:3.2

whw05twosi9s mongo_mongo3 replicated 1/1 mongo:3.2

1jp3sgt16czw tango_tango global 3/3 jop_tango:2017_12_12_15_17

hu3kvkzxn88r workers_workers replicated 2/2 jop_tango:2017_12_12_15_17

.

• The important column here is REPLICAS.
• The Tango service should always be global and reachable on port 3031 on every node in cluster.
• The MongoDB service is replicated. The value 1/1 in the REPLICAS column for MongoDB indicates

that a replica exists for each instance. See Checking the Health of MongoDB (below) for how to
check health of MongoDB database.

• The Workers service is replicated and should show as many replicas as there are nodes labeled with
the Workers label. See Label the Worker Nodes in the Cluster (above) for how to label nodes.

Checking the Health of MongoDB
All the commands listed below should show your MongoDB cluster with one PRIMARY instance and all
other instances should be healthy SECONDARY instances.

• To check the health of the MongoDB cluster while logged into node with hostname node-1-hostname
execute following command on node-1-hostname:

[pm@node-1-hostname ~]$ docker exec -it $(docker ps -qf
label=com.docker.swarm.service.name=mongo_mongo1) mongo --ssl --sslCAFile /etc/ssl/
mongodb.pem --sslAllowInvalidHostnames --eval 'rs.status()'

• To check the health of MongoDB cluster while logged into node with hostname node-2-hostname
execute following command on node-2-hostname:

[pm@node-2-hostname ~]$ docker exec -it $(docker ps -qf

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 108

label=com.docker.swarm.service.name=mongo_mongo2) mongo --ssl --sslCAFile /etc/ssl/
mongodb.pem --sslAllowInvalidHostnames --eval 'rs.status()'

• To check the health of MongoDB cluster while logged into node with hostname node-3-hostname
execute following command on node-3-hostname:

[pm@node-3-hostname ~]$ docker exec -it $(docker ps -qf
label=com.docker.swarm.service.name=mongo_mongo3) mongo --ssl --sslCAFile /etc/ssl/
mongodb.pem --sslAllowInvalidHostnames --eval 'rs.status()'

Similarly, you can check the health of MongoDB cluster from any other node where a MongoDB
replica is running.

• For example, if you send the following commands:
docker exec -it $(docker ps -qf name=mongo_mongo) mongo --ssl --sslCAFile /etc/ssl/
mongodb.pem --sslAllowInvalidHostnames --eval "rs.status()" | grep "stateStr"

You should receive a response similar to the following:
"stateStr" : "SECONDARY",
"stateStr" : "SECONDARY",
"stateStr" : "PRIMARY",
"stateStr" : "SECONDARY",
"stateStr" : "SECONDARY",
[pm@node-1 IP_JOP_PRR_gpr_rc_ENU_linux]$

Other Useful Commands

Here are few more useful commands to troubleshoot MongoDB:

To find out the status of all members in the replica set, use the following command:

docker exec -it $(docker ps -qf label=com.docker.swarm.service.name=mongo_mongo3) mongo --ssl
--sslCAFile /etc/ssl/mongodb.pem --sslAllowInvalidHostnames --eval "rs.status().members"

To remove an unreachable member, execute the following command (this has to be repeated for each
unreachable member in a failed data center):

docker exec -it $(docker ps -qf label=com.docker.swarm.service.name=mongo_mongo3) mongo --ssl
--sslCAFile /etc/ssl/mongodb.pem --sslAllowInvalidHostnames --eval 'rs.remove("HOST:PORT")'

(Optional) Backing Up Your Data

This section applies specifically to backing up and restoring in an HA environment. For instructions to
back up and restore MongoDB in a single-site/single-server AICS deployment, see Backing Up and
Restoring Your Data.

Although HA greatly reduces the likelihood of data loss, Genesys recommends that you back up your
data to safeguard it. This section explains how to back up and restore your data in an HA
environment.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 109

Important
All MongoDB backup and restore operations should be performed on the PRIMARY MongoDB instance.

Using SSL with MongoDB
The procedure below is for MongoDB with SSL enabled. Genesys recommends that you use SSL.

• To use SSL, add the --ssl parameter to your commands.
In test environments, you can optionally add --sslAllowInvalidCertificates following the --
ssl parameter.

In test environments ONLY, if you need to maintain an environment without SSL connections, omit
the --ssl and --sslAllowInvalidCertificates parameters.

Backing Up
On every server where MongoDB is running, there is one important directory:

• The /data/db directory in every MongoDB container is mapped to the /datadir directory on the server
file system.

Use the mongodump command from inside the container to back up your MongoDB data, using the
following command:

mongodump --ssl --out /data/db/`date +"%m-%d-%Y"`

This command backs up all databases in the /data/db/<date +"%m-%d-%Y"> directory located in the
container. For example, you might back up the /data/db/08-18-2019 directory.

The backed-up data is located in the /datadir/<date +"%m-%d-%Y"> directory on the server host
computer. For the example backup command above, the output would be located in the /datadir/
08-18-2019 directory.

Restoring
In order to restore data you must first make data files available in the appropriate directory on the
server host computer.

Use the following command inside of the container:

mongorestore --ssl --drop /data/db/''PATH_TO_SPECIFIC_BACKUP_DIRECTORY''

For example, you might run the command:

mongorestore --ssl --drop /data/db/08-18-2019

For extra information about backing up MongoDB and data preservation strategies, see the following
topic on the MongoDB site: https://docs.mongodb.com/manual/core/backups/.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 110

(Optional) Installing AICS on a Kubernetes Cluster

The following instructions provide optional deployment and configuration procedures that guide you
through setting up AI Core Services (AICS) on Kubernetes. These instructions assume that you have
already installed Kubernetes in your environment. Genesys supplies scripts to orchestrate AICS on
the Kubernetes cluster.

For information about Kubernetes and how to deploy it, see the Kubernetes web site.

System and Architecture Requirements
In addition to the standard set of system requirements, the following apply specifically to AICS
running on a Kubernetes cluster:

• Kubernetes version 1.10 or higher.
• Helm installed on the master node of the Kubernetes cluster.
• At least four nodes comprising the cluster, with the following roles:

• 1 master node with minimum of 4 CPUs and 8 GB RAM.
• 3 worker nodes each with a minimum of 8 CPUs and 16 GB RAM.

• AICS has specific CPU and RAM requirements depending on your environment. Use the Sizing Worksheet
to determine what hardware resources you need for your environment. When running AICS on a
Kubernetes cluster, keep in mind that Kubernetes also has CPU and RAM requirements.

• Kubernetes configured to use either local storage or Dynamic Volume Provisioning on all nodes,
including the master node.

Installing AICS on the Kubernetes Cluster
To install AICS on Kubernetes, perform the following procedures:

1. Guided by the instructions in Installation Procedure (above), upload and unpack the
IP_JOP_PRR_<version_number>_ENU_linux.tar.gz installation binary file to all Kubernetes nodes.
When you unpack this file, it creates the IP_JOP_PRR_<version_number>_ENU_linux directory.

2. On the host that is the master node of the Kubernetes cluster, navigate to the
IP_JOP_PRR_<version_number>_ENU_linux directory.

3. Locate and modify the following two files to include the version of AICS you are deploying. Do this by
replacing jop_tango:CHANGE_ME in each of the two files with jop_tango:$VERSION, which can be found
in the jop.version file in the same folder.
• helm/gpr/values.yml
• helm/worker/values.yml

The AICS component was previously known as JOP. These files retain the old naming convention.

4. On each Kubernetes worker node (these are the Kubernetes worker nodes, not to be confused with AICS
worker containers), navigate to the IP_JOP_PRR_<version_number>_ENU_linux directory and then
run the following command to load the AICS Docker images:

bash ha-scripts/install.sh -s

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 111

Labeling Nodes

Run the followng commands from the Kubernetes cluster master node.

1. Check the existing labels on Kubernetes nodes:
sudo kubectl get nodes --show-labels

2. For every node where you want an AICS worker container to run, execute:
sudo kubectl label nodes <node-name> worker=true

3. For every node where you want a Tango container to run, execute:
sudo kubectl label nodes <node-name> gpr-apps=true

Deploying AICS Using Helm with Local Storage
To use local storage for the MinIO and MongoDB data store, execute the following script on master
node to deploy AICS using Helm charts. This deploys the Tango container and the various AICS worker
containers:

bash kubernetes/deploy-gpr-services.sh

Deploying AICS using Helm with Dynamic Volume Provisioning
The following optional command can be used to provide details for the storage class and the type of
provisioner. When you run the command, replace <provisioner_name> with an actual name of a
supported provisioner, such as glusterfs.

bash kubernetes/deploy-gpr-services.sh -s <provisioner_name> -m mongodb-ssd -c minio-ssd

This ensures that the appropriate storage class is selected when making a persistent volume claim.

Upgrading
Follow the steps below to upgrade the Tango container and the Workers containers.

Upgrading the Tango Container Using Helm

1. Download the new AICS IP, unpack it, and navigate to the
IP_JOP_PRR_<version_number>_ENU_linux directory for the new IP.

2. Manually modify the following two files to include the version of AICS you are deploying. Do this by
replacing jop_tango:CHANGE_ME in each of the two files with jop_tango:$VERSION, which can be found
in the jop.version file in the folder for the new IP.
• helm/gpr/values.yml
• helm/worker/values.yml

3. On each Kubernetes master and worker node, navigate to the
IP_JOP_PRR_<version_number>_ENU_linux directory for the new version and then run the following
command to load the new AICS Docker images:

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 112

bash ha-scripts/install.sh -s

4. On the master node, run the following command:
helm upgrade --install gpr -f ./helm/gpr/values.yaml ./helm/gpr

• To check the upgrade history of the AICS Tango container, run the following command:
helm history gpr

• To roll back the upgrade of the AICS Tango container, run the following command:
helm rollback gpr <revision_number>

Upgrading AICS Worker Containers Using Helm

To upgrade the Worker containers, run the following commands:

helm upgrade --install worker-analysis --set workerDeploymentName=worker-
analysis,workerTopic=analysis -f /helm/worker/values.yaml /helm/worker
helm upgrade --install worker-dataset-upload --set workerDeploymentName=worker-dataset-

upload,workerTopic=dataset_upload -f /helm/worker/values.yaml /helm/worker
helm upgrade --install worker-model-training --set workerDeploymentName=worker-model-

training,workerTopic=model_training -f /helm/worker/values.yaml /helm/worker
helm upgrade --install worker-purging --set workerDeploymentName=worker-

purging,workerTopic=purging -f /helm/worker/values.yaml /helm/worker

To list the containers deployed using Helm, run the following command:

helm ls

To check the upgrade history of the AICS Worker containers, run the following command:

helm history <worker_name>

To roll back the upgrade of the AICS Worker containers, run the following command:

helm rollback <worker_name> <revision_name>

(Optional) Mapping a Local Volume into a Container

Local directories or files can be mapped on any of the containers user by the application in an HA
deployment: tango, workers. or mongo.

Tip
An HA deployment in Production mode should not use NGINX.

To mount a volume, update the file corresponding to the desired container to a local directory or file
by editing the volumes declaration:

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 113

• tango: <IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/tango-swarm.yml
• mongo: <IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/mongo-swarm5.yml /

<IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/mongo-swarm.yml

• workers: <IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/worker-swarm.yml

Important
Mapping a directory or file on a node makes it available only on that host. It does not
create or imply any type of file replication.

To mount a local directory, follow the format presented in the following example:

• To mount /some_local_directory, into /custom_mount_point in the mongo container on node-1, edit
the <IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/mongo-swarm.yml file as follows:

volumes:
- mongodata1:/data/db
- mongoconfig1:/data/configdb
- ../conf/mongodb.pem:/etc/ssl/mongodb.pem
- /some_local_directory:/custom_mount_point

To make the changes take effect restart the application:

bash <IP_JOP_PRR_<''version_number''>_ENU_linux/ha-scripts/restart.sh

Important
Additional information can be found at https://docs.docker.com/compose/compose-file/
compose-file-v2/#volumes

HA for ASC

Agent State Connector (ASC) has a standard primary-backup warm-standby high availability
configuration. The backup server application remains initialized and ready to take over the operations
of the primary server. It maintains connections to Configuration Server and Stat Server, but does not
send agent profile updates to AICS.

To configure a primary-backup pair of ASC instances, create two ASC Application objects. Open the
Server Info tab for the backup ASC set warm standby as the redundancy mode. When Local Control
Agent (LCA) determines that the primary ASC is unavailable, it implements a changeover of the
backup to primary mode.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 114

Important
If the Stat Server instance you are using for Predictive Routing is release 8.5.100.10 or
higher, you must set the value for the accept-clients-in-backup-mode configuration
option in the Stat Server Application object to no to ensure normal backup
switchover between ASC instances.

Install and Configure Predictive Routing Deploying in High Availability Environments

Predictive Routing Deployment and Operations Guide 115

Scale AI Core Services
Correct use of scaling enables you to efficiently adapt your environment to changing conditions. The
first step in increasing the size of your AI Core Services (AICS) deployment is to add new servers and
configure them. You can then allocate instances of the various containers among the new servers. As
with the initial deployment, use special consideration when planning how to distribute your instances
of MongoDB.

Important
There is no need to shut down your AICS deployment. You can add servers while AICS
is running.

Add New Servers

When GPR is deployed in high availability (HA) mode you can expand that deployment by adding
additional hardware to the cluster.

To add servers to an existing cluster, follow these steps:

1. Complete the Installation steps and unpacking steps on the new servers to make them available to the
AICS deployment.

2. On the node with hostname node-1-hostname execute the following command:
docker swarm join-token manager

The output of this command should look something like this:

docker swarm join --token
SWMTKN-1-4d6wgar0nbghws5gx6j912zf2fdawpud42njjwwkso1rf9sy9y-
dsbdfid1ilds081yyy30rof1t 172.31.18.159:2377

3. Copy this command and execute it on the new servers. This adds the new nodes to your existing cluster.
4. On the new servers, execute the following command:

bash ha-scripts/install.sh

You can now scale the services to start using the new servers.

Install and Configure Predictive Routing Scale AI Core Services

Predictive Routing Deployment and Operations Guide 116

Scaling Individual GPR components

GPR consists of multiple individual components, each with different responsibilities. These
components are packaged as Docker images and executed as Docker containers. Every component of
GPR can be scaled vertically (configuring already-running GPR Docker containers to use more of the
existing hardware resources) or horizontally (adding new hardware and then creating additional GPR
containers). Each GPR component scales independently of the others.

The sections below describe each component of GPR, when to scale it, and how to scale it both
vertically and horizontally.

Scaling Tango
The Tango container processes all scoring requests and exposes the GPR APIs to the external world.
The single Tango container deployed per host during installation can use as many CPUs and as much
RAM as you can provide, enabling you to scale vertically to whatever extent your environment
requires. The Tango container does not need to scale horizontally.

• In a single-host deployment, only one Tango container is created.
• In an HA deployment, there is one Tango container per host.

Scaling MongoDB
In single-host deployments, you can have only one MongoDB instance and it can only be scaled
vertically. In HA deployments, you can have 3 or 5 MongoDB instances running on separate servers
and these instances can each be scaled vertically. Genesys does not recommend you to scale
MongoDB beyond this point.

Important
Since MongoDB, which stores all your data, is a critical part of GPR, Genesys
recommends that you take time to size your MongoDB containers with deliberate care
from the beginning, (during installation) rather than adding resources to your existing
deployment, because later changes require downtime.

Scaling MongoDB Vertically

MongoDB should be scaled vertically when you have enough hardware but the current MongoDB
resource allocation is acting as a bottleneck. By default each MongoDB container can use up to 2
CPUs and up to 8GB of RAM, whether running on a single host or in an HA deployment.

Starting in MongoDB 3.2, WiredTiger is the default storage engine for MongoDB. The
wiredTigerCacheSizeGB parameter should be configured to use 50% of the maximum memory
assigned to the MongoDB container. By default, this is 4 GB.

Install and Configure Predictive Routing Scale AI Core Services

Predictive Routing Deployment and Operations Guide 117

Single-Server Environments

Scaling MongoDB vertically in a single-host deployment requires downtime.

1. Stop GPR, using the following command:
bash stop.sh

• To add more CPUs to the MongoDB instance, change the value of the cpus setting, found in the
IP_JOP_PRR_<version_number>_ENU_linux/scripts/docker-compose.yml file under the mongo
container.

• To add more RAM to the MongoDB instance, change the value of the mem_limit setting, found in
the IP_JOP_PRR_<version_number>_ENU_linux/scripts/docker-compose.yml file under the
mongo container.

• To change the amount of memory allocated to the wiredTiger storage engine for the MongoDB
instance, change the value of the wiredTigerCacheSizeGB setting, found in the
IP_JOP_PRR_<version_number>_ENU_linux/scripts/docker-compose.yml file under the mongo
container.

2. Restart GPR, using the following command:
bash start.sh

HA Environments

Scaling MongoDB vertically in an HA deployment requires downtime.

1. Stop GPR, using the following command:
bash stop.sh

• To add more CPUs to the MongoDB instances, change the value of the cpus setting, found in the
IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/mongo-swarm.yml file under
the mongo1, mongo2, mongo3 containers and, if you are using five containers, the mongo4 and mongo5
containers.

• To add more RAM to the MongoDB instances, change the value of the memory setting, found in the
IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/mongo-swarm.yml file under
the mongo1, mongo2, mongo3 containers and, if you are using five containers, the mongo4 and mongo5
containers.

• To change the amount of memory allocated to the wiredTiger storage engine for each MongoDB
instance, change the value of the wiredTigerCacheSizeGB setting, found in the
IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/mongo-swarm.yml file under
the mongo1, mongo2, mongo3 containers and, if you are using five containers, the mongo4 and mongo5
containers.

2. Restart GPR, using the following command:
bash start.sh

Scaling MongoDB Horizontally

You can only have three or five MongoDB instances in an HA deployment. You can scale MongoDB

Install and Configure Predictive Routing Scale AI Core Services

Predictive Routing Deployment and Operations Guide 118

horizontally only if you currently have three MongoDB instances in the replica set.

1. If you have not already done so, complete the steps in Adding New Servers (above) to provision
additional hardware capacity.

2. Label the newly created servers so that they can run additional MongoDB instances. Use the procedure
given in Label MongoDB Nodes in the Cluster (above).

3. Restart GPR, using the following command:
bash start.sh

Scaling MinIO
In release 9.0.013.01 and higher, MinIO is used for dataset uploads. By default, GPR creates one
MinIO container for each host, each using two CPUs. There is no need to scale MinIO either vertically
or horizontally.

Scaling Workers
GPR includes a number of different containers that run workers, each of which performs a different
task in an asynchronous manner. As a result, you can scale the workers of the different types as
needed in your environment.

Important
The exact number and types of containers vary depending on your release. In earlier
releases, more of the functionality is performed in the Tango container; in later
releases, some of these functions are split into separate containers.

Model Training Workers

Model training workers are responsible for executing model-training jobs.

Scaling Vertically

Model-training workers can be scaled vertically to reduce the time required for individual model-
training jobs.

The model-training algorithms cannot use more than four CPUs, which is the default value. If you
choose to allocate fewer CPUs, make the changes in the following location (this applies to both
single-server and HA deployments):

• The cpus setting in the model_training section of the IP_JOP_PRR_<version_number>_ENU_linux/
scripts/docker-compose.yml file.

Adding extra RAM to the model-training jobs can speed up the execution of individual jobs. The more
RAM you allocate to each model-training container, the faster the execution. Model-training
containers use as much RAM as is available on the server where they are deployed.

Install and Configure Predictive Routing Scale AI Core Services

Predictive Routing Deployment and Operations Guide 119

Scaling Horizontally

Adding more model-training containers ensures that more models can be trained in parallel. Jobs that
can not be executed immediately are queued for execution. You can scale model-training containers
horizontally, in either HA or single-host deployments, assuming you have enough hardware for the
newly created containers.

By default, GPR creates one model-training container that uses up to four CPUs and as much RAM as
is available. With this configuration, you can perform only one model-training job at a time. All other
jobs are queued.

To scale model-training jobs horizontally, perform the following steps:

1. Stop GPR using the following command:
bash stop.sh

• For a single-server environment, change the value of the
NUM_OF_MODEL_TRAINING_WORKERS_INSTANCES configuration variable, found at the beginning of the
IP_JOP_PRR_<version_number>_ENU_linux/scripts/start.sh script.

• For an HA environment, change the value of the NUM_OF_MODEL_TRAINING_WORKERS_INSTANCES
configuration variable, found at the beginning of the IP_JOP_PRR_<version_number>_ENU_linux/
ha-scripts/start.sh script.

2. Restart GPR using the following command:
bash start.sh

Dataset Upload Workers

In releases prior to 9.0.013.01, the dataset-upload workers are responsible for uploading Datasets as
well as loading data to MongoDB. (In release 9.0.013.01 and higher, the initial upload is performed by
MinIO.)

Scaling Vertically

Dataset-upload workers can be scaled vertically to reduce the time required for individual Dataset
upload jobs. The Dataset-upload containers use as many CPUs as you allocate. By default, this value
is set to two CPUs.

To change this number, edit the cpus setting in the dataset_upload section of the appropriate file for
your environment:

• For single-server deployments: IP_JOP_PRR_<version_number>_ENU_linux/scripts/docker-
compose.yml

• For HA deployments: IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/worker-
swarm.yml

Adding extra RAM to the dataset-upload jobs can speed up the execution of individual jobs. The more
RAM you allocate to each dataset-upload container, the faster the execution. Dataset-upload
containers can use as much RAM as is available on the server where they are deployed.

Install and Configure Predictive Routing Scale AI Core Services

Predictive Routing Deployment and Operations Guide 120

Scaling Horizontally

Adding more dataset-upload containers ensures that more Datasets can be uploaded in parallel. Jobs
that cannot be executed immediately are queued for execution. You can scale dataset-upload
containers horizontally regardless of whether GPR is deployed in an HA or a single-server
environment. The only requirement is that there must be enough hardware for the newly created
containers.

By default, GPR creates one dataset-upload worker for each container, each using up to two CPUs
and as much RAM as is available. With this configuration, you can upload only one dataset in parallel.
All other jobs are queued.

In order to scale dataset-upload jobs horizontally, perform the following steps:

1. Stop GPR using the following command:
bash stop.sh

• For a single-server environment, change the value of the
NUM_OF_DATASET_UPLOAD_WORKERS_INSTANCES configuration variable, found at the beginning of the
IP_JOP_PRR_<version_number>_ENU_linux/scripts/start.sh script.

• For an HA environment, change the value of the NUM_OF_DATASET_UPLOAD_WORKERS_INSTANCES
configuration variable, found at the beginning of the IP_JOP_PRR_<version_number>_ENU_linux/
ha-scripts/start.sh script.

2. Restart GPR using the following command:
bash start.sh

Analysis Workers

Analysis containers are used for various analysis jobs, supporting creation of the Lift Estimation
report and the Feature Analysis report, among others. By default, GPR creates one analysis container
for a single-host deployment and two analysis containers for an HA deployment. Each container uses
up to two CPUs (the default setting) and as much RAM as is available.

In a single-host deployment, by default, you have only one container, which means you can only run
one analysis job at a time. All other analysis jobs are queued. To run analysis jobs in parallel, perform
the following steps:

1. Stop GPR using the following command:
bash stop.sh

2. Change the value of the NUM_OF_ANALYSIS_WORKERS_INSTANCES configuration variable, found in the
IP_JOP_PRR_<version_number>_ENU_linux/scripts/start.sh script from 1 to 2.

3. Restart GPR using the following command:
bash start.sh

In an HA deployment, by default, you have two analysis containers running, which means you can run
two analysis jobs at the same time. All other analysis jobs are queued. To change this value, perform
the following steps:

Install and Configure Predictive Routing Scale AI Core Services

Predictive Routing Deployment and Operations Guide 121

1. Stop GPR using the following command:
bash stop.sh

2. Change the value of the NUM_OF_ANALYSIS_WORKERS_INSTANCES configuration variable, found in the
IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/start.sh script, from 2 to your desired
number.

3. Restart GPR using the following command:
bash start.sh

To increase the processing speed for each analysis job, increase the number of CPUs the analysis
container can use.

To change this value, perform the following steps:

1. Stop GPR using the following command:
bash stop.sh

2. Edit the cpus setting in the analysis section of the appropriate file for your environment:

• For single-server deployments: IP_JOP_PRR_<version_number>_ENU_linux/scripts/docker-
compose.yml

• For HA deployments: IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/swarm/worker-
swarm.yml

1. Restart GPR using the following command:
bash start.sh

Purge Workers

By default, GPR creates one purge container for each host, each using at most one CPU and at most
two GB RAM.

There is no need to scale this type of worker either vertically or horizontally.

Install and Configure Predictive Routing Scale AI Core Services

Predictive Routing Deployment and Operations Guide 122

Deploy Agent State Connector
Agent State Connector (ASC) connects to Configuration Server and (in release 9.0.015.04 and higher,
optionally) to Stat Server. It retrieves changes to Person and Agent Group configuration objects and
updates to agent login data. It sends that information to the AI Core Services (AICS), which uses it to
update agent profiles, agent availability, and (optionally) agent statistics.

Deploying ASC has three main phases:

• Create and configure the ASC Application object in your Genesys configuration application.
• Install Agent State Connector.
• Configure HTTP/HTTPS Connections and (Optional) Configure ASC to Use Shift-JIS Encoding.

Environment Assumptions
The instructions in this section assume that you are creating new Application objects under the
Environment folder, in either a single-tenant or multi-tenant configuration environment. To create
Application objects under a particular Tenant folder in a multi-tenant configuration environment,
replace the word Environment with the name of your Tenant folder in the configuration instructions.

Important
In a multi-tenant environment, configure one ASC instance for each Tenant.

Configure the ASC Application

Create and Configure the ASC Application Object

1. Import the Application Template
2. Create an ASC Application Object
3. Configure the General tab
4. Configure the Server Info tab
5. Configure the Start Info tab
6. Configure the Options tab - The configuration options control many aspects of ASC behavior, including

the ability to monitor Stat Server statistics, to control threading and timeouts, and to specify whether to
create an Agent Profile schema automatically.

7. Configure the Tenants tab
8. Configure the Connections tab

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 123

Import the Application Template
Before you can configure an Application object for ASC, you must import its Application template.
The Application template provides a majority of the configuration options, as well as the default
values for them. You can use this Application template to create as many Application objects of
the same type as you need.

Important
For an explanation of how to use Genesys Administrator Extension to import the
Application template and to create a new Application object, see the Genesys
Administrator Extension Help file, which is directly available from Genesys
Administrator Extension user interface, as well as from the link given here.

1. On the Configuration Manager window in Genesys Administrator Extension, select the Environment >
Application Templates folder.

2. From the File menu, select Import Application Template.
3. In the Look In box, click the down arrow.
4. Browse to the IP for Agent State Connector and open the TEMPLATES folder.
5. Select the template file for Agent State Connector; it is called 'AgentStateConnector_900.apd.
6. Click Open to open the Properties dialog box for the template.
7. Make any changes that you require.
8. Click OK to save the template and close the Properties dialog box.

The next step is to configure an ASC Application object.

Create an ASC Application Object
After you import the application template, you can create and configure an Application object for
ASC by using the Configuration Manager tab in Genesys Administrator.

1. On the Configuration Manager window, select the Environment > Applications folder.
2. From the File menu, select New > Application.
3. From the available application templates in the Browse dialog box, select the template that you

imported for ASC.
4. On each of the Application tabs, enter the settings appropriate for your environment, as explained in

detail in the section that follow.
5. Click OK to save your changes, then close the Properties dialog box.

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 124

https://docs.genesys.com/Documentation/GA/latest/user/CMEnvironment
https://docs.genesys.com/Documentation/GA/latest/user/CMEnvironment

Configure the General tab
In the Properties dialog box, click the General tab, and then enter a name for this application.

Configure the Server Info tab
Click the Server Info tab, and then specify the following properties:

• Host—Select or enter the name or IP address of the computer on which you want to install and/or run
this server.

• Port—Enter the value 0 (zero) for the port number.

Important
In IPv6 deployments, you cannot set the IP address of the host—only IPv4 addresses
can be set for the host. Therefore, enter the name of the host instead.

Configure the Start Info tab

Tip
The properties you define here are updated automatically during the installation
procedure.

Click the Start Info tab, and then specify the following properties:

• Working Directory—Enter the full path to the directory from which the application starts.
• Command Line—<Path_to_JDK_installation_folder>\bin\java.exe
• Command Line Arguments—Add the following startup arguments that will be used in

AgentStateConnector.bat (Windows) or AgentStateConnector.sh (unix) environments:

Dcom.genesyslab.platform.commons.log.loggerFactory=log4j -jar agent_state_connector-
<AGENT_STATE_CONNECTOR_VERSION>-jar-with-dependencies.jar -host <cfg server host>
-port <cfg server port> -app <ASC Application object>

• For additional information about command-line parameters, see Starting and Stopping the ASC
Application.

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 125

Configure the Options tab
Click the Options tab, and then specify or change the values of the configuration options, as suitable
for your deployment.

Important
• If you are deploying ASC 9.0.015.04 or higher and plan not to connect to Stat Server,

see Configure ASC Without Stat Server for the required configuration options settings.

• For information about the entire set of ASC configuration options, see ASC Configuration Options.
• For recommendations and tips on what values to use for certain of the ASC configuration options, see

Guidelines for Configuration Options Values in the Operations: Agent State Connector topic.

(Optional) Configure ASC to Monitor Statistics

1. Make sure the statistics you want to monitor are configured in Stat Server. StatAgentOccupancy is not a
default statistic and requires you to set it up manually. For instructions, see Create a Custom Stat
Server Statistic, below.

2. On the ASC Application object Options tab, create a new section, named statistics. (All other ASC
options are configured in the default section.)

3. In the [statistics] section, create a new option with the same name as the statistic you want to
monitor. For example, StatAgentOccupancy.

In the 9.0.012.00 release, the only supported statistic is StatAgentOccupancy.

4. Set the option value to the correct TimeProfileName for the specified statistic, as specified in the Stat
Server Application object. For StatAgentOccupancy, set the value to SinceLogin.

5. Save the new option.
6. Check that the value for the timebased-statistic-interval is appropriate for your environment. The

default value is 60 seconds.
7. Restart ASC to have the changes take effect.

The new statistic is also saved as part of the Agent Profile schema.

Create a Custom Stat Server Statistic

To create custom statistics, including the StatAgentOccupancy statistic, use the following procedure:

1. In the Stat Server Application object, create a new configuration section with the name of the desired
statistic. For example, StatAgentOccupancy.

2. Create the following options within the new [StatAgentOccupancy] section, and set them to the
specified values:

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 126

• Category=RelativeTimePercentage
• MainMask=CallDialing, CallRinging, AfterCallWork, CallInbound, CallOutbound, CallInternal,

CallConsult, CallUnknown
• RelMask= Monitored, LoggedIn, OnHook, WaitForNextCall, OffHook, CallDialing, CallRinging,

NotReadyForNextCall, AfterCallWork, OfflineWorkType2, BreakType1, BreakType2, CallOnHold,
NotUsed, NotUsed, ASM_Engaged, ASM_Outbound, CallInbound, CallOutbound, CallInternal,
CallConsult, CallUnknown

• Objects=Agent, GroupAgents
• Subject=AgentStatus

3. Save your changes in the Stat Server Application object.
For additional information on statistics configuration in Stat Server, see Statistic Configuration
Options in the Stat Server User's Guide.

4. Check whether the necessary TimeProfile value is configured in the [TimeProfiles] section on the Stat
Server Application object. For StatAgentOccupancy, you must configure the SinceLogin time profile
type. If it does not exist:
1. Open the [TimeProfiles] section.
2. Create a new option with name SinceLogin,SinceLogin. All options in the [TimeProfiles] section

have the name format <TimeProfileName>,<Type>.
3. Leave the option value empty.
4. Save changes in Stat Server Application object.

For additional information on time profiles in Stat Server, see TimeProfiles Section in the Stat
Server User's Guide.

5. Restart Stat Server.

Log Options

• Configure both ASC-specific log options and common log options in the log-related configuration
sections. For option descriptions, see Log Options and the Framework Configuration Options Reference
Manual.

Configure the Tenants tab

Tip
The Tenants tab is displayed only in a multi-tenant environment.

• Click the Tenants tab, and then click Add to add all tenants that this ASC application will serve. ASC
only monitors Person objects that are associated with the tenants you specify.

• If this ASC instance is required to monitor the objects that are configured under the Environment
folder, assign the Environment tenant among the other tenants.

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 127

https://docs.genesys.com/Documentation/RTME/latest/User/StatCO
https://docs.genesys.com/Documentation/RTME/latest/User/StatCO
https://docs.genesys.com/Documentation/RTME/latest/User/TimeProfiles

Configure the Connections tab
Click the Connections tab, and then add the following connections:

• Configuration Server
• Stat Server (optional in release 9.0.015.04 and higher; if you do not add a Stat Server to the

Connections tab, agent availability data is taken from Universal Routing Server)
• Message Server

Configure ASC Without Stat Server

In ASC release 9.0.015.04 and higher, configure the following settings to operate without Stat Server:

1. Do not add Stat Server from the Connections tab. If Stat Server was added previously, remove it.
2. Specify the following configuration option values on the Predictive_Route_DataCfg Transaction List

object:
• use-action-filters = false

• login-status-expression = &((loginStatus>0&loginStatus<23)|loginStatus>23)

• use-login-status = true

High Availability

In high availability (HA) environments using primary and backup pairs of servers, the servers listed on
the Connections tab are handled as primary. To specify the backup servers for any primary servers,
open the Application object for the primary server and add the backup server on the primary
server’s Server Info tab.

Install Agent State Connector

You can install ASC on either a Windows system or a Linux 64-bit system.

Prerequisites

• You have created and configured an ASC Application object in the interface you use for configuration,
as described above.

• Configuration Server is installed and running in your environment.
• You have identified the following parameters, which you need to configure the connection to

Configuration Server:
• ASC Host name: By default, this is the host name of the machine on which you install ASC.
• Configuration Server Host name.
• Network port: Configuration Server network port.

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 128

• User name: Configuration Server user name.
• Password: Configuration Server password.
• Installation path: Full path to the ASC installation directory.

Installing on Windows

To install, perform the following steps:

1. Do one of the following:
• Insert the ASC CD into the CD-ROM drive of the machine on which you want to install ASC.
• Download the ASC IP to the desired location on the target machine.

2. Navigate to, and open, the .../windows directory.
3. Double-click the setup.exe file, and then follow the directions in the installation wizard.

Installing on RedHat Linux 7 64-Bit

Linux-specific prerequisite:

• Install tar and gunzip.

To install, perform the following steps:

1. Install the C runtime libraries using the following command:
yum install glibc.i686

• Troubleshooting Notes:
• If the C runtime libraries are not available, the following error message appears: ./Perl: /lib/

ld-linux.so.2: bad ELF interpreter: No such file or directory.
• If you see the following error during installation, copy the 32-bit versions of libgcc_s.so.1 and

libstdc++.so.6 to the .../lib/ directory: ./cfgutility: error while loading shared
libraries: libstdc++.so.6: cannot open shared object file: No such file or
directory.

2. Insert the ASC CD into the CD-ROM drive of the machine on which you want to install ASC; or, download
the ASC IP to the desired location on the target machine.

3. Unzip the installation file using the following command:
tar -xvzf ip_<version_number>.tar.gz

4. Update the install.sh script to work on 64-bit systems by making the following changes:
• Replace ./gunzip with gunzip.
• Replace tar_name=./tar with tar_name=tar.

5. Run install.sh and follow the instructions to set up ASC, using the configuration parameters you
gathered.

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 129

Configure HTTP/HTTPS Connections

You should already have configured HTTPS for AI Core Services before starting the following
procedure.

1. Import the tango.crt file from the <GPR_IP_version>/conf folder to the java keystore. For example,
you might enter a command similar to the following:

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 130

keytool -import -alias gpr-ssl -keystore /usr/java/jdk1.8.0_171-amd64/jre/lib/security/cacerts -file tango.crt -storepass
"changeit"

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 131

2. Depending on your version of ASC and your platform, perform the following steps.
• For ASC release 9.0.015.00 and higher, HTTP/S configuration is done using only the jop-base-url

configuration option:
In both Linux and Windows environments:

• Change the value of the URL entered in the jop-base-url configuration option so that it specifies
https or http, as desired.

For example, to configure ASC to use HTTPS, your new option value might look similar to
the following:

https://fce-u0009.us.int.genesyslab.com/api/v2.0.

• For Agent State Connector 9.0.014.01 and lower, HTTP/S configuration is done using only the
USE_HTTP environment variable:

In Linux environments:

• To use HTTPS, set the USE_HTTP environment variable to " " (an empty string).
• To use HTTP, set the USE_HTTP environment variable to true.

In Windows environments:

• To use HTTPS, remove the USE_HTTP environment variable entirely.
• To use HTTP, set the USE_HTTP environment variable to true.

3. Restart ASC.

(Optional) Configure ASC to Use Shift-JIS Encoding

By default, ASC uses UTF-8 encoding. To configure ASC to use Shift_JIS encoding, perform the manual
configuration steps specified for your environment:

Linux

1. Navigate to the directory where you installed ASC.
2. Open the AgentStateConnector.sh file.
3. Locate the following line:

JVMPARAMS="-server -Xmx2g -Xms2g -Xss512k"

4. At the end of the line, add the following:
-Dfile.encoding=Shift_JIS

The line should now read:
JVMPARAMS="-server -Xmx2g -Xms2g -Xss512k -Dfile.encoding=Shift_JIS"

5. Save the AgentStateConnector.sh file.
6. Restart ASC.

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 132

Windows

1. Navigate to the directory where you installed ASC.
2. Open the AgentStateConnector.bat file.
3. Locate the following line:

SET JVMPARAMS="-server -Xmx2g -Xms2g -Xss512k"

4. At the end of the line, add the following:
-Dfile.encoding=Shift_JIS

The line should now read:
SET JVMPARAMS="-server -Xmx2g -Xms2g -Xss512k -Dfile.encoding=Shift_JIS"

5. Save the AgentStateConnector.bat file.
6. Restart ASC.

Install and Configure Predictive Routing Deploy Agent State Connector

Predictive Routing Deployment and Operations Guide 133

Configuration Options
Genesys Predictive Routing uses configuration options to enable you to specify certain behaviors.
Options relating to the AI Core Services (AICS) and the strategy subroutines are configured in a
Transaction List object, configured in Genesys Administrator in the following location:
PROVISIONING > Routing/eServices > Transactions > List Objects > DEV > AgentScoring.

Important
Before release 9.0.009.01, AI Core Services (AICS) was known as Journey Optimization
Platform (JOP).

Agent State Connector (ASC) has its own Application object, where you configure options relating to
specifically to ASC functionality.

• Predictive_Route_DataCfg Transaction List Object Options. Some functionality has multiple options
controlling the desired behavior:
• Agent Occupancy Options
• Agent Holdout Options
• Dynamic Interaction Priority Options

• Agent State Connector Configuration Options
• ASC Log Options

Predictive_Route_DataCfg Transaction List Object Options

ab-test-time-slice
context-id-key
default-agent-score
emergency-scoring-token
format-as-map
global-map-timeout
jop-api-key
jop-auth-url
jop-logging-url
jop-password
jop-scoring-url
jop-username
login-status-expression
log-to-api
max-score

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 134

orig-connid-key
overload-control-timeout
prr-mode
scoring-token-expiration
send-user-event
udata-keys-to-exclude
use-action-filters
use-crm-query
use-double-selection
use-login-status
use-setreadycondition
vq-for-reporting

Agent Occupancy Options
Agent occupancy is the percentage of time that an agent is working while logged in, a service
objective that can be specified when building a staffing forecast. Agent occupancy data is taken from
Stat Server by URS using the SData function. Stat Server collects agent occupancy data using the
StatAgentOccupancy statistic. The routing strategy filters agents by occupancy in the
ScoreIdealAgent callback subroutine. The agent occupancy results are used to sort the agents in the
target agent group; over-occupied agents drop down lower in the sorted list.

agent-occupancy-factor
agent-occupancy-threshold
use-agent-occupancy

Agent Holdout Options
Agent hold-out enables you to have an interaction wait a specified time, even when an agent has
become available, if the available agent is has a low score for the interaction and there is a chance a
better-matched agent might become available within the configured time window.

initial-threshold-timeout
score-base-threshold
threshold-relaxation-step
threshold-relaxation-timeout

Dynamic Interaction Priority Options
If an interaction has a low score for all targeted agents, it can stay in a queue for a long time. To
avoid such situations, you can configure a schedule for incremental priority increases. The schedule
is set once for each interaction processed by GPR. The following options control interaction priority
increments.

Important

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 135

If you already use priority increments for the strategy into which you are inserting the
GPR subroutines, you doo not need to configure these options. If you are using priority
increments only for predictive routing, use the following options to configure it.

priority-increment
priority-init-interval
priority-interval
set-dynamic-priority

ab-test-time-slice
Specifies the length, in seconds, of the periods of time when Predictive Routing and skill-based
routing are alternately turned on when you have set the prr-mode configuration option to ab-test-
time-sliced. Genesys recommends that you do not set the value of this option to less than 600
seconds in a production environment.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 1741
• Valid values: Any positive integer
• Changes take effect: Immediately

context-id-key
Specifies the name of the user data key containing an ID for the current interaction, using which the
Predictive Routing scoring engine can retrieve a record from an internal database of customer profiles
(CRM database) and use features from the record to compute agents scores for the interaction.

To incorporate customer profile data into models for matching the agents, a copy of the CRM
database must be uploaded into JOP before you train a predictor model. The URS
ActivatePredictiveRouting subroutine attaches a context_id key to the scoring request body and
provides the value of the user data key defined by this option as the context_id value.

If the returned customer ID is empty or you set the option value to ANI, the interaction ANI is used.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: ANI
• Valid values:

• ANI

• A valid user data key name holding a customer ID

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 136

• Changes take effect: Immediately

default-agent-score
The option specifies the value the ScoreIdealAgent and isAgentScoreGood subroutines should use as
the agent score for an interaction for those agents who belong to the target Agent Group but that
GPR did not score. For example, an agent might be logged out, or in another status configured as
unavailable, until after the scoring request it sent. If such an agent then becomes available before
the interaction is routed, GPR assigns that agent the default score.

Important
This option functions differently depending on the release of URS Strategy Subroutines you have deployed:

• In release 9.0.015.00 and higher, gpmAgentScore records the default score assigned to
agents GPR did not score. The ScoreIdealAgent subroutine uses this value to sort the
scores and the isAgentScoreGood subroutine compares it against any threshold you
have configured to determine whether the agent is acceptable.

• In release 9.0.014.04 and lower, the gpmAgentScore user data KVP always contains the
value 0 for such agents. The score specified in this option is used only when URS is
sorting the agents in the target group according to their scores.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: The agent is assigned a score of 0, which means that the agent is unlikely to receive an
interaction from the queue.

• Valid values:
• max - Use the maximum score calculated for an agent in the target agent group.
• median - Use the median score calculated for the target agent group.
• global - Use the average global score for the agents in the target group.
• min - Use the minimum score calculated for an agent in the target agent group.
• 0 - Use the value 0 as the score.

• Changes take effect: On the next interaction

emergency-scoring-token
Provides an emergency token in the event of continued authentication errors. It is intended for use
only in scenarios where the strategy is unable to automatically update the token required to access

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 137

the Predictive Routing API.

Warning
This option should only be used in an emergency situation.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: empty string
• Valid values: Any valid security token string
• Changes take effect: Immediately

format-as-map
The IRD subroutine ActivatePredictiveRouting_v<version_number> and the Composer subroutine
ActivatePredictiveMatching now support two types of responses to, and score requests to, the
Predictive Routing API, either containing both list and list_ranks fields or just the list field.

If set to true, the response and the score request to the Predictive Routing API contains two fields,
list and list_ranks. The 'list' field contains a JSON dictionary with agent employee IDs as the keys
and agent scores for the current interaction as the values. The list_ranks field contains a JSON
dictionary with agent employee IDs as the keys and agents ranked according to their scores in the
target group as values.

If set to false, the response and the score request to the Predictive Routing API contains only the list
field. The value of this field is a JSON list object, where the items in the list are JSON dictionary
objects. Each dictionary item contains the fields: id (agent employee ID), score (the score that agent
has for the current interaction), and score_type (the type of a model, local or global, used to
compute the score). The list is sorted by agent score in decreasing order.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: true
• Valid values: true, false
• Changes take effect: Immediately

global-map-timeout
Defines the time period, in seconds, during which supporting information about an interaction (such
as the predictor name and ID, the model name and ID, the Predictive Routing operation mode, and
the interaction time in queue) are stored in the Universal Routing Server (URS) global map. If option
value is set to 0, the records are stored indefinitely.

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 138

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: 7200
• Valid values: (integer) any non-negative integer
• Changes take effect: On the next interaction

Important
To improve URS performance, agent scores are stored in the URS global map with a
timeout value of 0 (indefinitely). To remove them, you must call the PrrIxnCleanup
subroutine after the interaction has been successfully routed.

jop-api-key
Specifies an access key that is used by the Agent State Connector or the ActivatePredictiveRouting
subroutine in URS—depending on where the option is configured—to access the Genesys Predictive
Routing API. To obtain the value of this option, open the Accounts tab in the Predictive Routing user
interface and open your account (or create, to add a new account). The API key field appears in the
Account configuration window. For details, see Settings: Configuring Accounts in the Genesys
Predictive Routing Help.

• Configured in:
• Predictive_Route_DataCfg List object, [default] section
• Agent State Connector, [default] section

• Mandatory: yes
• Default value: none
• Valid values: Any valid AICS API key
• Changes take effect: After restart

jop-auth-url
Specifies the Genesys Predictive Routing API authentication endpoint URL. This value is the host
name of the server on which the AI Core Services (AICS) component is installed followed by /api/
v2.0/authenticate.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Mandatory: yes
• Default value: none

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 139

• Valid values: (string) A valid AICS authentication endpoint URL, in the following format:
<aics_server_host_name>/api/v2.0/authenticate

• Changes take effect: immediately

jop-logging-url
Defines the URL for logging the interaction routing score log and outcome results to the Predictive
Routing web application REST API.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: none
• Valid values: (string) any valid URL
• Changes take effect: On the next interaction

jop-password
Specifies a user password valid for use with the Genesys Predictive Routing.

• Configured in:
• Predictive_Route_DataCfg List object, [default] section
• Agent State Connector, [default] section

• Mandatory: yes
• Default value: none
• Valid values: (string) The password for any valid Predictive Routing user
• Changes take effect: After restart

jop-scoring-url
The ActivatePredictiveRouting strategy subroutine in URS uses the URL defined by this option as the
HTTP address to send scoring requests to AI Core Services (AICS) Scoring REST API. This URL should
be the value for the jop-base-url option with <predictor_name>/score appended.

You can locate the predictor ID in messages returned from the GPR API or in the browser URL address
when you are in the GPR application with the page for the desired predictor open.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 140

• Default value: none
• Valid values: (string) a valid AICS scoring endpoint URL + a valid predictor ID
• Changes take effect: On the next interaction processed

jop-username
Specifies a user's username to access Genesys Predictive Routing.

• Configured in:
• Predictive_Route_DataCfg List object, [default] section
• Agent State Connector, [default] section

• Mandatory: yes
• Default value: none
• Valid values: (string) Any valid email address registered with Predictive Routing.
• Changes take effect: After restart

login-status-expression
If you set the value of the use-login-status option to true, the value of the login-status-
expression option is added to the action_filters expression in the ActivatePredictiveRouting_v3
subroutine when the scoring request is created.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: no default value
• Valid values:

• &((loginStatus>0&loginStatus<23)|loginStatus>23) - Instructs the scoring engine to evaluate scores
for those agents identified as part of the target group by a skill expression or an Agent Group name
who are logged into the voice channel.

• &(loginStatus=4|loginStatus=9) - Instructs the scoring engine to evaluate scores for those agents
identified as part of the target group by a skill expression or an Agent Group name who are ready to
accept an interaction, or have status AfterCallWork on the voice channel.

• Changes take effect: On the next interaction

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 141

log-to-api
Specifies whether logging is enabled to the Predictive Routing application REST API from the routing
strategy. If the option value is set to true, the context of the interaction is submitted to Predictive
Routing when the PrrIxnCompleted subroutine is called, before interaction is routed to an agent.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: false
• Valid values:

• true: The context of the interaction is submitted to the Predictive Routing application when the
PrrIxnCompleted subroutine is called before the interaction is routed to an agent.

• false: Logging is not enabled.

• Changes take effect: On the next interaction

max-score
Defines the maximum score that an agent can be assigned for an interaction. The value of this option
is used by the ScoreIdealAgent callback function to re-scale the agent score as the distance from an
ideally matched agent for the interaction (assumed by URS to be 0).

The value you set should correspond to the largest possible value returned by this Predictor from the
scoring engine. To function properly, this value must be consistent with the value configured for the
Predictor Score expression field. Because the GPR scoring engine and URS have different scales,
you might need to adjust returned scoring values using the Score expression field in the Predictor
configuration. See the instructions for how to configure this field in Creating and Updating Predictors
in the Genesys Predictive Routing Help for more information.

To take advantage of the most precise values, set max-score to 10000 and the value for Score
expression in the Predictor configuration to 10000 * p_score. (p_score is a term used in the GPR
documentation to indicate the raw score returned from the scoring engine. It is not in any way
derived from or related to the statistical term P value.) For example, if scores range from -4 to 10, use
the following p_score - ((p_score + 5) / 16) * 100.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 100
• Valid values: (integer) 1 - <max>
• Changes take effect: On the next interaction processed

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 142

orig-connid-key
Defines a user data key that the Predictive Routing strategy must attach on initialization. It holds the
original connection ID of an interaction, which is used to uniquely identify the interaction for the
scoring engine. The ActivatePredictiveRouting subroutine checks for the presence of this key when it
starts processing an interaction.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: None
• Valid values: Any valid user data key holding the original interaction connection ID
• Changes take effect: Immediately
• Mandatory: Yes

ConnIDs in Consult Calls
Agents can make consult calls to the route point using GPR to identify target agents. In such cases,
your T-Server/SIP Server configuration determines which ConnID is added in the scoring request and
recorded in the score log. Depending on your configuration, the ConnID could be from either the main
call or the consult call.

The following table explains the different scenarios possible depending on your T-Server/SIP Server
option settings.

Option Name Values Result for GPR

consult-user-data separate

The ConnID key should be
explicitly attached in both main
call and consult call user data
before the GPR subroutines are
invoked. If the keys are attached
to both calls, then the GPR score
request, and the score log, report
the main call and the consult call
as separate, each with its
respective ConnID.

consult-user-data
inherited
joint

The ConnID key must be
explicitly attached to the main
call by the strategy that invokes
the GPR subroutines. The main
call and consult call are treated
as a unit and both requests log
only the ConnID for the main call.

overload-control-timeout
Defines a timeout value that sets the maximum delay, in milliseconds, between the moment when
URS receives an Event from T-Server and when URS starts to process the Event in the strategy. If the
delay is greater than the value set in this option, Predictive Routing considers the URS application
overloaded and temporarily turns off. Once the URS overload ends and the strategy is processing

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 143

events within the limit defined by this timeout, Predictive Routing restarts.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: 1000
• Valid values: Any positive integer
• Changes take effect: Immediately

prr-mode
Specifies whether an instance of Predictive Routing should run as a production instance or as a test
instance.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: off
• Valid values:

• prod - All the interactions that pass through the ActivatePredictiveRouting strategy subroutine are
processed using Predictive Routing.

• off - No interactions use Predictive Routing.
• ab-test-time-sliced - The periods of time when Predictive Routing and skill-based routing are

alternately turned on. The duration of each period is configured in the [<predictor_name>].ab-
test-time-slice configuration option in the Predictive_Route_DataCfg Transactions List object.

• dry-run - Predictive Routing scores agents for your interactions, but does not use the scores for
routing.

• Changes take effect: Immediately

scoring-token-expiration
If configured, overrides the default token expiration time of 43200 seconds. For example, if set to
3600, the token expires in the URS memory map in one hour, and a new token is requested from the
JOP Scoring Engine.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: 43200
• Valid values: Any positive integer
• Changes take effect: Immediately

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 144

send-user-event
When set to true, the routing strategy used with Predictive Routing sends the EventUserEvent
TEvent, which includes the following attributes:

• AttributeThisDN with a value indicating the virtual queue where the strategy is executed. This is set in
the vq-for-reporting option.

• AttributeUserData containing the Predictive Routing-specific key-value pairs which provide the
foundation for reports on routing outcomes presented in Genesys Interactive Insights/GCXI.

The KVP data is stored in Genesys Info Mart, and is then available to the Genesys reporting suite and
to Predictive Routing, which can use this KVP data to refine predictor and model performance.

For more information on creating reports based on Predictive Routing data, see Deploying: Integrating
with Genesys Reporting.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: false
• Valid values: true, false
• Changes take effect: Immediately

udata-keys-to-exclude
Use this option to exclude unnecessary user data keys from the scoring context.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: no default value
• Valid values: a list of KVP names to be excluded, separated by commas and no spaces
• Changes take effect: On the next interaction

use-action-filters

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: true
• Valid values:

• true - URS uses a skill expression or Agent Group names taken from the action_filters field in the
scoring request.

• false - URS checks with the Stat Server for the target list of agents, as specified in the login-

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 145

status-expression option, and adds the target Agent IDs to the scoring request.

• Changes take effect: Immediately

Important
If login-status-expression is set to &(loginStatus=4|loginStatus=9), indicating
that the agents who are in the Ready state or ACW state (for voice calls) are the
designated target agents, then the GetActionFilters subroutine uses a custom statistic
called RStatGPRAgentsReadyOrACWvoice. This custom statistic is provided in the
object.kvlt file in the URS Strategy Subroutines IP.

use-crm-query
Option name reserved for future use.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: true
• Valid values:

• true

• false

• Changes take effect: Immediately

use-double-selection
Specifies whether URS uses a double selection mechanism, applying a custom statistic when agents
have the same score to select the target agent for an interaction.

If the Predictive Routing routing solution is configured to use the agent hold-out feature (the use-
setreadycondition option is set to true) and the use-double-selection option is set to false,
when two or more agents are in ready state and have the same score for an interaction, the target
agent for an interaction is selected at random. If the use-double-selection option is set to true,
URS selects a target agent from a group of agents with equal scores based on a predefined statistic.
This is a statistic passed as an argument to the SelectDN function by the routing strategy or one
defined in an IRD routing block.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: false
• Valid values:

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 146

• true: Predictive Routing uses the double selection method.
• false: The double selection method is turned off.

• Changes take effect: Immediately

use-login-status
Set the value of this option to true to have the value of the login-status-expression option added
to the action_filters expression in the ActivatePredictiveRouting_v3 subroutine when the scoring
request is created.

Important
Genesys recommends that you set this option to true and provide a valid value for
login-status-expression to reduce the number of agents for whom scores are
evaluated. The value false should be used only for debug and troubleshooting
purposes in a staging environment.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: false
• Valid values: false, true
• Changes take effect: On the next interaction

use-setreadycondition
If option is set to true, the strategy executes calls to the isAgentScoreGood subroutine, which
temporarily removes low-scoring agents from consideration for routing. If option is set to false, the
strategy does not execute calls to the isAgentScoreGood subroutine.

Important
This option takes effect only when the prr-mode option is set to prod for the same
predictor.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: false

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 147

• Valid values: true, false
• Changes take effect: On the next interaction

vq-for-reporting
Indicates the virtual queue or DN where URS sends the Genesys Predictive Routing (GPR) user event
data describing the routing decision made for the interaction. The user event data, in the form of key-
value pairs, is attached to EventUserEvent in the AttributeUserData attribute. This should be the
same value as AttributeThis DN in the EventUserEvent event.

For more information on creating reports based on Predictive Routing data, see Deploying: Integrating
with Genesys Reporting.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: no default value
• Valid values: Any valid virtual queue or DN name
• Changes take effect: Immediately

agent-occupancy-factor
If you set the value of the use-agent-occupancy option to true, and the value of the agent
occupancy statistic is higher than the threshold specified in the agent-occupancy-threshold
option, the ScoreIdealAgent subroutine multiplies the score received for an agent for the current
interaction by a coefficient defined by this option.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: 0.5
• Valid values: Float number between 0.0 and 1.0

• Changes take effect: On the next interaction

agent-occupancy-threshold
If you set the value of the use-agent-occupancy option to true, the isAgentScoreGood subroutine
compares the value of the occupancy statistic with the value you set in this option. If the occupancy
value is higher than the specified threshold, the subroutine multiplies the score received for an agent
for the current interaction by a coefficient defined in the agent-occupancy-factor option.

• Configured in: Predictive_Route_DataCfg List object, [default] section

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 148

• Default value: 0
• Valid values: Any non-negative integer
• Changes take effect: On the next interaction

use-agent-occupancy
The value you set for this option determines whether the isAgentScoreGood subroutine checks for
agent occupancy. If you set the value to true, the subroutine compares the value of the occupancy
statistic with the value you set in the agent-occupancy-threshold option. If the occupancy value is
higher than the specified threshold, the subroutine multiplies the score received for an agent for the
current interaction by a coefficient defined in the agent-occupancy-factor value.

• Configured in: Predictive_Route_DataCfg List object, [default] section
• Default value: false
• Valid values: true, false
• Changes take effect: On the next interaction

initial-threshold-timeout
Defines a timeout, in seconds, during which the isAgentScoreGood URS callback function uses an
initial minimum agent score, defined by the score-base-threshold option, to match agents to an
interaction. After this timeout expires, the minimum score required to allow an agent to handle the
interaction is gradually decreased.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 0
• Valid values: (integer) 0 - <max>
• Changes take effect: On the next interaction processed

score-base-threshold
This option defines the initial minimum agent score required for an agent to be considered a match
for an interaction. After the timeout defined by the initial-threshold-timeout option expires, the
minimum score required to handle the interaction is gradually decreased. If you set the value to 0, no
initial minimum score is required and agents with any score are considered for an interaction.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 149

section
• Default value: 0
• Valid values: (integer) 0 - <max>
• Changes take effect: On the next interaction processed

threshold-relaxation-step
Defines an increment by which, while an interaction remains queued, the minimum agent score
required to match the interaction is decreased after each period defined by the value of the
threshold-relaxation-timeout option, following the initial period defined by the initial-threshold-
-timeout option.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 1
• Valid values: (integer) 1 - <value of the max-score option>

• Changes take effect: On the next interaction processed

threshold-relaxation-timeout
This option defines a timeout, in seconds, after which the minimum agent score required for
matching an interaction is decreased by the amount defined by the value of the threshold--
relaxation-step option.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 1
• Valid values: (integer) 1 - <max>
• Changes take effect: On the next interaction processed

priority-increment
Specifies the increment by which priority is increased each time.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 1

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 150

• Valid values: (integer) any integer
• Changes take effect: On the next interaction

priority-init-interval
Controls the time interval, in seconds, the strategy waits before starting to increment priority for a
queued interaction.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 300
• Valid values: (integer) any non-negative integer
• Changes take effect: On the next interaction

priority-interval
Specifies the time period, in seconds, between priority increments for a queued interaction.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: 10
• Valid values: (integer) any integer greater than 5

• Changes take effect: On the next interaction

set-dynamic-priority
Specifies whether dynamic priority interaction handling is enabled and handled in the GPR
subroutines. When set to true interaction priority is incremented based on the settings configured for
the other priority options. When set to false, dynamic priority interaction handling is not set by the
Predictive Routing subroutines. If dynamic priority parameters are set elsewhere in the strategy, the
option must be set to false.

• Configured in: Predictive_Route_DataCfg List object, [default-predictor] or [<predictor_name>]
section

• Default value: false
• Valid values: false, true

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 151

• Changes take effect: On the next interaction

Agent State Connector Configuration Options

[default] Section
Configure the following options in the [default] section:

agents-batch-size
auto-schema-discovery
cfg-reading-threads-size
cfg-retry-request-attempts
confserv-monitoring-reconnect-count
confserv-monitoring-reconnect-min
filter-by-groups
filter-by-skills
ignore-ascii-characters
ignore-employee-ids
ignore-person-annex-sections
include-person-annex-sections
include-groups
include-skills
jop-api-key
jop-base-url
jop-password
jop-username
jop-update-thread-wait-timeout
reset-jop-on-startup
skip-groups
ss-custom-statistic-name
ss-subscription-timeout
ss-monitoring-reconnect-count
ss-monitoring-reconnect-min
stat-srv-ws-conn
timebased-statistic-interval
threads-max-size

agents-batch-size
Defines the maximum number of agent configuration profiles that can be submitted in a single HTTP
request to AI Core Services (AICS).

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 152

Important
Increasing this option value might reduce Agent State Connector startup time.
However, setting it too high might cause the size of HTTP requests to become greater
than 10 Mb, which is the default maximum size for an HTTP request body that AICS
accepts by default.

• Configured in: Agent State Connector object, [default] section
• Default value: 500
• Valid values: Integers from 1–1000

• Changes take effect: On restart

auto-schema-discovery
Enables Agent State Connector (ASC), at startup, to check whether an Agent Profile schema is
present. If there is no Agent Profile schema uploaded, ASC creates a schema. If an Agent Profile
schema has already been uploaded, ASC checks the schema to validate that it is correctly structured.
If there is no schema uploaded and ASC cannot create one, or if the uploaded schema is invalid, ASC
generates an alarm message and shuts down.

• Configured in: Agent State Connector object, [default] section
• Default value: true
• Valid values: true, false
• Changes take effect: On restart

cfg-reading-threads-size
Enables you to specify whether to read agents and groups from Configuration Server using a multi-
threading approach.

• Configured in: Agent State Connector object, [default] section
• Default value: 100
• Valid values: Integers from 1–2000

• Changes take effect: On restart

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 153

cfg-retry-request-attempts
Used to specify the number of times Agent State Connector (ASC) tries to get updated agent and
agent group data from Configuration Server if the first try is unsuccessful.

Important
Genesys recommends that you do not set the value for this option higher than 5.

• Configured in: Agent State Connector object, [default] section
• Default value: 3
• Valid values: Any positive integer between 1 - 10
• Changes take effect: On restart
• Introduced in: 9.0.006.03

confserv-monitoring-reconnect-count
Specifies the maximum number of reconnect attempts to Configuration Server before ASC generates
log event 60706, for which you should set an alarm. To be exact, if ASC detects a switchover or
disconnection the number of times set in this option during the time period set in the confserv-
monitoring-reconnect-min option, ASC generates the log event. The cancel event for this alarm
should be 60707.

• Configured in: Agent State Connector object, [default] section
• Default value: 1
• Valid values: Integers from 10–1000

• Changes take effect: On restart

confserv-monitoring-reconnect-min
Specifies a time interval, in minutes, that ASC uses when monitoring multiple Configuration Server
switchover events. If ASC detects as many switchovers or disconnects as specified in the confserv-
monitoring-reconnect-count during the time period configured in this option, ASC generates log
event 60702, for which you should set an alarm.

• Configured in: Agent State Connector object, [default] section
• Default value: 1
• Valid values: Integers from 10–1000

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 154

• Changes take effect: On restart

filter-by-groups
If the ASC configuration contains non-empty values for the filter-by-skills and/or filter-by-groups
configuration options, ASC subscribes to Stat Server for agent statistics only for the agents included
in the specified Agent Groups or those satisfying the configured skill expression. If both options are
configured, the agents are subscribed for statistics if they either satisfy the skill expression specified
in the filter-by-skills option or are included in one of the Agent Groups specified in the filter-by-
groups option.

• This functionality enables you to limit the number of agents monitored by GPR or to use GPR in
environments where multiple Stat Servers are deployed to monitor different groups of agents.

• Configured in: Agent State Connector object, [default] section
• Default value: no default value
• Valid Values: A comma-separated list of valid Agent Group names
• Changes take effect: On restart

filter-by-skills
If the ASC configuration contains non-empty values for the filter-by-skills and/or filter-by-groups
configuration options, ASC subscribes to Stat Server for agent statistics only for the agents included
in the specified Agent Groups or those satisfying the configured skill expression. If both options are
configured, the agents are subscribed for statistics if they either satisfy the skill expression specified
in the filter-by-skills option or are included in one of the Agent Groups specified in the filter-by-
groups option.

• This functionality enables you to limit the number of agents monitored by GPR or to use GPR in
environments where multiple Stat Servers are deployed to monitor different groups of agents.

Important
The & (ampersand) and | (pipe) operators are not supported in skill expressions used
as the value of the filter-by-skills option. The skill expression must include only a
single valid skill name.

• Configured in: Agent State Connector object, [default] section
• Default value: no default value
• Valid Values: A comma-separated list of valid agent skills

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 155

• Changes take effect: On restart

ignore-ascii-characters
Enables you to specify how Agent State Connector (ASC) handles Agent Profile columns with the
following unsupported ASCII characters: [Space], -, <, >.

• To have ASC remove the specified characters for Agent Profile schema columns, but add the affected
columns to the schema, set the option to true.

• To have columns with the specified characters entirely omitted from the schema, set the option to
false (the default value), .

Important
Columns with other unsupported characters continue to be omitted from the schema.
For a complete list of unsupported characters, see Configuring Agent Profiles.

• Configured in: Agent State Connector object, [default] section
• Default value: false
• Valid Values: true, false
• Changes take effect: On restart

ignore-employee-ids
Enables you to instruct Agent State Connector to skip processing for specified employee IDs. For
example, the employee configuration might include symbols, such as $, that the database cannot
process.

Additional use cases:

• An employee has an unusually large profile, which would create an unacceptable impact on predictive
routing performance.

• An agent profile contains some data that produces an error when it is submitted to for predictive routing
analysis.

• Configured in: Agent State Connector object, [default] section
• Default value: none
• Valid values: Valid employee ID numbers, separated by commas
• Changes take effect: On restart

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 156

ignore-person-annex-sections
Specifies which sections on the Annex tab of a Person configuration object the Agent State
Connector (ASC) should skip when uploading the agent profile to AI Core Services. By default, ASC
skips the sections related to Genesys Interaction Workspace.

• Configured in: Agent State Connector object, [default] section
• Default value: interaction-workspace,interaction-workspace-recents,interaction-workspace-

favorites

• Valid values: One, or comma-separated list if more than one, valid section names on the Annex of a
Person configuration object

• Changes take effect: On restart

Use this option to reduce startup time by stopping ASC from loading unnecessary data.

include-person-annex-sections
Specifies which sections on the Annex tab of a Person configuration object the Agent State
Connector (ASC) should take information from when uploading the agent profile to AI Core Services.
All unspecified sections are skipped. If both this option and ignore-person-annex-sections are
configured, ASC disregards the value set for ignore-person-annex-sections and loads information
only from the sections specified in the include-person-annex-sections option.

• Configured in: Agent State Connector object, [default] section
• Default value: none
• Valid values: One, or comma-separated list if more than one, valid section names on the Annex of a

Person configuration object. For example, interaction-workspace,interaction-workspace-
recents,interaction-workspace-favorites.

• Changes take effect: On restart

Use this option to reduce startup time by preventing ASC from loading unnecessary data.

include-groups
Use this option to specify a list of agent groups for ASC to monitor. This list is a subset of the total list
of groups present in agent profiles. ASC ignores all groups except those you list. To monitor all
groups, leave the option value empty (the default setting).

For example, you might set the value of this option as follows to have ASC monitor only two groups:
"GROUP1,GROUP2"

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 157

• Configured in: Agent State Connector object, [default] section
• Default value: ""
• Valid Values: A comma-separated list of valid agent group names
• Changes take effect: On restart

include-skills
Use this option to specify a list of skills for ASC to monitor. This list is a subset of the total list of skills
present in agent profiles. ASC ignores all skills except those you list. To monitor all skills, leave the
option value empty (the default setting).

For example, you might set the value of this option as follows to have ASC monitor only two skills:
"CLOSING_AN_ACCOUNT,SALES"

• Configured in: Agent State Connector object, [default] section
• Default value: ""
• Valid Values: A comma-separated list of valid skill names
• Changes take effect: On restart

jop-api-key
Specifies an access key that is used by the Agent State Connector or the ActivatePredictiveRouting
subroutine in URS—depending on where the option is configured—to access the Genesys Predictive
Routing API. To obtain the value of this option, open the Accounts tab in the Predictive Routing user
interface and open your account (or create, to add a new account). The API key field appears in the
Account configuration window. For details, see Settings: Configuring Accounts in the Genesys
Predictive Routing Help.

• Configured in:
• Predictive_Route_DataCfg List object, [default] section
• Agent State Connector, [default] section

• Mandatory: yes
• Default value: none
• Valid values: Any valid AICS API key
• Changes take effect: After restart

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 158

jop-base-url
Specifies the common substring of Genesys Predictive Routing API endpoint URLs. This value is the
host name of the server on which the AICS component is installed, followed by /api/v2.0.

To use HTTPS, specify https:// in your base URL string.

• Configured in: Agent State Connector object, [default] section
• Mandatory: yes
• Default value: none
• Valid values: (string) A valid common substring of AICS endpoint URLs, in the following format:

https://<aics_server_host_name>/api/v2.0 or http://<aics_server_host_name>/api/v2.0

• Changes take effect: After restart

jop-password
Specifies a user password valid for use with the Genesys Predictive Routing.

• Configured in:
• Predictive_Route_DataCfg List object, [default] section
• Agent State Connector, [default] section

• Mandatory: yes
• Default value: none
• Valid values: (string) The password for any valid Predictive Routing user
• Changes take effect: After restart

jop-username
Specifies a user's username to access Genesys Predictive Routing.

• Configured in:
• Predictive_Route_DataCfg List object, [default] section
• Agent State Connector, [default] section

• Mandatory: yes
• Default value: none

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 159

• Valid values: (string) Any valid email address registered with Predictive Routing.
• Changes take effect: After restart

jop-update-thread-wait-timeout
Specifies the thread waiting timeout, in milliseconds, applied to the AI Core Services (AICS) subscribe
process. This timeout can prevent a polling loop from taking up unacceptable CPU bandwidth at busy
periods.

• Configured in: Agent State Connector object, [default] section
• Default value: 50
• Valid values: Any positive integer
• Changes take effect: On restart

reset-jop-on-startup

Important
This option is removed in Agent State Connector (ASC) release 9.0.006.08 and higher.
To delete agents, delete your current agent profile schema in the Predictive Routing
application, and then upload an updated schema.

Specifies whether agent profiles are recreated at startup. These profiles are used to query Stat Server
about agent statistics.

• Configured in: Agent State Connector object, [default] section
• Default value: true
• Valid values:

• true—When Agent State Connector (ASC) starts up, it deletes all agent profiles previously stored in
the AI Core Services (AICS) database and recreates agent profiles from the Person data from
Genesys Configuration Server for the Tenants that ASC monitors.

• false—ASC uses the previously-stored agent profiles.

• Changes take effect: On restart

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 160

skip-groups
If this parameter set to true, ASC ignores all Configuration Server data about groups and events
connected with updates to groups.

Set this option to true if the scoring request action_filters field contains only the skill expression
filters and does not include filters by Agent Group names. ASC then skips reading Agent Group
information from Configuration Server, which should significantly reduce ASC initialization time on
start up.

• Configured in: Agent State Connector object, [default] section
• Default value: false
• Valid values: true, false
• Changes take effect: On restart
• Introduced in: 9.0.006.03

ss-custom-statistic-name
Use this option to specify the name of a custom statistic that ASC should read from Stat Server. By
default, ASC subscribes for CurrentAgentState data.

To use this functionality, you must first configure the custom statistic in Stat Server before you can
specify it as the value for the ss-custom-statistic-name option. Refer to Create a Custom Stat
Server Statistic in the Predictive Routing Deployment and Operations Guide for complete instructions.

• Configured in: Agent State Connector object, [default] section
• Default value: CurrentAgentState
• Valid values: A string consisting of any valid custom statistic name
• Changes take effect: On restart

ss-subscription-timeout
Specifies a timeout, in milliseconds, between each subscription to avoid overloading Stat Server.

Important
• A series of Stat Server switchovers from primary to backup indicates that Stat Server is

overloaded. If you see this pattern, increase the value of this option.

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 161

• To resolve this issue, you might also need to adjust the value of the threads-max-size
option.

• Configured in: Agent State Connector object, [default] section
• Default value: 10
• Valid values: Integers from 10–1000

• Changes take effect: On restart

ss-monitoring-reconnect-count
Specifies the maximum number of reconnect attempts to Stat Server before ASC generates log event
60703, for which you should set an alarm. To be exact, if ASC detects a switchover or disconnection
the number of times set in this option during the time period set in the ss-monitoring-reconnect-
min option, ASC generates the log event. The cancel event for this alarm should be 60704.

• Configured in: Agent State Connector object, [default] section
• Default value: 4
• Valid values: Integers from 1–10000

• Changes take effect: On restart

ss-monitoring-reconnect-min
Specifies a time interval, in minutes, that ASC uses when monitoring multiple Stat Server switchover
events. If ASC detects as many switchovers or disconnects as specified in the ss-monitoring-
reconnect-count during the time period configured in this option, ASC generates log event 60701,
for which you should set an alarm.

• Configured in: Agent State Connector object, [default] section
• Default value: 60
• Valid values: Integers from 1–50000

• Changes take effect: On restart

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 162

stat-srv-ws-conn

Important
This option has been removed in Agent State Connector (ASC) release 9.0.006.08 and
higher. ASC now supports warm standby connections by default.

ASC can now establish a warm standby connection to a primary/backup Stat Server pair.

• Configured in: Agent State Connector object, [default] section
• Default value: true
• Valid Values:

• true—ASC establishes a warm stand by connection to a primary and backup Stat Server (if a backup
Stat Server is configured). On startup, ASC reads the connection parameters for the primary Stat
Server from the ASC Application object.

• false—ASC establishes a connection only to the primary Stat Server.

• Changes take effect: On restart

timebased-statistic-interval
Specifies the interval (in seconds) between statistic update requests to Stat Server for any statistics
you have configured Agent State Connector (ASC) to monitor. See Configure ASC to Monitor Statistics
for how to configure ASC and, if necessary, Stat Server. Use this option to ensure that you do not
overload Stat Server. Environments with very large agent pools (30,000+ agents) might need to
adjust the value of this option.

Important
In the initial release of this functionality (9.0.012.01), the only supported statistic is
StatAgentOccupancy.

• Configured in: Agent State Connector object, [default] section
• Default value: 60 (seconds)
• Valid Values: Any positive integer
• Changes take effect: On restart
• Introduced In: 9.0.012.01

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 163

threads-max-size
Specifies the maximum number of threads used to subscribe for agent updates from Stat Server
using a multithreading approach. Adjust the value for this option as needed in your environment to
ensure that you do not overload Stat Server.

Important
• A series of Stat Server switchovers from primary to backup indicates that Stat Server is

overloaded.
• To reduce load on Stat Server decrease the value of this option.
• To resolve this issue, you might also need to adjust the value of the ss-subscription-

timeout option.

• Configured in: Agent State Connector object, [default] section
• Default value: 100
• Valid Values: Any positive integer up to 2000

• Changes take effect: On restart

[log] Section
Configure the following options in the [log] section:

standard
all
verbose

standard
Specifies the outputs to which an application sends the log events of the Standard level. The log
output types must be separated by a comma when more than one output is configured. For example:

standard = stderr, network

• Configured in: Agent State Connector Application object, [log] section
• Mandatory: yes
• Default value: stdout
• Valid values: (string)

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 164

• stdout—Log events are sent to the Standard output (stdout).
• stderr—Log events are sent to the Standard error output (stderr).
• network—Log events are sent to Message Server, which can reside anywhere on the network.

Message Server stores the log events in the Log Database.
• memory—Log events are sent to the memory output on the local disk. This is the safest output in

terms of the application performance.
• <filename>—Log events are stored in a file with the specified name. If a path is not specified, the

file is created in the application's working directory.

• Changes take effect: Immediately

all
Specifies the outputs to which an application sends the log events of the all level. The log output
types must be separated by a comma when more than one output is configured. For example:

all = stdout, logfile

• Configured in: Agent State Connector Application object, [log] section
• Mandatory: yes
• Default value: stdout
• Valid values: (string)

• stdout—Log events are sent to the Standard output (stdout).
• stderr—Log events are sent to the Standard error output (stderr).
• network—Log events are sent to Message Server, which can reside anywhere on the network.

Message Server stores the log events in the Log Database.
Setting the all log level option to the network output enables an application to send log events
of the Standard, Interaction, and Trace levels to Message Server. Debug-level log events are
neither sent to Message Server nor stored in the Log Database.

• memory—Log events are sent to the memory output on the local disk. This is the safest output in
terms of the application performance.

• <filename>—Log events are stored in a file with the specified name. If a path is not specified, the
file is created in the application's working directory.

• Changes take effect: Immediately

verbose
Determines whether a log output is created. If it is, specifies the minimum level of log events
generated. The log events levels, starting with the highest priority level, are Standard, Interaction,
Trace, and Debug.

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 165

• Configured in: Agent State Connector Application object, [log] section
• Mandatory: yes
• Default value: standard
• Valid values: (string)

• all—All log events (that is, log events of the Standard, Trace, Interaction, and Debug levels) are
generated.

• debug—The same as all.
• trace—Log events of the Trace level and higher (that is, log events of the Standard, Interaction, and

Trace levels) are generated, but log events of the Debug level are not.
• interaction—Log events of the Interaction level and higher (that is, log events of the Standard and

Interaction levels) are generated, but log events of the Trace and Debug levels are not.
• standard—Log events of the Standard level are generated, but log events of the Interaction, Trace,

and Debug levels are not.
• none—No output is produced.

• Changes take effect: Immediately

Install and Configure Predictive Routing Configuration Options

Predictive Routing Deployment and Operations Guide 166

Start and Stop All GPR Components
• Start and Stop AICS
• Autostart AICS
• Start and Stop ASC
• Start and Stop Strategy Subroutines

Start and Stop AICS

Starting and stopping AICS differs somewhat depending on whether you are running a single-server
deployment or an HA deployment. Click the link for the appropriate procedure:

• Single-server AICS
• HA AICS

AICS Running on a Single Server
This section assumes that you have completed all prerequisite steps to deploy Docker and to unpack
and install AICS. For instructions, see Deploy AI Core Services on a Single Host.

To start the AICS application, run the following commands:

$ cd IP_JOP_PRR_<version_number>_ENU_linux/scripts/
$ bash start.sh

The start.sh command does the following:

• Ensures that no previous instance of the application is running. If an instance is already running, the
new start process shuts down.

• Exports all the required environment variables.
• Starts the mongodb container service.

As soon as the mongodb service is available and running, start.sh starts the remaining AICS
containers.

To stop the AICS application, run the following commands:

$ cd IP_JOP_PRR_<version_number>_ENU_linux/scripts/
$ bash stop.sh

The stop.sh command shuts down AICS, starting with the worker containers and progressing to the
other containers after they have stopped.

Start and Stop All GPR Components Configuration Options

Predictive Routing Deployment and Operations Guide 167

To restart the AICS application, run the following commands:

$ cd IP_JOP_PRR_<version_number>_ENU_linux/scripts/
$ bash restart.sh

The restart.sh command performs the same functions as the stop.sh command followed by the
start.sh command.

AICS Running in HA Mode
This section assumes that you have completed all prerequisite steps to deploy Docker, unpack and
install AICS, and import the AICS Docker images to the various nodes in the Docker Swarm cluster.
For instructions, see Deploy in High Availability Environments.

To start the AICS application, run the following commands:

$ cd IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/
$ bash start.sh

The start.sh command does the following:

• Ensures that no previous instance of the application is running in the Docker Swarm cluster. If an
instance is already running, the new start process shuts down.

• Exports all the required environment variables.
• Validates the cluster before proceeding to start the included nodes.

To stop the AICS application, run the following commands:

$ cd IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/
$ bash stop.sh

The stop.sh command shuts down AICS on every node in the Docker Swarm cluster.

To restart the AICS application, run the following commands:

$ cd IP_JOP_PRR_<version_number>_ENU_linux/ha-scripts/
$ bash restart.sh

The restart.sh command performs the same functions as the stop.sh command followed by the
start.sh command.

Important
• The start.sh and restart.sh commands should be executed on a node inside the

Docker Swarm cluster that is running the mongodb service. If you run these commands
on a node without the mongodb service, it fails and generates a helpful error message.

• You can execute the stop.sh command on any node in the Docker Swarm cluster.

Start and Stop All GPR Components Configuration Options

Predictive Routing Deployment and Operations Guide 168

Autostart AICS

To auto-start the application cluster on server reboot add the following lines to the /etc/rc.d/rc.local
file:

Adds execution permissions to rc.local
sudo chmod u+x /etc/rc.d/rc.local

Makes sure docker has stated
sudo echo "sleep 10" >> /etc/rc.d/rc.local

starts the containers on boot
sudo echo "bash /home/pm/IP_JOP_PRR_<version_number>_ENU_linux/scripts/start.sh" >>/etc/rc.d/
rc.local

Restart the server and verify that the application is running.

Note: You may need to change the parameters passed to start.sh.

Start and Stop ASC

All Agent State Connector instances can be started and stopped from Genesys Administrator. For
instructions on starting and stopping from Genesys Administrator, see the System Dashboard topic in
the Genesys Administrator Help.

To stop ASC manually from the command line, use the appropriate one of the following procedures:

Start ASC Manually on Linux

To start ASC from the command line, open a terminal window on the host machine and enter the
following commands:

cd <agent state="" connector="" working="" directory="">
./AgentStateConnector.sh -host
<host_name> -port <port_number> -app
<application_name></application_name></port_number></host_name></agent>

You can start the Agent State Connector by entering ./run.sh.

Start ASC Manually on Windows

To start ASC from the command line:

• Open a terminal window on the host machine and run the AgentStateConnector.bat script.

To start ASC deployed on Windows host from Genesys Administrator:

• Configure on the "Server Info" tab the following parameters:
• Command Line: <path to="" jdk="" bin="" folder="">\java.exe</path>
• Command Line Arguments: -jar agent_state_connector-<version>-jar-with-

Start and Stop All GPR Components Configuration Options

Predictive Routing Deployment and Operations Guide 169

https://docs.genesys.com/Documentation/GA/latest/user/DashSystem

dependencies.jar -host <host_name> -port <port_number> -app
"<application_name>"</application_name></port_number></host_name></version>

• Start the ASC using "Start" button on the application page.

Stop ASC Manually on Linux

If you need to stop ASC from the host using the command line, enter the following:

ps ax | grep <asc_application_name>
kill -9 <shell_script_pid>
kill -9
<pid_of_java_process_running_asc></pid_of_java_process_running_asc></shell_script_pid></asc_application_name>

Important
For an emergency stop, follow the same procedure given here.

Stop ASC Manually on Windows

If ASC is running as an application—not as a Windows Service—stop it using the following procedure.

• From the application’s console window, press CTRL+C.
• From Genesys Administrator, use "Stop" button on the ASC application page.

Start and Stop Use of the Strategy Subroutines

To turn on Predictive Routing in your routing strategy:

1. Open the Predictive_Route_CfgData Transaction List object.
2. Set the prr-mode option to any value except off in all sections that define predictors, and also in the

[default-predictor] section.

To turn off Predictive Routing in your routing strategy:

1. Open the Predictive_Route_CfgData Transaction List object.
2. Set the prr-mode option to off in all sections that define predictors, and also in the [default-

predictor] section.

Start and Stop All GPR Components Configuration Options

Predictive Routing Deployment and Operations Guide 170

How Does GPR Score Agents?
GPR scores agents based on the data uploaded to the Agent and Customer Profiles or, if you are
using the GPR API, on data passed in the API score request as part of the context parameter. If both
are present, data from the API request takes priority over data from the Agent and Customer Profiles.

This topic explains how GPR handles various scoring scenarios, depending on your environment and
your configuration settings.

Default Agent Scores

If an agent belongs to the target Agent Group but GPR does not score the agent, the
isAgentScoreGood and ScoreIdealAgent subroutines assign a score for that agent according to the
value set for the default-agent-score configuration option.

For agents who have a default score assigned, the following KVPs reflect that value:

• gpmAgentScore, which records the value specified in the default-agent-score option if the agent who
handled the interaction had the default score. If the the AICS scoring engine calculated a score for the
agent, gpmAgentScore reports the calculated score value.

• gpmDefaultAgentScore, which records the value specified in the default-agent-score option.
• gpmDefaultScoreUsed, which indicates whether the selected agent was assigned the default score.
• gpmDefaultScoredAgents, which records the number of agents assigned the default agent score.

Example 1

Agents A and B log in after the scoring request is made and are each assigned the default score,
which is 40. Agent A receives the interaction. The related KVPs have the following values:

• gpmAgentScore = 40
• gpmDefaultAgentScore = 40
• gpmDefaultScoreUsed = 1
• gpmDefaultScoredAgents = 2

Example 2

GPR assigns Agent C a score of 80. The default score is 40. No agents are assigned the default score.
The related KVPs have the following values:

• gpmAgentScore = 80
• gpmDefaultAgentScore = 40
• gpmDefaultScoreUsed = 0
• gpmDefaultScoredAgents = 0

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 171

Score Adjustment

The GPR subroutines enable you to adjust agent scores using an occupancy factor when URS sorts
them. You control the agent occupancy setting in the agent-occupancy-factor configuration option.
Scores adjusted using an agent occupancy factor are recorded in the gpmAdjustedAgentScore KVP.

Example

GPR returns a score of 80 for Agent A. The agent-occupancy-factor option value is 0.5. If this
agent selected to receive the interaction, the agent score KVPs have the following values:

• gpmAdjustedAgentScore = 40
• gpmAgentScore = 80

Important
This adjusted score is used only for sorting the agent scores in the ScoreIdealAgent
subroutine. The adjusted agent score is used in the isAgentScoreGood subroutine to
compare the agent score with the configured threshold. The actual returned score is
used.

Threshold Scores

To implement the agent holdout feature, GPR checks the score returned for the agent against the
threshold value configured in the score-based-threshold option. URS calls the isAgentScoreGood
subroutine to suppress routing to an agent who is in ready state if this agent does not provide an
acceptable match for the interaction. This is used in conjunction with relaxation thresholds to target
better-matched agents preferentially, expanding the pool of agents if the best-matched agents are
unavailable.

• See Agent Holdout Options for the complete list of options used for agent holdout and threshold
settings.

Score Relaxation Timeouts
By design, URS checks the threshold relaxation ("awakens") at two-second intervals. As a result, the
minimum real-world value for threshold-relaxation-timeout is 2 because the threshold relaxation
is checked only every two seconds. Even though the default value for the threshold-relaxation-
timeout option is 1, URS applies the threshold relaxation only at two-second intervals.

When the initial-threshold-timeout value has elapsed, the minimum score required to allow an
agent to handle the interaction is reduced by the configured relaxation step. This relaxation step can
be applied multiple times, depending on the option settings you specify.

Example 1

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 172

GPR returns a score of 50 for Agent A. The threshold and relaxation options have the following values:

• score-based-threshold = 55
• initial-threshold-timeout = 2
• threshold-relaxation-timeout = 4
• threshold-relaxation-step = 4

Agent A is selected after 6 seconds. The related KVPs have the following values:

• gpmAgentScore =50
• gpmInitialScoreThreshold = 55
• gpmFinalScoreThreshold = 47

URS attempts for Agent A Threshold Value Result
Interaction queued and scoring
completed in the same second 55 (initial threshold value) agent score (50) < threshold (55)

after 2 seconds 51 (first relaxation applied, 55-4) agent score (50) < threshold (51)

after 4 seconds 51 (no change from previous
step) agent score (50) < threshold (51)

after 6 seconds 47 (second relaxation applied,
51-4)

agent score (50) > threshold
(47); interaction routed to agent

Example 2

GPR returns a score of 30 for Agent B. The threshold and relaxation options have the following
values:

• score-based-threshold = 40
• initial-threshold-timeout = 5
• threshold-relaxation-timeout = 2
• threshold-relaxation-step = 5

Agent A is selected after 8 seconds. The related KVPs have the following values:

• gpmAgentScore =30
• gpmInitialScoreThreshold = 40
• gpmFinalScoreThreshold = 30

URS attempts for Agent B Threshold Value Result
Interaction queued and scoring
completed in the same second 40 (initial threshold value) agent score (30) < threshold (40)

after 2 seconds 40 (no change from previous
step) agent score (30) < threshold (40)

after 4 seconds 40 (no change from previous agent score (30) < threshold (40)

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 173

URS attempts for Agent B Threshold Value Result
step)

after 6 seconds (initial timeout is
5 seconds, but relaxation is
applied only when URS awakens)

35 (first relaxation applied, 40-5) agent score (30) < threshold (35)

after 8 seconds 30 (second relaxation applied,
35-5)

agent score (30) = threshold
(30); interaction routed to agent

Example 3

GPR returns a score of 35 for Agent C. The threshold and relaxation options have the following
values:

• score-based-threshold = 40
• initial-threshold-timeout = 5
• threshold-relaxation-timeout = 1 (no value specified, default value used)
• threshold-relaxation-step = 1 (no value specified, default value used)

Agent C is selected after 10 seconds. The related KVPs have the following values:

• gpmAgentScore =35
• gpmInitialScoreThreshold = 40
• gpmFinalScoreThreshold = 34

URS attempts for Agent C Threshold Value Result
Interaction queued and scoring
completed in the same second 40 (initial threshold value) agent score(35) < threshold (40)

after 2 seconds 40 (no change from previous
step) agent score (35) < threshold (40)

after 4 seconds 40 (no change from previous
step) agent score (35) < threshold (40)

after 6 seconds (initial timeout is
5 seconds, but relaxation is
applied only when URS awakens)

38
first and second relaxation applied:

• first relaxation after initial 5
seconds

• second relaxation after next 1
second

agent score (35) < threshold (38)

after 8 seconds 36 (third and fourth relaxations
applied, 38 - 2) agent score (35) < threshold (36)

after 10 seconds 34 (fifth and sixth relaxations
applied, 36 - 2)

agent score (35) > threshold
(34); interaction routed to agent

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 174

How the Availability Status of Agents in the Target Agent Group is
Determined

The source for agent availability information depends on your release of Agent State Connector
(ASC).

Agent State Connector release 9.0.015.04 and higher

The connection between ASC and Stat Server is optional. If you do not specify a Stat Server in the
ASC Application object Connections tab, URS provides agent availability information. It checks
with Stat Server on the agent login status of the specified target group before making the scoring
request, and adds the list of matching agents in the request field 'action_filters'.

The GetActionFilters subroutine reads the login statuses specified to be available for routing from the
login-status-expression configuration option.

• To use the new functionality, set the value of the use-action-filters configuration option, introduced in
Ai Core Services release 9.0.015.03, to false (the default value is true, which maintains the same
functionality as in previous releases).

Sample scoring request showing a list of agents employee IDs in the field action_filters, where
POC0x strings indicate IDs of agents with a required login status:

{
"token":"<api_token>",
"format_as_map":"true",
"context_id":"3600",
"log_request":"true",
"action_filters":"employeeId in [\"POC01\",\"POC02\",\"POC03\",\"POC04\"]",
"context":
{

"PR_TYPE":"Gold",
"PR_LANG":"French"

}
}

Important
• This architecture increases the load on URS by approximately 15%. Use the Sizing Guide

to verify that you have sufficient URS bandwidth available.
• Only alphanumeric characters, spaces, and underscores are supported in the names of

Stat Server Application objects. Names including other special characters cause a
malformed scoring request.

Agent State Connector release 9.0.015.01 and lower

All agent status changes (such as login, logout, ready, and so on) are synced to AICS by ASC, which
receives the status updates from Stat Server. When a scoring request is made, the target group

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 175

names include the login statuses (expression) that mark an agent as available for routing in the
action filters field. GPR returns the scores only for the agents present in the target group that
matching the specified login status.

Sample scoring request showing the use of action filters with a skill expression and a login status
expression, where all agents with the skill 'SkillFrench', having a skill level higher than 10, and who
are currently logged in, are selected:

{
"token":"<api_token>",
"format_as_map":"true",
"context_id":"3600",
"log_request":"true",
"action_filters":"Skill_French>10 & ((loginStatus>1 & loginStatus<23) | loginStatus>23)",
"context":
{

"PR_TYPE":"Gold",
"PR_LANG":"French"

}
}

(Optional) Store Scoring Data in the GPR Log File

You can configure the GPR subroutines to log the interaction context and the scoring response details
to the GPR API when the log-to-api configuration option is set to true.

Important
Score log functionality requires the following releases of GPR components:

• AICS 9.0.015.03 and higher
• URS Strategy Subroutines 9.0.015.00 and higher

With two exceptions, the same values are stored in the score log and in the Genesys Info Mart tables.
The exceptions are the following, which appear in the score log but not in the Info Mart database:

• gpmAgentID - Genesys Info Mart requires only the Agent DBID to retrieve detailed agent information
during aggregation.

• ConnID - Genesys Info Mart requires only the CallUUID to retrieve detailed interaction information,
including the ConnID, during aggregation.

To support real-time reporting in Genesys Pulse, all GPR KVPs are added in two places:

• In user data, which is in the outer body of the score log request.
• In the context field of the score log request, along with other user data typically included in the context

field.

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 176

Integrate with Genesys Reporting includes a complete list of all KVPs stored in the Genesys Info Mart
database.

Configure GPR to Log Scoring Details
To enable score logging, configure the following:

1. Add the following environment variables to the AICS tango.env file:
• LOGS_COLLECTOR_ENABLED = True

• SCORE_LOG_BACKUPCOUNT = 30 (The maximum number of backup copies of the compressed log
files.)

• SCORE_LOG_FILENAME = /var/log/gpr/supportability-tool-logs/score_logs.log (The path
where the score log files are kept. The log file is mounted to /datadir/supportability-tool-logs/
on the host running the Tango container.)

2. Restart the Tango container.

Clean Up Scoring Logs
GPR doesn’t remove score logs automatically or clean up the score logs associated with a Predictor
when that Predictor is deleted. To delete unneeded score logs from MongoDB, AI Core Services
release 9.0.015.03 and higher includes the /scr/gpr/scripts/clean_score_logs.py script, which is
located in the tango container. If you are running a release lower than 9.0.015.03, you can copy the
script into the /scripts directory and run it successfully.

The commands required to run the clean_score_logs.py script depend on your version of AICS:

For release 9.0.013.01 and higher, run the script using the following commands:

$ docker exec -ti tango /bin/bash
$ cd /src/gpr/scripts
$ MODE=prod python3.6 clean_score_logs.py <parameters>

For release 9.0.012.01 and lower, run the script using the following commands:

$ docker exec -ti tango /bin/bash
$ cd /src/gpr/scripts
$ MODE=prod python clean_score_logs.py <parameters>

In an HA deployment, execute the script on any node in the Docker Swarm cluster that is running the
mongodb service.

Determining the Correct Parameters for the clean_score_logs.py Script

The parameters to be passed with the script to clean up unneeded score logs depend on how the
score log is structured.

• When you pass an API POST /score_log request that includes a Predictor ID, GPR stores the score log in a
collection named using the following format:

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 177

scorelog_<predictor_id><predictor_name_without_spaces-or_tabs>.
To delete such a collection, run the script without parameters. The script automatically detects
collections that are left after the corresponding predictors were deleted and deletes them.

• When you pass an API POST /score_log request that does not include a Predictor ID, GPR stores the
score log in a default account-specific collection named
scorelog_default_nopredictor_<account_id>. See Deleting From Default Score Log Collections
(below) for specific instructions.

• The optional --dry_run parameter instructs the script not to clean up the score log files, but only to
display how many collections/records are going to be deleted.

Deleting From Default Score Log Collections

The exact format of the default score logs depends on the Universal Routing Server (URS) strategy
configuration. To remove score logs for deleted Predictors from the default collection, define the path
to the Predictor ID in the score log body structure and pass it to the script as a separate parameter. If
you do not specify the path, the script cannot automatically detect which Predictor data to delete.

The following examples show different score log structures in the default collection.

• Note that the examples assume you are using AICS 9.0.013.01 or higher. If you are running an earlier
version, adapt the commands as explained at the beginning of the Clean Up Score Logs section
(above).

1. To delete logs formatted as in Example 1 and Example 2 (below) run the script with the parameter --
predictor_key=p_id, as shown in the following command:

python3.6 src/gpr/scripts/clean_score_logs.py --predictor_key=p_id

2. To delete logs formatted as in Example 3 (below) run the script with the parameter --
predictor_key=context.gpmPredictorId, as shown in the following command:

python3.6 clean_score_logs.py --predictor_key=context.gpmPredictorId

Example 1

{
"_id" : ObjectId("5d0c94e341c24c30bdc970ff"),
"param" : "1",
"p_id": "5ae0cb37e2d22d221dc07c5b",
"created_at_slog" : ISODate("2019-06-21T08:27:15.722Z")

},

Example 2

{
"_id" : ObjectId("5d0c94e341c24c30bdc97101"),
"param" : "2",
"p_id": "5ae0cb37e2d22d221dc07c5b",
"created_at_slog" : ISODate("2019-06-21T08:33:12.107Z")

},

Example 3

{
"context_id" : "3600",
"prrPredictor" : "",
"context" : {

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 178

"gpmMedianScore" : "9",
"last_name" : "A",
"gpmPredictorId" : "5ad6802b8615b3002c8985d0",
"gpmAgentScore" : "0",
"sex" : "M",
"seniority" : "NEW",

},
"created_at_slog" : ISODate("2019-05-17T08:20:11.503Z

}

Sample Score Log Output
The following sample shows what you might receive in response to a request for score log details
from the API. For details, see the Predictive Routing API Reference. (Requires a password for access.
Please contact your Genesys representative if you need to view this document.)

{
"prrPredictor": "manual_test",
"gpmMode": "prod",
"gpmStatus": "agent-surplus",
"gpmPredictor": "manual_test",
"gpmPredictorId": "5cb07deeb3fc5800397fb8f4",
"gpmModel": "manual_model",
"gpmModelId": "5cb07e11c0eb2f00353b6151",
"gpmResult": "1",
"gpmGlobalScore": "0",
"gpmMedianScore": "21",
"gpmMaxScore": "72",
"gpmMinScore": "9",
"gpmTargetSize": "4",
"gpmUse": "1",
"gpmCustomerFound": "1",
"CALLID": "01VI5E6TOSED503B16OAHG5AES000004",
"START_TS": "1559063048",
"gpmRouteAttemptId": "1",
"context_id": "3600",
"gpmAgentScore": "72",
"gpmAgentRank": "1",
"gpmScoreAboveMedian": "1",
"gpmPredictorType": "Service",
"gpmDefaultAgentScore": "21",
"gpmDefaultScoredAgents":"4",
"gpmDefaultScoreUsed": "0",
"gpmInitialScoreThreshold": "50",

"gpmFinalScoreThreshold": "50",
"gpmAdjustedAgentScore": "72",
"gpmSuitableAgentsCount": "2",
"gpmGlobalScoreCount": "0",
"gpmAgentID" : "POC01",
"ConnID": "006c02dcefa47049"
"gpmAgentDBID": "104",
"gpmWaitTime": "6",
"context":
{

"PR_TYPE": "Gold",
"PR_LANG": "French",
"RPVQID": "0016FD27SOEDB5861EOAHG5AES000004"

}
}

How Does GPR Score Agents? Configuration Options

Predictive Routing Deployment and Operations Guide 179

Integrate with Genesys Routing
Genesys Predictive Routing (GPR) provides two packages of subroutines that integrate into your
Genesys routing environment. They perform the agent scoring and best-match selection functions,
enabling you to fine-tune your routing to take advantage of the rich data on agents, customers, and
interactions available to you in your environment.

• To understanding routing interaction flows and how interactions are selected using GPR, see Routing
Scenarios Using GPR.

• The two subroutines options are the following:
• URS Strategy Subroutines - for environments routing with Universal Routing Server (URS) and

Interaction Routing Designer (IRD).
• Composer Subroutines - for environments designing routing flows with Composer/Orchestration

Server (ORS).

Important
The Composer Subroutines extend the functionality of the URS Strategy Subroutines so that you can use
Composer and ORS to manage your routing. However, they are a wrapper around the URS Strategy
Subroutines, not an entirely separate set of subroutines. As a result, they require that you also install URS
and IRD.

Additional Information

• For a description of the Designer routing block for Predictive Routing and how to configure it, see
Predictive Routing Block (Genesys Engage cloud users only).

• If you would like to evaluate Genesys Predictive Routing for use with schedule-based routing (using
Genesys Workforce Management), service-level routing, or business-objective routing, contact Genesys
Professional Services for a review of your routing environment.

Integrate with Genesys Routing Configuration Options

Predictive Routing Deployment and Operations Guide 180

https://docs.genesys.com/Documentation/PSAAS/latest/Administrator/PredictiveRouting

Routing Scenarios Using GPR
To deploy the GPR subroutines, you modify your IRD strategies or Composer workflows o incorporate
them. Rather than picking the Agent with required skills who has been available longest, or using
simple Agent Group routing, Predictive Routing predicts the best results for a specific interaction,
based on customer intent or other relevant information.

This topic presents the following information:

• A high-level view of a Predictive Routing interaction flow
• How the URS Strategy Subroutines work together to score agents and identify a routing target
• Routing scenarios using Predictive Routing, explaining how URS ranks agents by score

Important
• If you would like to evaluate Genesys Predictive Routing for use with schedule-based

routing (using Genesys Workforce Management), service-level routing, or business-
objective routing, contact Genesys Professional Services for a review of your routing
environment.

• If your environment uses multiple URS instances receiving interactions from a single T-
Server, the only criterion used to select the next interaction for routing is priority.

• This topic assumes that you are using a virtual agent group (VAG) as the target for your
routing. If you route using a skill expression to identify your targets, convert it to a VAG
string expression using the IRD functions MultiSkill or CreateSkillGroup before passing
the resulting string as an argument to the ActivatePredictiveRouting_v3 subroutine. See
Using Agent Skills for Ideal Agent Selection in the Supplement to the Universal Routing
8.1 Reference Manual for more information.

High-Level Predictive Routing Interaction Flow

The graphic below shows a very general interaction flow using Predictive Routing. Refinements to the
flow depend greatly on details of your environment. Key aspects that differ in various environments:

• Your data - That is, the interaction types supported and the applications that might have relevant
information. Genesys Info Mart is a key data source, but CRM systems and other applications in your
environment can also provide important data. See Prepare Your Data for more information.

• Your pre-routing data flow - This depends on the interaction type and the exact architecture in your
environment. For example, is this a chat interaction or a call? Do you use an IVR, and if so, what
information do you attach?

• The Genesys routing solution you are using - Predictive Routing supports routing with IRD/URS and with

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 181

Composer/ORS/URS.
• Your reporting solution for Predictive Routing - Whether you are using GCXI, Genesys Pulse, or another

solution to present the data stored in Genesys Info Mart.

How the Strategy Subroutines Work

The following sequence provides a basic overview of the way the various GPR subroutines work
together to evaluate agent scores and determine the best match given the currently available agents
and the currently waiting interactions.

1. ActivatePredictiveRouting retrieves agent scores are retrieved from AI Core Services via REST API
request and stores them in the global map in URS memory. The name of the map is the interaction
ConnectionId (the original ID, if the interaction is a consult). This map contains pairs of agent employee
IDs as the keys and their scores for the interaction as values. ActivatePredictiveRouting calls the
SetIdealAndReadyCondition subroutine for further interaction processing.

2. SetIdealAndReadyCondition processes the different modes of Predictive Routing. It calls the
SetIdealAgent IRD function to schedule the execution of the URS callback subroutines. It calls the
ScoreIdealAgent subroutine to facilitate interaction queueing according to their scores, and calls
SetReadyCondition (if enabled) to call the isAgentScoreGood subroutine.

The parameters for these callback subroutines are retrieved and verified before any URS request is
invoked to enable the callbacks.

3. After establishing a list of potential targets based on the target expression (Skill, Agent Group, and so
on) SetIdealAndReadyCondition then executes the ScoreIdealAgent callback subroutine.

4. ScoreIdealAgent retrieves the scores for the potential target agents from the global map set in Step 1.
5. When an agent becomes ready, URS executes the isAgentScoreGood subroutine to determine whether

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 182

that target is acceptable. If you enabled agent hold-out, URS executes the isAgentScoreGood
subroutine when an agent becomes ready, which determines whether that agent reaches the specified
threshold score. If not, URS waits for a configured timeout period, then checks whether any agent now
satisfies the adjusted threshold value. See How Does GPR Score Agents? for a detailed discussion of
how agent hold-out routing works.

6. Once the isAgentScoreGood subroutine locates an available agent who scores above the current
threshold, it sends the target details to URS to initiate routing.

7. URS calls the GPRIxnCompleted subroutine as a custom step from a Routing Block in the strategy. It
collects the Predictive Routing outcome for the successfully routed interaction (the DBID of the agent to
whom it was distributed, the score of the agent, other interaction statistics relevant for the Predictive
Routing performance) and prepares the user data for Predictive Routing reporting.

8. URS calls the GPRIxnCleanup subroutine from both the success and failure exits from the Routing block,
or if the interaction is abandoned. The purpose of the subroutine is to publish the Predictive Routing
reporting user data and to clean up the ScoreIdealAgent and isAgentScoreGood callback subroutines.
GPRIxnCleanup publishes reporting data in two ways:
• It sends a UserEvent containing the user data relevant for Predictive Routing to T-Server/SIP Server,

from which is enters the Genesys historic reporting solution flow.
• It can submit the same data AI Core Services via REST API request where it is stored in the score_log

and can be retrieve using an API request.

Important
If your routing strategy uses the SelectDN and SuspendDN IRD functions instead of a
Routing Block, consult with Genesys Professional services about how the
ActivatePredictiveRouting, GPRIxnCompleted and GPRIxnCleanup subroutines can be
integrated into your strategy.

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 183

Routing Scenarios Using Predictive Routing

When you are using Predictive Routing to route interactions, there are two main scenarios that affect
how this matching plays out:

• Agent Surplus - There are relatively few interactions, which means there could be a number of high-
score agents available. You can configure a minimum threshold so that, if the agents available are not

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 184

very highly ranked, the strategy keeps the interaction in queue until a better-scoring agent becomes
available.

• Interaction Surplus - There are many interactions, so that most agents are busy and it might be more
difficult to find an ideal agent for each interaction. In such a scenario, you can have agents matched to
the interaction for which they have the highest probability of getting a positive result.

Agent Surplus Flow
In this case there are agents logged in and in the Ready state who can respond to interactions
immediately. From a Virtual Agent Group that is defined by skill expression, URS first tries to route an
interaction to an agent with the best score, using the following process to match agents and
interactions:

1. An interaction arrives at the routing strategy, which has a target group of agents.
2. The ActivatePredictiveRouting subroutine sends a request to the Predictive Routing scoring server via

HTTP request.
3. Predictive Routing returns scores for each agent in the target group based on the criteria you selected

in the active model.
4. The ActivatePredictiveRouting subroutine updates a global cache in URS memory, which keeps agent

scores for all interactions. When URS tries to route the current interaction to the agent group, it sorts
the agents according to their scores, in descending order, and routes to the agents with the best score
first.

When URS takes an interaction from the queue:

1. URS calls the ScoreIdealAgent subroutine, which reads the agent scores in the target group from global
map and ranks the agents by score.

2. URS calls the IsAgentScoreGood subroutine, which selects the available agent with the highest score,
assuming the agent has a score high enough to be selected for this interaction.

In an agent-surplus scenario, it is typically not a problem to route to an agent with a good score.
For scenarios where this is not the case, see Interaction Surplus Flow, below.

3. URS calls the PrrIxnCompleted subroutine, which updates user data with the scoring result for storage in
Genesys Info Mart.

4. URS calls the PRRLog macro, which logs the result in the URS log file.

Interaction Surplus Flow
This scenario covers situations when all agents are already busy handling interactions and new
interactions are queued. When one of the agents becomes ready, the system selects the interaction
for which the agent has the best score. This is not necessarily the interaction that has been in the
queue longest.

When interactions are waiting, URS uses a number of criteria to decide the order in which it directs
the interactions to the best target. In general, URS uses the following hierarchy:

1. Interaction priority.

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 185

2. Best agent score.

Important
In scenarios where both scored and unscored interactions might have the same priority, scoring is
disregarded for all the interactions and the selection is based on the next differentiating criterion, time.

3. Time in queue, which can be based on age of interaction or time in queue and can incorporate predicted
wait time.

4. Interaction ID (URS selects the interaction with the lowest—oldest—ID). This is a rarely-used "tie-
breaker" criterion.

Using gpmStatus and gpmSuitableAgentsCount to Monitor Your Routing
gpmStatus and gpmSuitableAgentsCount are KVP values written in the Genesys Info Mart database
when an interaction is routed using the GPR subroutines. (You can also retrieve the values by using
the GPR API to query the score log.)

• gpmStatus indicates whether there was an agent-surplus or an interaction-surplus condition when the
interaction was routed.

• gpmSuitableAgentsCount indicates the number of agents who have scores returned from AICS greater
than or equal to the initial threshold value when the scoring response is received. If
gpmSuitableAgentsCount is 0, then no agents have eligible scores compared with the threshold value,
so the interaction must wait for a higher-scoring agent to become available or for the next threshold
relaxation step

These KVP values, when analyzed for different interactions over a representative day or week period
can help you understand your contact center traffic and GPR performance. The following table
indicates certain scenarios and how to interpret them.

KVP Values Inference

gpmStatus = caller-surplus
gpmSuitableAgentsCount > 0

Your GPR Model is returning useful scores with
relation to the configured routing threshold, but
agent staffing is not adequate to produce
satisfactory wait times.

gpmStatus = agent-surplus
gpmSuitableAgentsCount > 0 or consistently a very small
number

Analyze why the scores GPR returns are not
meeting the configured threshold. You might need
to retrain your Model, adjust the scoring
expression, or reduce the threshold level.

How Interactions are Sorted within the Queue
As each interaction comes in, it is scored, and then assessed relative to the interaction at the
midpoint of the existing array of interactions. Does it come before or after the mid-point?

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 186

Important
The order in which interactions are prioritized is called an array here. This is not
equivalent to a queue. These interactions might be from multiple queues, each of
which is submitting interactions for URS sorting and routing.

After this decision, URS compares the new interaction against the midpoint within the selected
region. Each time URS evaluates the interaction, it is assigned to a smaller region with the total
array, always relative to the midpoint of the previous region.

The sorting decision tree:

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 187

Example 1

Three calls arrive at a contact center:

• C1 - priority = 1, agent score = 0.3, timestamp = 0:00, URS ID = 1
• C2 - priority = 1, agent score = n/a, timestamp = 0:05, URS ID = 2
• C3 - priority = 1, agent score = 0.6, timestamp = 0:10, URS ID = 3

1. C1 arrives first and is placed into the empty array.
2. C2 arrives. URS compares it with the middle (in this case, only) call in the array, C1.

The priority is equal and, because C2 has no agent score, URS moves to the next decision criterion.

3. C2 has a shorter wait time, so is put behind C1.
With only two calls in the array, no further comparison is needed.

4. C3 arrives. URS compares it against the "middle" entry of the array, C1.
The priority is equal. C3 has better score (further from 0), so URS puts it in front of C1.

Outcome: C3, C1, C2 (the example assumes that interactions are taken from the left end of the array)

Example 2

Five calls arrive at a contact center and are placed in either the Predictive Routing queue or a

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 188

conventional queue:

• C1 - priority = 1, agent score = n/a, timestamp = 0:00, URS ID = 1
• C2 - priority = 1, agent score = 0.5, timestamp = 0:05, URS ID = 2
• C3 - priority = 1, agent score = n/a, timestamp = 0:10, URS ID = 3
• C4 - priority = 1, agent score = 0.75, timestamp = 0:15, URS ID = 4
• C5 - priority = 1, agent score = 0.95, timestamp = 0:20, URS ID = 5

1. C1 arrives first. URS places it into the empty array.
2. C2 arrives. URS compares it with the middle (in this case, only) call in the array, C1.

The priority is equal and, because C1 has no agent score, URS moves to the next decision criterion.

3. C2 has a shorter wait time, so is put behind C1. (In this example,
Current order: C1 C2 (the example assumes that interactions are taken from the left end of the
array)

With only two calls in the array, no further comparison is needed.

4. C3 arrives. URS compares it against the "middle" entry of the array, C2.
The priority is equal and, because C3 has no agent score, URS moves to the next decision criterion.

5. C3 has a shorter wait time, so is put behind C2.
Current order: C1 C2 C3

6. C4 arrives. URS compares it against the middle entry of the array, C2.
The priority is equal. C4 has a better score (further from 0), so URS places it before C2.

7. Now URS must determine whether C4 should be before or after C1, which is also before C2.
The priority is equal and, because C3 has no agent score, URS moves to the next decision criterion.

8. C4 has a shorter wait time (a more recent timestamp), so URS places it behind C1.
Current order: C1 C4 C2 C3

9. C5 arrives. URS compares it against the "middle" entry of the array, C2.
The priority is equal. C5 has a better score (further from 0), so URS places it before C2.

10. Now URS must determine whether C5 should be before or after C4, the "middle" call in the section of
the array before C2.

The priority is equal. C5 has a better score, so URS places it before C4.

11. Now URS must determine whether C5 should be before or after C1.
12. C5 has a shorter wait time, so URS places it behind C1.

Final order: C1 C5 C4 C2 C3

Using Agent Hold-Out

Agent hold-out enables you to have an interaction wait a specified time, even when an agent has
become available, if the available agent is has a low score for the interaction and there is a chance a
better-matched agent might become available within the configured time window. The interaction
flow is as follows:

1. URS calls the IsAgentScoreGood subroutine, which determines whether any of the available agents
meet the threshold for handling the interaction.

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 189

2. If available agents have low scores for this interaction and the interaction spent only a short time in the
queue, URS waits for a better agent to become ready.

3. The minimum acceptable score required for an agent for the interaction is gradually reduced, so if no
higher-scored agent becomes available, the lower-scored agent might finally be given the interaction.

After that determination occurs, the remainder of the flow is the same as that given in the agent-
surplus flow above. Use the relevant Predictive_Route_DataCfg Transaction List Object configuration
options to set up the priority increments.

Dynamic Interaction Priority Increments

To avoid having interactions lingering in a queue for an excessive amount of time, URS can trigger an
escalation in interaction priority after a time delay that you set. To speed up interaction handling, you
can incrementally relax the minimum skill level required for agents to handle the interaction or
expand the pool of agents to consider.

Each time a routing strategy tries to route an interactions, it calls the ActivatePredictiveRouting
subroutine. After each failed routing attempt, the strategy checks how long the interaction has been
waiting in the queue and, if the time in queue is above a certain threshold, it routes the interaction to
the next available agent, no matter their score for the interaction.

Use the relevant Predictive_Route_DataCfg Transaction List Object configuration options to set up the
priority increments.

Integrate with Genesys Routing Routing Scenarios Using GPR

Predictive Routing Deployment and Operations Guide 190

Deploy the URS Strategy Subroutines
Genesys Predictive Routing (GPR) provides subroutines components that are integrated with your
Genesys Routing solution. The subroutines are placed within an existing strategy, where they add
agent scoring and best-match functionality that enables you to fine-tune the routing of a specific
interaction to the agent who can best handle it, based on the KPIs you want to optimize.

This topic explains how to use the pre-configured strategy subroutines with Interaction Routing
Designer (IRD) and Universal Routing Server (URS). This topic includes the following information:

• List of subroutines and other files included in the IP, with brief explanations of what they do.
• Deployment procedures.
• See Routing Scenarios Using GPR for a discussion of how the subroutines handle agent-interaction

matching in various scenarios.

For information on how to deploy the Composer Subroutines, see Composer, Orchestration Server
(ORS), and URS.

Out-of-the-Box IRD/URS Strategy Subroutines

The IP for the URS Strategy Subroutines component contains the following strategy subroutine RBN
files as well as the object.kvlt file and the Predictive_Route_Data_Template.cfg file. (The RBN
files are listed in alphabetical, not logical, order.)

• ActivatePredictiveRouting_v3: Called from a routing strategy when the conditions you specify are
met. This subroutine automatically calls additional subroutines that score agents, rank the scored
agents, and evaluate whether there is an agent available to handle the interaction based on agent
score. Referred to simply as ActivatePredictiveRouting in the remainder of this topic.

• GetActionFilters: Called from the ActivatePredictiveRouting subroutine to parse the Virtual Agent
Group string representation. In release 9.0.015.00, the GetActionFilters subroutine was enhanced to
identify the list of agents matching the target skill group along with the configured login status
expression. This information is also reported in the action filters of the scoring request. This
functionality is invoked only when the use-action-filters configuration option is set to false.

• GetScoringAuthToken: Called from the ActivatePredictiveRouting subroutine to authenticate with the
AI Core Services REST API.

• GPRIxnCleanup: Starting in URS Strategy Subroutines 9.0.015.00, performs score log and UserEvent
(KVP) distribution (previously done in the GPRIxnCompleted subroutine). This attached UserEvent data
includes details required for Predictive Routing performance analysis, such as gpmStatus, which
indicates whether, when the interaction was routed, there was an agent-surplus or an interaction-
surplus situation. Also cancels the execution of the ScoreIdealAgent and isAgentScoreGood callback
subroutines if an attempt to route an interaction with Predictive Routing times out. The strategy then
tries to route the interaction using skill-based routing.
• Starting in URS Strategy Subroutines 9.0.015.00, this subroutine requires you to configure certain

parameters. See Configure GPRIxnCleanup for instructions.

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 191

• This subroutine must be called from the default port of the last Routing block used for Predictive
Routing. You must also set the Clear targets flag in that Routing block. Alternatively, you can
configure the strategy to loop back to the same Routing block again after calling the GPRIxnCleanup
subroutine.

• GPRIxnCompleted: Computes the values for the GPR KVPs based on the selected agent scores and
updates the URS global map. In releases prior to URS Strategy Subroutines 9.0.015.00, also attaches
Predictive Routing–specific keys to interaction user data (done in the GPRIxnCleanup subroutine in URS
Strategy Subroutines 9.0.015.00 and later). This attached data includes details required for Predictive
Routing performance analysis, such as gpmStatus, which indicates whether, when the interaction was
routed, there was an agent-surplus or an interaction-surplus situation. Links to the interaction ID in
Genesys Info Mart. (Named PRRIxnCompleted in earlier releases.)

• GPRIxnSetup: (Introduced in URS Strategy Subroutines 9.0.015.00) Creates the interaction global map
in URS memory with the ConnectionID as the key name; adds the Genesys Info Mart KVPs and initializes
them with the default values; sets the gpmMode parameter to off and gpmResult to 15 (Predictive
Routing is turned off or not used for this interaction). See Configure GPRIxnSetup for complete
configuration instructions and how to use this subroutine.

• isAgentScoreGood: URS calls this subroutine to suppress routing to an agent who is in ready state if
this agent does not provide an acceptable match for the interaction. You can use this in conjunction
with relaxation thresholds to target better-matched agents preferentially, expanding the pool of agents
if the best-matched agents are unavailable.

• ScoreIdealAgent: Called by URS before routing an interaction to an Agent Group or Virtual Agent
Group at the time URS invokes the SelectDN function. This subroutine sorts the agents within the target
group according to their scores, in decreasing order. It can also rescale the agent score to the range
accepted by URS, if necessary.

• ScoreIdealAgentDefault: Used either when the agent scores for the current interaction are unknown
or when running GPR in dry-run mode.

• SetIdealAndReadyCondition: Called from ActivatePredictiveRouting subroutine. This is a wrapper
subroutine around scheduling the calls to subroutines such as ScoreIdealAgent and isAgentScoreGood,
which are executed outside the main interaction processing flow. Implements the GPR operation modes
controlled by the prr-mode option.

• SetIdealAndReadyConditionforOCS: Required if you are using the Composer Workflow Subroutines.

Other Files

• objects.kvlt: A text file containing objects required by the strategy subroutines, including the
Print_Log_Message macro. You must import this file as well as the RBN file for the strategy subroutines
to work correctly.

• Predictive_Route_Data_Template.cfg: Template for the Predictive_Route_DataCfg Transaction List
object. Stores GPR-related configuration options and values.

Subroutines for Environments Using Dynamic Priority Routing
Release 9.0.014.04 and higher of the URS Strategy Subroutines provide the following subroutines
that provide improved dynamic-priority interaction handling:

• ActivatePredictiveRouting_v3 - This subroutine does the following:
1. The main routing strategy should set the initial priority for the interaction. The Initialize Variables

block takes the initial priority parameter from the skill data List object and saves it to the

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 192

parBasePriority local variable.
2. After a scoring request is completed and the agent scores are placed into the URS Global Map linked

to the interaction, the subroutine executes priority increments. This happens once per interaction.
3. The subroutine verifies whether the set-dynamic-priority option is set to true. The following steps

are executed only on the first routing attempt when the option is set to true.
4. The subroutine reads the remaining priority options configured on the Predictive_Route_DataCfg

List object (priority-increment, priority-init-interval, and priority-interval).
5. The subroutine calls the IncrementPriorityEx function with the required arguments.

Subroutines for Environments Using Non-ASCII Encoding
Release 9.0.014.04 and higher of the URS Strategy Subroutines can support non-ASCII encoding (by
default, all GPR components use UTF-8 encoding). The subroutines specified below include
enhancements for non-ASCII environments:

• ActivatePredictiveRouting_v3 - Converts non-ASCII characters to UTF-8 characters before sending
scoring requests to the Predictive Routing scoring engine.

• GPRIxnCompleted - Converts non-ASCII characters to UTF-8 characters before sending scoring logs.
• GetScoringAuthToken - Replaces the StrFormat function with the SetStringKey function. This

eliminates an issue with the ~s character in the StrFormat function, which does not work correctly in a
non-ASCII environment.

Important
URS 8.1.400.55 is the minimum required version for GPR-specific IRD subroutines to work in non-ASCII
environments.

Installing the URS Strategy Subroutines

The following is a high-level overview of the steps required to deploy the URS Strategy Subroutines:

1. Configure URS to Support Predictive Routing.
2. Import the subroutines. For a list of the subroutines, with descriptions of their functionality, see IRD/URS

Strategy Subroutines.
3. Define the entry points in your IRD strategy for the appropriate subroutines.
4. Set appropriate values for the strategy subroutine configuration options, which are located in the

Predictive_Route_CfgData Transaction List object.
5. Configure the parameters for the subroutines used in your environment.
6. Test that the subroutines are correctly directing interactions to agents.

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 193

The following sections provide detailed instructions for setting up your subroutines.

Configuring URS to Support Genesys Predictive Routing

Perform the following steps to configure URS to work with GPR:

1. Create the static_strategy configuration option in the [default] section of the URS Application
object and set its value to empty. You can set this option either on the level of individual routing points
or on the tenant/URS level. Depending on where you set it, the option works slightly differently. This
option takes effect immediately and does not require that you restart URS.

2. Configure the http log for URS to check scoring requests and responses. To do this, set the verbose
option in the [web] section to 3.

3. Set the run_verbose option in the [default] section to 0.
4. Set the vqtime option in the [default] section to 13:2048.
5. Enable HTTPS support:

No changes to the Subroutines components are required. However, HTTPS support on Unix-based
operating systems requires that you install the Genesys Security Pack on the host running
Universal Routing Server (URS). See Installing Genesys Security Pack in the Genesys Security
Deployment Guide for more information.

• For instructions, and a general discussion of HTTPS and TLS support among Genesys components,
see the Genesys Security Deployment Guide.

• For HTTP/S configuration for URS, see the section "Web Service Connections Using HTTP Bridge" in
the Genesys 8.1 Universal Routing Deployment Guide, the sections on Web Service Option (p. 687),
IRD Web Service Object (p.771), and TLS (p. 782) in the Universal Routing Reference Manual, and
HTTP Bridge Updates in the Supplement to the Universal Routing Reference Manual.
• Only simple TLS is supported. For simple TLS, you need to configure only the URS

def_trusted_ca option.

If you are using a chain of trusted certificates (intermediate ca and root ca, in pem file format), you
can concatenate them, as described in Configuring Multiple Trusted CAs in the Genesys Security
Deployment Guide.

Strategy Subroutine Integration for URS/IRD

To use the strategy subroutines provided with Predictive Routing, perform the following steps:

1. Navigate to the Export/Import Bar in IRD and import the strategy subroutines from the URS Strategy
Subroutines IP.

For instructions, see the Export/Import Bar topic in the Interaction Routing Designer Help, which
you can open from the Universal Routing landing page.

2. Open the strategy you plan to use with Predictive Routing and place the ActivatePredictiveRouting Call
Subroutine object in the desired location. It must be inserted into the routing strategy before the call to
a Routing block or a call to the SelectDN function. The graphic below shows the subroutine insertion
points.

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 194

https://docs.genesys.com/Documentation/System/8.5.x/SDG/TLSPrep#installGSPU
https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/R/latest/Ref/HTTPBridge
https://docs.genesys.com/Documentation/System/8.5.x/SDG/TLSConns

This subroutine requires the following three input parameters:

• skill_target: A STRING indicating the target selected by the URS for an interaction. This must be
a virtual agent group.

• skill_data: A LIST, which must contain the following two keys:
• overflow_timeout: A STRING defining a period of time in seconds during which URS tries to

route the interaction to the current target.
• base_priority: An INTEGER defining the priority value the interaction has before the call to the

ActivatePredictiveRouting subroutine.

• default_skill_data: A LIST, which must contain the following keys:
• AgentScore: Takes either Y or N as its value. To activate predictive routing, you must set this

parameter to Y.
• predictor: Contains the name of the section in the Predictive_Route_DataCfg Transactions

List configuration object that defines predictor configuration.
• START_TS: (Used in URS Strategy Subroutines 9.0.015.00 and later. See gpmWaitTime

Configuration for details.) The UTC time indicating when an interaction arrived in the queue.
• prr-ixn-timestamp: (Used in URS Strategy Subroutines 9.0.014.04 and earlier. See

gpmWaitTime Configuration for details.) Contains a value defining the number of seconds since
midnight when the interaction was queued.

3. The isAgentScoreGood subroutine checks for interactions that have been in queue for an unusually long
time using the varQueueTimeSec parameter, which is set to 600 seconds by default.

Important
• If you are expecting conditions that might result in longer wait times, you might

need to set a larger value for this variable. To change the value of this variable,
contact Genesys Customer Care for assistance.

• URS might experience high CPU loads if the timeout is extended beyond 600
seconds and you are using agent hold-out (that is, you have set the value for the
use-setreadycondition option to true).

1. The GPRIxnCompleted subroutine (called PrrIxnCompleted in earlier releases) can be inserted
either as a Custom Routing step in the Routing object or immediately in front of the object in
your strategy that contains a call to the RouteCall function.

2. In URS Strategy Subroutines releases prior to 9.0.007.00, insert the PrrIxnCleanup subroutine
after the green port exit from either the Routing object or the object that contains a call to the
RouteCall function.

NOTE: PrrIxnCleanup is not used in URS Strategy Subroutines release 9.0.007.00 and
higher. This update is supported only in environments running URS version 8.1.400.37
and higher.

3. Set values for the configuration options in the Predictive_Route_DataCfg Transaction List
Object. Among others, the GPR subroutines send the scoring requests to the URL configured in
the jop-scoring-url option and score_log requests to the URL configured in the jop-logging-
url option. The orig-connid-key options is required in all deployments to store the original

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 195

connection ID, used as a unique identifier, for each interaction.

Configure GPRIxnSetup
The GPRIxnSetup subroutine, introduced in URS Strategy Subroutines 9.0.015.00, does the following:

• Creates the interaction global map in URS memory with the ConnectionID (ConnID) as the key
name.

• Adds all the Genesys Info Mart KVPs used in GPR and initializes them with the default values.
All the KVP values initialized by the GPRIxnSetup are replaced with actual values when the
remaining GPR subroutines are invoked. If the GPR subroutines are not invoked, the score log
and the Genesys Info Mart database continue to store the default values set in the
GPRIxnSetup subroutine.

• Sets the gpmMode parameter to off and gpmResult to 15 (Predictive Routing is turned off or
not used for the current interaction). This establishes the initial condition in the contact center
and establishes clearly when GPR actively begins to score agents and determine routing
targets. As soon as interactions are routed using the GPR subroutines, these KVP values are
updated to reflect actual contact center conditions.

To use GPR, set the value of the URS prestrategy option to GPRIxnSetup.

• If you already specify a subroutine in the prestrategy option, you can copy the contents of the
GPRIxnSetup subroutine into your existing subroutine.

• For a complete description of the prestrategy option, see the Universal Routing Reference
Manual.

Configure GPRIxnCleanup
The GPRIxnCleanup subroutine must be called from the default port of the last Routing block used for Predictive Routing.
Starting in URS Strategy Subroutines 9.0.015.00, this subroutine can now correctly identify abandoned interactions and
interactions in which GPR was unable to route the interaction and add this information to the score log and the Genesys
Info Mart gpmResult KVP. The KVP values used are the following:

• gpmResult = 13 - Interaction abandoned
• gpmResult = 14 - GPR routing was unsuccessful

To enable this functionality, configure the GPRIxnCleanup subroutine as follows:

1. When routing succeeds, call GPRIxnCleanup with the parameter true from the default port of
the last Routing block used for Predictive Routing.

2. When routing fails, call GPRIxnCleanup with the parameter false from the red port of the last
Routing block used for Predictive Routing.

3. When an interaction is abandoned, GPRIxnCleanup is called automatically with an empty
parameter.

Configure Reporting on Both GPR and Non-GPR Interactions
There are a number of scenarios in which interactions routed using GPR and those routed using alternative methods (non-
GPR) might target the same pool of agents:

• Non-GPR interactions might be sent to the same queue as GPR interactions.

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 196

• A strategy might send some interactions to GPR and to non-GPR routing, based on specified
conditions.

• A different strategy might be routing interactions to the same target agents as the GPR
interactions.

URS Strategy Subroutines 9.0.015.00 and later provides support for tracking interactions not routed using GPR. The
following KVP values provide the necessary information:

• gpmMode = off

• gpmResult = 13 (abandoned) or 14 (routing attempt failed, non-GPR routing used)

Important
If routing fails for a non-GPR interaction, or it is abandoned, GPR does not record these status conditions.
For GPR the following is recorded: gpmResult = 15, gpmMode = off, gpmMessage = Predictive
Routing is turned off or not used for this interaction.

To configure your routing environment to handle both GPR and non-GPR routed interactions, perform the following steps:

1. Configure the gprIxnSetup subroutine, which is require to report correctly on blended GPR and
non-GPR routing.

2. Call the following subroutines in all strategies routing interactions to agents also targeted from
GPR. You can invoke them directly, without going through the ActivatePredictiveRouting_v3
subroutine.
• GPRIxnCompleted should be called as a custom routing step in all Target Selection blocks or

as a Function block before routing interactions to agents using a RouteCall block.
• GPRIxnCleanup should be called after all Target Selection blocks or RouteCall blocks.

gpmWaitTime Configuration
In release 9.0.015.00 and later, the URS Strategy Subroutines use the value of the START_TS variable to calculate when the
interaction arrived in the queue. START_TS is a mandatory variable passed in the default_skill_data List object and stored
as a KVP for use in Genesys Info Mart reporting.

• gpmWaitTime is calculated based on the difference between: (the UTC time when the agent is
selected) - (START_TS variable value).

• The START_TS variable is also used for measuring periods of time in A/B tests.
• In Genesys Info Mart reporting, the value of the START_TS variable is converted to the

DateTimeKey function, used to populate the START_DATE_TIME_KEY column in the GPM_FACT
table.

In release 9.0.014.04 and earlier, the subroutines use the value of the prr-ixn-timestamp variable, in the default_skill_data
List object, which is passed to the ActivatePredictiveRouting_v3 subroutine. prr-ixn-timestamp defines the number of
seconds since midnight when the interaction was queued.

This variable is then used for the calculation of the gpmWaitTime which denotes the actual wait time of the interaction in
the queue before an agent is selected. This calculation uses the TimeStamp[] and TimeDifference[] functions, available in
IRD/URS.

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 197

Turn Off Predictive Routing
You might choose to turn predictive routing off temporarily for A/B testing or troubleshooting. To do so, use one of the
following methods:

• Set the prr-mode configuration option to off.
• Set AgentScore = N in the default_skill_data object parameter passed to the

ActivatePredictiveRouting_v3 subroutine.

Integrate with Genesys Routing Deploy the URS Strategy Subroutines

Predictive Routing Deployment and Operations Guide 198

Deploying the Composer Strategy
Subroutines
Genesys Predictive Routing (GPR) provide subroutines components that are integrated with your
Genesys Routing solution. The subroutines are placed within an existing Composer workflow, where
they add agent scoring and best-match functionality that enables you to fine-tune the routing of a
specific interaction to the agent who can best handle it, based on the KPIs you want to optimize.

Genesys Predictive Routing provides pre-configured subroutines for use with either:

• Interaction Routing Designer (IRD) and Universal Routing Server (URS)
• Composer, Orchestration Server (ORS), and URS

These strategy subroutines are static strategies, that is, they run automatically once they have been
set up. They respond to configured conditions without needing ongoing adjustments.

Important
• If you would like to evaluate Genesys Predictive Routing for use with schedule-based

routing (using Genesys Workforce Management), service-level routing, or business-
objective routing, contact Genesys Professional Services for a review of your routing
environment.

• For descriptions of how the subroutines handle agent-surplus and interaction-surplus
scenarios, see Interaction Flows.

Out-of-the-Box Composer/ORS/URS Workflow Subroutines

The Composer strategy subroutines IP provides a complete Composer project, including all the
workflows necessary to perform predictive routing, and including an example workflow. The
Composer strategy subroutines make use of the underlying functionality provided by the URS
subroutines described above.

When you extract the ScoreBasedRoutingComposer_v4.zip file, which contains the Composer
subroutines, you get a top-level folder called ScoreBasedRoutingComposer_v4, with various
subfolders, including the following:

The Workflows subfolder contains the following workflow files:

• Activate GPR.workflow

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 199

• GetActionFilters.workflow
• GetCustomerRecord.workflow
• GetScoringAuthToken.workflow
• GPRIxnCompleted.workflow
• Main.workflow
• SetScoreMaps.workflow

The src subfolder contains a subsubfolder called subroutines, which contains the following SCXML
files:

• ClearTargets.scxml
• InteractionAccept.scxml
• QueueCancel.scxml
• QueueQuery.scxml
• SuspendForEvent.scxml

The src-gen subfolder contains the following SCXML files:

• Activate GPR.scxml
• GetActionFilters.scxml
• GetCustomerRecord.scxml
• GetScoringAuthToken.scxml
• GPRIxnCompleted.scxml
• IPD_GPRDemo_GPRMain.scxml
• Main.scxml
• SetScoreMaps.scxml

The ActivateGPR subroutine (called ActivatePredictiveMatching in earlier releases), after you insert it
into your Composer workflow, triggers the ActivatePredictiveRouting_v<version_number> URS
subroutine.

The GPRIxnCompleted (called PMIxnCleanup in earlier releases) and (in releases prior to 9.0.007.00)
PMIxnCleanup subroutines can be inserted into the Composer workflow in the appropriate places.
They perform the same functions of attaching matching user data and cleaning up the URS global
map as the comparable GPRIxnCompleted and PrrIxnCleanup subroutines.

Other Files

The following files included in the URS Strategy Subroutines component IP are required for the
Composer Strategy Subroutines component to function correctly.

• SetIdealAndReadyConditionforOCS: An RBN file included in the URS Strategy Subroutines
component IP, which is required for the Composer Strategy Subroutines component to function
correctly.

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 200

• objects.kvlt: A text file containing objects required by the strategy subroutines. You must import thais
file as well as the RBN file for the strategy subroutines to work correctly.

Installing the Composer/ORS/URS Strategy Subroutines

The following is a high-level overview of the steps required to deploy the Composer/ORS/URS
Strategy Subroutines:

1. Configuring URS to Support Predictive Routing.
2. Import the subroutines. For a list of the subroutines, with descriptions of their functionality, see

Composer/ORS/URS Strategy Subroutines.
3. Define the entry points in your Composer workflow for the appropriate subroutines. See the complete

integration instructions for Composer for specific recommendations and configuration information.
4. Set appropriate values for the strategy subroutine configuration options, located in the

Predictive_Route_CfgData Transaction List object.
5. Configure the parameters for the subroutines used in your environment.
6. Test that the subroutines are correcting directing interactions to agents.

The following section provides detailed instructions for setting up your subroutines:

• Composer/Orchestration Server (ORS)/Universal Routing Server (URS)

Configuring URS to Support Predictive Routing

There are two main steps to configure URS to work with Predictive Routing:

1. Create the static_strategy configuration option in the [default] section of the URS Application
object and set its value to empty. You can set this option either on the level of individual routing points
or on the tenant/URS level. Depending on where you set it, the option works slightly differently. This
option takes effect immediately and does not require that you restart URS.

2. Configure the http log for URS to check scoring requests and responses. To do this, set the verbose
option in the [web] section to 3.

3. Set the run_verbose option in the [default] section to 0.
4. Set the vqtime option in the [default] section to 13:2048.

Strategy Subroutine Integration for ORS/Composer

Predictive Routing comes with a pre-configured Composer strategy subroutine. The Composer
subroutine ActivatePredictiveMatching is a wrapper around the URS subroutine

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 201

ActivatePredictiveRouting and calls the latter via URS web API call. You can use it as-is, edit it, or
create your own based on the model of the pre-configured subroutine.

Design Considerations
The subroutine that comes with Predictive Routing has been created to work efficiently. It:

1. Minimizes the use of IRD subroutines invoked by the Composer workflow.
2. Reuses existing IRD subroutines as much as possible to avoid maintenance and upgrade of multiple

versions.
3. Uses the same configuration options as the strategy subroutines for URS, specifically those configured

in the Predictive_Route_DataCfg Transaction List object.

Functional Blocks and their Behaviors
The ActivatePredictiveMatching subroutine contains a number of functional blocks:

• The Entry block handles the setAgtScores timeout, which is set once before the agent score memory
maps are set.

• The Score request content format_as_map can be set to set to false, which returns the agent scores
as a JSON array with entries ordered by decreasing score, or to true, which returns scores as a
dictionary, where the keys are employee IDs for the targeted agents and values are their scores for the
interaction.

• The WebRequestScore block is configured to use a single retry in the event of an error. After one retry, if
the retry fails, an error is logged and recorded in the attached data and it returns a value of false.

• The AgentScores ECMA script block parses the returned JSON array and prepares a JSON object with
entries ordered by score. In case of JSON object parsing error the script assigns variables
varResult.success = "false" and varResult.message = "Parsing of agent scores failed".

• The AgentScoreMaps subroutine invocation block includes the parCustomerId parameter, which
maintains consistency with the IRD version.

• The PMSetIdealAndReady SCXML State block invokes the IRD SetIdealAndReadyConditionForORS
strategy through an HTTP request to URS. Details of the invocation can be found below.

After a target is returned from the Target block in the ActivatePredictiveMatching subroutine, the
PMIxnCompleted and PMIxnCleanup subroutines are invoked. They work essentially as the
PrrIxnCompleted and PrrIxnCleanup IRD subroutines do, except that the PMIxnCleanup subroutine
takes advantage of new memory map cleanup functionality implemented in URS 8.1.400.37, and
therefore does not explicitly remove agent score data from the memory map.

Importing and Configuring the Composer Workflows
To integrate the GPR Composer subroutines into your routing environment, you must import the
workflows.

1. In Composer, select Window > Preferences > Composer > SCXML Templates.
2. In the resulting Templates dialog box, click the Import... button.
3. Navigate to the folder containing the SCXML file, select it, and click Open.

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 202

The main workflow should invoke the ActivateGPR subroutine with the parameters shown in the
following image:

Important
The input variables default_skill_data, skill_data, and skill_target are equivalent
to the IRD implementation (above). The varTargetPriority value is the targeting
priority to be used. The output is a Boolean value indicating success if true, false if
targeting fails.

The implementation and invocation of the ORS SetIdealAndReadyConditionForORS subroutine are a
key part of the Composer integration. The implementation within this IRD subroutine provides the
URS callbacks for the SetIdealAgent and SetReadyCondition functions. This enables the use of virtual
queues for reporting and agent reservation within the main workflow implementation.

The workflow performs scoring authentication in the GetScoringAuthToken subroutine workflow,
which obtains the url, api key, and so on from the Predictive_Route_DataCfg Transaction List object,
just as in the IRD implementation. The agent scores are obtained from AICS, and URS memory maps
are populated with agent ID, connid, and agent score. Again, this is equivalent to the IRD
implementation. Next the workflow invokes the SetIdealAndReadyConditionForORS subroutine. After
completion, normal workflow targeting proceeds.

The SetIdealAndReadyConditionForORS IRD subroutine uses the IRD function, RequestRouter, shown
below, to invoke the SetIdealAgent and SetReadyCondition functions through an internal URS HTTP
interface, directed at ##SELF, the URS on which the call is being handled. The Context is the connid
to be used.

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 203

The example shows the invocation of the SetIdealAgent URS function. The equivalent is performed for
the SetReadyCondition function as well.

Invoking the SetIdealAndReadyConditionForORS from a Composer workflow details are shown below.

The two ECMA Script blocks prepare the required information for the invocation, which occurs in the
SCXML State block.

Setting the Configuration Options

Set values for the following configuration options in the Predictive_Route_DataCfg Transaction List

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 204

Object.

All About How the Composer Workflow Blocks Work

Details of each block follow.

StrategyStartInfo

This block sets the following variables as below varConnID, varURSRequestURL, and
ursRequestTimeout are User variables.

try {

// get the connid of this interaction

varConnID = _genesys.ixn.interactions[system.InteractionID].voice.connid;

// set urs call start request

var ursHost = _genesys.session.getConfigOption('null', "hostname",
_genesys.session.lookupseq.StartFromRouter);

var ursHttpPort = _genesys.session.getConfigOption('null', "http_port",
_genesys.session.lookupseq.StartFromRouter);

varURSRequestURL = 'http://' + ursHost + ':' + ursHttpPort +'/urs/call/'
+varConnID + '/exec';

// fetch timeout in seconds for strategy - TODO - add to xlist

ursRequestTimeout = 15;

} catch (error) {
__Log('###DWS StrategyStartInfo error l = ' + uneval(error));

}

ParseDefSkillData

The User variable varDefaultSkillDataString is populated from the default_skill_data input variable to
the ActivatePredictiveMatching.workflow subroutine, as show below.

try {

var vKeys = Object.keys(default_skill_data);

// want “prr-ixn-timestamp:64407|predictor:qaart-predictor|AgentScore:Y"

var vKeyCount = vKeys.length;
for (var iKey = 0; iKey < vKeyCount; iKey++)
{

varDefaultSkillDataString = varDefaultSkillDataString + vKeys[iKey] +':'
+ default_skill_data[vKeys[iKey]];

if (iKey < vKeyCount - 1) varDefaultSkillDataString =
varDefaultSkillDataString + '|';

}

} catch (error) {
__Log('###PRRDemo ActivatePredictiveRouting PatseDefSkillData error = ' +

uneval(error));

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 205

}

PMSetIdealAndReady

The onentry element performs the invocation with the following parameters:

• skill_target and skill_data parameters: Equivalent to the IRD implementation. Input variables to the
ActivatePredictiveMatching.workflow subroutine.

• varPredictorCfg is also the equivalent to the IRD implementation, retrieved from the
Predictive_Route_DataCfg Transaction List object for the defined predictor.

<onentry>
<session:fetch requestid="ursCallRequestId" srcexpr="varURSRequestURL" method="'get'"

timeout="ursRequestTimeout" >
<param name="tenant" expr="_genesys.session.tenant"/>
<param name="strategy" expr="'SetIdealAndReadyConditionForORS'"/>

<param name="TARGET" expr="skill_target"/>
<param name="TARGET_TIME_TO_WAIT" expr="skill_data"/>
<param name="CustomerId" expr="parCustomerId"/>
<param name="DefaultSkillData" expr="varDefaultSkillDataString"/>
<param name="PredictorCfg" expr="varPredictorCfg"/>

</session:fetch>
</onentry>

The transitions from the state are as shown below. The session.fetch.done event body sets the
varSuccess User variable to true.

The error.session.fetch event body leaves the varSuccess User variable at the default value of false.

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 206

Once this block has completed, the subroutine exits to the main workflow where normal targeting
occurs if the invocation was successful. If not, the sample main workflow still performs normal
targeting, but skips the PMIxnCompleted and PMIxnCleanup as shown below.

The PMIxnCompleted input is simply the resource selected returned from the Target block.

The PMIxnCleanup input parameters are the varInteractionId, which is the connid of the call being
processed, and varResourceSelected, which is the same as for PMIxnCompleted.

Integrate with Genesys Routing Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 207

Integrate with Genesys Reporting
Genesys Predictive Routing (GPR) can supply a variety of information about routing outcomes for use
by the Genesys reporting applications. GPR sends data for historical reporting in key-value pairs
(KVPs). This KVP data, which is stored in the Info Mart database, can also to be fed back into GPR to
refine predictors. In addition, Stat Server sends this KVP data to Pulse for real-time reporting.

1. GPR data in the form of KVPs is attached to EventUserEvent TEvents.
The UserEvent contains AttributeThisDN with a value of Route Point, which identifies where
the strategy is executed and AttributeUserData, which holds a list of KVPs containing data
about the interaction.

This Route Point should also be specified in the vq-for-reporting option.

2. Interaction Concentrator stores the KVP data in the Interaction Database (IDB), in the CUSTOM_DATA_S
table.

3. Genesys Info Mart gathers this raw data from IDB and prepares it for use in Genesys CX Insights (GCXI)
historical reporting on GPR activity and performance.
• Genesys Info Mart has specific requirements for the KVPs that must be attached (see GPR KVPs for

Genesys Reporting, below).

4. Reporting and Analytics Aggregates (RAA) further transforms the data in preparation for use by the
presentation layer.

5. Using GCXI, you can create the following reports based on the GPR data. These reports are described in
the Genesys Customer Experience Insights User's Guide:
• Predictive Routing - AHT & Queue Dashboard
• Predictive Routing - Model Efficiency Dashboard
• Predictive Routing Agent Occupancy Dashboard
• Predictive Routing A/B Testing Report
• Predictive Routing Detail Report

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 208

https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIGPRAHTQ
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIGPRMdlEfcncy
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIGPRAgntOcpncy
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveABTstng
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveDtl

• Predictive Routing Operational Report
• Predictive Routing Queue Statistics Report

6. Using Pulse, you can access the Agent Group KPIs by Predictive Model and Queue KPIs by Predictive
Model templates for real-time reporting. These templates are available from the Genesys Dashboard
Community Center.

In addition to the powerful Genesys Reporting solution, GPR offers in-interface analysis reports:

• Feature Analysis
• Agent Variance
• Lift Estimation

The following topics provide in-depth information about how Universal Routing Server (URS) makes
routing decisions when you are using Predictive Routing and how GPR scores agents in various
scenarios. Use the material covered in these topics to inform your understanding about what data the
KVPs described in this topic store and how to create the most useful reports from the available data:

• Routing Scenarios Using GPR
• How Does GPR Score Agents?

Configure Historical Reporting

Genesys Info Mart release 8.5.009 and later provides support for GPR reporting out-of-box, with no
additional configuration required on the Genesys Info Mart side. However, to send GPR data to
Genesys Info Mart, as well as to see GPR data in GCXI reports, you need to modify the configuration
of GPR, Interaction Concentrator, and Reporting & Analytics Aggregates (RAA, the aggregation engine
hosted by Genesys Info Mart).

Tip
For general information about how Genesys Info Mart uses attached user data, see the
Genesys Info Mart and Attached User Data section of the Genesys Info Mart
Deployment Guide.

1. Ensure that ICON and IDB have been deployed as Genesys Info Mart requires, and that ICON is
connected to the T-Server(s) or SIP Server(s) handling the GPR interactions. For details, see Preparing
Interaction Concentrator in the Genesys Info Mart Deployment Guide.

2. Configure a DN for GPR reporting data.
• Open Genesys Administrator Extension (GAX) and specify a DN to use with GPR. This DN can be a

VQ DN, a Trunk Group DN, or any other recognized type, as long as you configure ICON to monitor
it. The name of the DN is used inside URS strategy subroutines or Composer SCXML scripts
(depending on your environment), so it should be meaningful and recognizable.

3. Configure URS or Orchestration Server:

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 209

https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveOprtnl
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIPredictiveQStat
https://docs.genesys.com/Documentation/GPM/9.0.0/help/FAReport
https://docs.genesys.com/Documentation/GPM/9.0.0/help/AgtVarReport
https://docs.genesys.com/Documentation/GPM/9.0.0/help/LEReport
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMUserData
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMPrepICON
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMPrepICON

• In the connections of your Universal Routing Server application or Orchestration Server application
(as appropriate in your environment), add the T-Server/SIP Server used to define the reporting
Switch and DN in the GPR configuration. For example, GPR_Switch.

4. In IRD or Composer, set up your routing solution to attach the required KVPs in UserEvents. For an
example to guide you, refer to the GPRIxnCompleted (formerly PRRIxnCompleted) subroutine provided
with GPR.

5. Configure Interaction Concentrator to store the GPR KVPs:
1. Set the store-event-data option to all, the recommended setting in GPR deployments, or conf. This

option controls which KVP data from AttributeUserData of EventUserEvent ICON stores in the
G_CUSTOM_DATA_S table.

2. If you set store-event-data to conf, use the EventData option to specify which KVPs to store.
To simplify configuration in deployments where GPR data is extracted for reporting, Genesys
recommends setting the [custom-states].store-event-data configuration option to all,
which ensures that ICON stores all the UserEvent-based KVPs that Genesys Info Mart requires.
However, be aware that setting store-event-data=all has performance and security
implications:

• Performance — Processing and storing a large number of UserEvent-based KVPs increases
database resource requirements and can impact performance.

• Security — Sensitive data (for example, credit card information) might be sent in UserEvents
that are not used for reporting. Unlike the situation for call-based attached data, where the
G_SECURE_USERDATA_HISTORY table is available to provide secure IDB storage, there is no
secure IDB table parallel to G_CUSTOM_DATA_S that provides separate, secure storage for
sensitive data.

6. Ensure that you have added the T-Server/SIP Server corresponding to the DN you created earlier for
GPR to the Connections tab of the Interaction Concentrator Application object.

7. Configure GPR to attach KVP data by configuring the following options on the
Predictive_Route_DataCfg Transaction List object:
• send-user-event - Enables attaching the Predictive Routing-specific key-value pairs.
• vq-for-reporting - Indicates the virtual queue or DN where URS sends the GPR user event data. The

user event data, in the form of key-value pairs (KVPs), is attached to EventUserEvent in the
AttributeUserData attribute.

For the list of KVPs to be attached, see GPR KVPs for Genesys Reporting, below. The following KVPs
are mandatory for data to be available for Genesys Reporting:

• gpmResult
• CALLID
• START_TS
• ADDED_TS

8. Ensure that your deployment has been configured as required for Genesys Info Mart to support
reporting on contact center activity in general. For a summary of the configuration requirements, see
Enabling Reporting on Voice Activity in the Genesys Info Mart Deployment Guide.

9. Enable aggregation of GPR data. (Required for GCXI reporting or other applications that use RAA
aggregation.)
• In the [agg-feature] section on the Genesys Info Mart application object, specify the enable-gpr

and enable-gpr-fcr options.

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 210

https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMDepVoiceSummary

10. Verify the reporting data chain.
After a few interactions have been routed with GPR in an operational mode, verify that the required
KVPs are being sent, stored, and used as expected:

• Check the T-Server/SIP Server logs to verify that UserEvents are being sent with the required KVPs.
• Check the ICON logs and the G_CUSTOM_DATA_S table in IDB to verify that ICON is recording the

required KVPs.
• Check the GPM_* tables in the Info Mart database to verify that Genesys Info Mart is correctly

transforming the data.

For more information about configuring user data storage in Interaction Concentrator to work with
Genesys Info Mart, see Important custom-states ICON Configuration Options and Configuration
Considerations in the Genesys Info Mart Deployment Guide.

GPR KVPs for Genesys Reporting

The following table describes the KVPs that Genesys Info Mart uses to enable GPR reporting.

Tip
• Use the Search box to quickly locate a specific KVP.
• Although the Predictive Routing short name is GPR, the GPM_* prefix shown in the table

below is correct. It reflects an earlier name for the product.

Important
A number of new KVPs were introduced in URS Strategy Subroutines 9.0.015.00, resulting in additional
columns in the Genesys Info Mart tables that store GPR data and extending the range of information
provided in some existing columns. Genesys Info Mart 8.5.014.09 and higher is required to use the new
KVPs.

Interaction rows created before the new GPR subroutine IP is installed are handled as follows:

• New columns in the GPM_FACT table have NULL values for all existing rows.
• The new gpm_dim1_key field in the GPM_FACT table has the value -2 for all existing

rows.
The descriptions for the new KVPs indicate the "Introduced In" and "Modified In" versions, where relevant.

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 211

https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMPrepICONApp#custom-states
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMPrepICONApp#uedataConfigConsiderations
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMPrepICONApp#uedataConfigConsiderations

KVP Description KVP Type Info Mart Database
Target

ADDED_TS

UTC timestamp,
indicating the date and
time when the record
was added as inherited
from the T-Server
TEvent.
Default value: no
default value
Valid values: any valid
UTC timestamp

Note: This KVP is
mandatory for Genesys
Info Mart reporting.

INT GPM_FACT.ADDED_TS

CALLID

Value of
AttributeCallUUID for
the interaction.
Default value: a valid
CALLID

Note: This KVP is
mandatory for Genesys
Info Mart reporting.

CHAR(32) GPM_FACT.MEDIA_SERVER_IXN_GUID

CustomerID

Introduced: 9.0.016.00

The GPRIxnCleanup
subroutine takes this
KVP from user data
attached to the
interaction, and passes
it to the Genesys
Historical Reporting
solution in the
EventUserEvent event.
GPR does not generate
this KVP.

Postgres: varchar(255);
Oracle: VARCHAR2(255
CHAR); Microsoft SQL:
varchar(255)/nvarchar(255)

IRF_USER_DATA_GEN_1.CUSTOMER_ID

gpmAdjustedAgentScore

Introduced: 9.0.015.00

The final agent score
used to route the
associated interaction
to the selected agent.
This score is calculated
from the
gpmAgentScore
combined with any
agent occupancy factor.
Default value: 0
Valid values: any non-
negative float value

FLOAT GPM_FACT.ADJUSTED_SCORE

gpmAgentDBID
Optional. The DBID of
the agent to whom the
interaction was routed.
Default value: no

INT
RESOURCE_.RESOURCE_CFG_DBID
(referenced through
GPM_FACT.RESOURCE_KEY)

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 212

KVP Description KVP Type Info Mart Database
Target

default value

gpmAgentRank

The rank of the agents
in the target group,
based on agent scores
sorted in descending
order.
Default value: 0
Valid values: 0, any
positive integer

SHORT GPM_FACT.AGENT_RANK

gpmAgentScore

The score of the agent
to whom the interaction
was routed.
Default value: 0
Valid values: any non-
negative float value

FLOAT GPM_FACT.AGENT_SCORE

gpmCustomerFound

Indicates whether
features from the
customer record
specified in the routing
strategy were
successfully retrieved
from the Customer
Profile schema uploaded
to the AI Core Services
and used to calculate
agent scores.
Default value:
unknown
Valid values: 0 (= No),
1 (= Yes), unknown

Enum
GPM_RESULT.CUSTOMER_FOUND
(referenced through
GPM_FACT.GPM_RESULT_KEY)

gpmDefaultAgentScore

Introduced: 9.0.015.00

This default agent score
for the associated
interaction. The value is
the outcome, for this
interaction, of the
setting specified in the
default-agent-score
configuration option.
Default value: 0
Valid values: any non-
negative float value

FLOAT GPM_FACT.DEFAULT_SCORE

gpmDefaultScoredAgents

Introduced: 9.0.015.00

The number of agents
assigned the default
score for the associated
interaction.
Default value: 0
Valid values: 0, any
positive integer

INT GPM_FACT.DEFAULT_SCORES_COUNT

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 213

KVP Description KVP Type Info Mart Database
Target

gpmDefaultScoreUsed

Introduced: 9.0.015.00

• 0 - The agent score
for the associated
interaction is taken
from the scoring
response returned
by GPR.

• 1 - The agent score
for the associated
interaction is
calculated based on
the value set for the
default-agent-
score configuration
option.

Default value: 0
Valid values: 0, 1

INT GPM_FACT.DEFAULT_SCORE_USED

gpmFinalScoreThreshold

Introduced: 9.0.015.00

The final threshold
value used to route the
associated interaction
to the selected agent.
The routing strategy
calculates the value
from the configured
score threshold
combined with values
resulting from any agent
holdout options.
Default value: 0
Valid values: any
integer

INT GPM_FACT.FINAL_SCORE_THRESHOLD

gpmGlobalScore

The mean score
calculated for an
interaction using the
Global Model.
Default value: 0
Valid values: any non-
negative float value

FLOAT GPM_FACT.GLOBAL_SCORE

gpmGlobalScoreCount

Introduced: 9.0.015.00

Describes the number of
agent scores returned
for an interaction using
a GLOBAL model.
Default value: 0
Valid values: 0, any
positive integer

INT GPM_FACT.GLOBAL_SCORES_COUNT

gpmInitialScoreThreshold

Introduced: 9.0.015.00

The initial threshold
value used for the
interaction, taken from

INT GPM_FACT.INITIAL_SCORE_THRESHOLD

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 214

KVP Description KVP Type Info Mart Database
Target

the value set in the
score-base-threshold
configuration option.
Default value: 0
Valid values: any
integer

gpmMaxScore

The score of the best-
matching agent in the
target group.
Default value: 0
Valid values: any non-
negative float value

FLOAT GPM_FACT.MAX_SCORE

gpmMedianScore

The median score for
the target group of
agents to which the
agent who received the
interaction belongs.
Default value: 0
Valid values: any non-
negative float value

FLOAT GPM_FACT.MEDIAN_SCORE

gpmMessage

The message that
displays when the
Predictive Routing result
reported in the
gpmResult KVP is an
error.
Default value: no
default value

CHAR(255) GPM_FACT.MESSAGE

gpmMinScore

The score of the worst-
matching agent in the
target group.
Default value: 0
Valid values: any non-
negative float value

FLOAT GPM_FACT.MIN_SCORE

gpmMode

Modified: 9.0.015.00 -
The value off was
added.

The mode in which
Predictive Routing is
operating, as specified
by the prr-mode
configuration option. For
information about
turning predictive
routing off, see Turn Off
Predictive Routing.
Default value:
unknown
Valid values: prod, off,
dry-run, ab-test-time-
sliced, unknown

Enum
GPM_RESULT.GPM_MODE
(referenced through
GPM_FACT.GPM_RESULT_KEY)

gpmModel The name of the Model CHAR(255) GPM_MODEL.MODEL

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 215

KVP Description KVP Type Info Mart Database
Target

used to calculate agent
scores for the
interaction.
Default value:
unknown
Valid values: the name
of any Model in your
environment

(referenced through
GPM_FACT.GPM_MODEL_KEY)

gpmModelId

The UUID of the Model
used to calculate agent
scores for the
interaction.
Default value:
unknown
Valid values: the ID for
any Model in your
environment

CHAR(24)
GPM_MODEL.MODEL_ID
(referenced through
GPM_FACT.GPM_MODEL_KEY)

gpmPredictor

The name of the
Predictor in the AI Core
Services (AICS). If an
error is encountered,
the section name
specified in the
Predictive_Route_DataCfg
Transaction List object is
used as the Predictor
name.
Default value:
unknown
Valid values: the name
of any Predictor in your
environment

CHAR(255)
GPM_PREDICTOR.PREDICTOR
(referenced through
GPM_FACT.GPM_PREDICTOR_KEY)

gpmPredictorId

The UUID of the
Predictor used for
scoring.
Default value:
unknown
Valid values: the ID for
any Predictor in your
environment

CHAR(24)
GPM_PREDICTOR.PREDICTOR_ID
(referenced through
GPM_FACT.GPM_PREDICTOR_KEY)

gpmPredictorType

Introduced: 9.0.015.00

Reserved for future use.
Default value:
unknown
Valid values: Sales,
Service

CHAR[32] GPM_DIM1.PREDICTOR_TYPE

gpmPriorityIncrement

Introduced: 9.0.016.00

If the value is 0, the
priority of the
interaction did not
increase above the
configured base_priority

N/A N/A

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 216

KVP Description KVP Type Info Mart Database
Target

value. If the value is 1,
the priority of the
interaction did increase
above the configured
base_priority and, as a
result, the selected
agent was not verified
for the expected
threshold score.
Note: This KVP is not
currently stored as a separate
column in the Genesys Info
Mart database. It can be
accessed from the score_log
file using the GPR API.

Default value: 0
Valid values: 0,1

gpmResult

Modified: 9.0.015.00 -
The values 12, 13, 14,
and 15 were added.

The result of Predictive
Routing processing. If
there is an error, the
gpmMessage KVP
contains the error
message.

• 1 - Ok
• 2 - Authentication to

scoring engine failed
• 3 - Scoring request

failed
• 4 - Agent list is

empty
• 5 - URS overload,

interaction skipped
• 6 - Predictor not

found
• 7 - Failed to build

scoring request
• 8 - SetIdealAgent or

SetReadyCondition
execution error

• 9 - Interaction log
not found in global
map

Enum
GPM_RESULT.GPM_RESULT
(referenced through
GPM_FACT.GPM_RESULT_KEY)

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 217

KVP Description KVP Type Info Mart Database
Target

• 10 - Unknown error
• 11 - Channel is not

supported
• 12 - Reserved for

future use
• 13 - Call Abandoned
• 14 - Call Routing

Failed
• 15 - Predictive

Routing is turned off
or not used for this
interaction

Default value: no
default value
Valid values: 1–15

Note: This KVP is
mandatory for Genesys
Info Mart reporting.

gpmRouteAttemptId

The sequence number
of the attempt to route
an interaction using
Predictive Routing. The
value of this KVP is
incremented each time
the
ActivatePredictiveRouting
subroutine is called by
the strategy, starting
from 1.
Default value: 0
Valid values: integers
starting from 1

INT GPM_FACT.ROUTE_ATTEMPT_ID

gpmRoutingMethod

Introduced: 9.0.015.00

Reserved for future use.
Default value:
unknown

CHAR[32] GPM_DIM1.ROUTING_CRITERIA

gpmScoreAboveMedian

Indicates whether the
score for the selected
agent was better than
the median score for the
target group.
Default value:
unknown
Valid values: 0 (no), 1
(yes), unknown

Enum GPM_FACT.SCORE_ABOVE_MEDIAN

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 218

KVP Description KVP Type Info Mart Database
Target

gpmStatus

Indicates the scenario
under which the
interaction was
processed. For more
information about the
scenarios, see Routing
Scenarios Using
Predictive Routing.
Default value:
unknown
Valid values: agent-
surplus, call-surplus,
unknown

Enum
GPM_RESULT.GPM_STATUS
(referenced through
GPM_FACT.GPM_RESULT_KEY)

gpmSuitableAgentsCount

Introduced: 9.0.015.00

The number of agents
who had scores greater
than or equal to the
initial threshold value
when the scoring
response was received.
Default value: 0
Valid values: 0, any
positive integer

INT GPM_FACT.SUITABLE_AGENTS_COUNT

gpmTargetSize

The size of the scored
target group (in other
words, the length of the
list of agents received
from the scoring
engine).
Default value: 0
Valid values: 0, any
positive integer

SHORT GPM_FACT.TARGET_SIZE

gpmUse

The meaning depends
on the mode in which
Predictive Routing is
operating (see the
description of the
gpmMode KVP). This
field is set to one of the
following values:

• 1 - When the mode is
ab-test-time-
sliced, indicates
that the interaction
was selected for
Predictive Routing.
When the mode is
prod, indicates the
normal case, when
Predictive Routing

Enum
GPM_RESULT.GPM_USE
(referenced through
GPM_FACT.GPM_RESULT_KEY)

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 219

KVP Description KVP Type Info Mart Database
Target

occurred without
error.

• 0 - When the mode is
ab-test-time-
sliced, indicates
the interaction was
processed with skill-
based routing. When
the mode is dry-
run, indicates that
the interaction
completed without
error.

• unknown - For any
mode, indicates that
an error occurred in
one of the Predictive
Routing subroutines,
and the solution
defaulted to skill-
based routing.

Default value:
unknown
Valid values: 1, 0,
unknown

gpmVQDBID

Introduced: 9.0.016.00

The DBID of the virtual
queue or DN configured
in the vq-for-reporting
configuration option
(configured on the
Predictive_Route_DataCfgTransaction
List object).

• Requires Genesys
Info Mart release
8.5.014.19 or higher.

• This KVP is sent only
to Genesys Info
Mart. It does not
appear in the
score_log file.

Default value: No
default value
Valid values: Any valid
DBID

INT
RESOURCE_.RESOURCE_CFG_DBID
(referenced through
GPM_FACT.VQ_RESOURCE_KEY)

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 220

https://docs.genesys.com/Documentation/Options/Draft/GPM/GPM_PRD-default#vq-for-reporting

KVP Description KVP Type Info Mart Database
Target

gpmVQGUID

Introduced: 9.0.016.00

Value of the Virtual
Queue ID (RPVQID)
stored in the interaction
user data. This is a
special GUID value that
uniquely identifies the
entrance of the
interaction into certain
virtual queues. The
RPVQID is created by
URS when the
interaction enters into
the virtual queue and is
present in all
VirtualQueue events
that URS distributes.

• Requires Genesys
Info Mart release
8.5.014.19 or higher.

• This KVP is sent only
to Genesys Info
Mart. It does not
appear in the
score_log file.

Default value: No
default value
Valid values: Any valid
Virtual Queue GUID

CHAR[32] GPM_FACT.VQ_GUID

gpmWaitTime

The amount of time, in
seconds, the interaction
spent in the queue used
for Predictive Routing
decision-making,
starting from when the
strategy started to
process the interaction
until it was routed to the
agent. Note that the
point when processing
starts might depend on
how you have
configured your
strategy.
Default value: 0
Valid values: 0, any
positive integer

INT GPM_FACT.WAIT_TIME

ServiceType The GPRIxnCleanup
subroutine takes this

Oracle: VARCHAR2(255
CHAR); Postgres: INTERACTION_DESCRIPTOR.SERVICE_TYPE

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 221

KVP Description KVP Type Info Mart Database
Target

Introduced: 9.0.016.00

KVP from user data
attached to the
interaction, and passes
it to the Genesys
Historical Reporting
solution in the
EventUserEvent event.
GPR does not generate
this KVP.

varchar(255); Microsoft
SQL: nvarchar(170)

START_TS

UTC timestamp,
indicating the time
when the interaction
arrived at the contact
center.
Note that this value is
different from gpm-ixn-
timestamp (previously called
prr-ixn-timestamp), which, in
release 9.0.014.04 and earlier,
indicates the time when the
strategy started processing
the interaction. gpm-ixn-
timestamp is configured in the
default_skill_data object, from
which it is passed to the
ActivatePredictiveRouting_v3
subroutine.

In URS Strategy Subroutines
9.0.015.00 and higher, gpm-
ixn-timestamp is not used,
and START_TS must be passed
in the default_skill_data
parameter. gpmWaitTime (the
actual wait time of the
interaction in the queue
before an agent is selected) is
calculated based on the
difference between the UTC
time when agent is selected
minus the START_TS value.

Default value: no
default value
Valid values: a valid
UTC timestamp

Note: This KVP is
mandatory for Genesys
Info Mart reporting.

INT GPM_FACT.START_DATE_TIME_KEY

KVP Description KVP Type Info Mart Database
Target

Integrate with Genesys Reporting Deploying the Composer Strategy Subroutines

Predictive Routing Deployment and Operations Guide 222

Operations: Updating, Maintenance,
Logging, Troubleshooting
This section contains topics that provide information to help you keep your Predictive Routing
deployment running smoothly, monitor it's functions, and troubleshoot any issues that might arise.

It includes the following topics:

• Agent State Connector
• System Monitoring and Logging
• Starting and Stopping
• Troubleshooting
• Database Maintenance

Operations: Updating, Maintenance, Logging,
Troubleshooting

Deploying the Composer Strategy
Subroutines

Predictive Routing Deployment and Operations Guide 223

Agent State Connector
The following sections offer ASC-specific operations and user information.

• Understanding Agent Login States
• Guidelines for Configuration Options Values

You might also find the ASC-specific sections of the following pages helpful:

• Starting and Stopping
• System Monitoring and Logging

Understanding Agent Login States

When you review the fields in the Agent Profile or Dataset configuration windows, you might find a
field containing numerical values indicating an agent's login state. (This field is not present if your
dataset does not include it.)

The numerical values correspond to the following agent login states:

• 4 - WaitForNextCall (Ready)
• 5 - OffHook
• 6 - CallDialing
• 7 - CallRinging
• 8 - NotReadyForNextCall
• 9 - AfterCallWork
• 13 - CallOnHold
• 16 - ASM_Engaged
• 17 - ASM_Outbound
• 18 - CallUnknown
• 19 - CallConsult
• 20 - CallInternal
• 21 - CallOutbound
• 22 - CallInbound
• 23 - LoggedOut

Operations: Updating, Maintenance, Logging, Troubleshooting Agent State Connector

Predictive Routing Deployment and Operations Guide 224

Guidelines for Configuration Options Values

Tip
All option changes for ASC take effect after the application restart.

agents-batch-size

The agents-batch-size option defines the number of agent configuration profiles submitted to the
Predictive Routing web application during ASC startup. A higher number improves startup timing,
however setting this option too high leads to timeouts for the API requests. Setting the value to 500
proved to be optimal in a test environment.

reset-jop-on-startup

Important
This option is removed in Agent State Connector (ASC) release 9.0.006.08 and higher.
To delete agents, delete your current agent profile schema in the Predictive Routing
application, and then upload an updated schema.

Setting the reset-jop-on-startup option to true tells the ASC application to send a request to clean
up previously-stored agent profiles in the web application database on startup. If this request fails,
the old agent profiles can be manually removed from Mongo DB.

stat-srv-ws-conn

Important
This option has been removed in Agent State Connector (ASC) release 9.0.006.08 and
higher. ASC now supports warm standby connections by default.

Setting the stat-srv-ws-conn option to true specifies that ASC should activate a warm-standby
connection to a Stat Server primary/backup pair. With a warm-standby connection to a Stat Server
pair, ASC resubscribes for agent statistics to the new primary Stat Server after a Stat Server
switchover.

skip-groups

If the skip-groups option is set to true, ASC ignores reading of agent groups and ignores all events
from Configuration Server that are connected with updating agent groups. Genesys recommends that
you use this option to improve ASC initialization time if agent group names are not used to define the

Operations: Updating, Maintenance, Logging, Troubleshooting Agent State Connector

Predictive Routing Deployment and Operations Guide 225

target groups of agents for interaction routing.

include-person-annex-sections

Specifies which sections of the Person configuration object Annex tab are parsed by ASC when an
agent profile is uploaded to the Journey Optimization Platform (JOP). Other Annex sections are
skipped. If both the include-person-annex-sections and ignore-person-annex-sections options
have values specified, ASC ignores the value set for ignore-person-annex-sections and works only
with the include-person-annex-sections setting.

ignore-person-annex-sections

Specifies which sections of the Person configuration object Annex tab are skipped by ASC when agent
profile is uploaded to the Journey Optimization Platform. By default, the sections related to
Interaction Workspace are skipped. If both the include-person-annex-sections and ignore-
person-annex-sections options have values specified, ASC ignores the value set for ignore-
person-annex-sections and works only with the include-person-annex-sections setting.

ignore-employee-ids

ASC ignores agents with employee ids that are specified in the ignore-employee-ids option. Use
commas as delimiters between employee ids. For example, this option can be used to skip events for
agents with a large amount of configuration data stored in the Person configuration object if
interactions to these agents are not routed using Predictive Routing.

cfg-reading-threads-size

Used for reading agents and groups from Configuration Server using a multithreading approach. By
default, the value is 100. The maximum value is 2000.

jop-update-thread-wait-timeout

Specifies the thread waiting timeout used for the JOP subscription process to avoid a busy loop.

cfg-retry-request-attempts

Specifies the number of retry attempts for reading agents and groups from Configuration Server, if
any connection issues with Configuration Server occur. By default, the value is 1.

ss-subscription-timeout

The timeout period observed after each agent subscription to Stat Server. Used to throttle requests
for statistics subscriptions to Stat Server.

Operations: Updating, Maintenance, Logging, Troubleshooting Agent State Connector

Predictive Routing Deployment and Operations Guide 226

AI Core Services Monitoring and Logging
AICS uses a number of logs to track the status of the various containers: Tango, Gunicorn worker
containers, MongoDB, Minio (in release 9.0.013.01 and higher), and NGINX (in releases prior to
9.0.013.01). This topic provides the following information on monitoring the AI Core Services
containers:

• Configure AICS Log Settings
• Access the Logs for AICS
• Using Logs to Troubleshoot Common Errors
• Checking the Logs for AICS Containers in HA Environments

The 200 response code indicates that a service is running normally. If you receive a different
response code that indicates an issue, check additional logs.

Configure AICS Log Settings

To configure logging for AICS, set the following:

1. Configure the LOG_LEVEL environment variable.
2. If necessary, change the maximum log size (set to 100m by default).

Access the Logs for AICS

Important
To access the logs conveniently, you must add your username (PR_USER, by default)
to the following Linux group: sudo usermod -aG systemd-journal pm. Otherwise,
you must use the sudo command to see the logs for the various containers. The
following steps assume that you are already connected to the shell of the hosts where
AICS is deployed. You can issue these commands from any machine that is part of the
AICS deployment cluster.

Tango Logs
To access Tango logs, use the following command from any machine in the cluster:

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 227

$ journalctl CONTAINER_NAME=tango -o cat
2019-07-12 12:09:26,755 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:12:09:26 +0000] "GET /status HTTP/1.1" 200 22 "-" "curl/7.29.0"
2019-07-12 12:09:36,986 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:12:09:36 +0000] "GET /status HTTP/1.1" 200 22 "-" "curl/7.29.0"
2019-07-12 12:09:47,217 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:12:09:47 +0000] "GET /status HTTP/1.1" 200 22 "-" "curl/7.29.0"
2019-07-12 12:09:57,446 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:12:09:57 +0000] "GET /status HTTP/1.1" 200 22 "-" "curl/7.29.0"
2019-07-12 12:10:07,678 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:12:10:07 +0000] "GET /status HTTP/1.1" 200 22 "-" "curl/7.29.0"
2019-07-12 12:10:17,909 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:12:10:17 +0000] "GET /status HTTP/1.1" 200 22 "-" "curl/7.29.0"
2019-07-12 12:10:28,140 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:12:10:28 +0000] "GET /status HTTP/1.1" 200 22 "-" "curl/7.29.0"

MongoDB Logs
To access MongoDB logs, use the following command from any machine in the cluster:

$ journalctl CONTAINER_NAME=mongo -o cat
2019-07-12T12:07:58.662+0000 I NETWORK [conn4] received client metadata from
172.18.0.4:56298 conn4: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux",
name: "Linux", architecture: "x86_64", v
2019-07-12T12:07:58.684+0000 I NETWORK [listener] connection accepted from 172.18.0.4:56300
#5 (3 connections now open)
2019-07-12T12:07:58.695+0000 I NETWORK [conn5] received client metadata from
172.18.0.4:56300 conn5: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux",
name: "Linux", architecture: "x86_64", v
2019-07-12T12:07:58.697+0000 I NETWORK [listener] connection accepted from 172.18.0.4:56302
#6 (4 connections now open)
2019-07-12T12:07:58.707+0000 I NETWORK [conn6] received client metadata from
172.18.0.4:56302 conn6: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux",
name: "Linux", architecture: "x86_64", v
2019-07-12T12:10:01.959+0000 I NETWORK [listener] connection accepted from 172.18.0.4:56388
#7 (5 connections now open)
2019-07-12T12:10:01.969+0000 I NETWORK [conn7] received client metadata from
172.18.0.4:56388 conn7: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux",
name: "Linux", architecture: "x86_64", v
2019-07-12T12:10:01.970+0000 I NETWORK [listener] connection accepted from 172.18.0.4:56390
#8 (6 connections now open)
2019-07-12T12:10:01.991+0000 I NETWORK [conn8] received client metadata from
172.18.0.4:56390 conn8: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux",
name: "Linux", architecture: "x86_64", v
2019-07-12T12:10:02.488+0000 I NETWORK [conn7] end connection 172.18.0.4:56388 (5
connections now open)
2019-07-12T12:10:02.488+0000 I NETWORK [conn8] end connection 172.18.0.4:56390 (4
connections now open)

Model Training Workers Logs

• By default, a cluster contains two running model training worker containers. As a result, the container
name changes to reflect which container logs are to be reviewed.

To access Model Training Worker logs, use the following command from any machine in the cluster:

$ journalctl CONTAINER_NAME=workers_model_training_1 -o cat
2019-07-12 12:14:39 [INFO] [] Using gunicorn timeout value = [600]
2019-07-12 12:14:39 [INFO] [] Using gunicorn keepalive value = [2]

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 228

2019-07-12 12:14:39 [INFO] [] Using default value for gunicorn workers = [2]
2019-07-12 12:14:39 [INFO] [] TLS disabled. Files /data/ssl/tango.crt and /data/ssl/tango.key
not found in /data/ssl
2019-07-12 12:14:39 [INFO] [] Logs level is set to INFO level. Access logs redirection to
syslog enabled for gunicorn
2019-07-12 12:14:39 [INFO] [] Starting executor - topic model_training, timeout 2, sleeping
timeout 30
2019-07-12 12:14:40,197 [15] INFO <solariat> fields.py:723 Successfully configured signed
pickle.
* Serving Flask app "worker_status" (lazy loading)
* Environment: production
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off
127.0.0.1 - - [12/Jul/2019 12:14:49] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:14:59] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:10] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:20] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:30] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:40] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:50] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:00] "GET /status HTTP/1.1" 200 -

$ journalctl CONTAINER_NAME=workers_model_training_2 -o cat
2019-07-12 12:14:39 [INFO] [] Using gunicorn timeout value = [600]
2019-07-12 12:14:39 [INFO] [] Using gunicorn keepalive value = [2]
2019-07-12 12:14:39 [INFO] [] Using default value for gunicorn workers = [2]
2019-07-12 12:14:39 [INFO] [] TLS disabled. Files /data/ssl/tango.crt and /data/ssl/tango.key
not found in /data/ssl
2019-07-12 12:14:39 [INFO] [] Logs level is set to INFO level. Access logs redirection to
syslog enabled for gunicorn
2019-07-12 12:14:39 [INFO] [] Starting executor - topic model_training, timeout 2, sleeping
timeout 30
2019-07-12 12:14:40,476 [15] INFO <solariat> fields.py:723 Successfully configured signed
pickle.
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Serving Flask app "worker_status" (lazy loading)
* Environment: production

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off
127.0.0.1 - - [12/Jul/2019 12:14:49] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:00] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:10] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:20] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:30] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:40] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:50] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:00] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:10] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:20] "GET /status HTTP/1.1" 200 -

Analysis Workers Logs
To access Analysis Workers logs, use the following command from any machine in the cluster:

$ journalctl CONTAINER_NAME=workers_analysis_1 -o cat
2019-07-12 12:14:40 [INFO] [] Using gunicorn timeout value = [600]
2019-07-12 12:14:40 [INFO] [] Using gunicorn keepalive value = [2]
2019-07-12 12:14:40 [INFO] [] Using default value for gunicorn workers = [2]
2019-07-12 12:14:40 [INFO] [] TLS disabled. Files /data/ssl/tango.crt and /data/ssl/tango.key

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 229

not found in /data/ssl
2019-07-12 12:14:40 [INFO] [] Logs level is set to INFO level. Access logs redirection to
syslog enabled for gunicorn
2019-07-12 12:14:40 [INFO] [] Starting executor - topic analysis, timeout 2, sleeping timeout
30
2019-07-12 12:14:41,140 [15] INFO <solariat> fields.py:723 Successfully configured signed
pickle.
* Serving Flask app "worker_status" (lazy loading)
* Environment: production

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

127.0.0.1 - - [12/Jul/2019 12:14:50] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:00] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:10] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:20] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:30] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:41] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:51] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:01] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:11] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:21] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:31] "GET /status HTTP/1.1" 200 -

Purging Workers Logs
To access Purging Worker logs, use the following command from any machine in the cluster:

$ journalctl CONTAINER_NAME=workers_purging_1 -o cat
2019-07-12 12:14:41 [INFO] [] Using gunicorn timeout value = [600]
2019-07-12 12:14:41 [INFO] [] Using gunicorn keepalive value = [2]
2019-07-12 12:14:41 [INFO] [] Using default value for gunicorn workers = [2]
2019-07-12 12:14:41 [INFO] [] TLS disabled. Files /data/ssl/tango.crt and /data/ssl/tango.key
not found in /data/ssl
2019-07-12 12:14:41 [INFO] [] Logs level is set to INFO level. Access logs redirection to
syslog enabled for gunicorn
2019-07-12 12:14:41 [INFO] [] Starting executor - topic purging, timeout 2, sleeping timeout
30
2019-07-12 12:14:41,871 [15] INFO <solariat> fields.py:723 Successfully configured signed
pickle.
* Serving Flask app "worker_status" (lazy loading)
* Environment: production

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

127.0.0.1 - - [12/Jul/2019 12:14:51] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:01] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:11] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:21] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:31] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:41] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:51] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:01] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:11] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:21] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:32] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:42] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:52] "GET /status HTTP/1.1" 200 -

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 230

Dataset Upload Workers Logs
To access Dataset Upload Worker logs, use the following command from any machine in the cluster:

$ journalctl CONTAINER_NAME=workers_dataset_upload_1 -o cat
2019-07-12 12:14:42 [INFO] [] Using gunicorn timeout value = [600]
2019-07-12 12:14:42 [INFO] [] Using gunicorn keepalive value = [2]
2019-07-12 12:14:42 [INFO] [] Using default value for gunicorn workers = [2]
2019-07-12 12:14:42 [INFO] [] TLS disabled. Files /data/ssl/tango.crt and /data/ssl/tango.key
not found in /data/ssl
2019-07-12 12:14:42 [INFO] [] Logs level is set to INFO level. Access logs redirection to
syslog enabled for gunicorn
2019-07-12 12:14:42 [INFO] [] Starting executor - topic dataset_upload, timeout 2, sleeping
timeout 30
2019-07-12 12:14:42,563 [15] INFO <solariat> fields.py:723 Successfully configured signed
pickle.
* Serving Flask app "worker_status" (lazy loading)
* Environment: production

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

127.0.0.1 - - [12/Jul/2019 12:14:52] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:02] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:12] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:22] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:32] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:42] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:15:52] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:02] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:12] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:22] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:32] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:42] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:16:52] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:17:02] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:17:12] "GET /status HTTP/1.1" 200 -
127.0.0.1 - - [12/Jul/2019 12:17:23] "GET /status HTTP/1.1" 200 -

Example Commands to Locate Logs

To get last 100 lines of the Tango log, run:

$ journalctl CONTAINER_NAME=tango -n 100 -o cat

To get last 60 minutes of the Tango log, run:

$ journalctl CONTAINER_NAME=tango --since="1 hour ago" -o cat

To get the last ten hours of the MongoDB log, run:

$ journalctl CONTAINER_NAME=mongo --since="10 hour ago" -o cat

To tail Tango logs, run:

$ journalctl CONTAINER_NAME=tango -f -o cat

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 231

Common Errors with AICS

This section provides information about how to diagnose and troubleshoot problems when running
the AICS application deployed in Docker Containers. This information applies to both HA and single
node installations.

Volume
The default permissions on shared volumes are not configurable. If you are working with applications
that require permissions different from the shared volume defaults at container runtime, you need to
either use non-host-mounted volumes or find a way to make the applications work with the default
file permissions.

The only volume that is required to run the AICS application mounted locally on the hosts is /datadir.
This could be a mount from the network or locally available on the filesystem of the hosts.

If there is an existing mount already on the system with the similar name or there is an existing data
in the folder, rename the mount or move the files to a different location within the system. During the
installation of the AICS stack, it is assumed that the path exists and there is no existing data on the
volume.

Permissions Errors
The current user might not be added to the Docker group or does not have enough permissions to
perform Docker related operations.

$ docker ps
Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/
docker.sock: Get http://%2Fvar%2Frun%2Fdocker.sock/v1.30/containers/json: dial unix /var/run/
docker.sock: connect: permission denied

During installation of the AICS application, ad the configured user (by default, PR_USER) to the
docker and log groups. These permissions are necessary for administration tasks related to Docker
and to identify any application-related issues.

If your user can access system logs, you should be able to discover common application errors
related to functionality of the AICS stack.

Stopped Containers
There are scenarios in which the containers can fail and move from the running state to the stopped
state. To check the status of all the running containers on the hosts, use the following command:

$ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
a9ed052f99d6 jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 27
minutes ago Up 27 minutes (healthy) workers_dataset_upload_1
3656dae9e4cf jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 27
minutes ago Up 27 minutes (healthy) workers_purging_1
de9640523ad4 jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy) workers_analysis_1
9f461a9dbe0f jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 232

minutes ago Up 28 minutes (healthy) workers_model_training_2
a380bc06279b jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy) workers_model_training_1
871e6f2f1f7f jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy) 0.0.0.0:443->3031/tcp tango
72cd51047081 minio/minio:RELEASE.2018-07-23T18-34-49Z "sh -c 'mkdir -p /..." 29
minutes ago Up 29 minutes (healthy) 0.0.0.0:9000->9000/tcp scripts_minio_1
97122976b30d mongo:3.6 "docker-entrypoint..." 29
minutes ago Up 29 minutes 27017/tcp mongo

This indicates all the containers are running correctly, with no issues. However, to identify any
stopped containers, use the following command:

$ docker ps -a
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
a9ed052f99d6 jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy)
workers_dataset_upload_1
3656dae9e4cf jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy) workers_purging_1
de9640523ad4 jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy) workers_analysis_1
9f461a9dbe0f jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy)
workers_model_training_2
a380bc06279b jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 28
minutes ago Up 28 minutes (healthy)
workers_model_training_1
871e6f2f1f7f jop_tango:2019_07_11_16_00 "./docker-entrypoi..." 29
minutes ago Exited (137) 8 seconds ago tango
72cd51047081 minio/minio:RELEASE.2018-07-23T18-34-49Z "sh -c 'mkdir -p /..." 29
minutes ago Up 29 minutes (healthy) 0.0.0.0:9000->9000/tcp scripts_minio_1
97122976b30d mongo:3.6 "docker-entrypoint..." 29
minutes ago Up 29 minutes 27017/tcp mongo

In the example above, the Tango container has failed and the state has transitioned from running to
exited. To identify the cause of the container failure, use the following command:

$ docker inspect --format '{{ json .State.ExitCode }}' tango
137

This provides the exit code for the container. If the code is not familiar, check online resources, such
as Exit Codes With Special Meanings in the Advanced Bash-Scripting Guide to identify the cause of
the failure.

To determine whether the failure is caused by a memory issue or some other cause, use the following
command:

$ docker inspect --format '{{ json .State.OOMKilled }}' tango
true

This indicates whether the container was able to allocate or utilize the amount of memory required to
run the application. If there was insufficient memory, free up some memory from the system or kill
unnecessary memory-intensive processes.

CPU Issues
CPU issues can be difficult to identify and debug because CPU is a compressible resource, unlike

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 233

memory. When memory requests exceed the limit, the kernel kills the process. When CPU exceeds
the limit, the kernel simply allocates that process less CPU time, making it run slower. The
healthcheck configured in the containers automatically detects unresponsive containers and then
recreates them, making it more likely in this situation that the container recovers in good time.

The installation script ensures that minimum CPU and memory requirements are fulfilled during the
setups of AICS, but these can change over time. If the resources are increased or you plan to change
them, there is no need to run the installation script again. Instead, stop and then restart the
application, following the procudure provided in Start and Stop AICS.

Restarting an Exited Container
The container can be brought up normally by issuing the following command. If it does not return to a
normal running state, you will need to continue troubleshooting.

$ docker start tango
tango

Exit Codes With Special Meanings in the Advanced Bash-Scripting Guide lists some exit codes you
might encounter.

The following links provide more information to help troubleshoot Docker containers:

• docker service ps
• docker inspect

Configure Maximum Log Size

GPR 9.0.013.01 and higher has a default maximum log file size of 100m. If you are running an earlier
version of AICS or if your environment requires a different setting, use the instructions in this section
to configure the log file size.

In a single-server environment, execute the commands in this section in your AICS server. In a high
availability (HA) environment, review the output of the docker service ls command executed on
node-1:

• Ensure that there are three tango instances.
• Note down how many worker containers you are running.

Perform the following steps to change the log file size setting:

1. Open the following files on your single server or node-1, depending on your environment:
• tango-swarm.yml
• worker-swarm.yml

2. Check that both files contain the following section at the same level as the deploy: section:
logging:

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 234

options:
max-size: 100m

3. After you make changes, execute the bash restart.sh command on your single server/node-1.
This executes a rolling restart of all containers.

4. Check the health of the system by executing the following command on your single server/node-1:
docker service ls.

Verify that the number of instances of tango and the workers containers is the same as when you
started.

5. To clean up old log files that are not needed anymore, use the following Docker prune commands:

docker container prune -f
docker volume prune -f
docker network prune -f

Checking the Logs for HA AICS Containers

To access AICS logs when the services are running in a HA architecture, execute the following
commands on any node in the cluster:

For Tango Logs
$ docker service logs tango_tango
tango_tango.0.quljwdycmeq0@ip-172-31-43-210.eu-west-1.compute.internal | 2019-07-12
11:33:04,722 [32] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:11:33:04 +0000] "GET /health/runtime HTTP/1.1" 200 12 "-" "curl/7.29.0"
tango_tango.0.quljwdycmeq0@ip-172-31-43-210.eu-west-1.compute.internal | 2019-07-12
11:33:14,977 [30] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:11:33:14 +0000] "GET /health/runtime HTTP/1.1" 200 12 "-" "curl/7.29.0"
tango_tango.0.quljwdycmeq0@ip-172-31-43-210.eu-west-1.compute.internal | 2019-07-12
11:33:25,204 [32] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:11:33:25 +0000] "GET /health/runtime HTTP/1.1" 200 12 "-" "curl/7.29.0"
tango_tango.0.quljwdycmeq0@ip-172-31-43-210.eu-west-1.compute.internal | 2019-07-12
11:33:35,432 [32] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:11:33:35 +0000] "GET /health/runtime HTTP/1.1" 200 12 "-" "curl/7.29.0"
tango_tango.0.quljwdycmeq0@ip-172-31-43-210.eu-west-1.compute.internal | 2019-07-12
11:33:45,659 [32] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:11:33:45 +0000] "GET /health/runtime HTTP/1.1" 200 12 "-" "curl/7.29.0"
tango_tango.0.quljwdycmeq0@ip-172-31-43-210.eu-west-1.compute.internal | 2019-07-12
11:33:55,886 [32] INFO <gunicorn-access> glogging.py:353 127.0.0.1 - - [12/Jul/
2019:11:33:55 +0000] "GET /health/runtime HTTP/1.1" 200 12 "-" "curl/7.29.0"

For MongoDB Logs
$ docker service logs mongo_mongo1
I NETWORK [conn59] end connection 127.0.0.1:47132 (37 connections now open)
mongo_mongo1.1.hju604bk6bzy@ip-172-31-43-210.eu-west-1.compute.internal |
2019-07-12T11:35:01.733+0000 I NETWORK [listener] connection accepted from 10.0.0.5:33372
#60 (38 connections now open)
mongo_mongo1.1.hju604bk6bzy@ip-172-31-43-210.eu-west-1.compute.internal |
2019-07-12T11:35:01.744+0000 I NETWORK [conn60] received client metadata from 10.0.0.5:33372
conn60: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux", name: "Linux",

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 235

architecture: "x86_64", version: "3.10.0-862.14.4.el7.x86_64" }, platform: "CPython
3.6.8.final.0" }
mongo_mongo1.1.hju604bk6bzy@ip-172-31-43-210.eu-west-1.compute.internal |
2019-07-12T11:35:01.745+0000 I NETWORK [listener] connection accepted from 10.0.0.5:33376
#61 (39 connections now open)
mongo_mongo1.1.hju604bk6bzy@ip-172-31-43-210.eu-west-1.compute.internal |
2019-07-12T11:35:01.755+0000 I NETWORK [conn61] received client metadata from 10.0.0.5:33376
conn61: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux", name: "Linux",
architecture: "x86_64", version: "3.10.0-862.14.4.el7.x86_64" }, platform: "CPython
3.6.8.final.0" }
mongo_mongo1.1.hju604bk6bzy@ip-172-31-43-210.eu-west-1.compute.internal |
2019-07-12T11:35:02.263+0000 I NETWORK [conn61] end connection 10.0.0.5:33376 (38
connections now open)
mongo_mongo1.1.hju604bk6bzy@ip-172-31-43-210.eu-west-1.compute.internal |
2019-07-12T11:35:02.263+0000 I NETWORK [conn60] end connection 10.0.0.5:33372 (37
connections now open)

$ docker service logs mongo_mongo2
NETWORK [LogicalSessionCacheRefresh] Starting new replica set monitor for rs0/

mongo_mongo1:27017,mongo_mongo2:27017,mongo_mongo3:27017
mongo_mongo2.1.kk93g753swsc@ip-172-31-41-16.eu-west-1.compute.internal |
2019-07-12T11:40:01.634+0000 I NETWORK [listener] connection accepted from 127.0.0.1:40506
#27 (16 connections now open)
mongo_mongo2.1.kk93g753swsc@ip-172-31-41-16.eu-west-1.compute.internal |
2019-07-12T11:40:01.643+0000 I NETWORK [conn27] received client metadata from
127.0.0.1:40506 conn27: { application: { name: "MongoDB Shell" }, driver: { name: "MongoDB
Internal Client", version: "3.6.13" }, os: { type: "Linux", name: "Ubuntu", architecture:
"x86_64", version: "16.04" } }
mongo_mongo2.1.kk93g753swsc@ip-172-31-41-16.eu-west-1.compute.internal |
2019-07-12T11:40:01.651+0000 I NETWORK [conn27] end connection 127.0.0.1:40506 (15
connections now open)
mongo_mongo2.1.kk93g753swsc@ip-172-31-41-16.eu-west-1.compute.internal |
2019-07-12T11:40:02.000+0000 I NETWORK [listener] connection accepted from 10.0.0.5:44322
#28 (16 connections now open)
mongo_mongo2.1.kk93g753swsc@ip-172-31-41-16.eu-west-1.compute.internal |
2019-07-12T11:40:02.016+0000 I NETWORK [conn28] received client metadata from 10.0.0.5:44322
conn28: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux", name: "Linux",
architecture: "x86_64", version: "3.10.0-862.14.4.el7.x86_64" }, platform: "CPython
3.6.8.final.0" }
mongo_mongo2.1.kk93g753swsc@ip-172-31-41-16.eu-west-1.compute.internal |
2019-07-12T11:40:02.534+0000 I NETWORK [conn28] end connection 10.0.0.5:44322 (15
connections now open)

$ docker service logs mongo_mongo3
I NETWORK [LogicalSessionCacheRefresh] Starting new replica set monitor for rs0/
mongo_mongo1:27017,mongo_mongo2:27017,mongo_mongo3:27017
mongo_mongo3.1.3meg8sc7dvl9@ip-172-31-34-117.eu-west-1.compute.internal |
2019-07-12T11:40:01.925+0000 I NETWORK [listener] connection accepted from 127.0.0.1:50938
#28 (16 connections now open)
mongo_mongo3.1.3meg8sc7dvl9@ip-172-31-34-117.eu-west-1.compute.internal |
2019-07-12T11:40:01.935+0000 I NETWORK [conn28] received client metadata from
127.0.0.1:50938 conn28: { application: { name: "MongoDB Shell" }, driver: { name: "MongoDB
Internal Client", version: "3.6.13" }, os: { type: "Linux", name: "Ubuntu", architecture:
"x86_64", version: "16.04" } }
mongo_mongo3.1.3meg8sc7dvl9@ip-172-31-34-117.eu-west-1.compute.internal |
2019-07-12T11:40:01.944+0000 I NETWORK [conn28] end connection 127.0.0.1:50938 (15
connections now open)
mongo_mongo3.1.3meg8sc7dvl9@ip-172-31-34-117.eu-west-1.compute.internal |
2019-07-12T11:40:01.999+0000 I NETWORK [listener] connection accepted from 10.0.0.5:47094
#29 (16 connections now open)
mongo_mongo3.1.3meg8sc7dvl9@ip-172-31-34-117.eu-west-1.compute.internal |
2019-07-12T11:40:02.013+0000 I NETWORK [conn29] received client metadata from 10.0.0.5:47094
conn29: { driver: { name: "PyMongo", version: "3.7.2" }, os: { type: "Linux", name: "Linux",

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 236

architecture: "x86_64", version: "3.10.0-862.14.4.el7.x86_64" }, platform: "CPython
3.6.8.final.0" }
mongo_mongo3.1.3meg8sc7dvl9@ip-172-31-34-117.eu-west-1.compute.internal |
2019-07-12T11:40:02.533+0000 I NETWORK [conn29] end connection 10.0.0.5:47094 (15
connections now open)

And so on, for however many MongoDB nodes you have configured.

For Workers Logs
$ docker service logs workers_analysis
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:41:09] "GET /status HTTP/1.1" 200 -
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:41:19] "GET /status HTTP/1.1" 200 -
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:41:29] "GET /status HTTP/1.1" 200 -
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:41:39] "GET /status HTTP/1.1" 200 -
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:41:49] "GET /status HTTP/1.1" 200 -
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:42:00] "GET /status HTTP/1.1" 200 -
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:42:10] "GET /status HTTP/1.1" 200 -
workers_analysis.2.zas8ia65ficd@ip-172-31-43-210.eu-west-1.compute.internal | 127.0.0.1 -
- [12/Jul/2019 11:42:20] "GET /status HTTP/1.1" 200 -

$ docker service logs workers_model_training
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:41:59] "GET /status HTTP/1.1" 200 -
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:09] "GET /status HTTP/1.1" 200 -
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:19] "GET /status HTTP/1.1" 200 -
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:29] "GET /status HTTP/1.1" 200 -
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:39] "GET /status HTTP/1.1" 200 -
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:49] "GET /status HTTP/1.1" 200 -
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:59] "GET /status HTTP/1.1" 200 -
workers_model_training.1.rei8sjqnrpe4@ip-172-31-34-117.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:43:09] "GET /status HTTP/1.1" 200 -

$ docker service logs workers_purging
workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:42:26] "GET /status HTTP/1.1" 200 -
workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:42:36] "GET /status HTTP/1.1" 200 -
workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:42:46] "GET /status HTTP/1.1" 200 -
workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:42:56] "GET /status HTTP/1.1" 200 -
workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:43:07] "GET /status HTTP/1.1" 200 -
workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:43:17] "GET /status HTTP/1.1" 200 -
workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:43:27] "GET /status HTTP/1.1" 200 -

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 237

workers_purging.1.q2ak4vs2p7ef@ip-172-31-41-16.eu-west-1.compute.internal | 127.0.0.1 - -
[12/Jul/2019 11:43:37] "GET /status HTTP/1.1" 200 -

$ docker service logs workers_dataset_upload
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:47] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:42:57] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:43:07] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:43:18] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:43:28] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:43:38] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:43:48] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:43:58] "GET /status HTTP/1.1" 200 -
workers_dataset_upload.1.ulp2r911ubuc@ip-172-31-43-210.eu-west-1.compute.internal |
127.0.0.1 - - [12/Jul/2019 11:44:08] "GET /status HTTP/1.1" 200 -

To return only the last N lines of a log file, use the same commands as above, appending the
command --tail N, as in the following example:

$ docker service logs workers_analysis --tail 100

To continuously stream output of a log, use the same commands as above, appending the command
-f, as in the following example:

$ docker service logs workers_analysis -f

Operations: Updating, Maintenance, Logging,
Troubleshooting

AI Core Services Monitoring and
Logging

Predictive Routing Deployment and Operations Guide 238

Database Maintenance
This topic provides recommendations for keeping your MongoDB database up-to-date and working
correctly. It includes sections covering the following:

• How to Specify a Dedicated Mount Point
• Backing Up and Restoring Your Data

Store MongoDB on a Dedicated Mount Point

MongoDB data can grow quite large depending on the size of your environment and how you
configure Predictive Routing. By default, the docker-compose.yml file (which you obtain from
Docker.com) specifies /datadir/ as the MongoDB storage location. If you expect to write a lot of
data on the MongoDB server, Genesys recommends that you create a separate mount point for that
purpose.

• Why? If your OS uses the default configuration, the /datadir/ directory shares storage with the root
(/). If your Predictive Routing data files or logs grow too large, they will fill up your hard drive to a point
where you might even lose access to the server.

The instructions below assume you are using Logical Volume Manager (LVM) to handle your disks.
This example shows how to create a 20G logical volume for your data:

1. Create the new directory, using the following commands:
sudo lvcreate -L 20G -n mongoVolume LVMVolGroup
mkfs.ext4 /dev/LVMVolGroup/mongoVolume
mkdir /new-datadir
mount /dev/LVMVolGroup/projects /new-datadir

To make the new mount point permanent, update the /.../fstab file.
2. Update those servers running MongoDB (those with the mongo label). To do this, open the docker-

compose.yml file and replace the following text:
volumes:

- /datadir:/data/db

with

volumes:
- /new-datadir:/data/db

3. (Optional) If you initialized the application by running the start.sh script, move the data to your new
directory using the following commands:
cd ./scripts/
bash stop.sh
mv /datadir/* /new-datadir/

Operations: Updating, Maintenance, Logging, Troubleshooting Database Maintenance

Predictive Routing Deployment and Operations Guide 239

4. Start the application:
bash start.sh

Back Up and Restore MongoDB

This section supplies the commands needed to back up and restore MongoDB in a single-site/single-
server AICS deployment. For backup and restore instructions for HA environments, see Backing Up
Your Data in the Deploying: High Availability topic.

Using SSL with MongoDB
The procedure below is for MongoDB with SSL enabled. Genesys recommends that you use SSL.

• To use SSL, add the --ssl parameter to your commands.
In test environments, you can optionally add --sslAllowInvalidCertificates following the --
ssl parameter.

In test environments ONLY, if you need to maintain an environment without SSL connections, omit
the --ssl and --sslAllowInvalidCertificates parameters.

Backup MongoDB
Use the following procedure to back up MongoDB in a single-server (single node) environment:

1. Log into the container:
docker exec -it mongo bash

2. Generate the dump of the /backup file:
mongodump --ssl --out /data/db/backup --host localhost:27017

Tip
You can view the /data/db/backup directory for the container from the base system in the /datadir/backup
directory if you are using the default defined directory for MongoDB in the docker-compose.yml file.

Restore MongoDB
Use the following procedure to restore MongoDB on single node installation:

1. Go to the installation directory:
cd "IP_JOP_PRR_<version_number>_ENU_linux/scripts/"

2. Stop all the application containers:

Operations: Updating, Maintenance, Logging, Troubleshooting Database Maintenance

Predictive Routing Deployment and Operations Guide 240

bash stop.sh

3. Restart the MongoDB container:
../docker-compose -f "docker-compose.yml" up -d mongo

4. Start a bash session on the MongoDB container:
docker exec -it mongo bash

5. Log into the container:
mongo solariat_bottle --ssl --eval "db.dropDatabase()"

6. Restore the dump from the /backup file:
mongorestore --ssl --drop /data/db/backup --host localhost:27017
exit

7. To restart all the application containers, run:
bash install.sh

and then:

bash start.sh

Operations: Updating, Maintenance, Logging, Troubleshooting Database Maintenance

Predictive Routing Deployment and Operations Guide 241

Troubleshooting
This topic contains a partial and growing collection of tips and best practices to help you identify and
resolve frequently-encountered issues with your Predictive Routing deployment.

Model Training Issues

If model training is taking longer than it should, check the following points:

• Is MongoDB correctly using indexes?
If you see COLLSCAN in the log, it indicates that MongoDB is having trouble with the index set-up. To
resolve this issue, re-run one of the queries that resulted in the COLLSCAN message, appending
.explain() at the end. The result returned will help locate the problem.

Troubleshooting for a URS-based Predictive Routing Environment

If you are using the URS Strategy Subroutines, the following points can help troubleshoot issues with
your configuration:

• Does the interaction in question have user data keys with the prefix prr attached.
• Does the key prrResult have the value ok.
• If prrResult=error, check the prrMessage key for the error message.
• Check if the prrAgentScore key contains a valid score. An empty score might be a result of one of the

following issues:
• Normal operation. For example, the agent logged in and received the interaction after it was already

scored.
• The score for the agent is not present in the URS global map. See below for tips on global map

troubleshooting.
• The list of logged-in agents is out of synchronization between the URS and Journey Optimization

Platform (JOP).
• An interaction transfer. Currently, Predictive Routing is supported only on the first leg of the

interaction.

• Check if REST API calls to the scoring engine return any errors.
• Did the strategy authenticate with JOP REST API and receive a token? If not, check whether the

request is sent to the correct account in JOP and the correct user name, password, and API key were
provided.

• Was the scoring request formed correctly? Did the call to the subroutine GetActionFilters returned a
valid skill expression or AgentGroup name?

• Did the scoring REST API request return the scores for all agents in the target group that URS knows

Operations: Updating, Maintenance, Logging, Troubleshooting Troubleshooting

Predictive Routing Deployment and Operations Guide 242

to be logged in? If not, check whether Agent State Connector lost connection to Stat Server.

• Check if the interaction data was prematurely removed from the URS global map.
• Did the interaction stay in queue longer than the value set in the global-map-timeout option? In

this case, the data could have been cleaned automatically.
• Was the subroutine PrrIxnCleanup called at the right time for the interaction?

• Is URS overloaded?
• Predictive Routing IRD strategy subroutines utilize the URS TimeBehind[] function to detect when

URS is overloaded and adjust their behavior accordingly. TimeBehind[] returns a value that indicates
the delay, in milliseconds, between the moment an event is received from T-Server and when it is
processed by URS for the current interaction.

If the delay is more than 1000 milliseconds, URS is experiencing an overload and is unable to
process interactions in a timely manner. In this case, the Predictive Routing IRD subroutines
skip agent scoring and matching any new interactions passing through the
ActivatePredictiveRouting subroutine.

If you configured the strategy to hold out for higher-scoring agents, the hold-out is interrupted
and interactions are distributed to agents as they become ready, regardless of agent score,
until the overload condition ends.

• When Predictive Routing is deployed in an Orchestration Server strategy and such an overload
condition occurs, the URS SetIdealReadyConditionForORS subroutine exits through the default port
when it is called from the ORS strategy.

Operations: Updating, Maintenance, Logging, Troubleshooting Troubleshooting

Predictive Routing Deployment and Operations Guide 243

	Predictive Routing Deployment and Operations Guide
	Table of Contents
	Welcome to the Deployment and Operations Guide
	Quick Start
	New Features Log
	Code Samples
	System Requirements, Pre-Requisites, and Planning
	System Requirements and Interoperability
	Architecture and Security
	Sizing Guide
	Prepare Your Data
	Appendix: Supported Encodings

	Install and Configure Predictive Routing
	AI Core Services Single-Host Deployment
	Deploying in High Availability Environments
	Scale AI Core Services
	Deploy Agent State Connector
	Configuration Options

	Start and Stop All GPR Components
	How Does GPR Score Agents?
	Integrate with Genesys Routing
	Routing Scenarios Using GPR
	Deploy the URS Strategy Subroutines
	Deploying the Composer Strategy Subroutines

	Integrate with Genesys Reporting
	Operations: Updating, Maintenance, Logging, Troubleshooting
	Agent State Connector
	AI Core Services Monitoring and Logging
	Database Maintenance
	Troubleshooting

