
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Architecture and Security

Predictive Routing Deployment and
Operations Guide

4/22/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Architecture and Security
• 1.1 GPR Architecture
• 1.2 AI Core Services Architecture
• 1.3 Agent State Connector Architecture
• 1.4 Subroutines Architecture
• 1.5 Security

Predictive Routing Deployment and Operations Guide 2



Architecture and Security
This topic presents Genesys Predictive Routing (GPR) architecture, first at a high-level overview,
followed by more detailed views of the connections used by AI Core Services (AICS), Agent State
Connector (ASC), URS Strategy Subroutines, and Composer Subroutines components.

This topic covers Genesys Predictive Routing architecture, with some additional Genesys components
included in the diagrams for completeness. For a full list of required components and versions, refer
to System Requirements and Interoperability.

In addition, you need to have adequate data source(s) and construct a well thought-out data pipeline.

• AI Core Services Architecture
• Agent State Connector Architecture
• Subroutines Architecture
• Security and Secure Connections

GPR Architecture

The following diagram shows a high-level view GPR, how it connects with other Genesys components,
and how non-Genesys data enters GPR.

Important
GPR architecture in a high availability (HA) environment is similar to that presented in the diagram except
for the following details:

• Your load balancer or Docker container management application distributes traffic to
AICS across the configured instances in whatever way your system architects choose.
Deploy GPR in an HA Environment explains how to configure AICS if you require HA.

• ASC is a Java application that can be monitored, started, and stopped in Solution Control
Interface. It supports a warm-standby high availability architecture.

Architecture and Security

Predictive Routing Deployment and Operations Guide 3



AI Core Services Architecture

The following diagram shows the AI Core Services (AICS) internal structure and high-level connections
to the other GPR components in a single-server deployment.

Architecture and Security

Predictive Routing Deployment and Operations Guide 4



• See Scaling AI Core Services for information on how to scale each type of container included in the AICS
deployment.

• See System Monitoring and Logging for information on how to access the logs for each container.

The Tango Container
Contains the Genesys platform that provides the GPR scoring engine, the Predictive Routing REST
API, and the web-based user interface.

Architecture and Security

Predictive Routing Deployment and Operations Guide 5



Workers Containers
Contain function-specific processes, identifiable by the descriptive container names.

Important
In earlier releases, the Tango container included the workers listed below. The
functionality they provide has not changed. They have been relocated to separate
containers to facilitate scaling of specific functional aspects.

• workers_dataset_upload - Uploads agent profile and customer profile data to MongoDB in releases prior
to 9.0.015.03. Also uploads Dataset data in releases prior to 9.0.013.01, when the MinIO container was
introduced. In release 9.0.015.03 and higher, the MinIO container performs the initial upload for all
data, after which the workers_dataset_upload container moves the data from the server-based storage
provided by MinIO to MongoDB.

• workers_model_training - Performs Model training jobs.
• workers_analysis - Runs the Feature Analysis, Lift Estimation, and Agent Variance reports.
• workers_purging - Purges your Dataset data.

The MinIO Container
Contains MinIO, which is a high performance, distributed object storage server, designed for large-
scale data infrastructure. This container is available in releases 9.0.013.01 and higher, where it
improves processing times for the initial Dataset upload. In release 9.0.015.03 and higher, this
functionality has been expanded to include Agent Profile and Customer Profile uploads as well.

AICS handles data uploads without any need for you to handle configuration of MinIO. However, if you
are interested in more detailed information about this component, see the MinIO web site and
documentation.

The MongoDB Container
A highly scalable, highly available no-SQL database which is especially efficient at handling large
batches of JSON format data. It also supports fast, efficient queries of that data. Starting in MongoDB
3.2, WiredTiger is the default storage engine for MongoDB.

In high availability (HA) deployments, MongoDB uses replica sets split across two data centers. A
primary and secondary replica set are located in data center 1 (DC1) and a secondary replica set is
located in DC2. All writes go to the primary replica set, from which they are distributed to the
secondary replicas. Reads can be directed to either of the secondary sets. You can configure
MongoDB to prefer reads from local secondary sets. Cross-site data traffic is required, however,
because all writes are directed to the primary MongoDB in DC1 and the data then replicates across
sites. Note that sufficient bandwidth will be required for the data replication traffic between data
centers.

If the primary server fails, read operations can still continue. Another server can be elected as the
primary server to continue write operations. Ideally, an Arbiter node should be set up in a third data
center or availability zone. This facilitates the detection of a failed primary node when a data center

Architecture and Security

Predictive Routing Deployment and Operations Guide 6



becomes inaccessible and the proper election of a primary in the other data center. If there are only
two data centers, manual intervention is required to force one of the secondary replicants to become
the primary replicant.

• Links to additional information about Mongo DB:
• WiredTiger Storage Engine
• https://eladnava.com/deploy-a-highly-available-mongodb-replica-set-on-aws/
• https://docs.mongodb.com/manual/core/replica-set-architecture-geographically-distributed/
• http://s3.amazonaws.com/info-mongodb-com/MongoDB_Multi_Data_Center.pdf
• https://stackoverflow.com/questions/43083246/requires-simple-explanation-on-arbiters-role-in-a-

givenmongodb-replica-set
• https://docs.mongodb.com/manual/reference/method/Mongo.setReadPref/

The NGINX Container

Important
• Genesys recommends that you use NGINX only in test (non-production) environments.
• The NGINX container was removed in release 9.0.015.03.

NGINX is open source software for web serving, reverse proxying, caching, load balancing, media
streaming, and more. In addition to its HTTP server capabilities, NGINX is also used as a reverse
proxy and load balancer for HTTP, TCP, and UDP traffic.

Agent State Connector Architecture

Agent State Connector (ASC) connects to Configuration Server Proxy for agent-related data to be
stored in the Agent Profile (agent configuration details, such as a location, languages, skills and skill
levels, and so on). You can use this connection to populate the entire Agent Profile or you can upload
the initial agent data from a CSV file. In either case, agent data is updated via the connection to
Configuration Server. See Configuring Agent Profiles in the Predictive Routing Help for additional
information and procedures.

Important
Genesys recommends that you connect to Configuration Server Proxy, to reduce
traffic on Configuration Server.

Architecture and Security

Predictive Routing Deployment and Operations Guide 7

https://docs.genesys.com/Documentation/GPM/latest/help/cfgAgents


ASC is a Java application that can be monitored, started, and stopped in Solution Control Interface. It
supports a warm-standby high availability architecture. Certain architectural details about ASC
depend on the release you have deployed:

• In ASC 9.0.015.01 and lower, ASC connects to Stat Server to read agent availability data used in
determining the preferred target agent and to configure and read the output for custom statistics.

• In ASC 9.0.015.04 and higher, the connection to Stat Server is optional. If you do not add a Stat Server
to the Connections tab of the ASC Application object, agent availability data is taken from Universal
Routing Server (URS), reducing the number of connections required.

Architecture and Security

Predictive Routing Deployment and Operations Guide 8



Subroutines Architecture

Predictive Routing supplies out-of-the-box subroutines for environments running either Interaction
Routing Designer (IRD) + Universal Routing Server (URS) or Composer + Orchestration Server (ORS)
+ URS.

• IRD requires you to use the Predictive Routing URS Strategy Subroutines component. Insert the strategy
subroutines into the appropriate position in your strategy flow.

• Composer requires the use of the Predictive Routing Composer Subroutines. Insert the subroutines into
the appropriate position in your workflow. If you are using Composer, you need Orchestration Server
(ORS) as well as URS in your environment.

Important
Predictive Routing is not supported for environments that use schedule-based routing.

The Subroutines invoke Predictive Routing in real time. They send a request to AICS, which performs
the scoring based on the information you configured in your Predictor and the Model or Models based

Architecture and Security

Predictive Routing Deployment and Operations Guide 9



on it. AICS returns the projected scores for each agent in the target group, indicating how well they
would be expected to handle the specific interaction in question given the particular interaction type,
customer intent, agent skill level, and whatever other factors you anticipate to be relevant. URS then
chooses the optimal routing target.

Security

AI Core Services and Agent State Connector 9.0.015.05 and higher are delivered as a set of Docker
images. This ensures consistent environments from development to production as Docker containers
maintain all configurations and dependencies internally, without depending on software installed on
host server. With Docker, upgrades are easier and more predictable. Scaling across multiple hosts
requires starting the same Docker containers on multiple host servers. In addition, Docker provides
isolation; every part of GPR can be scaled separately and has guaranteed access to hardware
resources.

Genesys uses the following best practices when it comes to security:

• GPR supports TLS 1.2. To configure HTTPS connections, see Configuring GPR to Use HTTPS.
• GPR uses a CentOS 7 Docker image as the base image.

• Genesys supports Security Enhanced Linux (SELinux) on CentOS 7. For a discussion of this
functionality and how to configure it, see How to disable SELinux on the Linux web site.

• GPR Docker images containing Genesys software are continuously scanned for vulnerabilities as part of
the build and test pipelines.

• All GPR Docker containers run in unprivileged mode.
• Inside Docker containers, GPR software is executed as a non-root user.
• All ports and volumes that should be exposed by each container are specified in Required Ports for

Firewall Configuration.

The measures listed above, combined with properly secured host servers, ensures that GPR deployed
using Docker containers is as secure as a deployment using more traditional methods.

• GPR delivered as set of Docker containers does not require any additional ports to be open.
• GPR uses MongoDB as its database, which is also delivered as Docker image. GPR uses the official

MongoDB Docker image at https://hub.docker.com/_/mongo/.
• MongoDB inside the Docker container requires access to the same ports and same hardware resources

as MongoDB running outside of a Docker container.

To understand how Docker containers comply with various security regulations and best practices,
see the following pages on the Docker site:

• Docker standards and compliance.
• Docker Security

To understand how MongoDB databases comply with various security regulations and best practices,
see the following page on the MongoDB site:

Architecture and Security

Predictive Routing Deployment and Operations Guide 10



• MongoDB Security

Secure Connections
Predictive Routing supports the following security and connection protocols:

• ADDP
• HTTPS
• Transport Layer Security (TLS) 1.2

The following protocols are supported for the specified connections:

• ASC to Config Server: TLS 1.2; you can specify an upgrade-mode Configuration Server port by updating
the -port command line parameter in the ASC Application object Start Info tab.

• ASC to Stat Server: TLS 1.2
• ASC to AICS: HTTPS
• URS or ORS to AICS: HTTPS

Configure GPR to Use HTTPS
GPR supports HTTPS by default. The procedures linked below provide the required configuration to
use HTTPS with GPR.

HTTPS configuration for other components in your Genesys environment is covered in the Genesys
Security Deployment Guide and in the product-specific documentation.

• Configure AICS to Use HTTPS
• Configure ASC to Use HTTPS
• Configure URS Strategy Subroutines/Composer Subroutines to Use HTTPS

Secure Logins
Predictive Routing supports LDAP authentication for user logins. See Settings: Configuring Accounts
and Account: User Management for procedures to configure LDAP authenticated accounts.

Architecture and Security

Predictive Routing Deployment and Operations Guide 11

https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/System/8.5.x/SDG/Welcome
https://docs.genesys.com/Documentation/GPM/latest/help/cfgAccounts
https://docs.genesys.com/Documentation/GPM/latest/help/cfgUserMgmt

	Predictive Routing Deployment and Operations Guide
	Architecture and Security

