
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Mobile Engagement 8.5.2

Client Samples

5/7/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Genesys Mobile Services Client Samples 3
Change History 4
iOS Sample 5
Android Sample 8

Android SDK Sample 9
Classic Callback Sample 15
Custom Callback Plugin Sample 20
Interaction Workspace Plugin Sample 22
Statistic Custom Template Sample 26
Composer Sample for UserOriginated – ClickToCall 28
Chat Version 2 CometD Sample 31

Genesys Mobile Services Client Samples
These pages provide a brief overview of the sample applications included with Genesys Mobile
Services. As additional sample applications are made available, this guide will be updated to provide
supporting information.

• New in This Document

• iOS Sample
• AndroidSample
• Classic Callback Samples
• Custom Callback Plugin Sample
• Interaction Workspace Plugin Sample
• Statistic Custom Template Sample
• Chat Version2 CometD WebSocket Sample

Important
The JavaScript Sample is now documented in the Service Management UI Help.

Genesys Mobile Services Client Samples

Client Samples 3

Change History
The following topics have been added or changed in the GMS 8.5.202.03 release.

• Android SDK was added.
• The Android Sample moved to Maven.

The following topics have been added or changed in the GMS 8.5.201.04 release.

• The Composer Sample for UserOriginated – ClickToCall has been added.

The following topics have been added or changed in the GMS 8.5.200.07 release.

• The Android Sample has been updated.

Change History

Client Samples 4

iOS Sample
Updated in 8.5.2

iOS Sample

Client Samples 5

Important

iOS Sample

Client Samples 6

The source code is downloadable in BitBucket.

This sample application provides you with the following scenarios:

• Chat-Now
• Chat-Wait
• Voice-Now-UserOrig
• Voice-Now-UserTerm
• Voice-Wait-UserOrig
• Voice-Wait-UserTerm
• Voice-Scheduled-UserTerm

Notes:

• Log into the UI hub at this URL:
<GMS Local Host>:8080/genesys

• Go to Settings and change the GMS service URL to point to the Callback service that you configured.
• The application does not trim +1 from the phone number. Make sure the phone number in the Settings

tab is compatible with your test environment if you are using either matching by DNIS+ANI or matching
by ANI only. Depending on your setup, T-Server reports ANI with or without a leading country code.

Disclaimer
THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

iOS Sample

Client Samples 7

Android Sample
Updated in 8.5.204, 8.5.200

Download in Bitbutcket

In 8.5.202, the Android Sample moved to BitBucket, where you can download the code sample. The
Android SDK used in this sample is available in jcenter/bintray and in Maven, and includes the
Javadoc JAR file that you can import in Android Studio. Once imported, the JAR file also provides
automatic completion and documentation while using the Android Sample SDK.

Important
All installation and code details are provided in the BitBucket ReadMe where you can
download the Android Sample.

In 8.5.114, the app was extended to support:

• Chat V2 features, that are now available in the CHAT-V2 scenario:
• File Transfer
• Typing notifications
• Typing preview

• Mobile Push Notifications to Android devices using Firebase Cloud Messaging (FCM)
• ApiGee integration

Disclaimer

THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Android Sample

Client Samples 8

Android SDK Sample
Introduced in 8.5.204.00

Important
The SDK described on this page is a sample, not a Genesys product. The related-code
is meant to be used with the Android Sample for demonstration purposes only. See
the Disclaimer section for further details.

The Android SDK used in this sample is available in jcenter/bintray and in Maven, and includes the
Javadoc JAR file that you can import in Android Studio. Once imported, the JAR file also provides
automatic completion and documentation while using the Android Sample SDK.

Getting Started

Use your favorite editor to edit the app/build.gradle file.

1. Add the GMS SDK with the correct version to the dependencies sections:

repositories {
jcenter()

}
dependencies {

...
implementation 'com.genesys.gms.android:sdk:<version_from_maven_repo>'

...
}

For example, if you download your SDK from the revision 241 use 8.5.201.00.rev.241 for the
version.

2. Ensure that the Android minSdkVersion option is not less than 19 and that the Android
compileSdkVersion option matches the latest version available (here, 27).

android {
compileSdkVersion 27
defaultConfig {

...
minSdkVersion 19

...
}

}

Structure

Android Sample Android SDK Sample

Client Samples 9

The Android SDK is divided into two parts:

• Settings: Handles all the settings that the API needs to connect with GMS and Callback.
• Chat: Handles all the actions required during a Chat session.

See the sections below for further details on using these APIs.

Important
The Javadoc is included in your JAR file.

Using Settings

First of all, to use the Settings part of the SDK, you need to implement the SettingsActivity class
and create a SettingsManager instance. This instance contains and handles all the settings that you
need for each subsequent actions.

For example:

public class SettingsActivity extends Activity implements SettingsHandler {

[...]
SettingsManager settingsManager;

public void aMethod() {

//Initialize settingsManager
//SettingsManager(Context, SettingsActivity)
settingsManager = SettingsManager.createInstance(this, this);

}

@Override
public void onError(Exception exception) {

}

@Override
public void dial(DialogResponse dialog) {

}

@Override
void availableTimeslots(Map<String, String> var1){

}

}

To retrieve the SettingsManager instance after the initialization, use the getInstance method.

SettingsManager settingsMgr = SettingsManager.getInstance();

In this handler, you can implement the dial method to process the dialog response. The example
below provides an example of implementation:

Android Sample Android SDK Sample

Client Samples 10

@Override
public void dial(DialogResponse dialog) {

switch (dialog.getAction()) {
case DIAL:

Log.d("Label", dialog.getLabel());
callbackApi.makeCall(Uri.parse(dialog.getTelUrl()));
break;

case MENU:
if (dialog.getContent() == null || dialog.getContent().size() == 0) {

// It's empty! No menu to show...
break;

}
DialogResponse.DialogGroup group = dialog.getContent().get(0);
String groupName = group.getGroupName();
final List<DialogResponse.GroupContent> groupContents = group.getGroupContent();
if (groupContents == null || groupContents.size() == 0) {

// It's empty! There are no options...
break;

}
String[] menuItems = new String[groupContents.size()];
for (int i = 0; i < groupContents.size(); i++) {

menuItems[i] = groupContents.get(i).getLabel();
}
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setTitle(dialog.getLabel() + "\n" + groupName)

.setItems(menuItems, new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {

String url = groupContents.get(which).getUserActionUrl();
settingsManager.startDialog(url);

}
});

builder.create().show();
break;

case CONFIRM:
String text = dialog.getText();
Toast.makeText(this, text, Toast.LENGTH_LONG).show();
break;

default:
break;

}
}

Ensure to save all the settings by using the saveDatas method:

settingsManager.saveDatas(settings);

The settings object stores all the useful settings, like the name and telephone number of the user
and all server settings such as the address, the port, and so on. The saveDatas methods allows to
save all the settings and get them later or after closing the application. For example, after an
onResume event in an activity, retrieve the saved data by calling SettingsManager.getDatas():

settings = SettingsManager.getDatas();

When you start a call or a chat session as detailed in other sections, ensure to configure all the
settings and then use the connect method like in this snippet:

public void sendData () {
Map<String, String> params;

settingsManager.saveDatas(getInformations());

Android Sample Android SDK Sample

Client Samples 11

ScenarioType scenario =
ScenarioType.fromString(scenarioSpinner.getSelectedItem().toString());

params = callbackApi.getScenarioParams(getInformations(), scenario);

if (scenario == ScenarioType.CHAT_V2) {
Intent intent = new Intent(this, ChatActivity.class);
startActivity(intent);

} else {
settingsManager.connect(serviceNameTextView.getText().toString(), params);

}

}

Important
Remember that if you want to start a scheduled call, you must set the dateTime attribute in the settings instance
as an ISO 8601 date.

ChatHandler

To start a chat session, create the UI and open your own activity. To create your ChatActivity class,
extend the Activity class and implement the ChatHandler interface.

public class ChatActivity extends Activity implements ChatHandler {
[...]
ChatClient chatClient;

public void aMethod() {
//ChatClient(Context, ChatHandler)
chatClient = new ChatClient(context, this);

}

@Override
public void onMessage(ChatV2Response response){

[...]
}

//The url of the downloaded file
@Override
public void onFileDownloaded(String url){

[...]
}

@Override
public void onFileUploaded(Uri uri){

[...]
}

@Override
public void onError(Exception e){

[...]
}

}

First create an instance of ChatClient, like in the aMethod example above. After initializing the API,

Android Sample Android SDK Sample

Client Samples 12

you can start a Chat session by calling the connect method.

chatClient.connect();

The connect method automatically starts the chat session and call the “onMessage” or “onError”
when it is needed. You can send chat start and stop typing events by calling startTyping and
stopTyping methods, as shown below:

chatClient.startTyping()
chatClient.stopTyping()

To send a message, simply use the sendMessage method.

chatClient.sendMessage(message)

You can also download files through the downloadFile method.

chatClient.downloadFile(messageId)

To download a file from the chat session, use the messageID that is provided in the response of the
“onMessage” event. The downloadFile method returns the URI of the given file where the user can
start the download.

To end the chat session, call disconnect:

chatClient.disconnect()

Firebase Cloud Messaging

Refer to the instructions detailed in the Android Sample’s Readme to implement FCM. Once all the
firebase instructions are completed (Connect app, add FCM, access the registration token, handle
message), you can receive messages in the onMessageReceived() method. Process the message in
your handler, for example, as follows:

@Override
public void onMessageReceived(RemoteMessage remoteMessage) {

// Check if message contains a data payload.
if (remoteMessage.getData().size() > 0) {

SettingsManager settingsManager = SettingsManager.getInstance();
settingsManager.handleMessage(remoteMessage.getData().get("message"));

}
}

Disclaimer

THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL

Android Sample Android SDK Sample

Client Samples 13

GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Android Sample Android SDK Sample

Client Samples 14

Classic Callback Sample
You can download the Classic Callback (VoiceXML) sample application via a zip file. The zip file also
includes Composer callflow diagrams.

Genesys Mobile Services Classic Callback Sample

Important
This example's strategy was created with Composer 8.1.300. If you are using
Composer 8.1.400 or newer, you must upgrade the Composer project.

Overview

The Genesys Mobile Services (GMS) Classic Callback sample illustrates how to implement an IVR
(Genesys Voice Platform VoiceXML) application that communicates with GMS and performs classic
Callback scenarios. It is primarily meant to be used by developers as a reference to build a Composer
callflow application that interacts with GMS.

Scenarios

The following scenarios are implemented as one Composer project, which consists of one driver
callflow and a corresponding subcallflow for each scenario.

IVR Controlled Callback Using GMS Stat Server API

1. Caller is in Genesys Voice Platform (GVP) and requests an Agent.
2. GVP gets the estimated wait time (EWT) using GMS Stat Server API.
3. GVP logic determines Callback should be offered (EWT threshold).
4. GVP offers Caller the choice of a Callback ASAP or to stay on the line and wait for an Agent.

• Caller chooses Callback ASAP and hangs up. GVP creates a new service request to GMS using
Callback API. Caller is called back when an Agent about to become available.

• Caller chooses to stay on the line and wait for an Agent, and the call is connected when an Agent is
available.

IVR Controlled Callback Using GMS Callback API

1. Caller is in GVP and requests an Agent.

Classic Callback Sample Android SDK Sample

Client Samples 15

2. GVP start a new GMS service (HTTP API) and a virtual interaction is placed in the queue to hold the
position of the caller.

3. GVP gets the estimated wait time (EWT) and Position for the virtual interaction using the GMS Callback
API.

4. If the EWT-Position Threshold is not met, implying that the wait time is not long.
1. Wait for an Agent by continuing polling GMS Callback Service API until Agent becomes available or

the EWT threshold is reached.

5. If the EWT-Position Threshold is met, implying that the wait time is long.
1. GVP offers Caller the choice of a Callback as soon as an Agent becomes available and without losing

position in the queue, or to stay on the line and wait for an Agent. Optionally informs the caller
about the EWT and Position in the queue.

2. Caller chooses Callback and hangs up. The caller is called back when an Agent is about to become
available.

3. Caller chooses to stay on the line and wait for an Agent, and the call is connected when an Agent is
available.

Prerequisites

In order to use this sample application, the following prerequisites are required:

• GMS installed and running, with JDK 1.7.
• The services that you want to use must be deployed.
• The sample can be deployed on all web servers supported by Composer 8.5.
• (Optional to play VoiceXML) MRCP enabled for GVP using the tts option. GVP uses MRCP speech

synthesis technology to incorporate text-to-speech for use in voice applications.

Running the Sample

1. Download the zip file.
2. Extract the zip into the following directory: <gms install folder>/webapps.
3. Modify the <gmsinstalldir>/webapps/ClassicCallbackSample/src/AppRoot.vxml file to set values

for the following variables, which are dependent on the environment:
• gms_uri

• gms_service_name

• stat_api_params – this value should be same as the Virtual Queue specified in the GMS service
configuration for the preceding service (gms_service_name)

• gms_inbound_service_rp – any routepoint where a strategy/workflow can route the call to the
agent.

Classic Callback Sample Android SDK Sample

Client Samples 16

https://docs.genesys.com/Documentation/Options/latest/GVP/GVP_MCP-tts

• gms_transfer_routepoint - routepoint where the GMS classic call inbound service is configured.

4. Edit the start.ini file to make sure that it contains:

--
module=server,jsp,jmx,resources,websocket,ext,plus,annotations,deploy,security,servlets,continuation
etc/jetty.xml
etc/jetty-ssl.xml
etc/jetty-deploy.xml
etc/jetty-http.xml
etc/jetty-https.xml
jetty.send.server.version=false

Important
Comment any rewrite line. You should not run the sample in a Production server.

Verify that the following URL is accessible: http://<gmshost>:<gmsport>/ClassicCallbackSample/src-
gen/ClassicCallbackEntry.vxml

Configure IVR Objects
1. In Genesys Administrator > Provisioning, create a new IVR Profile named ClassicCallbackSample
with a Service Type of VoiceXML.

2. Provision the IVR Profile to point to the URL shown in Step 4.

Classic Callback Sample Android SDK Sample

Client Samples 17

3. Setup a DID group (a trunk group to the IVR Profile mapping).

4. Configure the DID as a TrunkGroup that points to Resource Manager.

5. Make a call to the DID and follow the voice prompts.

Brief Introduction to the Code (Composer Callflow Diagrams)
ClassicCallbackEntry.callflow

1. Common entry into the IVR samples for all of the supported scenarios.
2. Acts as a driver application for the sample.
3. Plays welcome message.
4. Collects user data (account number).

• 1111 - for Scenario 1.
• 2222 – for Scenario 2.
• Other – play error prompt and repeat Step 4.

5. Based on the selected scenario, invokes the following subroutines:
• SubGMSStatsCallback.callflow for Scenario 1.
• SubIVRConrolledGMSCallback.callflow for Scenario 2

SubGMSStatsCallback.callflow

1. Get EWT using GMS Statistic API .../genesys/1/statistics (EstimatedWaitTime).
2. Get current interactions waiting in queue .../genesys/1/statistics (current_In_Queue).
3. Check Callback offer threshold.

Classic Callback Sample Android SDK Sample

Client Samples 18

• Offer Callback.
• Invoke SubCallbackOfferDialog.
• Callback declined.

• Yes, default route the call (continue with no Callback).
• No, exit.

• Do not offer Callback.
• Default route the call (continue with no Callback).

SubIVRControlledGMSCallback.callflow

1. Start Callback service (USERORIGINATED).
2. Get EWT and Position using GMS Callback API .../genesys/1/callback (check-queue-position).
3. Check agent available.

• Agent available.
• Get access number.
• Blind transfer to access number.
• Exit.

• Agent not available, so check Call

Classic Callback Sample Android SDK Sample

Client Samples 19

Custom Callback Plugin Sample
You can download the GMS Custom Callback Plugin sample application via the following zip file, which
includes Composer call flow and workflow diagrams.

• Genesys Mobile Services Custom Callback Plugin Sample, version 8.5.114

For a description of the On-Dial plugin interface and configuration, see the Playing Treatments page
in the Callback Solution Guide.

Plugin Description

The Genesys Mobile Services (GMS) Custom Callback Plugin sample implements an On-Dial plugin to
interface with the GMS Callback service. Developers should use this sample as a reference to build a
Composer application that is invoked as a plugin from GMS Callback. Though the actual functionality
of the plugin can be extended to execute custom logic like sending push notifications, SMS, or emails,
it is beyond the scope of this sample to demonstrate these. For implementing custom logic, refer to
GMS, ORS, and Composer documentation.

This example covers:

• Parsing the JSON content of the _user_data parameter into an object.
• Checking the _interaction_id parameter to determine if the call was answered.
• Checking the _call_state parameter for the human answer and machine answer use cases.
• Playing a music file message for scenarios involving a machine answer.
• Invoking a VXML application for scenarios involving a human answer.
• Setting user data in the interaction.
• Implementing a reusable sub-workflow that detaches the interaction and returns the plugin reply.

Note that the Callback Service template provides default treatments when an outbound call reaches
a human or not. Customization of the template is required to provide custom treatment. In this
release, the custom treatment is supported through SCXML or VoiceXML plugins as configurable
options for the Callback Service template. This reduces the customization efforts and gives you more
control over how the outbound call is treated.

Prerequisites

In order to use this sample application, you need the following:

• GMS installed and running, with JDK 1.7 or JDK 1.8.

Custom Callback Plugin Sample Android SDK Sample

Client Samples 20

https://docs.genesys.com/Documentation/CLBCK/latest/UG/PlayTreatments

• The services that you want to use must be deployed.
• The sample can be deployed on all web servers supported by Composer 8.5.

Running the Sample

1. Download the zip file here
2. Unzip to C:\temp to create a GMSExamplePlugin folder.
3. Open Composer.
4. Browse File > Import > General and select the GMSExamplePlugin folder. Click OK to import.
5. Generate the code and deploy the project.
6. Make sure that the scxml application is accessible via http.
7. Configure _plugin_on_dial_url = <scxml http path>
8. Execute the VOICE-USERTERM-NOW scenario.

Disclaimer

THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Custom Callback Plugin Sample Android SDK Sample

Client Samples 21

Interaction Workspace Plugin Sample
You can download the Interaction Workspace Plugin sample application binary and sources using the
following links. The Sources zip file contains a Visual Studio project for customization.

Important
Interaction Workspace (IW) is also known as Workspace Desktop Edition (WDE).

Modified in 8.5.200

Sources

• Genesys Mobile Services IWS Plugin Sample – Sources version 2.3

Overview

The Interaction Workspace Plugin (IWS) sample illustrates how to implement an IWS plugin
application that communicates with GMS and allows an agent to do the following:

• Preview a Callback, and then decide to accept or reject the request.
• Set disposition on completed/cancelled Callbacks, and reschedule or retry a Callback when the

outbound call is unsuccessful.

The sample is primarily meant to be used by developers as a reference to build an IWS plugin
application that integrates with Interaction Workspace and interacts with GMS to provide Preview/
Retry Callback.

Scenarios

• For the Preview feature, see the User Terminated Preview scenario.
• For the Retry feature, all User Terminated scenarios can be used with:

• _enable_disposition_dialog = true
• _business_hours_service set with the name of your Office Hours service.

See Preview and Disposition Scenarios page for further details.

Interaction Workspace Plugin Sample Android SDK Sample

Client Samples 22

https://docs.genesys.com/Documentation/CLBCK/latest/UG/UserTerminatedDelayedPreview
https://docs.genesys.com/Documentation/CLBCK/latest/UG/Scenarios
https://docs.genesys.com/Documentation/CLBCK/latest/UG/ManagePreviewDispositionScenarios

Prerequisites

In order to use this sample application, the following prerequisites are required:

• GMS 8.5.005.xx and higher for Preview Callback
• GMS 8.5.006.xx and higher for Preview and Retry Callback
• Interaction Workspace 8.1.401.20 or Workspace Desktop Edition 8.5.106.21 or higher
• (Optional for customization) Visual Studio Development Environment (use Visual Studio Professional

2013) for Interaction Workspace 8.1.401.xx version or for Workspace Desktop Edition 8.5.106.21+
versions
• Install .NET framework 3.5 (for IWS 8.1.401.xx) or .NET framework 4.5 (for IWD 8.5.106.21+); then,

select the correct .NET framework to build the project.

Compiling the Sample

Download the Visual Studio project and extract the files to create a folder GMS_IWSPlugin. Open the
GMS_IWSPlugin.sln file in Visual Studio.

Procedure

1. This project is primarily dependent on the IWS libraries. To ensure that the dependency libraries are
available to the project build process, copy the contents of <Interaction Workspace Install
Folder>/InteractionWorkspace (folder containing InteractionWorkspace.exe) in the build target
folder. You can do this by setting Project Properties > Build Events > Open file > Pre-build
event command line. For example: xcopy "C:\Program Files (x86)\GCTI\Interaction Workspace\
InteractionWorkspace" "$(TargetDir)" /y /i /s

2. For debugging, make sure that the Project Properties > Debug settings are correct.
3. After customization is complete and a successful build is done, copy the contents of $TargetDir back to

the folder containing InteractionWorkspace.exe in the IWS installation.

<Dictionary EnglishName="English" CultureName="English" Culture="en-US">
<Value Id="InvitationDialog.FormCaption" Title="Callback Invitation" />
<Value Id="InvitationDialog.RemainingTime" Title="seconds remain" />
<Value Id="InvitationDialog.Message" Text="A personal callback is offered to you. Please
refer to the information below and use one of the response buttons." />
<Value Id="DisplayData_1" Translation="Field 1" />
<Value Id="DisplayData_2" Translation="Field 2" />
<Value Id="DisplayData_3" Translation="Field 3" />
<Value Id="DisplayData_4" Translation="Field 4" />
<Value Id="DisplayData_5" Translation="Field 5" />
<Value Id="DisplayData_6" Translation="My New Preview Field" />
<Value Id="ResponseButton_accept" Translation="Accept" />
<Value Id="ResponseButton_reject" Translation="Reject" />
<Value Id="ResponseButton_reschedule" Translation="Reschedule" />
<Value Id="ResponseButton_xcancel" Translation="Cancel" />
</Dictionary>

Interaction Workspace Plugin Sample Android SDK Sample

Client Samples 23

Running the Sample

Download the binary files and extract them to the Interaction Workspace or Workspace Desktop
installation directory. Make sure that the binary files are extracted into the same folder as the
InteractionWorkspace.exe.

Setting Preview Field Labels and Adding/Removing Fields

1. Open the file <plugin dir>/Languages/
Genesyslab.Desktop.Modules.GMS.CallbackInvitation.en-US.xml.

2. Update the bolded text to intended values, and then restart Interaction Workspace. These new values
will be displayed in the IWS plugin dialog on GMS preview.

<Dictionary EnglishName="English" CultureName="English" Culture="en-US">
<Value Id="InvitationDialog.FormCaption" Title="Callback Invitation" />
<Value Id="InvitationDialog.RemainingTime" Title="seconds remain" />
<Value Id="InvitationDialog.Message" Text="A personal callback is offered to you. Please

refer to the information below and use one of the response buttons." />
<Value Id="DisplayData_1" Translation="'''Field 1'''" />
<Value Id="DisplayData_2" Translation="'''Field 2'''" />
<Value Id="DisplayData_3" Translation="'''Field 3'''" />
<Value Id="DisplayData_4" Translation="'''Field 4'''" />
<Value Id="DisplayData_5" Translation="'''Field 5'''" />
<Value Id="DisplayData_6" Translation="'''Field 6'''" />
<Value Id="ResponseButton_accept" Translation="Accept" />
<Value Id="ResponseButton_reject" Translation="Reject" />
<Value Id="ResponseButton_reschedule" Translation="Reschedule" />
<Value Id="ResponseButton_xcancel" Translation="Cancel" />
<Value Id="ResponseButton_done" Translation="Done" />
<Value Id="DispositionDialog.FormCaption" Title="Callback Disposition" />
<Value Id="DispositionDialog.RemainingTime" Title="seconds remain" />
<Value Id="DispositionDialog.Message" Text="A disposition is offered to you. Please refer

to the information below and use one of the response buttons." />
</Dictionary>

3. Add or remove the <Value Id=”DisplayData_... items as necessary while ensuring that the
DisplayData_1, DisplayData_2... order is maintained.

About the Code

UserEventListener.cs

• EventHandlerTServerReceived – Listens to all user events and processes only the Callback preview
user events from GMS Callback.

Interaction Workspace Plugin Sample Android SDK Sample

Client Samples 24

InvitationDialog.xaml.cs

• PlaceDisplayData – Loads the preview data from userevent into the preview dialog.
• PlaceResponseButtons – Creates clickable buttons to allow agents to take action after previewing the

displayed Callback information.
• ResponseButtonClick – Returns an agent response to GMS based on the button clicked.

DispositionDialog.xaml.cs

• PlaceDisplayData – Loads the disposition data from userevent into the disposition dialog.
• PlaceResponseButtons – Creates clickable buttons to allow agents to send disposition after taking

actions according to the displayed Callback disposition information.
• ResponseButtonClick – Returns an agent response to GMS based on the button clicked.

Disclaimer
THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS, AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Interaction Workspace Plugin Sample Android SDK Sample

Client Samples 25

Statistic Custom Template Sample
You can download the sample custom template for statistics using the following link:

Statistic Custom Template Sample

Overview

GMS enables you to easily develop your own service by using services composition and custom
business logic. The sample template provided here addresses a statistic use case on how to get
information about maxInteractions, currentMargin, and currentInteraction from a group of
approximately 500 agents. The goal is to use this statistic on the customer-side (browser) to show
how quickly a request has been answered.

The response from the GMS statistic will be similar to the Pulse statistic. For example:

{
"maxInteractions": 2,
"currentInteractions": 0,
"currentMargin": 2

}

While the GMS Stat Service APIs allow you to query statistics against Stat Server, the APIs return the
statistic response as a JSON object. For the use case described here, the response from GMS for this
type of statistic may not meet business needs with the response size, CPU consumption, and security.

However, the benefits of using the Statistic custom template are:

• Network Load - Size of transmitted information is significantly reduced.
• CPU Consumption - Reduced on client-side; all parsing/formatting process is completed on the GMS/

ORS-side.
• Security - Sensitive information is not exposed.

Prerequisite

GMS 8.5.005.xx and higher.

Running the Sample

1. Download the zip file. You can save the zip file to the same directory as the templates that are included
with the GMS installation: <GMS installation directory>/service_templates, or you can create a

Statistic Custom Template Sample Android SDK Sample

Client Samples 26

https://docs.genesys.com/Documentation/GMS/latest/API/StatServiceAPI

new directory to store your custom templates.
2. Go to the GMS Service Management UI > Tools > Service Templates.
3. Load the template:

1. Click Add Service Template.
2. Select the get-gastat.zip file.

4. Create the service:
1. Go to the GMS Service Management UI > Services > Configured Services.
2. Click Add Service.
3. Select the get-gastat service, and enter a name for your service.

5. You can now configure the custom statistic service.
6. When you have finished with the configuration, you can call your new service using a REST client.

About the Code

The template is a zip file that contains two files:

• get-gastat.json - Contains the configuration options associated with the service (service type,
statistic details, and so on).

• get-gastat.scxml - Contains the logic of the service. In this sample, it contains a call to the GMS Stat
Service API as well as the parsing and formatting logic.

Disclaimer
THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Statistic Custom Template Sample Android SDK Sample

Client Samples 27

Composer Sample for UserOriginated –
ClickToCall
This sample enables you to customize the Click-to-Call scenario, also known as User-Originated or
User-Orig scenario in the Genesys Mobile Services Deployment Guide. You can download this sample
using this link:

Genesys Mobile Services Composer Sample

Customize and import your Scenario

1. Download and unzip the above zip file.
2. Modify the sample source code and generate new SCXML files using Composer.
3. Navigate to the <GMS Installation Directory>/service_templates folder.

1. Unzip the callback.zip file.
2. In the callback subdirectory, replace the required SCXML files with the SCXML files that you

generated.
3. Zip the callback folder to replace the current callback.zip file.

4. Start the Service Management UI and upload the <GMS Installation
Directory>/service_templates/callback.zip file.

5. Make sure that you successfully complete the steps of the Testing your deployment section of the
Genesys Mobile Services Deployment Guide.

Scenario Example

The data used in the following step-by-step are examples that will not match your environment.

1. Create a callback.

2. The Callback session goes to ReserveImmediate, and submits a "request-
access" query to GMS. GMS returns the _access_number and _access_code
(if needed) in response to the Callback session.

3. When the "request-access" is done, the callback session response is sent
to GMS. For example, you could see:

'_access_code' [str] = "n/a"
'_expiration_time' [str] = "29"

Composer Sample for UserOriginated – ClickToCall Android SDK Sample

Client Samples 28

https://docs.genesys.com/Documentation/GMS/8.5.2/Deployment/ConfiguringandUsingSamples

'_tel_url' [str] = "[tel:9050020]"
'_action' [str] = "DialNumber"
'_access_number' [str] = "9050020"
'_id' [str] = "118-025ff6e8-8f88-43dd-8174-1d72808c2e7e"
'_label' [str] = "Connecting ..."
'_dialog_id' [str] = "0"

The 9050020 access number provides the access to
GMSCallbackInboundGMSMatch, which has the following _url option, for
instance: http://gms:8080/genesys/1/document/service_template/
callback/src-gen/IPD_Voice_GMSMatch.scxml

4. The customer calls the provided _access_number, then GMS submits the
request to invoke IPD_Voice_GMSMatch.scxml (inbound session).

5. In VoiceRoute.scxml, if _access_code is required, the system plays the
prompt and waits for a DTMF.

6. Then, the script goes to GMSMatch directly, and the inbound session
submits a "match-interaction" request with access-number=9050020 (or the
access_code if needed) to GMS.

7. If the request succeeds, GMS returns the _id and _data_id data, for
example _data_id=118-262d1a29-d905-4cfc-bbf7-58129d95a0d4,
_id=002IIV4PVKDE1BV41K017B5AES000001

Important
Here, _id is the ors_session id and is being passed as _gms_service_id.

8. If the service is not a builtin service, the script associates the inbound
session using the _gms_service_id (_id) to the callback session; if the
service is a builtin service, the script stays in the inbound session.

9. The Callback session goes on with reservation and connects to the agent.

Disclaimer

THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS, AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,

Composer Sample for UserOriginated – ClickToCall Android SDK Sample

Client Samples 29

INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Composer Sample for UserOriginated – ClickToCall Android SDK Sample

Client Samples 30

Chat Version 2 CometD Sample
This code sample shows how to implement a WebSocket client application for GMS Chat Version 2
using CometD. In this example, the client application opens a CometD connection, submits a chat
request, and starts receiving notifications. Once the chat session is over, the application closes the
CometD channel.

The client application uses CometD to connect the Chat Server via GMS.

• GMS initiates the Chat session by sending a request to the Chat Server.
• The Chat Server connects the agent and publishes notifications to the client application through GMS

CometD channels.
• The client application submits chat messages and receives notifications through GMS CometD channels.

This code sample uses the CometD Project for Javascript, in addition to Vue.js and Metro4, for UI
components.

Link to video

Prerequisites

• Genesys Mobile Services 8.5.2+
• Refer to the Prerequisites for the CometD API.
• Configure Digital Channels.
• Create a chat service channel, for example, customer-support.
• Download the Chat V2 CometD Sample.

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 31

https://player.vimeo.com/video/441030284?title=0&byline=0&portrait=0
https://docs.genesys.com/Documentation/GMS/8.5.2/API/ChatAPIv2CometD
https://docs.genesys.com/Documentation/GMS/8.5.2/Deployment/ConfiguringDigitalChannels

Run the GMS Chat CometD Sample

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 32

• Unzip the chat sample zip file.

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 33

• In the chatv2-cometD-sample directory, run the npm install command.
• Open the index.html file with a browser.

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 34

• Fill in the form, and then click Start chat session. You can start submitting chat messages.

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 35

Implementation Details

Step 1. Get started with CometD
When you click the Start Chat button, the VueJs chatApp component (or chatUi) calls the
chatV2Start function which performs the following actions:

1. Initialize and configure a CometD instance. See CometD documentation for further details.
2. Register callback listeners for each channel that submits notifications.

• CometD Meta Channels
• GMS CometD Chat service channels which are responsible for publishing events and notifications. In

this sample, the service used is "customer-support". As a result, the channel for this service is:
/service/chatV2/customer-support.

3. Handshake.

function chatV2Start(url, channel) {

chatUi.runToast("Connecting", 'info');
// Instantiate CometD
// For each chat session, open a CometD connection
objCometD = new org.cometd.CometD();
// Optionally, install an extension.
objCometD.registerExtension('timestamp', new org.cometd.TimeStampExtension());

// Enable WebSockets
objCometD.websocketEnabled = objCometDSettings.websocketEnabled;

// Provide your GMS CometD Endpoint
objCometDSettings.cometURL = url;
objCometD.configure({

url: url,
logLevel: "info"

});

/// Add listeners for cometD meta endpoints
objCometD.addListener('/meta/handshake', fHandshake);
objCometD.addListener('/meta/connect', fConnect);
objCometD.addListener('/meta/disconnect', fDisconnect);
objCometD.addListener('/meta/publish', fPublish);
// Listen to chat notifications
objCometDSettings.channel = channel;
objCometD.addListener(objCometDSettings.channel, refresh);

// Now, handshake
objCometD.handshake();

}

Important
The above CometD code is a one-time setup only during the lifecycle of an active
CometD connection.

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 36

Step 2. Handle ChatV2 API Queries
To simplify the code, this sample calls the request method for CometD requests once the chat
session is started. The supported operations match the API queries listed in the Chat V2 CometD API
reference page, for example:

• sendMessage

• disconnect

• requestNotifications

The request function always provides the secureKey parameter which is available in the message
responses as soon as the chat session is started.

function request (operation, params) {
if (objCometD && boolCometDConnected) {

var data = {
operation: operation,
secureKey: objSessionData.secureKey,

};
var finalData = $.extend(data, params);
objCometD.publish(objCometDSettings.channel, finalData);

} else {
chatUi.runToast("CometD is not connected!", "alert");

}
}

Step 3. Implement CometD Meta Callbacks
fHandshake

The CometD library calls this function automatically to submit the result of the Handshake operation.

• If successful, the GMS communication channel is ready and the sample submits a requestChat request.
• If the sample detects a reconnection, it sends a requestNotifications request to make sure that

you get all chat notifications. Note that the handshake callback function gets automatically called
by CometD during any failure trying to re-establish the connection to GMS.

• If not, the Handshake is failed and the sample needs to disconnect CometD.

Important
In this sample, the callback function counts the number of handshake exceptions and
disconnects from CometD only when reaching the intHandshakeExceptionLimit
limit. By default, CometD makes several attempts if you don't close the connection.
This ensures to display a connection error only if the handshake keeps failing.

function fHandshake(response) {

console.log('fHandshake', response);

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 37

https://docs.genesys.com/Documentation/GMS/8.5.2/API/ChatAPIv2CometD#CometD_API

if (response.successful === false) {
if (++intHandshakeExceptionCount === intHandshakeExceptionLimit) {

/// Too many exceptions, close CometD connection
disconnectFromGMS();
intHandshakeExceptionCount = 0;
// Update UI
chatUi.stopWaiting();
chatUi.runToast("Handshake failed", 'alert');

}
} else if (response.successful === true) {

chatUi.runToast("Handshake success", 'info');

boolCometDConnected = true;
chatUi.boolGMSConnected = true;
intHandshakeExceptionCount = 0;

if (response.secureKey && boolRestoring) {
chatUi.runToast("Restoring notifications", 'info');
// If the handshake is successful, submit a request notifications request
// otherwise client messages are not exchanged properly.
console.log("request notifications handshake");
request("requestNotifications", {

secureKey: response.secureKey,
transcriptPosition: intLastTranscriptPosition,
message: "" // get current text in text input

});
boolRestoring = false;

} else {
chatUi.stopWaiting();
chatUi.runToast("Start chat session", 'info');
// Start a chat session
var requestChatData = {

operation: "requestChat",
nickname: chatUi.strNickname,
subject: "Test CometD Chat v2",
text: "",
"userData": {

"interests": "javascript"
}

}
objCometD.publish(objCometDSettings.channel, requestChatData);

}
}

}

fConnect

When implementing Chat V2 using CometD, you can get disconnected from GMS and from the Chat
Server, which interrupts the chat session.

• CometD connection status is tracked with boolCometDConnected in the fConnect() function.
• Chat Server connection status is tracked with boolChatServerOffline in the fDisconnect() function.

In the fConnect() callback, the sample submits a requestNotifications request if the Chat Server
is disconnected. Otherwise, if the Chat Server was previously connected and if the response is not
successful (response.successful === false), it means that the /meta/connect request failed. In

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 38

this scenario, the sample checks for the error received and, if the error code is 402, it processes it as
if the Chat Server is disconnected.

Based on the advice received in the response, the CometD library submits the handshake request
again, if needed, and does not require that you take care of it.

function fConnect(response) {
if (!objCometD || objCometD.isDisconnected()) {

boolCometDConnected = false;
chatUi.runToast("CometD is no longer connected!", "alert");
return;

}

boolCometDConnected = response.successful == true;

// If chat was disconnected but CometD has reconnected
if (boolDisconnected && boolCometDConnected) {

boolDisconnected = false;
if (!chatUi.boolChatServerOnline) {

/// Requesting chat messages$
request("requestNotifications", {

transcriptPosition: intLastTranscriptPosition
});
/// Updating the chat server status
chatUi.boolChatServerOnline = true;
chatUi.runToast("CometD reconnected", "info");

}
} else if (!boolDisconnected && !boolCometDConnected) {

if (response.error !== "402:: Unknown client") {
boolDisconnected = true;
chatUi.boolGMSConnected = false;
/// Notify disconnection status
chatUi.runToast("CometD is disconnected! " + response.error, "alert");

}
}

}

fDisconnect

When implementing Chat V2 using CometD, the sample or the agent can submit a GMS disconnect
request, which interrupts the chat session and also notifies the '/meta/disconnect' channel.

• The CometD connection status is tracked with boolCometDConnected in the fConnect() function.
• The Chat Server connection status is tracked with boolChatServerOffline in the fDisconnect()

function.

The fDisconnect function is called when CometD is disconnected. First, it checks if it needs to re-
establish the connection, and if so, it submits a /handshake request.

Important
To get notifications after the reconnection, the sample needs to request notifications
again. This action is performed in the handshake handler.

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 39

function fDisconnect(response) {
console.log('disconnect', response);
if (response.successful) {

boolDisconnected = true;
chatUi.boolChatServerOnline = false;
chatUi.boolGMSConnected = false;
chatUi.boolSessionActive = false;
/// if CometD is not set to false,
/// trying to reconnect
if (objCometD) {

chatUi.runToast("CometD - disconnection", "alert");
boolRestoring = true;
objCometD.handshake();

} else {
objSessionData.secureKey = "";
chatUi.runToast("CometD - disconnection", "info");

}

} else {
chatUi.runToast("CometD - disconnection " + response.error, "error");

}
}

Step 4. Process Notifications
Refresh

The refresh handler receives chat notifications either received after a successful requestChat query
or requested with the requestNotifications query. In addition to the status code, it receives all of
the transcripts and events related to chat messages. In the refresh handler, the sample checks the
response status code and updates accordingly.

• An API statusCode value of 0 indicates that the operation was successful and all fields in the response
have valid values.
• In this scenario, the sample retrieves the secureKey parameter required to submit further Chat V2

requests during the chat session.

• An API statusCode value of 1 or 2 indicates that there was an exception and Chat Server is offline.

Further processing of the chat messages is performed in the parseTranscript() function detailed in
a separate section.

function refresh(response) {
console.log('refresh', response, boolCometDConnected);
chatUi.runToast("Received notification", "info");
if (boolCometDConnected) {

response = response.data;

/// Make sure to retrieve session parameters
// only secureKey is required
if (response.secureKey) objSessionData.secureKey = response.secureKey;

if (response.statusCode === 2 && response.errors && response.errors.length > 0) {
/// Process the received errors
chatUi.boolSessionActive = false;
var errorToDisplay = "Chat API error:
";
response.errors.forEach(element => { errorToDisplay += element.advice + "
"

});

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 40

chatUi.runDialog(errorToDisplay, "alert");
}

// Prevents situation where you can't end an expired chat session
if (response.statusCode === 0) {

if (!chatUi.boolChatServerOnline) {
/// Chat Server is back online
chatUi.boolChatServerOnline = true;
chatUi.runToast("Chat server is back online", "info");

}

if (response.messages.length > 0) {
// Parse the chat transcript
parseTranscript(response);

}

} else if (response.statusCode === 1) {
chatUi.boolChatServerOnline = false;
chatUi.runToast("Chat server is offline", "warn");

}
}

}

Parse Transcript

In this sample, the ParseTranscript function checks all the messages for the current chat session. To
avoid publishing multiple times the same messages, it checks the index of each message and
publishes only new ones. Additionally, if the chat session has ended, the function also calls the
disconnectFromGMS() function to close the GMS CometD connection.

function parseTranscript(transcript) {
// Update chat display if needed
$.each(transcript.messages || [], function () {

/// TIP: Use the index to check if you previously processed this message
if (this.index > intLastTranscriptPosition) {

switch (this.type) {
case 'ParticipantJoined':

chatUi.displayMessage(this.from.nickname, '<i> Joined </i>');
break;

case 'Message':
if (this.from.type !== 'Client') {

// In this sample, the chat widget already displayed
// the client message
chatUi.displayMessage(this.from.nickname, this.text);

}
break;

case 'ParticipantLeft': chatUi.displayMessage(this.from.nickname, '<i> Left
</i>');

break;
default: console.log(this);

}
intLastTranscriptPosition = this.index;

}

});
// Check if the session has ended
if (transcript.chatEnded === true) {

chatUi.boolSessionActive = false;
disconnectFromGMS();

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 41

}
}

function disconnectFromGMS() {
console.log("disconnect from GMS");

/// Clean up
objSessionData.secureKey = "";
intLastTranscriptPosition = -1;

/// Stop cometD
if (boolCometDConnected && objCometD) {

objCometD.disconnect();
objCometD = false;
boolCometDConnected = false;

}
}

Step 5. Terminate the Chat session
To terminate the Chat session, if the user clicks the End Chat Session button, the sample sends a
Chat V2 disconnect request.

As a result, the sample disconnects from CometD after receiving a response notification with
chatEnded = true. Note that it also receives a meta disconnect event processed in the fDisconnect
handler.

/// Terminate the chat session before disconnecting CometD
function terminateChatSession() {

chatUi.runToast("Terminate Chat session...", "warn");
intLastTranscriptPosition = -1;
request('disconnect', {});

}

Disclaimer

THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Chat Version 2 CometD Sample Android SDK Sample

Client Samples 42

	Client Samples
	Table of Contents
	Genesys Mobile Services Client Samples
	Change History
	iOS Sample
	Android Sample
	Android SDK Sample

	Classic Callback Sample
	Custom Callback Plugin Sample
	Interaction Workspace Plugin Sample
	Statistic Custom Template Sample
	Composer Sample for UserOriginated – ClickToCall
	Chat Version 2 CometD Sample

