
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Push Notification Service

Genesys Mobile Services API
Reference

5/1/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Push Notification Service
• 1.1 Overview
• 1.2 HttpCallback Notification
• 1.3 Android Notification
• 1.4 Apple Notification
• 1.5 CometD Notification
• 1.6 Localization of push messages
• 1.7 Orchestration Server Callback Notification
• 1.8 Providers
• 1.9 Support of OS specific capabilities associated with the notification message

Genesys Mobile Services API Reference 2

Push Notification Service

Overview

This page contains useful information about Push Notification service. There are four different types
of push notification supported in Genesys Mobile Services:

• HttpCallback Notification
• Android Notification
• Apple Notification
• Orchestration Server Callback Notification

In addition to discussing these different types of notification, this page also describes Details on
Notification Propagation. For details about the configuration options available for various types of
notification, see push Section.

HttpCallback Notification

This channel is used for pushing notification as POST requests to a provided URL. The notification
server expects a response status of 200 (HTTP_OK). The body is ignored. If the response status is not
200 then the notification is considered to fail (see Details on Notification Propagation for more
details).

Subscription Request
The URL to POST the message is specified by deviceId in the subscription request. When an event
comes to the NotificationService and its tag matches the corresponding subscription, the POST
request will be sent to the URL, specified by notificationDetails.deviceId.

Usage
The HTTP callback notification channel will send the HTTP request to specified URL as a reaction to
notification publishing. The format of callback HTTP described above. The connection will be plain
HTTP without TLS/SSL. The HTTP request will be done with POST method (hardcoded, not
configurable), where body will be the plain string, passed as "message" in notification (see
Notification API). Sample Request body:

{"subscriberId":"A1",
"notificationDetails":{

"deviceId":" http://localhost:8080/gms-web/gms/httpcb_notification/value/suffix",
"type":"httpcb"},

"filter":"*"}

Push Notification Service

Genesys Mobile Services API Reference 3

https://docs.genesys.com/Documentation/GMS/latest/Deployment/ConfigurationOptions#push_Section

Android Notification

C2DM Service
Android notification relies on the Android Cloud to Device Messaging (C2DM) service, described here:
http://code.google.com/android/c2dm/. C2DM notifications are made on behalf of an account that is
registered in Google services and described by the configuration options for the Genesys Mobile
Services Application object. Some key points about C2DM to take into consideration when creating
your applications:

• Each account has a limited capacity (quota). For more information about quotas, see:
http://code.google.com/android/c2dm/quotas.html

• Message size limit is 1024 bytes.
• The push-to-android functionality requires an HTTPS connection to Google Services, so your

environment must be configured to allows HTTPS connections to the following addresses to use this
functionality:
• https://www.google.com/accounts/ClientLogin
• https://android.apis.google.com/c2dm/send

Keystore/Truststore Configuration Hints

The default Java keystore/trustore on Windows Server 2003 allows connections to required endpoints
without any additional configuration. However, if you are using a different environment (OS, security
policies, Servlet container, and JVM settings) there may be additional configuration steps to permit
the necessary connections. This section contains the instructions for configuring your system when
the default JVM keystore is replaced with the -Djavax.net.ssl.keyStore and -Djavax.net.ssl.trustStore
JVM startup options on Windows systems. For other operating systems or keystore/truststore
configurations, refer to the documentation for your environment. To configure the keystore:

1. Use your web browser or another tool to retrieve the certificates required for the following addresses:
• https://www.google.com/accounts/ClientLogin
• android.apis.google.com

2. Import those certificates into the keystore you plan to use.

Note: If the keystore password is null or an empty string and the keystore contains a key, then Java
may fail to establish the HTTPS connection. In this case user can:

• update the keystore password to provide the correct value (recommended)
• disable certificate validation by setting the push.android.ssl_trust_all option to true (highly unadvised)

Client Application Implementation

For an application to receive messages, it must meet the following requirements:

• When the application starts, it must register itself in the C2DM service by specifying the Google

Push Notification Service

Genesys Mobile Services API Reference 4

Services account that it will receive notifications from. The account name must be configurable
because it will be unique for each customer.

• The push service uses data.message=<message_body> in the service-to-C2DM POST request body.
When the Android client application receives a notification, it should use "message" as the key to
extract the passed information. Sample code for message extraction is provided below:

@Override
public void onMessage(Context context, Intent intent) {

Bundle extras = intent.getExtras();
if (extras != null) {

String payloadValue = (String) extras.get("message");
//...

}else {
//...

}
}

GCM Service
Android gcm notification relies on the new Google Cloud Messaging (GCM) service, described here:
http://developer.android.com/guide/google/gcm/. GCM notifications are made on behalf of an apiKey
that is created in Google services (see http://developer.android.com/guide/google/gcm/gs.html) and
described by the configuration options for the Genesys Mobile Services Application object. Some key
points about GCM to take into consideration when creating your applications:

• No quota.
• Message size limit is 4096 bytes.
• The push-to-android functionality requires an HTTPS connection to Google Services, so your

environment must be configured to allows HTTPS connections to the following addresses to use this
functionality:
• https://android.googleapis.com/gcm/send.

Keystore/Truststore Configuration Hints

The default Java keystore/trustore on Windows Server 2003 allows connections to required endpoints
without any additional configuration. However, if you are using a different environment (OS, security
policies, Servlet container, and JVM settings) there may be additional configuration steps to permit
the necessary connections. This section contains the instructions for configuring your system when
the default JVM keystore is replaced with
the -Djavax.net.ssl.keyStore and -Djavax.net.ssl.trustStore JVM startup options on Windows systems.
For other operating systems or keystore/truststore configurations, refer to the documentation for your
environment. To configure the keystore:

1. Use your web browser or another tool to retrieve the certificates required for the following addresses:
• https://android.googleapis.com/gcm/send.

2. Import those certificates into the keystore you plan to use.

Note: If the keystore password is null or an empty string and the keystore contains a key, then Java
may fail to establish the HTTPS connection. In this case user can:

Push Notification Service

Genesys Mobile Services API Reference 5

• update the keystore password to provide the correct value (recommended)
• disable certificate validation by setting the push.android.ssl_trust_all option to true (highly unadvised)

Client Application Implementation

For an application to receive messages, you can follow the recommandations from Google :
http://developer.android.com/guide/google/gcm/gs.html#android-app Check the "Writing the
Android Application" section for more information.

Apple Notification

As a provider, Genesys Mobile Services communicates with the Apple Push Notification service over
an asynchronous binary interface. This interface is a high-speed, high-capacity interface for
providers; it uses a streaming TCP socket design in conjunction with binary content. The binary
interface of the production environment is available through gateway.push.apple.com, port 2195; the
binary interface of the sandbox (development) environment is available through
gateway.sandbox.push.apple.com, port 2195. You may establish multiple, parallel connections to the
same gateway or to multiple gateway instances. See more details here: Provider Communication with
Apple Push Notification Service

Client Application Implementation
Incoming notifications are the string representation of a JSON object. To receive the message itself,
please extract the node with key=message.

CometD Notification

Note: Available in 8.1.100.28.

This channel is used for pushing notifications on the CometD channel. When using CometD to get
notifications, the CometD connection should be set up with a subscription for /_genesys.

You also need to make sure that the 'gms_user' header in all CometD related requests is set to the
value uniquely representing the application end user. Typically, this value would be set up (or at least
verified) by the security gateway located between the client application and GMS.

CometD handshake request

POST http://localhost:8080/genesys/cometd
Accept-Encoding: gzip,deflate
Content-Type: application/json;charset=UTF-8
gms_user: BuzzBrain
{"version":"1.0","minimumVersion":"0.9","channel":"/meta/handshake","id":"0"}

HTTP/1.1 200 OK
Date: Sun, 10 Jun 2012 08:30:10 GMT

Push Notification Service

Genesys Mobile Services API Reference 6

Content-Type: application/json
Content-Length: 230
[{"id":"0","minimumVersion":"1.0","supportedConnectionTypes":["websocket","callback-

polling","long-polling"], "successful":true,"channel":"/meta/handshake","ext":
"ack":true},"clientId":"44xkkazwfabw73jrvjsvoy4ul","version":"1.0"}]

CometD /meta/connect subscription request

POST http://localhost:8080/genesys/cometd
Accept-Encoding: gzip,deflate
Content-Type: application/json;charset=UTF-8
gms_user: BuzzBrain
{"channel":"/meta/
connect","clientId":"44xkkazwfabw73jrvjsvoy4ul","id":"1","connectionType":"long-polling"}

HTTP/1.1 200 OK
Date: Sun, 10 Jun 2012 08:30:10 GMT
Content-Type: application/json
Content-Length: 116

[{"id":"1","successful":true,"advice":{"interval":0,"reconnect":"retry","timeout":60000},"channel":"/meta/
connect"}]

CometD /_genesys subscription request

POST http://localhost:8080/genesys/cometd Accept-Encoding: gzip,deflate
Content-Type: application/json;charset=UTF-8
gms_user: BuzzBrain
[{"channel":"/meta/
subscribe","subscription":"/_genesys","clientId":"44xkkazwfabw73jrvjsvoy4ul","id":"2"}]

HTTP/1.1 200 OK
Date: Sun, 10 Jun 2012 08:30:10 GMT
Content-Type: application/json
Content-Length: 85
[{"id":"2","subscription":"/_genesys","successful":true,"channel":"/meta/subscribe"}]

CometD long polling request

POST http://localhost:8080/genesys/cometd
Accept-Encoding: gzip,deflate
Content-Type: application/json;charset=UTF-8
gms_user: BuzzBrain
{"clientId":"44xkkazwfabw73jrvjsvoy4ul","id":"3","channel":"/meta/
connect","connectionType":"long-polling"}

HTTP/1.1 200 OK
Date: Sun, 10 Jun 2012 08:30:10 GMT
Content-Type: application/json
Content-Length: 85
[{"id":"4","successful":true,"channel":"/meta/connect"}]

Localization of push messages

GMS support localized message. To allow this features device must supply a language at subscription
time, corresponding to the application language. For example language can be:

Push Notification Service

Genesys Mobile Services API Reference 7

Country Language

English (United States) en_US

English en

Estonian et

French fr

... ...

Localization file format is described here.

{"subscriberId":"A1",
"notificationDetails":{

"deviceId":" http://localhost:8080/gms-web/gms/httpcb_notification/value/suffix",
"type":"httpcb"},

"language":"de",
"filter":"*"}

See more details on configuring the push section.

Orchestration Server Callback Notification

Subscription
When subscribing to Orchestration Server callback, the user provides the Orchestration Server
sessionId. This parameter is specified by notificationDetails.deviceId, with the type to be used
specified as orscb.

Notification Propagation
The notification event contains 2 parameters: tag and message. The tag parameter is used for
matching the subscription. If the subscription is for Orchestration Server callback, the following
mappings have place:

• notificationDetails.deviceId - mapped to Orchestration Server sessionId
• notificationevent.tag - mapped to Orchestration Server eventName
• message - mapped to the message

Configuration
At the moment no specific configuration options exist for Orchestration Server callback - it relies on
the corresponding OrsService.

Push Notification Service

Genesys Mobile Services API Reference 8

https://docs.genesys.com/Documentation/GMS/latest/API/LocalizationFile
https://docs.genesys.com/Documentation/GMS/latest/Deployment/ConfigurationOptions#push_Section

Providers

You will need to add the certificate-related configuration options in the current push configuration
section to a NEW type section that defines the credentials for the set of customer-specific notification
providers. The provider can be specified as part of the notification subscription request.

For each notification provider, create a section with the following name format:
push.provider.providername. For example, push.provider.SalesAppl. This will allow you to define a
different push notification provider (connection) for each group of notification messages that are sent
to applications.

You can define a provider for a group of events that are to be sent to a specific application or to be
sent as part of a given service. This ensures that a given application does not get messages that they
were not intended to receive. This provider definition can be associated with a given service’s CME
definition or can be passed on the Create Service API for a given application.

If there is no provider defined for a subscription, then the default configuration options defined as
part of the Push configuration section will be used.

The provider-related configuration options can be found here: Configuration Options There will also be
a set of these credential configuration options for debugging purposes. So, there will be two provider
connections for a provider. The application will be able to specify which provider (production or
debug) connection.

Support of OS specific capabilities associated with the
notification message

Each Push Notification System has a set of attributes that is sent to the application along with the
base notification message. These attributes are usually related to the message definition itself and
not to a given instance of the message being sent. So these additional OS attributes will be
configured as part of the provider configuration definition. For each event you will create a section
with the following name format – push.provider.providername.event.eventname. For example,
push.provider.SalesAppl.event.mobile.statuschanged. This is done so that the Notification APIs do not
have to have these OS specific attributes provided on the API calls. This can defined for each
notification message associated with each provider or defined at the general provider level for each
event. In addition, you can provide these OS specific attributes for various event groups. For
example, you can do it at the individual event level (mobile.statuschanged) or at an event sub-
grouping (mobile.). These attributes are all independent of the level they are defined at so you could
end up picking up values for the different attributes from different levels in the hierarchy. This is in
the order in which they will be selected. (first to last):

• Use the event definition values associated with a specific provider definition
• Use the event definition values associated with a general provider definition
• Use the OS specific attribute values associated with push section

In addition, the event definition can contain multiple different OS specific attributes so you can have
iOS and Android attributes defined under the same event definition. So the notification framework
high level logic for processing published events would be:

Push Notification Service

Genesys Mobile Services API Reference 9

https://docs.genesys.com/Documentation/GMS/latest/Deployment/ConfigurationOptions

• Find the subscriptions that have registered to receive this event
• Get the subscriptions associated provider’s event configuration options for this event
• If available use them, otherwise, check the general event configuration options under the provider

configuration section. If available use them otherwise get the general configuration options under the
Push configuration section. If available use them otherwise this event message does not have an OS
specific attributes to apply.

• Form the PNS specific message with the input from the Publish API and the event configuration options
if available

• Send the message over the appropriate provider connection to the PNS.

Consider the example to illustrate the rules. Let's say that we have the subscription associated with
provider SalesApp and with filter A2C.* (match all events starting with A2C). Consider that we have
the following set of sections with OS-specific message formatting options:

• (0) push
• (1) push.provider.event
• (2) push.provider.event.internal
• (3) push.provider.event.internal.advanced
• (4) push.provider.event.A2C
• (5) push.provider.event.A2C.service
• (6) push.provider.event.A2C.service.statuschanged
• (7) push.provider.event.A2C.service.internal
• (8) push.provider.event.A2C.service.statuschanged.agentavailable
• (9) push.provider.SalesApp.event
• (10) push.provider.SalesApp.event.A2C.service.internal
• (11) push.provider.SalesApp.event.A2C.service.statuschanged

Consider that we have the incoming event with tag A2C.service.statuschanged.agentavailable. This
event's tag will match the filter of our subscription associated with provider SalesApp and with filter
A2C.*. So, we will go through the chain of sections in the following order (from most default to most
concrete): 0->1->4->5->6->8->9->11 We'll traverse this chain replacing and overwriting the
options from more default sections with the corresponding options from more concrete sections (this
is equivalent to seeking for all options in more concrete sections first, and accessing more default
only if not found in more concrete). The result set of options will be used for OS-specific message
formatting.

Push Notification Service

Genesys Mobile Services API Reference 10

	Genesys Mobile Services API Reference
	Push Notification Service

