
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

About Proxies and Examples

Agent Interaction SDK Services
Developer Guide

4/28/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 About Proxies and Examples
• 1.1 Generating a SOAP Proxy
• 1.2 Using the .NET Proxy
• 1.3 Using the Java Proxy
• 1.4 API Overview

Agent Interaction SDK Services Developer Guide 2

About Proxies and Examples
This release of the documentation includes code snippets in most chapters. These code snippets
illustrate many product features and can serve as a basis for developing your own applications.

Important
To download the code samples, see the Agent Interaction SDK resources.

The code snippets in this Developer’s Guide are in C#, but there are differences across these
examples depending on the generated proxy and the language. For instance, in the Agent Interaction
SDK Services API Reference for the .NET Proxy, C# service interfaces are defined in accordance with
the following rule: I<service_name>Service. In the generic Agent Interaction SDK 7.6 Services API
Reference for the Java Proxy, on the other hand, service interfaces are defined in accordance with the
following rule: <service_name>Service.

Important
To download the API references, see the Agent Interaction SDK resources.

You can do any of the following:

• Use a toolkit to generate a proxy from the provided WSDL files.
• Use one of the provided .NET proxies available on the product CD in the tools/ directory.
• Use one of the provided Java proxies available on the product CD in the tools/ directory.

Then, use the chosen proxy to build your desktop application using the Agent Interaction SDK Service
that the Agent Interaction Services Libraries expose.

Generating a SOAP Proxy

You can use a toolkit to generate a SOAP proxy from the provided WSDL files—for example, Apache
AXIS toolkit, version 1.1 or 1.3, for Java development (for further information, see:
http://ws.apache.org/axis/java/user-guide.html).
With a SOAP proxy, use the GIS session service to connect your client application and set options.
Refer to the Statistics SDK 7.6 Web Services Developer’s Guide for further details about the session
service, and see this chapter’s API Overview for further details about available options.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 3

https://docs.genesys.com/Documentation/GDP/7.6.6/AILResources/Interaction_SDK_Code_Examples
https://docs.genesys.com/Documentation/GDP/7.6.6/AILResources/Interaction_SDK_API_References

Opening a Session
The first step your Agent Interaction SDK Services client application must perform is to open a
session in GIS to get a session ID, which must be passed in the URL of all SOAP requests. As your
application creates services, for each service, specify the ENDPOINT_ADDRESS_PROPERTY and the
session ID as shown in the following code snippet.

/// creation of an agent service using a stub created with /// Apache Axis toolkit 1.1

import com.genesyslab.www.ail.*;
import com.genesyslab.www.ail.agent.*;

//Creating a gis session - GIS server location set when
//generating the stub
SessionServiceServiceSoapBindingStub sessionService =
(SessionServiceServiceSoapBindingStub) new
SessionServiceServiceLocator().getSessionServiceService();

// Time out after a minute
sessionService.setTimeout(60000);
Identity id = new Identity();
id.setPrincipal("example");
id.setCredentials("");
sessionId = sessionService.login(id);

System.out.println("sessionId= " + sessionId);
sessionService._setProperty(sessionService. ENDPOINT_ADDRESS_PROPERTY,
sessionService._getProperty(sessionService.ENDPOINT_ADDRESS_PROPERTY)
+ "?GISsessionId=" + sessionId);

// Accessing Services
String[] value = sessionService.getServices(new java.lang.String[] {
"GIS_INTERACTIONSERVICE"});

AgentServiceSoapBindingStub agentService =
(AgentServiceSoapBindingStub) new AgentService_ServiceLocator().getAgentService();

agentService.setTimeout(60000);

/// Property used to pass session id in requests
agentService._setProperty(
agentService.ENDPOINT_ADDRESS_PROPERTY,
agentService._getProperty(agentService.ENDPOINT_ADDRESS_PROPERTY) +"?GISsessionId=" +
sessionId);

// then using agent service is similar to C#
// logging an agent

LoginVoiceForm loginVoiceForm = new LoginVoiceForm();
loginVoiceForm.setLoginId(loginId);
loginVoiceForm.setWorkmode(WorkmodeType.AFTERCALLWORK);
MediaInfoError[] values = agentService.login(agentId, placeId, loginVoiceForm, null);

Using the .NET Proxy

You can use the provided .NET proxy to minimize session management tasks and to simplify service
creation. This proxy is available in the tools/ directory on the GIS Product CD.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 4

This section presents how to connect to GIS, and how to use XML and options for instantiating this
connection.

Service Factory
The com.genesyslab.ail.ServiceFactory class is the entry point for the .NET proxy. You must
create a ServiceFactory object in order to connect. The connection can be synchronous or
asynchronous, according to the method called:

• ServiceFactory.createServiceFactory()—At creation, the factory instance tries to connect
synchronously to GIS. If the connection fails, it raises an exception.

• ServiceFactory.asyncCreateServiceFactory()—After the factory creation, the factory instance tries
to connect asynchronously to GIS until a connection succeeds or the factory is released. To monitor the
connection status, you must specify an IServiceFactoryListener listener at factory creation.

When you create the factory (synchronously, or asynchronously), you must specify parameters to
configure your connection:

• You can fill a Hashtable and pass it at ServiceFactory creation. See XML Configuration File for .NET for
details about options.

• You can use an XML file to configure your ServiceFactory object.

Using an XML file is simple: write your own XML file that defines the factory parameters, or use the
default ail-configuration.xml file; then, indicate the factory parameters to be used.
The following code snippet shows the ServiceFactory creation based on the
WebServicesFactory factory defined in the ail-configuration.xml file.

// Instantiation of a ServiceFactory to make the connection
ServiceFactory myServiceFactory =

ServiceFactory.createServiceFactory("WebServicesFactory", null, null);

See XML Configuration File for .NET for further details.

Important
An ail-configuration.xml file is available on the GIS product CD in the tools/
directory.

Access Services
To access the available services, you create them by calling the createService() method of your
instantiated factory, as shown in the following code snippet.

IXxxService iservice =
myServiceFactory.createService(typeof(IXxxService), null) as IXxxService;

If the Hashtable parameter is null in the createService() call, the Agent Interaction Service layer
takes into account the current context of the factory. Otherwise, the Agent Interaction Service layer

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 5

uses the specified Hashtable for service creation.
The following code snippet shows how to create an agent service:

IAgentService myAgentService = myServiceFactory.createService(typeof(IAgentService), null) as
IAgentService;

Important
Your application can typically use the current factory context for service creation.

XML Configuration File for .NET
In your XML configuration file, or in the default ail-configuration.xml file, you must specify for the
factory tag one of the following two attributes with their url option, according to the protocol used
to communicate with GIS:

• For SOAP:
• WebServicesFactory —The factory name.
• url option—The value is http://[Server Address]:[Server Port]/gis.

The following sections present the optional attributes, based on proxy type, attached to the
mandatory attributes specified above.

XML Optional Attributes
The following table shows all the attributes that you can define.

Optional Attributes

Name Type Description

UseCookieContainer bool

Specifies whether or not the use of cookie
containers is alloed. By default, it is set to
false. You must set it to true to manage
http sessions. This is mandatory for
enabling high availability.

BackupUrls string
A list of backup URLs to be used in case
of disconnection, separated by commas
as shown in this example:
"[http://[host1][:port1]/gis,http://[host2][:port2]/gis]"

Timeout int The timeout interval for an XML web

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 6

Name Type Description

service client that waits for a
synchronous XML web service request, to
complete, in milliseconds. The default
value is 100000 milliseconds.

NbRetriesOnFailure string
The maximum number of reconnection
attempts when calling a service method.
The default value is 0 .

RetryPeriodOnFailure string The period in milliseconds between two
reconnection attempts.

ThreadPool.MaxWorkerThreads int

Indicates the maximum number of worker
threads allowed at runtime. You must
increase this number if your application
makes multiple calls to service method,
especially if the calls concern the
IEventService.getEvents method.

gis.asynchronousConnectionInterval int

Specifies the time period in seconds (30
seconds by default) between two
connection attempts. This option is used
in case your application connects
asynchonously.

gis.checkSessionInterval int The check session interval, in seconds. A
value of 0 means no check.

gis.username string
The GIS user name to log in the factory.
Refer to Configuration Layer
documentation for details.

gis.password string
The GIS password to log in the factory.
Refer to Configuration Layer
documentation for details.

gis.tenant string
The GIS tenant to use with the factory.
Refer to Configuration Layer
documentation for details.

gis.sessionId string
The GIS session identity to use with the
factory. If you use this option, do not use
gis.username , gis.password , and
gis.tenant .

notification.HTTPport int
The notification HTTP port. The default
value is 0, in which case the remote
system chooses an open port on your
behalf.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 7

Name Type Description

notification.createHTTPchannel bool Specifies whether to create an HTTP
channel. The default value is true.

notification.objectURI string
Specifies the remote object Universal
Resource Identifier (URI). By default, the
URI is generated by the
WebServiceFactory.

notification.reachableURL string The reachable URI from the server.

service-point-
manager.defaultConnectionLimit int The service point manager’s connection

limit. The default value is 2.

service-point-
manager.maxServicePointIdleTime int

The service point manager’s maximum
idle time. The default value is 900,000
milliseconds (15 minutes).

XML Configuration File Example
The following is an example of an XML configuration file for a SOAP connection:

<?xml version="1.0"?>
<configuration default-factory="WebServicesFactory" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

<factory name="WebServicesFactory" classname="com.genesyslab.ail.WebServicesFactory"
assembly="AilLibrary">
<option name="Url" value="http://[Server Address]:[Server Port]/gis" />
<option name="gis.username" value="default" />
<option name="gis.password" value="password" />
< !—- OPTIONAL
<option name="gis.sessionId" value="1234567"/>
<option name="notification.HTTPport" type="int" value="10000"/>
<option name="notification.createHTTPchannel" type="bool" value="true"/>
<option name="notification.objectURI" value="NotifLoad"/>
<option name="gis.checkSessionInterval" type="int" value="900"/>
<option name="service-point-manager.defaultConnectionLimit" type="int" value="10"/>
<option name="notification.reachableURL" value="http://localhost:8080/ail"/>
<option name="service-point-manager.maxServicePointIdleTime" type="int" value="90000"/>
END OPTIONAL — >
</factory>
</configuration>

HTTP Redirections
By default, redirections are disabled at startup. To enable redirections, you must set the
AllowAutoRedirect property to true as follows:

WebServicesFactory wsf = mAilServiceFactory.ServiceFactoryImpl as WebServicesFactory;

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 8

wsf.gisSessionService.AllowAutoRedirect = true;

This option is dynamic and can be modified at runtime or during the compilation.
The following table lists the supported HTTP codes in this configuration.

Redirection Codes tested with the .NET Proxy

HTTP Code Supported Description

300 Yes POST, then GET to the new URL.

301 Yes POST, then GET to the new URL.

302 Yes POST, then GET to the new URL.

303 Yes POST, then GET to the new URL.

304 Yes No redirect.

307 Yes POST, then POST to the new location.

308 No No redirect.

Using the Java Proxy

You can use the provided Java proxy to minimize session management tasks and to simplify service
creation. This proxy is built from the Apache Axis toolkit, version 1.3, and is available in the tools/
directory on the GIS Product CD.
This section presents how to connect to GIS, and how to use XML and options for instantiating this
connection.

Service Factory
The com.genesyslab.soa.client.ServiceFactory class is the entry point of the proxy. You must
create a ServiceFactory object in order to connect. The connection can be synchonous or
asynchronous, according to the method called.
Except for the default configuration file name, the process and the method to be called are identical
to those described in Service Factory.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 9

Important
The default XML configuration filename is proxy-configuration.xml. For further
details, see XML Configuration File for Java.

Access Services
To access the available services, you create them by calling the createService() method of your
instantiated factory, as detailed in Access Services.

XML Configuration File for Java
In your XML configuration file, or in the default proxy-configuration.xml file, you must specify for
the factory tag one of the following two attributes with their url option, according to the protocol
used to communicate with GIS:

• SOAP
• AilWebServicesFactory—The factory name.
• Url option—The value is http://[Server Address]:[Server Port]/gis.

Your application reads the XML configuration file—by default, proxy-configuration.xml —to
determine which protocols and options should be used for instanciating its connection to GIS.
The following sections present the optional attributes, according to proxy type, attached to the
mandatory attributes specified above.

XML Optional Attributes
The following table shows all the attributes that you can define.

Optional Attributes

Name Description

Username Username pour basic authentification.

Password Password pour basic authentification.

backupUrls List of backup connection urls to be used in case of
disconnection.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 10

Name Description

MaintainSession Indicates whether or not the HTTP session must be maintained.
By default, it is set to false.

DocumentMode
Indicates the document mode, false for rpc/encoding,
otherwise true for document/literal. The default value is
false.

NbRetriesOnFailure The maximum number of reconnection attempts when calling a
service method. The default value is 0.

RetryPeriodOnFailure The period in milliseconds between two reconnection attempts.

Connection.Timeout
The timeout interval for an XML web service client that waits for
a synchronous XML web service request to complete, in
milliseconds. The default value is 100000 milliseconds.

gis.asynchronousConnectionInterval
Specifies the time period, in seconds (30 seconds by default),
between two connection attempts. This option is used if your
application connects asynchonously.

gis.checkSessionInterval The check session interval, in seconds. A value of 0 means no
check.

gis.username The GIS user name to log in the factory. Refer to Configuration
Layer documentation for details.

gis.password The GIS password to log in the factory. Refer to Configuration
Layer documentation for details.

gis.tenant The GIS tenant to use with the factory. Refer to Configuration
Layer documentation for details.

gis.sessionId
The GIS session identity to use with the factory. If you use this
option, do not use gis.username, gis.password, and
gis.tenant.

notification.HTTPport The notification HTTP port. The default value is 0, in which case
the remote system chooses an open port on your behalf.

notification.reachableURL The reachable URI from the server. http://[client host]:[client
port]

http.proxyHost The name for the proxy host.

http.proxyPort The port of the proxy host.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 11

Name Description

http.proxyUser The username for the proxy host.

http.proxyPassword The password for the proxy host.

XML Configuration File Example for the Java Proxy
The following code snippet presents a proxy-configuration.xml file to be used with the Agent
Interaction Services Proxy Library for Java:

<?xml version="1.0" ?>
<configuration default-factory="AilWebServicesFactory" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" >
<factory name="AilWebServicesFactory"
classname="com.genesyslab.ail.ws.client.AilWebServicesFactory" >
<option name="Url" value="http://localhost:8080/soa"/>
<option name="gis.username" value="default"/>
<option name="gis.password" value="password"/>
<option name="gis.tenant" value=""/>
<option name="MaintainSession" value="false"/>
<option name="DocumentMode" value="false"/>
<option name="Username" value=""/> // username pour basic authentification
<option name="Password" value=""/> // password for basic authentification
<option name="http.proxyHost" value=""/> // proxy host
<option name="http.proxyPort" value=""/> // proxy port
<option name="http.proxyUser" value=""/> // proxy user
<option name="http.proxyPassword" value=""/> // proxy password
<option name="ConnectionTimeout" value="60"/> // timeout request response in s
<option name="gis.asynchronousConnectionInterval" value="30"/>
<option name="gis.checkSessionInterval" value="900"/>
<option name="gis.sessionId" value="1234567"/>
<option name="notification.HTTPport" value="0"/>
<option name="notification.reachableURL" value="http://[client host]:[client port]"/>
</factory>
</configuration>

GIS License

SOAP
The GIS_INTERACTIONSERVICE license is checked out when your application needs to call the
ServiceFactory.createFactory() method. To check the license in, your application calls the
ServiceFactory.releaseFactory() method.
In a scenario where the agent logs out and the application properly terminates, your application
should release the ServiceFactory instance when the application ends; this frees the agent’s license.
In an application crash scenario, the license is checked in when the GIS session ends, as is also the
case with the GIS_CONFIGURATION_SERVICE and GIS_STATSERVICE licenses.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 12

HTTP Redirections
Unlike with the .NET proxy, you cannot enable or disable redirections at compilation or runtime. In
Java, the Axis client handles the HTTP connection through a library, which is defined in the wsdd client
file, and relies on the v3.0.1 Jakarta HTTP client (see HttpClient Home.)
For instance, to enable redirections, you should disable the HttpCommonsSender library in the Java
client that implements the proxy library:

context.setProperty("EnableHttpCommonsSender", "false");

Then, you can provide your own client-config.wsdd file which defines the transport layer, as
shown below.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultClientConfig"
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<globalConfiguration>
<parameter name="disablePrettyXML" value="true"/>
<parameter name="enableNamespacePrefixOptimization" value="false"/>
<parameter name="sendMultiRefs" value="false"/>
</globalConfiguration>
<transport name="http" pivot="java:com.genesyslab.soa.impl.channel.axis.handler.HTTPSender" />
<transport name="https" pivot="java:org.apache.axis.transport.http.CommonsHTTPSender"/>
<transport name="local" pivot="java:org.apache.axis.transport.local.LocalSender"/>
</deployment>

To develop a transport layer, you should extend the org.apache.axis.handlers.BasicHandler
class. Refer to the official Axis documentation for further information.

API Overview

The Agent Interaction Services API works with the mirroring services available in GIS. Typically, your
application is a client application, integrating Agent Interaction Services to perform agent actions and
to communicate data and events with the Genesys Framework, as shown in the figure below.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 13

Services Integrated in an Agent Application

Your application deals with services that transparently hide GIS and the Genesys Framework, which
handles information and CTI objects. These services provide the following features:

• handling agent activity, such as login and logout.
• handling voice interactions such as answering, calling, and callback.
• handling e-mail interactions.
• handling outbound campaigns.
• using the Standard Response Library.
• handling contacts and their histories.

One particularity of the Agent Interaction Services API is its service approach design This means that
a service deals with dedicated information concerning a set of remote objects. For example, the
agent service deals with agent data only.

Building an Application Using Services
Take the following steps (a general strategy) to build your application on the Agent Interaction
Services API:
Connect your application. See Opening a Session.

1. Get an event service. The Event Service.
2. Get an agent service. The Agent Service.
3. Subscribe to events.
4. Get the services required to implement your application features.
5. Update your application any time you retrieve an event according to possible actions or status changes.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 14

The Remote Services
When using the Agent Interaction Services API, you are dealing with remote services integrating the
Agent Interaction Layer library. This library is part of the Genesys Agent Interaction (Java API). See
the Agent Interaction SDK Java documentation for full details of AIL features.
The AIL library internally implements models of Genesys products, such as Framework voice calls, e-
mail, outbound campaigns, and so on.
The remote services are exposed in GIS, as shown in the following figure.

The Remote Services and the Genesys Interface Server

On the GIS side, the remote services implement the AIL library, which internally handles models of
the Genesys Framework. On the agent-desktop-application side, the integrated services hide the
interactions with the remote services which encapsulate the AIL library.
The AIL library maintains models of the Genesys objects used by your application. These objects
might include, for example, DNs, a Places, agents, or interactions. The native AIL library API offers
interfaces to perform actions on these objects, and the library core internally handles the state
models, as illustrated in the following figure.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 15

The Remote Services and the AIL Internal Core

The numbered labels in the above figure describe the following actions:

1. Implementation of an AIL Interface dealing with a core object
2. Calling an AIL object method
3. AIL Sending a set of requests
4. AIL Receiving Events
5. AIL core updating core object models
6. AIL sending events to the Event Service

As shown in the above figure, the AIL core notifies the remote services with events when the states of
objects or data change. For example, if your service requests an agent login on a media type, once
the agent is logged in, the AIL core notifies the event service that the agent status on the media is
now READY or NOT_READY. If your application has registered to listen to events on the agent, it
receives the event and can inspect the data.

Important
Genesys recommends that you base your agent desktop application on the state
models provided by the Agent Interaction Services API.

Using the Services
The Agent Interaction Services API provides a set of services. A service is an interface dealing with a
group of objects. For example, an interaction service gives access to interactions’ data. A single
request can apply to a group of several interactions.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 16

Service Concept

Services are agent-oriented; that is, services are designed to fulfill requests of agent type and should
be used for this purpose.
The Agent Interaction Services API represents services suitable to perform agent actions and to
retrieve any data required by an agent-oriented application. How you make use of the various
services is a matter of your application design.
Your application integrates at least two services: the agent service and the event service, as shown in
the following figure.

Using the Services in Your Agent Desktop
Application

To properly use other services, your application requires:

• An agent service—This service manages agent actions and data; without an agent logged in with this
service, some services cannot fulfill actions and data requests.

• An event service—Your application must update according to the data propagated in events which are

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 17

published in this service.

Possible Actions
The Agent Interaction Service API is designed to implement agent desktop applications. Therefore,
services have been designed to perform agent actions that affect the components managed by the
Genesys Framework.
For example, getting ready, logging in, and logging out on media are actions handled by the
IAgentService interface, and performed by calls to the corresponding methods.
However, a given service’s actions might not all be available at a given point in time. An obvious
example is an agent not being allowed to become READY on media where he or she has not yet
logged in.
Thus, to perform a particular action, your application must first check to see if this action is possible:

• Actions are identified in the <service_name>Action enumeration.
• Possible actions are provided with attributes of the I<service_name>Service interface attributes.
• Possible actions are updated and propagated with events.

A good use of possible actions is enabling or disabling graphical components that the agent uses to
perform actions.

Statuses
The services interact with objects and provide you with their statuses during runtime.

• Statuses are identified in the *Status enumeration of service namespaces.
• Status access is provided with attributes of the I<service_name>Service interface.
• Status changes are propagated in events.

You should base your application design on these statuses. For example, in a GUI context, if a call
status is IDLE (terminated), the associated GUI components have no need to be visible anymore.

Important
To determine which actions are available in the current status of the application, rely
on the provided possible actions.

About Proxies and Examples

Agent Interaction SDK Services Developer Guide 18

	Agent Interaction SDK Services Developer Guide
	About Proxies and Examples

