
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Co-browse 8.5.1

API Reference

2/17/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Genesys Co-browse API Reference 3
History REST API 4
Realtime API (CometD and REST) 6

Client-Initiated CometD Channels 7
Server-Initiated CometD Channels (Notifications) 9
RESTful Realtime Functions 11

JavaScript API 13
Configuration API 14
Co-browse API 24
Chat API 33
External Media Adapter API 36

Genesys Co-browse API Reference
Welcome to the Genesys Co-browse 8.5 API Reference. This document provides you with the
information you need to use the Genesys Co-browse APIs. See the summary of chapters below.

History REST API
Use this API to find information about
past Co-browse sessions.

History REST API

Realtime API
Use this CometD and REST API to manage
current Co-browse sessions.

Realtime API

JavaScript API
The JavaScript API allows you to
customize the Co-browse JavaScript
application.

Overview
Configuration API
Co-browse API
Chat API
External Media API

Genesys Co-browse API Reference

API Reference 3

History REST API
Information about every past Co-browse session is available through the REST API, sitting on top of
the Cassandra database. The REST API (REST resources) is hosted by the Co-browse Server.

Each session history record (one per session) is identified by a session ID (UUID), which is unique
across the Co-browse cluster within any given period of time. This ID must not be confused with the
session token (a random 9-digit sequence) that is used to connect the Co-browse session.

The session history ID is attached to the primary interaction, voice or chat, with the
"CoBrowseSessionId" key. For development purposes, it can also be found in the logs with the logging
level info: "Session created. Token: {} Id: {}". Full session history is available after a session is
deactivated. You can set how long session history is kept in the database and available through the
REST API with the retention policy configuration options.

In this initial release of Genesys Co-browse, the REST API is simple but it will be extended in future
releases.

Get session history
Request

HTTP method: GET
Resource: /history/sessions/{sessionHistoryId}
Parameters:

• sessionHistoryId - session history identifer (UUID)

Example request: http://192.168.73.77:8700/cobrowse/rest/history/sessions/
83d03970-c959-11e2-857d-082e5f12b9a1

Response

Headers

HTTP/1.1 200 OK
Date: Thu, 19 Sep 2013 12:21:19 GMT
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(8.1.8.v20121106)

Body

{
"id":"83d03970-c959-11e2-857d-082e5f12b9a1",
"sessionToken":"519333886",

History REST API

API Reference 4

https://docs.genesys.com/Documentation/GCB/latest/Deployment/cassandraKeyspace

"creationTime":1369939707527,
"activationTime":1369939712516,
"deactivationTime":1369939743522,
"pages":[

{
"url":"http://www.genesyslab.com/general-pages/about-us.aspx",
"enteredTimestamp":1369939712594,
"duration":11

},
{

"url":"http://www.genesyslab.com/news-and-events/index.aspx",
"enteredTimestamp":1369939723764,
"duration":7

},
{

"url":"http://www.genesyslab.com/general-pages/genesys-history.aspx",
"enteredTimestamp":1369939731685,
"duration":11

}
]

}

Timestamps are Unix timestamps in milliseconds.

Duration is in seconds. For the first page in a Co-browse session it starts counting when Co-browse
session starts and for the last page it ends counting when the Co-browse session ends.

History REST API

API Reference 5

Realtime API (CometD and REST)
Most of the server API supporting live sessions is CometD based, but a few functions require REST /
plain HTTP transport. For details, see:

• Client-Initiated CometD Channels
• Server-Initiated CometD Channels (Notifications)
• RESTful Realtime Functions

Realtime API (CometD and REST)

API Reference 6

Client-Initiated CometD Channels

Create Session
CometD Channel /service/session/create

Description Creates a new co-browse session.

Request:
{}

Response:
{

"sessionToken": "123"
}

Join Session
CometD Channel /service/session/join

Description Allows the user to join the session.

Request:
{

"sessionToken": "123",
"role": 2, // 1 - customer, 2 - agent, 3 - controller
"name": "Bob" //optional (for controller it does not make sense at all)

}

Response:
{

"userToken": "abc789",
"userId": 2,
"users": [

{
"userId": "1",
"role": 1,
"name": "John"

}
],
"sessionHistoryId": "abc789"

}

Every connected user receives a userToken providing personalized session access.

Realtime API (CometD and REST) Client-Initiated CometD Channels

API Reference 7

Exit Session
CometD Channel /service/session/exit

Description
Allows the user to exit the session explicitly. The
CometD disconnection should be handled via
session deactivated notification.

Request:
{

userToken: "abc123"
}

Response:
{}

Stop Session
CometD Channel /service/session/stop

Description
Stops the co-browse session. This is available for
the Controller only. The session is deactivated and
all users receive the session deactivated
notification.

Request:
{

userToken: "abc123"
}

Response:
{}

Realtime API (CometD and REST) Client-Initiated CometD Channels

API Reference 8

Server-Initiated CometD Channels
(Notifications)

Joined Session
CometD Channel /service/session/joined

Description Notification to all users who are already in the
session about a new joined user.

Notification:
{

"userId": "2",
"role": 2,
"name": "Bob"

}

Activated Session
CometD Channel /service/session/activated

Description Notification to all clients about session activation.

Notification:
{

"activationTime": 1368722791040 // UTC time in ms
}

Deactivated Session
CometD Channel /service/session/deactivated

Description

Notification to all clients about session
deactivation. When the client receives a session
deactivated notification, it should disconnect from
CometD. Sending the exit session command is not
needed.

Notification:
{

"activationTime": 1368722791040 // UTC time in ms

Realtime API (CometD and REST) Server-Initiated CometD Channels (Notifications)

API Reference 9

"deactivationTime": 1368722820929 // UTC time in ms
}

Realtime API (CometD and REST) Server-Initiated CometD Channels (Notifications)

API Reference 10

RESTful Realtime Functions
The RESTful resources that manage live co-browse sessions are sub-resources of <cobrowse-
app>/rest/live. For example, http://127.0.0.1:8700/cobrowse/rest/live

Create Session
Request URL /sessions
HTTP Method POST
Description Creates a new Co-browse session.

Response:
{

"sessionToken": "845800826",
"sessionServerName": "Co-browse_Server"

}

The HTTP response has a cookie, gcbSessionServer, which should stick further HTTP requests to the
server hosting the created session.

Get Session
Request URL /sessions/{id}
HTTP Method GET

Description

Returns live session public data. The main purpose
is to determine which server the session is hosted
on (this is needed to integrate the agent Co-browse
plug-in with the Co-browse cluster). The id is the
live session ID.

Response:
{

"sessionToken": "845800826",
"sessionServerName": "Co-browse_Server",
"sessionServerUrl": "https://cobrowse-node/cobrowse" // serverUrl option value, may be

absent
}

Important

Realtime API (CometD and REST) RESTful Realtime Functions

API Reference 11

sessionServerUrl is returned only if the serverUrl option is set for the node. This is
used for URL-based stickiness.

Stop Session
Request URL /users/{userToken}/session/stop
HTTP Method GET

Description
Initiates Co-browse session deactivation for the
Controller's session. userToken is the Controller's
userToken.

Response
{

"activationTime": 1368722791040, // UTC time stamp in ms
"deactivationTime": 1368722820929 // UTC time stamp in ms

}

Health Check
Request URL /health
HTTP Method GET

Description Checks if the the Co-browse Server node is alive
and ready to handle requests.

This resource is useful for Load Balancing. You may also use this resource to check if any server is a
live before showing the Co-browsing button in the user's browser.

Important
This resource is not a subresource of <cobrowse-app>/rest/live. The full URL may
have a format like http://127.0.0.1:8700/cobrowse/health.

Response:

This resource replies with an empty response and a 200 OK HTTP status if the node is alive and
ready.

Realtime API (CometD and REST) RESTful Realtime Functions

API Reference 12

https://docs.genesys.com/Documentation/GCB/latest/Deployment/cluster#serverUrl
https://docs.genesys.com/Documentation/GCB/latest/Deployment/Stickiness
https://docs.genesys.com/Documentation/GCB/latest/Deployment/LoadBalancing

JavaScript API
The JavaScript API allows you to customize the Co-browse JavaScript application. The JavaScript API is
split into the following parts:

• Configuration API—used to configure Co-browse and its integration with other media. Also used to
subscribe to the main Co-browse JavaScript API and the Chat API.

• Co-browse API—the main Co-browse API. It provides methods and callbacks to work with Co-browse and
can be used to implement a custom UI for co-browsing.

• Chat API—API of the built-in Chat widget. Can be used to customize the widget and to access the lower
level Chat Service API.

• External Media API—allows you to integrate Co-browse with a custom chat, WebRTC or any other
JavaScript based media.

JavaScript API RESTful Realtime Functions

API Reference 13

Configuration API
This API configures Co-browse and its integration with other media. It is also used to subscribe to the
main Co-browse JavaScript API and the Chat API.

Co-browse is configured via a global _genesys variable. To configure Co-browse (and/or Chat), create
a <script> such as the following example and add it to your instrumentation:

<script>
var _genesys = {

cobrowse: {
/* Co-browse configuration options */

},
chat: {

/* Chat configuration options */
}

};
</script>
<INSTRUMENTATION_SNIPPET>

Important
• Co-browse is designed to make configuration optional. If any configuration options are

not present, Co-browse will use the pre-defined default values.
• For reference on Chat configuration options, see startChat Options. All options specified

in _genesys.chat are internally passed to the startChat() method call.

Warning
For backward compatibility with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. This is deprecated and may be
discontinued in later versions, so it is recommended that you switch to _genesys
immediately if you are currently using _gcb.

Accessing the Co-browse and Chat APIs

Since the main Co-browse JavaScript file is added to the page asynchronously, you cannot instantly
access the Co-browse and Chat APIs. Instead, you must create a function that will accept the APIs as
an argument. There are two approaches to creating this function.

You can assign the function to the special property of a global configuration variable:

JavaScript API Configuration API

API Reference 14

https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#options

<script>
var _genesys = {

onReady: function(APIs) {
APIs.cobrowse // Co-browse API
APIs.chat // Chat widget API

}
};
</script>
<INSTRUMENTATION_SNIPPET>
// or
<script>
var _genesys = {

cobrowse: {
onReady: function(cobrowseApi) { ... }

}
};
</script>
<INSTRUMENTATION_SNIPPET>

Alternatively, you can modify configuration to make the APIs accessible at any point in your
application through a _genesys global variable.

To do this, you must first assign an array to the onReady property:

<script>
var _genesys = {

onReady: []
};
</script>
<INSTRUMENTATION_SNIPPET>
// or
<script>
var _genesys = {

cobrowse: {
onReady: []

}
}
</script>
<INSTRUMENTATION_SNIPPET>

You can then obtain the APIs at any point in your application using the following code snippet:

_genesys.onReady.push(function(APIs) {
APIs.cobrowse // Co-browse API
APIs.chat // Chat widget API

});
// or
_genesys.cobrowse.onReady.push(function(cobrowseApi) { ... });

Tip
For more information on the <INSTRUMENTAITON_SNIPPET>, see Web Site
Instrumentation#Basicinstrumentation.

JavaScript API Configuration API

API Reference 15

https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation
https://docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation

Disabling Chat or Co-browse

You can disable the built-in Chat, or disable Co-browse (in order to use only Chat). To do that, pass
the value false to the respective configuration subsection:

<script>
var _genesys = {

chat: false
};
</script>

<script>
var _genesys = {

cobrowse: false
};
</script>

Configuring the Co-browse and Chat Buttons

Configuration API enables you to configure the built-in reactive buttons using _genesys.buttons. For
example:

<script>
var _genesys = {

buttons: {
chat: false,
position: 'right'

}
};
</script>

The _genesys.buttons section enables some basic configuration of the Live chat and Co-browsing
buttons. It has three optional properties:

• position: Can be either left (default) or right
• cobrowse: defaults to true

• chat: defaults to true

Note that you can override only the properties that you want to be changed. Other properties will be
used with their default values. For example this configuration:

var _genesys = {
buttons: {

chat: false
}

};

actually means this:

var _genesys = {
buttons: {

chat: false,
cobrowse: true, // inherited default

JavaScript API Configuration API

API Reference 16

position: 'left' // inherited default
}

};

Disabling buttons
As seen in snippet above, you may pass the value false to disable the Co-browsing and/or the Live
chat buttons. This might be useful if you want to start chat or co-browsing from your own custom
button (or from any other element or event), using the Co-browse API or Chat API.

Providing Custom HTML for Buttons
You can also pass functions that return HTML Element to buttons.cobrowse or buttons.chat. In this
case the output of the function will be used to render the button instead of using default image.

Tip
In this case your custom button(s) will inherit the positioning of the default button(s).

Here's a simple example that makes use of jQuery library to generate HTML Elements:

function createCustomButton() {
return jQuery('<div class="myButtonWrapper"><button

class="myButton">Chat!</button></div>')[0];
}

var _genesys = {
buttons: {

chat: createCustomButton
}

};

Important
Note that is NOT mandatory to use jQuery in order to provide a custom HTML element.
The example above does return an HTML element out of a jQuery object by retrieving
the first element from jQuery collection via [0].

Localizing the Live Chat and Co-Browsing Buttons
By default the buttons are images and therefore they cannot be localized in the same way as the rest
of the interface. To localize these buttons, you can use one of the two following methods:

• Provide custom localized buttons instead of the default ones, as explained in Providing Custom HTML for
Buttons.

• Override the appearance of the buttons using CSS.

JavaScript API Configuration API

API Reference 17

https://docs.genesys.com/Documentation/GCB/latest/Developer/CustomUIExamples

For more information about localizing Co-browse and Chat, see Localization.

Co-browse Configuration Options

Important
For reference on Chat configuration options, see startChat Options. All options
specified in _genesys.chat are internally passed to startChat() method call.

Tip
For backward compatability with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. The use of _gcb is deprecated and may
be discontinued in later versions. If you are using _gcb, we recommend that you
switch to _genesys.

The following options are configurable as properties of an object passed to _genesys.cobrowse:

debug
Default: false

Set to true to enable debugging console logs. You can enable debug logs for Co-browse only, Chat
only, or for both.

Example:

<script>
// Enable debugging logs for both Co-browse and Chat:
var _genesys = {

debug: true;
};
</script>

<script>
// Enable debugging logs only for Co-browse:
var _genesys = {

cobrowse: {
debug: true;

}
};
</script>

<script>
// Enable debugging logs only for chat:
var _genesys = {

chat: {

JavaScript API Configuration API

API Reference 18

https://docs.genesys.com/Documentation/GCB/latest/Developer/Localization
https://docs.genesys.com/Documentation/GWE/latest/API/StartChat#options

debug: true;
}

};
</script>

disableBuiltInUI
Default: false

Set to true to use a custom Co-browse UI. Use the Co-browse API to implement a custom UI.

Example:

var _genesys = {
cobrowse: {

disableBuiltInUI: true
}

};

You can still start the Co-browse session with the configuration above but the main components of
the UI such as the toolbar and notifications will be absent.

primaryMedia
Default: Built-in chat

Used to pass an object implementing an external media adapter interface. By default, the built-in
chat is used.

Example:

<script>
var myPrimaryMedia = {

initializeAsync: function(done) { /* initialize your media here and then call done() */ },
isAgentConnected: function() { /* return true or false depending on whether an agent is

connected */ },
sendCbSessionToken: function(token) { /* send the Co-browse session token to agent */ }

};
</script>

<script>
var _genesys = {

cobrowse: {
primaryMedia: myPrimaryMedia

}
};
</script>
<INSTRUMENTATION SNIPPET>

See External Media Adapter API for more details.

Warning
If Co-browse does not detect any primary media or detects that the agent is not

JavaScript API Configuration API

API Reference 19

connected with the primary media, Co-browse will still ask the user, "Are you on the
phone with representative?" before starting the Co-browse session.

css
Default: Server synchronization strategy, {server: true}

This option manages the CSS synchronization strategy. Additional CSS synchronization on top of DOM
synchronization allows you to replay style changes that occur when the user moves his or her mouse
over an element with a :hover style rule.

[+] Additional details
For example, if you have the following CSS, Co-browse CSS synchronization makes the underlining
visible to the agent when the consumer moves her mouse over a link, and vice versa, the underlining
will be visible to the user when the agent moves the mouse over a link:

a:hover {
text-decoration: underline;

}

Server strategy is the default and preferred setting. The server strategy setting allows the Co-
browse server to proxy every CSS resource, including inline CSS. This strategy synchronizes CSS
hover effects regardless of the domain the CSS resource is loaded from.

Example:

<script>
var _genesys = {

cobrowse: {
css: {

server: true
}

}
};
</script>

Important
If the css option is not specified, the Co-browse JavaScript application behavior is
equivalent to the configuration snippet above.

Warning
There are limitations on handling invalid CSS. This may lead to partial or complete
loss of hover synchronization. It may also cause partial failure of general style
synchronization. See Troubleshooting CSS Synchronization for details.

JavaScript API Configuration API

API Reference 20

https://docs.genesys.com/Documentation/GCB/8.1.3/Deployment/TestingGCB#Troubleshooting_CSS_Synchronization

maxOfflineDuration
Default: 600 (seconds)

This option specifies the time in seconds that a reference to a Co-browse session is stored after page
load. The default value is 600 seconds (10 minutes). If this period expires, the Co-browse session will
end by time out.

Important
If you modify this option, it must match the same option on the server, maxInterval
Option.

You can apply this option to both Chat and Co-browse, as in this example:

<script>
var _genesys = {

maxOfflineDuration: 300 // applied to both Chat and Co-browse
};
</script>

disableWebSockets
Default: false

Use this option if you need to disable WebSocket communication such as when your load balancer
does not support WebSockets and you do not want to wait for Co-browse to automatically switch to
another transport.

Important
Due to the highly interactive nature of Co-browse, we highly recommended you do
not disable WebSockets. We recommend that you configure your load balancers/
proxies infrastructure to support WebSockets. Disabling WebSockets may have a huge
impact on Co-browse performance.

You can apply this option to both Chat and Co-browse, as in this example:

<script>
var _genesys = {

disableWebSockets: true // applied to both Chat and Co-browse
};
</script>

JavaScript API Configuration API

API Reference 21

https://docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval
https://docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval

localization
Default: undefined

Use this option to localize Genesys Co-browse and/or built-in Chat. For a detailed description, see
Localization.

setDocumentDomain
Default: true

Determines if Co-browse sets the document.domain property. If set to true, Co-browse modifies the
document.domain property. If set to false, Co-browse does not modify document.domain.

Available since Co-browse JavaScript version 8.5.002.02. For your Co-browse JavaScript version, see
the VERSION property.

Important
Co-browse modifies document.domain to support cross-subdomain communication
between iframes and the topmost context. Setting setDocumentDomain to false stops
synchronization of subdomain iframes from working.

Example:

<script>
// Turn off setting document.domain:
var _genesys = {

cobrowse: {
setDocumentDomain: false

}
};
</script>

disableBackForwardCache
Default: true

Available since Co-browse 8.5.1.

By default, Co-browse disables Safari's Back/Forward cache which can stop co-browse sessions from
functioning.

Warning
Setting disableBackForwardCache to false can make Co-browse unusable in Safari

JavaScript API Configuration API

API Reference 22

https://docs.genesys.com/Documentation/GCB/latest/Developer/Localization

when users press the back or forward browser buttons.

Example:

<script>
// Turn BackForward Cache back on:
var _genesys = {

cobrowse: {
disableBackForwardCache: false

}
};
</script>

JavaScript API Configuration API

API Reference 23

Co-browse API
This API provides methods and callbacks to work with Co-browse and can be used to implement a
custom UI for co-browsing.

Important
See Accessing the Co-browse and Chat APIs for information on accessing this API.

Co-browse in iframes

Some Co-browse UI elements such as the the co-browsing button and toolbar should not appear
when Co-browse is in an iframe. Common Co-browse UI elements such as notifications that an
element is masked should appear whether or no Co-browse is in an iframe. As such, there are two
contexts for the Co-browse JavaScript API:

• Top context, available when Co-browse is not rendered in an iframe.
• Child context, used when a page is rendered in an iframe. For the child context, a subset of the top

context API is available.

isTopContext
The isTopContext variable can be used determine which context Co-browse is rendered in.
isTopContext is passed to the onReady method and equals true if Co-browse is rendered in the top
context and false otherwise.

Example:

var _genesys = {
cobrowse: {

onReady: function(api, isTopContext) {
// common functionality
api.onMaskedElement.add(function() {/* deal with masked elements here*/});
if (!isTopContext) {

return;
}
// top context functionality goes below

}
};

Tip
See Accessing the Co-browse and Chat APIs if you are unfamiliar with the onReady

JavaScript API Co-browse API

API Reference 24

https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#accessing
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#accessing

syntax above.

Signals and Callbacks

The Co-browse API exposes a number of signals in both the top and child contexts. Each signal is
object with the three following methods:

• add(function)—adds a callback
• addOnce(function)—adds a callback that will be executed only once
• remove(function)—removes a callback

The naming convention for signal names begins with "on" and follows the format
onSomethingHappened.

Important
Signals act similar to deferred objects. If you add a callback to an event that has
already happened, the callback will be called immediately. For example, if you add a
callback to the onAgentJoined signal when the event has already happened, the
callback will be called immediately.

Session Object
Many callbacks receive a session object as an argument. This object has the following properties:

• token—String containing the session token shared with the agent and possibly shown in the UI. The
token is a 9 digit string such as "535176834".

• agents—Array of connected agents. Each element in the array is an object with no properties.

Common API

The following elements and properties are available from both the top and child Co-browse contexts:

VERSION
String containing current JS version. For example, 8.5.000.90.

console.log(_genesys.cobrowse.VERSION);

JavaScript API Co-browse API

API Reference 25

Tip
• Available since Genesys Co-browse 8.5.
• The JavaScript version does not necessarily match the product or server version.

markServiceElement(element)
Service elements do not show up in the agent's view. This function is used to mark service elements
in a custom Co-browse UI.

Arguments:

• element—HTML element that will be masked.

Important
Elements must be marked as service elements before the Co-browse session begins.
If the Co-browse session has already started, service elements should be marked
before they are added to the DOM. It is also possible to mark elements as service
without using this function. Doing so is useful for static HTML content. To do so, add
an attribute data-gcb-service-node with value true. This available since version
8.5.001.20. Use _genesys.cobrowse.VERSION to check the version.

Important
The markServiceElement() method should not be used to hide sensitive information.
Business functions like DOM Control or Data Masking should be used for sensitive
content such as private user data.

Plain DOM Example:

function createCustomCobrowseUI(cobrowseApi) {
var toolbar = document.createElement('div');
toolbar.className = 'cobrowseToolbar';
toolbar.textContent = 'Co-browse is going on';
cobrowseApi.markServiceElement(toolbar); // don't show the toolbar to agents
cobrowseApi.onConnected.add(function() {

document.body.appendChild(toolbar);
})

}

jQuery Example:

// Create a simple jQuery plugin
$.fn.cbMarkNode = function() {

JavaScript API Co-browse API

API Reference 26

https://docs.genesys.com/Documentation/GCB/latest/Developer/DOMRestrictions#DOM_Control
https://docs.genesys.com/Documentation/GCB/latest/Developer/DOMRestrictions#Data_Masking

return this.each(function() {
cobrowseApi.markServiceElement(this);

});
};

// And then:
$('<div class="cobrowseToolbar">Co-browse is going on</div>').cbMarkNode().appendTo('body');

Static content example, without JS API usage:

<div id="myChatWidget" data-gcb-service-node="true">...</div>

onMaskedElement
This signal is dispatched when Co-browse encounters an element that is subject to data masking.

Arguments:

• element—HTML Element

This signal is dispatched multiple times when Co-browse initiates and can be dispatched again if a
masked element is added to the page dynamically.

Example:

cobrowseApi.onMaskedElement.add(function(element) {
$(element).tooltip({

content: 'Content of this elements is masked for representatives.'
});

});

Consider a scenario where you have the following HTML elements on your example.html page:

<div class="vcard">
<p class="fn">Dr. John Doe<p>
<p class="adr">

Imaginary Hospital

Doctorville

742617

Great Britain

</p>
<p class="tel">+44 (0)1234 567890</p>

</div>

And you also have the following data masking configuration:

<?xml version="1.0" encoding='UTF-8' ?>
<domRestrictions>

<restrictionsSet>
<uriTemplate type="regexp" pattern="example\.html"/>
<dataMasking>

<element selector=".adr"/>
<element selector=".tel"/>

</dataMasking>
</restrictionsSet>

</domRestrictions>

In this scenario, the callback is called two times when Co-browse is initiated, and then each time you

JavaScript API Co-browse API

API Reference 27

https://docs.genesys.com/Documentation/GCB/latest/Developer/DOMRestrictions

dynamically add an .addr or .tel element to the page.

Top Context API

The following methods and properties are available only when Co-browse is rendered in the top
context.

isBrowserSupported()

Important
For a list of officially supported browsers see Browser Support. This method checks for
the presence of required browser APIs and may return true for browsers not officially
supported.

This method checks for the presence of MutationObserver and a few other required APIs, not for
browser type and version. It returns a boolean with the value of true when the browser supports
required APIs and false otherwise. The built-in integration module uses this function to show a
message if a user tries to start Co-browse in an unsupported browser. You may use it, for example, to
hide the Co-browse button completely.

startSession()
This method instantiates a new Co-browse session. It will throw an error if the browser is not
supported.

exitSession()
This method exits and ends an ongoing Co-browse session.

downgradeMode()
This method immediately switches the current session from Write Mode to Pointer Mode. The built-in
Co-browse UI executes this method when an end user clicks "Revoke Control" while in Write Mode.

See related signals: onModeUpgradeRequested and onModeChanged.

onInitialized
This signal is dispatched after the page is loaded and the Co-browse business logic is initialized.

Arguments:

• session— Session object representing the ongoing session or null if there is no ongoing session.

JavaScript API Co-browse API

API Reference 28

https://docs.genesys.com/Documentation/GCB/latest/Deployment/ProductOverview#Browser_Support
https://docs.genesys.com/Documentation/GCB/latest/Deployment/Co-browse_Modes

Example:

cobrowseApi.onInitialized.add(function(session) {
if (!session) {

showCobrowseButton();
} else {

showCobrowseToolbar(session);
}

})

onSessionStarted
This signal is dispatched when a Co-browse session is successfully started and joined by the
customer such as when the Co-browse button is pressed or when startSession() is called.

Arguments:

• session—Session object representing the ongoing session.

Example:

function notifyCobrowseStarted(session) {
alert('Co-browse has started. Spell this session token to our representative: ' +

session.token);
}
cobrowseApi.onSessionStarted.add(notifyCobrowseStarted);

onAgentJoined
This signal is dispatched when an agent successfully joins a session.

Arguments:

• agent—Object representing the new agent. This object has no properties.
• session—Session object representing the ongoing session.

Example:

cobrowseApi.onAgentJoined.add(function(agent, session) {
alert('Representative has joined the session');

});

onAgentNavigated
This signal is dispatched when the agent user initiates navigation such as refresh, back, forward, or
when the agent enters a URL into the agent Co-browse UI. Signal is dispatched a few seconds before
the navigation happens. This can be used to, for example, send a warning to the user or disable the
Exit session button before navigation.

Arguments:

• details—Object containing the following navigation detail fields:
• command—String with the value of back, refresh, forward, or url.

JavaScript API Co-browse API

API Reference 29

• url—Optional string that is present only if the command field has the value of url

Example:

// Let's assume we have a "growl" function available to show growl-like notifications
cobrowseApi.onAgentNavigated.add(function(details) {

if (details.url) {
growl('Representative navigated to the page: ' + details.url);

} else {
growl('Representative has pressed the "' + details.command + '" button. Page will be

refreshed');
}

});

onNavigationFailed
This signal is dispatched when the navigation request from the agent fails to execute such as when
the agent navigates forward when there is no forward history. You can use this signal to to re-enable
the Exit button and/or show a notification.

The callback receives no arguments.

Example:

// Let's assume we have a "growl" function available to show growl-like notifications
cobrowseApi.onNavigationFailed.add(function() {

growl('Navigation request by representative has failed');
});

onModeUpgradeRequested
This signal is dispatched when an agent requests upgrading the Co-browse session to Write Mode.

Arguments:

• done—The function passed by the Co-browse code. Call it with true to allow the transition to Write
Mode, or with false to prohibit.

Example:

cobrowseApi.onModeUpgradeRequested.add(function(done) {
if (confirm('Representative requests control over the web page. Allow?') {

done(true); // allow upgrading to Write Mode
} else {

done(false); // disallow and stay in Pointer Mode
}

});

Note: If you're going to implement something similar to the example above, don't forget to disable
the built-in UI.

onModeChanged
This signal is dispatched when the Co-browse session Mode changes, either to Pointer or Write.

JavaScript API Co-browse API

API Reference 30

Arguments:

• mode—An object with two boolean properties:
• pointer—This is true if the session has switched from Write to Pointer Mode. Otherwise, it's false.
• write—This is true when the session has switched from Pointer to Write Mode.

Example:

cobrowseApi.onModeChanged.add(function(mode) {
if (mode.write) {

alert("Representative has now control over the page");
} else if (mode.pointer) {

alert("Representative can no longer control the page").
}

});

onSessionEnded
This signal is dispatched when a Co-browse session ends.

Arguments:

• details—Object with the follwing field:
• reason—Field with value of a string or undefined. Possible string values:

• self—The user has exited the session by clicking the Exit button or calling the exitSession()
API method.

• external—The agent has closed the session. Some server errors may also result in this value.
• timeout—The session has timed out such as when a user reopens a page with an expired Co-

browse cookie.
• intactivityTimeout—The agent did not join a session in the configured amount of time.
• serverUnavailable—The Co-browse server was unreachable. Added in Genesys Co-browse

release 8.5.001.xx.
• sessionsOverLimit—Agent is busy with another co-browse session and is prohibited from

starting another session at the same time, see One-Session Agent Limitation. Added in Genesys
Co-browse release 8.5.003.04.

• error—There is an error such as a critical misconfiguration.

Example:

var cbEndedMessages = {
self: 'You exited Co-browse session. Co-browse terminated',
external: 'Co-browse session ended',
timeout: 'Co-browse session timed out',
inactivityTimeout: 'Agent did not join. Closing Co-browse session.',
serverUnavailable: 'Could not reach Co-browse server',
sessionsOverLimit: 'Agent is busy in another Co-browse session'

}
cobrowseApi.onSessionEnded.add(function(details) {

alert(cbEndedMessages[details.reason] || 'Something went wrong. Co-browse terminated.');
showCobrowseButton();

JavaScript API Co-browse API

API Reference 31

https://docs.genesys.com/Documentation/GCB/latest/Deployment/GenesysCo-browseSessions#One-Session_Agent_Limitation

});

JavaScript API Co-browse API

API Reference 32

Chat API

Important
Starting with the 8.5.100.11 release of Genesys Co-browse, Genesys is deprecating the Built-in Chat Widget
and its APIs in preparation for discontinuing support in the upcoming 9.0 release.

This functionality is now available through a single set of consumer-facing digital channel APIs that are part
of Genesys Mobile Services (GMS), and through Genesys Widgets, a set of productized widgets that are
optimized for use with desktop and mobile web clients, and which are based on the GMS APIs.

Genesys Widgets provide for an easy integration with Co-browse, allowing you to proactively serve these
widgets to your web-based customers.

Although the deprecated APIs and Built-in Chat Widget will be supported for the life of the 8.5 release of Co-
browse, Genesys recommends that you move as soon as you can to the new APIs and to Genesys Widgets
to ensure that your functionality is not affected when you migrate to the 9.0 release.

Co-browse is shipped with a built-in chat widget. Out-of-the-box, the chat widget looks like this:

To configure the chat widget, see Configuration API.

To get access to the Chat Widget API, see Accessing the Co-browse and Chat APIs. You generally will
not need to access the Chat Widget API as configuration can be done in instrumentation. The Chat
Widget API can be used to get access to the lower lever Chat API. See Advanced Usage below for
more details.

JavaScript API Chat API

API Reference 33

https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI
https://docs.genesys.com/Documentation/GCB/latest/API/JSConfigAPI#accessing

For a full Chat Widget API reference, see Chat Widget JS API.

Advanced Usage of the Chat API

The Chat Widget API is built on top of the Chat Service JS API. The Chat Service API can be used to
send chat commands to the server, for example, send a message or leave session. The Chat Service
API also lets you subscribe to session events such as agentConnected and messageReceived.

Getting Access to the Chat Service API
There are two ways to get access to the Chat Service API:

• Accessing the Chat Service API of the Built-In Chat Widget
• Use the JavaScript Bundle

Accessing the Chat Service API of the Built-In Chat Widget

The following code example shows how you can access the Chat Service API. Note that this example
is a bit simplistic in that it starts chat unconditionally on every page load and does not handle errors.

var _genesys = {
chat: {

// 1. Tell Co-browse JS not to call restoreChat(),
// because you will call it manually.
autoRestore: false,
// 2. Subscribe to chat widget's "ready" event
// to get access to widget API.
onReady: function(chat) {

// 3. Use chat widget API to get access to service API.
chat.onSession(function(session) {

// Use chat service API here. For example,
// session.sendMessage('Hello World!');

})
}

}
}

Accessing the Chat Service API using the JavaScript Bundle
You can use the JavaScript bundle shipped with Co-browse to access the Chat Service JS API. This file
is available at the following URL:

http(s)://<COBROWSE_SERVER>/cobrowse/js/chatAPI.min.js

When loaded in a browser, this file exports the Chat Service JS API as a global chat variable. The size
of this file is 113 KB (~35 KB gzipped) and it does not require any dependencies.

JavaScript API Chat API

API Reference 34

https://docs.genesys.com/Documentation/GWE/latest/API/ChatWidgetAPI
https://docs.genesys.com/Documentation/GWE/latest/API/ChatService
https://docs.genesys.com/Documentation/GWE/latest/API/ChatService

Another version of this file is available at http(s)://<COBROWSE_SERVER>/cobrowse/js/chatAPI-
noDeps.min.js. The size of this file is 23 KB (~8 KB gzipped), but it requires that you have the
following libraries globally available:

• $ for jQuery (v. 1.8.1 or higher)
• _ for underscore (v. 1.5.0 or higher) or lodash (v. 2.0.0 or higher)
• org.cometd for Cometd (v. 2.8.0)

Important
If you choose to implement your own chat widget using the Chat Service JS API in the
form of a seperate JS file, your chat widget will not be automatically integrated with
Co-browse. Integration consists of two features:

• Co-browse automatically determines if the user is on chat when the user starts a Co-
browse session.

• The Co-browse session token is automatically passed to an agent.

To support these integration features, you will also have to implement the External
Media Adapter API for your chat widget and pass the implementation object to the
Configuration API primaryMedia option.

JavaScript API Chat API

API Reference 35

External Media Adapter API
The External Media Adapter API can be used to substitute the built-in Co-browse chat with another
external media.

Important
If you're not using the built-in Chat, you probably will want to disable it. You can do
this using the Configuration API, as shown in the following example:
<script>
var _genesys = {

chat: false
};
</script>

This will disable the Chat widget, as well as the Live Chat button.

An external media can be connected to Co-browse via an adapter. An adapter is a JavaScript object
that is assigned to the _genesys.cobrowse.primaryMedia option and implements the specified
interface. An external media adapter may implement the following methods:

initializeAsync(done)

Implement the initializeAsync method in your external media adapter when the external media
initializes asynchronously and you cannot be sure the external media is ready as it is passed to the
instrumentation. This method may start the (asynchronous) external media's initialization or it may
subscribe to the initialization if the external media is started elsewhere.

If the initializeAsync method is implemented, the Co-browse JavaScript will call the method and
pass it a done callback. You must call the done callback when your media finishes initialization.

Important
Note the following about the initializeAsync method:

• This method is called by the Co-browse JavaScript Application every time it initializes
such as after every page load.

• This method is called before the Live Chat and Co-browsing buttons are shown. The
buttons will be shown only after you call the passed done callback in your code.

The following is an example of an external chat adapter named MyChatAdapter:

JavaScript API External Media Adapter API

API Reference 36

function MyChatAdapter() {
// initialize chat
this.initializeAsync = function(done) {

$.get('/chat/configuration', function(config) {
var chat = new MyChat(config);
// tell cobrowse chat is ready
done();

});
};

};

// or if you have a chat with event-based API that is initiated elsewhere
function MyChatAdapter() {

this.initializeAsync = function(done) {
myChat.on('initialized', done);

};
};

Tip
You can use the initializeAsync method to restore your external media after a page
reload. For example, if you have a chat with a restoreChat function that needs to be
called after page reload, you can call this restoreChat method in the
initializeAsync method of the external media adapter passed to Co-browse.
Example:

// in the adapter:
myChatAdapter.initializeAsync = function(done) {

myChat.restoreChat().then(done);
};

// ...
// and then in Co-browse instrumentation
var _genesys = {

cobrowse: {
primaryMedia: myChatAdapter

}
};

// Now after every page reload Co-browse will
// automatically restore your chat.

sendCbSessionToken(token)

Implement this method to configure the external media channel to pass the Co-browse session token
to the agent. The Co-browse session token is a string consisting of 9 digits.

Example:

myChatAdapter = {
sendCbSessionToken: function(sessionToken) {

myChat.sendMessage('User has started Co-browse session: ' + sessionToken);
}

JavaScript API External Media Adapter API

API Reference 37

};

Tip
You may customize how the Co-browse token is passed to the agent. If you use a
Genesys agent desktop, such Interaction Workspace with the Co-browse plugin or
Workspace Web Edition, you may want the agent to join a Co-browse session as soon
as he or she receives the token. To do so, wrap the Co-browse token in a
{start:<TOKEN>} message.
Example:

// For example:
myChatAdapter.sendCbSessionToken = function(token) {

myChat.sendMessage('{start:' + token + '}');
};

isAgentConnected()

Important
This method must return a boolean.

The integration module checks the return value of this method before calling the
sendCbSessionToken method. If isAgentConnected returns false, the user will be asked to connect
with an agent via phone before starting Co-browse. If the isAgentConnected is absent, the user will
be asked to connect with an agent via phone or chat before starting Co-browse.

JavaScript API External Media Adapter API

API Reference 38

	API Reference
	Table of Contents
	Genesys Co-browse API Reference
	History REST API
	Realtime API (CometD and REST)
	Client-Initiated CometD Channels
	Server-Initiated CometD Channels (Notifications)
	RESTful Realtime Functions

	JavaScript API
	Configuration API
	Co-browse API
	Chat API
	External Media Adapter API

