
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Script Block

Genesys Intelligent Automation Help

4/30/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Script Block
• 1.1 Adding this block to the callflow
• 1.2 Scripting methods
• 1.3 Unit Tests

Genesys Intelligent Automation Help 2

Script Block

Important
This page is only applicable to users with the role Application Designer.

Script blocks are great for adding ‘presentation’ logic to your app - comparing values and branching
out to different blocks, performing date calculations, combining prompts. It’s possible to invoke
RESTful web services directly from a Script block, and this may be sufficient if the services are
simple. It is advised not to use the Script block for tasks like handling security certificates, or calling
onto databases or SOAP-based web services.

Integration Hub is a simple and powerful way to do this, and brings many other benefits such as
support for multiple environments’ endpoints (dev/test/production, for example) and the ability to
create automated test scripts. Using Integration Hub is a good way to keep your Intelligent
Automation apps and their assorted presentation logic separate from the details of how to call onto
your enterprise’s backend systems.

You can use Script blocks to perform complex operations, such as loops and if clauses, and define
their own methods.

Adding this block to the callflow

To add and configure Script blocks in a callflow:

1. Drag and drop a Script block onto the appropriate position in the callflow.
2. Click the Script block to view its properties.
3. In the Script tab, select a script type and enter the script in the text box. Both script types are based on

Groovy Script.
• Easy script - Click Add Entry to add an entry to the script in a simplified interface. This script

always returns success.
• Variable - Specify a variable name.
• Function - Select whether to specify a value for this variable, or determine the value based on

another variable.
• Value - If you selected the Set to Value function, specify a value. If you selected the Set to

Variable function, the value of the variable you set in the Variable field is used.
• Attach to call - Enable this option to attach this variable data to the call, which also means it

becomes available to agents in CTI Viewer.

Script Block

Genesys Intelligent Automation Help 3

• Remember - Store this variable data in the database.

• Complex script - Allows advanced users to use Groovy Script to perform more complex operations,
such as loops, if clauses, and define their own methods. The value returned by the script is used to
select the next path. In most cases, the block returns success, but you can also use Script blocks
for callflow branching or to trigger a global event handler such as agent or recognition failure.

4. (Optional) In the Unit Test tab, you can run tests on Complex scripts you have configured. For
example, if your script defines a method to perform certain operations, and you want to ensure the
results are correct, you can define a unit test for the specific method as follows:
a. Call a defined method into the script with known set values.
b. Get the results from the method.
c. Compare the expected results with the results calculated in the method.

5. Click Update.

To learn how to use the Script block to add custom rich media, refer to the Rich Media page in this
manual.

Scripting methods

Click the link below to download a zip file that documents the scripting methods that you can call
from the Script block.

• Script API Reference

Example
//
// Call the Web Service (note that session variables can be included in the URL and we

then use context.expandVariables() to replace the variable with whatever is in session at
runtime)

//
def iTimeout = 5000;
def sURL = "https://testwebservice.com/[var:WebServiceName]"

sURL = context.expandVariables(sURL);
def dataResult = context.getRemoteHttpData(sURL, "POST", params, iTimeout);

def xml = dataResult.responseXml;

//
// Parse the response
//
assert null != xml.status;
assert "" != xml.status.text();

def sStatus = xml.status.text();

for (variableDeclaration in xml.variables?.variable)
{

def sName = variableDeclaration.@name;

Script Block

Genesys Intelligent Automation Help 4

def sValue = variableDeclaration.@value;

context.setVariable(sName, sValue);
}

if ("success" == sStatus)
{

context.log("Found");
return "success";

}
else if ("not found" == sStatus)
{

context.log("Not found");

return "not found";
}

Unit Tests

Sample Script
if (context.getVariable(“AuthMethod”) == “AccountNumber”)
{

return “account number”;
}
else
{

return “social security number”;
}

Sample Unit Test
context.setVariable(“AuthMethod”, “AccountNumber”);
def result = callScript();
assert “account number” == result;

context.log(“Passed test”);

Splitting results based on recognition failures

To handle different behaviors in case of a recognition failure, you can use a script to split the results
based on maxnomatches and maxnoinputs.

if (context.getLastResultDetail().contains("maxnomatches"))
{ return "max retries"
}
else {
return "max timeouts"
}

Script Block

Genesys Intelligent Automation Help 5

	Genesys Intelligent Automation Help
	Script Block

