3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Pulse Deployment Guide

Genesys Pulse User Interface Extensions

5/8/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

¢ 1 Genesys Pulse User Interface Extensions
* 1.1 Introduction
* 1.2 How to Create Your Own Plug-in

* 1.3 How to Change Basic Styles

Genesys Pulse Deployment Guide

Genesys Pulse User Interface Extensions

Genesys Pulse User Interface Extensions

Introduction

This article describes Genesys Pulse user interface (Ul) extensions. The main purpose of these
extensions is to support the 3rd-party widgets which are developed separately and installed as a
plug-in. In addition, you can load external .js and .css files in order to customize existing widgets.

¢ The Genesys Pulse extension API is supported on a best-efforts basis. Any customer
attempting to use or develop extensions must have expertise to do so and agree to
troubleshoot them on their own. This API is subject to change in future versions at
Genesys' discretion without prior notice.

* Be extra cautious with extensions that are loading third-party JavaScript libraries as they
can break Genesys Pulse functionality.

How to Create Your Own Plug-in

Starting with release 8.5.108, you can create the Genesys Pulse plug-in skeleton using the plugin-
generator.js utility script from the plugin-sdk\libs directory of the Genesys Pulse installation
package. This script is tested with the latest nodejs version 8, but should also work with the nodejs
version 6.5 or higher.

For example:

node plugin-generator.js

Enter plugin name (full plugin name will be pulse-plugin-<name>):

> My Funnel

Enter plugin version:

> 1.0.0

Enter plugin description:

> My Description

Creating ./pulse-plugin-my-funnel/pom.xml

Creating ./pulse-plugin-my-funnel/src/main/resources/META-INF/applicationContext.xml
Creating ./pulse-plugin-my-funnel/src/main/java/com/genesyslab/wbrt/plugin/
PulsePluginMyFunnel.java

Creating ./pulse-plugin-my-funnel/src/main/resources/web/manifest.js
Creating ./pulse-plugin-my-funnel/src/main/resources/web/pulse.manifest.js
Plugin structure has been created

After that, you need to insert your extension implementation into a generated pulse.manifest.js file.

Genesys Pulse Deployment Guide

Genesys Pulse User Interface Extensions

To build a plug-in you need to have Java and Maven installed. Maven dependencies are located in the
plugin-sdk\libs directory of the Genesys Pulse installation package. You can install them by running
the installation script from the same directory.

After that you are ready to build a plug-in:

cd pulse-plugin-my-funnel
mvn clean install

Now the plug-in is ready to be deployed into Genesys Pulse. Copy it to the
<PULSE_PATH>/webapp/WEB-INF/lib/ and restart Genesys Pulse.

Tip

To speed up the development process you do not need to rebuild and deploy your
plug-in after each change. You can modify an already deployed pulse.manifest.js
file in the <PULSE_PATH>/webapp/plugins/<your_plugin_name>/ directory. To
apply any change you just need to reload the Genesys Pulse page. When you are
finished, ensure that you copy the final pulse.manifest. js file back to your project
directory located at <your_plugin_path>/src/main/resources/web/, otherwise you
might lose all your changes when Genesys Pulse is restarted.

Now the new Funnel chart is available among other widget types:

Add a Widget (Alert Test) = Agent KPIs Template

Objects Statistics Display Options
Widget Title Preview in Presentation Mode (live data not shown here)
Agent KPIs
Widget Type: Funnel
= ¢ = & I OH 0O 7
Agent KPIs
=i White, Walter

— S

Internal (775)

Statistics Consult Made (663)

3 Selected ”

Highchars com
Objects

White, Walter Va

Widget refresh rate -

Genesys Pulse Deployment Guide

Genesys Pulse User Interface Extensions

Genesys Pulse User Interface Extension API

Each pulse.manifest. js should contain one or more immediately-invoked function expression (IIFE)
and use the global window. pulse function to register IIFEs.

The below example shows the registering of a custom widget which uses the Highcharts library to
draw a custom chart.

(function() {
pulse.extension({

type: 'WIDGET', // type of extension allows us to add more extension
types in the feature

apiVersion: '9.0.0', // version of api used in the extension

id: 'CustomWidgetOne', // unique extension id, should not clash with other

deployed extensions
label: 'Custom Widget One', // label displayed in Display Options of the Widget Wizard
icon: 'icon-app-chart', // icon displayed in Display Options of the Widget Wizard
require: [// javascript or css files to be loaded for the extension
work
// use object when your library exposes global variable
// no need to load d3 (version 3.5.17), jQuery,
underscore - they are already loaded by Genesys Pulse
// to avoid loading library from CDN put library side by
side with pulse.manifest.js and provide URL like "../pulse-plugin-name/library.js"
{Highcharts: "https://code.highcharts.com/highcharts.js"},
"https://code.highcharts.com/highcharts-more.js"
]I
render: function (element, data, options) { // key function for rendering widget
content
. //put your rendering code here
return true; // return true when widget content is rendered or false when widget
cannot be rendered
}I
resize: function (element, data, options) { // function to be called when widget
being resized
. //put your rendering code here
}l
constraints : { // constraints for widget configuration
dashboardSupport: true, // allows to select widget on dashboard, enabled by default
wallboardSupport: true, // allows to select widget on wallboard, disabled by
default
size: { // define min and max size for the widget
minX: 1, // min horizontal size
minY: 1, // min vertical size
maxX: 1, // max horizontal size
maxY: 2 // max vertical size
}I
objects: { // define the min and max objects which can be selected by the users to
adjust the real-state of the visualization
min: 1, // require at least one object selected
max: 1 // allow to select no more than one object
}I
statistics: { // define the min and max stats which can be selected by the users
to adjust the real-state of the visualization
min: 1, // require at least one statistic selected
max: 10 // allow to select no more than ten statistic

}
}I
containerClass: "my-chart", // optional, specify custom css class for widget container
containerStyle: { // optional, overwrite widget container style

"padding-bottom": "10px"

Genesys Pulse Deployment Guide 5

Genesys Pulse User Interface Extensions

Y0);

The important render function accepts three arguments:

* element—HTMLElement, where the content of a widget should be rendered.
¢ data—the data from the snapshot formatted for easier use by new developers.

¢ options—additional options, such as current selected statistics and objects, widget size, current locale.

The render function is called each time the content of a widget is redrawn with new data. When a
widget is resized the resize function is called with the same three arguments.

The data object has the following format:

statistics: [{ // array with all statistics selected in Statistics of the Widget
Wizard
format: "time", // statistic format
id: "Ready Time", // statistic internal name
label: "Ready Time", // display name of statistic
ranges: { // describes threshold ranges for particular statistic
green: {
from: 100,
color: "green"
}I
orange: {
to: 100,
from: 20,
color: "yellow"
}I
red: {
to: 20,
color: "red"
b
}I

values: [// array with statistic values per each object, values are ordered according to
objects order in objects array
6470,
6435,
6467
]

H,
objects: [{ // array with all objects selected in Objects of the Widget Wizard

id: 103,

label: "Master, Yoda"
}I
{

id: 104,

label: "Darth, Vader"
}I
{

id: 9638,
label: "Luke, Skywalker"
}
]I
history: { // object provides access to historical values of statistic, available since
Genesys Pulse version 9.0.0
get: function(statisticId, objectId, options) { ... } // method returning array with
historical data for particular statistic and object
// additional parameters can be passed via options object:

Genesys Pulse Deployment Guide

Genesys Pulse User Interface Extensions

// options.start - optional, allows to specify left time boundary of historical data
represented either by Date object or by milliseconds

// example of method call result: [{time: 1517845138005, value: 1}, {time: 1517845156610,
value: 42}, ...]

}
}
This format is self-describing, easy to understand and easy to transform into input for popular

charting libraries like Highcharts.

The options object has the following format:

selectedObjects: [103, 104 1, // array with ids of objects selected in Display
Options to show in chart
selectedStatistics: ["Ready Time"], // array with ids of statistics selected in Display
Options to show in chart
theme: { // object describes current selected color theme,
could be used to pick Genesys approved colors for charts
backgroundColor: "#fdfdfd",
chartColors: [...]
rangeColors: {
green:"#4ac764"
orange: "#f8a740"
red: "#ead4f6b"

How to Change Basic Styles

Starting with release 8.5.106, you can customize .js and .css files to apply a new set of colors for the
Genesys Pulse instance.

You can place js/css files into the Genesys Pulse folder or styles/scripts subfolders. The options for
loading custom js/css files are as follows:

e pulse/load css _custom=/pulse/styles/custom.css

* pulse/load js custom=/pulse/scripts/custom.js
You can specify many options with load css/load_js prefixes:

e pulse/load css <style name 1>=/pulse/styles/custom 1l.css
e pulse/load css <style name n>=/pulse/scripts/custom n.css
e pulse/load js <script name 1>=/pulse/styles/custom 1.js

* pulse/load js <script name n>=/pulse/scripts/custom n.js

The options do not require Genesys Pulse restart.

Genesys Pulse Deployment Guide

Genesys Pulse User Interface Extensions

Tip
Files placed in Genesys Pulse folders or styles/scripts subfolders can be overwritten

during the upgrade. It is better to add these files to a different directory accessible by
the http(s) protocol.

You can use a full URL when files are hosted on another web server:

e pulse/load_css_custom=http://<host>:<port>/mystyle.css

* pulse/load_js_custom=http://<host>:<port>/myscript.js

There are samples in the examples folder where Genesys Pulse is installed, in the custom-css-
example and custom-js-example subfolders. These samples are intended for advanced users, who
can do their own customization of provided examples.

The font size in the Text widgets is designed to scale the font according to the content. However, you

can use a custom .css to customize it if you have a competent web designer or with the help of
Genesys Professional Services.

Genesys Pulse Deployment Guide 8

	Genesys Pulse Deployment Guide
	Genesys Pulse User Interface Extensions

