
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Push notifications via GMS to HTTP server

Chat Server Administration Guide

4/4/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Push notifications via GMS to HTTP server
Starting with version 8.5.311.06, the Chat solution allows you to request push (in other words,
unsolicited) notifications through Genesys Mobile Server (GMS) to an HTTP server even when a
customer-facing chat web application (Chat Widget) communicates with GMS via "Chat API Version
2". Previously, this was only possible with "Chat API Version 2 with CometD".

To enable this functionality, do the following:

Application Instructions

GMS

1. Deploy GMS using Cluster Application
2. Configure GMS for Custom HTTP notification
3. Configure GMS with

push_notification_include_payload (optional)

Chat Server

1. Add new configuration option flex-push-on-join
in the settings section with value true. This
forces Chat Server to acknowledge the push
notification subscription during the creation of a
chat session.

2. Ensure that option flex-push-enabled is set to
true, and option flex-push-timeout is set with a
larger value (for example, "86400 seconds").
For more information, see Async Requirements.

3. Review the schedule for resending push
notifications, when using
GCTI_GMS_PushResend, defined by the
configuration options, flex-push-resend-
attempts and flex-push-resend-delay.

4. Adjust, if needed, the value for configuration
option flex-push-content. In addition to
session-id and user-id, it is now possible to
receive app-dbid and secure-key in push
notifications.

Customer-facing chat web application

1. The web application must supply a set of
mandatory key-value pairs in the userdata for
the "Request Chat" HTTP method (using a
userData[key-name] notation):
• GCTI_Chat_PushSubscribe with the value

true. This enables push notifications in Chat
Server when “Chat API Version 2” is used .

• GCTI_GMS_NodeGroup with the GMS

Push notifications via GMS to HTTP server

Chat Server Administration Guide 2

https://docs.genesys.com/Documentation/GMS/latest/Deployment/CreatinganApplicationObject#cdep
https://docs.genesys.com/Documentation/GMS/latest/API/PushNotificationService#CustomHTTP
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATOv


Application Instructions

cluster name. If the GMS version is
8.5.213.03 or greater, this key-value pair is
not required, as it is automatically provided
by GMS to Chat Server.

• GCTI_GMS_PushDeviceId with a unique
device ID. This ID is returned in the push
notifications as deviceId.

• GCTI_GMS_PushDeviceType with the
value customhttp. This defines the type of
push notification used.

• GCTI_GMS_NotifyRequestor with value
true. This forces Chat Server to send push
notifications to GMS about the customer's
own activity.

• GCTI_GMS_PushIncludePayload with
value true. This forces GMS to include the
payload (in other words, the chat transcript
event content) with a custom-http push
notification. Without providing this key-
value pair, GMS sends only the deviceId
(provided in GCTI_GMS_PushDeviceId) in
the push notification, which can prevent the
distribution of sensitive content. When
reliable delivery is requested by
GCTI_GMS_PushResend, this key-value
pair must be provided however, in this case,
no event-specific payload is provided in the
push notification (it only contains some ad
hoc data that can be used to send a
“Refresh” request).

2. Chat Server provides the ability to request a
reliable delivery of push notifications. For that,
the web application must additionally supply
the GCTI_GMS_PushResend key-value pair
with value true in the userdata. This forces
Chat Server to activate the mechanism of
resending push notifications according to a
schedule defined in the configuration. Chat
Server will start resending push notifications if
no "refresh" (in other words "pull transcript
update") request is being received within the
amount of time specified by option flex-push-
resend-delay. See below for more information
about reliable push notifications delivery.

3. The web application can additionally supply a
set of key-value pairs in the userdata:
• GCTI_GMS_PushProvider

Must be provided if you specified the
configuration for the non-default provider in

Push notifications via GMS to HTTP server

Chat Server Administration Guide 3



Application Instructions

GMS.
• GCTI_GMS_PushDebug

Must be provided if you specified the debug
mode for the provider configured in GMS.

• GCTI_GMS_ClientChannel
Must be provided if you want to include the
GMS service name in obfuscated secure-key
in the push notification.

Additional notes

• It is important to provide adequate throughput of the Web Server which processes the customhttp
notification. The latency (in other words, the processing time for a single HTTP POST request) must be
as low as possible as GMS sends all notifications sequentially. The next request is only sent after a reply
from the previous one. For example, if the latency is 5 milliseconds on average, then a single GMS node
is able to send 200 notifications per second. Enabling GCTI_GMS_PushResend could increase the volume
of notifications, so it must be taken into account.

• If push notifications are enabled, Chat Server tries to find the GMS node in the GMS cluster (specified by
GCTI_GMS_NodeGroup) and to associate that found node for further notifications (until the node is
disconnected). Starting with version 8.5.311.06, if no GMS node is available (in other words, registered
in Chat Server) in a given cluster, Chat Server selects another GMS cluster to seek for an available GMS
node. Otherwise, if no other cluster and/or node is available, Chat Server attempts to find an available
node the next time an activity is generated in the chat session or upon chat session restoration in HA
mode.

• If reliable delivery of a push notification is not requested by sending GCTI_GMS_PushResend, no
attempts to resubmit the same push notification will be made in case of a delivery failure between the
GMS and HTTP server, and between Chat Server and GMS. The following log messages are logged in
the event of this error condition:
• In GMS: "Dbg 09900 [com.genesyslab.PCT.invoker.default] DC Chat Server Persistent

Listener: Event 17 was not (GMS is not running in full mode or incompatible Chat
Server version) pushed for delivery to customhttp for device..."

• In Chat Server: "Trc 59758 push-flex: could not send notification - no gms node found
in group=..."

Sample configuration for custom HTTP notifications in GMS
[chat]
enable_notification_mode=true
push_notification_include_payload=true

[push]
customhttp.url=http://<hostname>:<port>/<path>
pushEnabled=comet,customhttp

Push notifications via GMS to HTTP server

Chat Server Administration Guide 4



Important
Ensure that the [push] section does not contain the option customhttp.message. If it is present, the value
of this option overrides the content of push notification.

Reliable push notifications delivery

When requesting reliable delivery for a push notification (in other words, when
GCTI_GMS_PushResend=true):

• All push notifications are of type:PushUrl and participantId: 0 (which is not a valid participant ID).
• No payload is provided in the push notification. Instead, each push notification must be considered a

trigger to send a “Refresh” request to GMS in order to obtain the newly published events in the chat
session.

The following is the sample JSON which is delivered in the HTTP request for a push notification.

{
"message":{

"secureKey":"G1xBGx9aTUYVBEECD0UZAVwTQEQDFgRZFVJTXEI3QSFFIShAHyVcRUI2GUJXXUEeAikkNSNTJFddQRc=",
"chatId":"deprecated",
"nextPosition":17,
"messages":[

{
"from":{

"nickname":"",
"participantId":0,
"type":"Client"

},
"index":0,
"text":"PUSH-NOTIFICATION",
"type":"PushUrl",
"utcTime":1568662361000,
"userData":{

"notify-attempt":"0",
"notify-position":"16",
"secure-key":"c6c9a6d96dc14cef5f94",
"app-dbid":"131",
"user-id":"007D5D7FE31F001B",
"session-id":"00020aEQFW6V0029"

}
}

],
"alias":"0",
"chatEnded":false,
"userId":"deprecated",
"statusCode":0,
"monitored":false

Push notifications via GMS to HTTP server

Chat Server Administration Guide 5



},
"deviceId":"a1a23456789123456789"

}

Important field descriptions
Field Description

participantId Always 0 and must be ignored.

notify-position Contains the starting position of content not retrieved. It can have a value of
-1 meaning that chat participant has been removed from the chat session.

notify-attempt Contains the number of attempts to deliver the push notification.

secure-key Secure key to be used with GMS REST API. The presence depends on flex-
push-content.

app-dbid App DBID (or alias) to be used with GMS REST API. The presence depends on
flex-push-content.

user-id User ID to be used with GMS REST API. The presence depends on flex-push-
content.

session-id Session ID to be used with GMS REST API. The presence depends on flex-push-
content.

chatEnded If the value is true it means the chat session is finished.

Warning
Starting with version 8.5.311.06, the secure-key for REST API requests is provided in the userData based on
the value of the configuration option flex-push-content. The secureKey provided in message must be ignored by
the REST API client, and only used for the CometD API.

Push notifications via GMS to HTTP server

Chat Server Administration Guide 6


	Chat Server Administration Guide
	Push notifications via GMS to HTTP server

