
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Engage Chat 8.5.3

Chat Server Administration Guide

1/31/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Chat Server Administration 3

Overview 4
Sizing Guide, Setting Load Limits, and Health Monitoring 8
Deploying a Chat Solution 12

Deployment guidelines for async and regular chat 14
Deploying High-Availability Chat Server 21

Configuring a secure connection to Cassandra 27
Initialization Cassandra scripts for Chat Server 42

Multilingual Processing in Chat Server 44
Masking Sensitive Data 45
Inactivity Monitoring 48
Contact Identification for Regular and Anonymous Chat 52
How to send ESP requests to Chat Session from Workflow 55
Integrating Chat Server with Genesys Historical Reporting 63
File Transfer in Chat Solutions 77
Chat Server API selected notes and topics 82

Functional capabilities of chat protocol 84
File Transfer API for Agent Desktop 89
Description of Chat Protocol Elements 92
Reason Codes 93

Asynchronous Chat 94
Async Chat Overview 95
Push notifications via GMS to HTTP server 99
Asynchronous Chat in Workspace Desktop Edition 104
Asynchronous Chat in Widgets 108

Chat Business Process Sample 109
Rich Messaging Support 113

Chat Server Administration
The following topics provide information for Chat Server administrators:

Topic Description

Overview Provides an overview of the chat solution, including
a high-level architecture diagram.

Sizing Guide, Setting Load Limits, and Health
Monitoring

Describes how much load a solution can hold, how
to restrict the load and how to monitor the health
per Chat Server instance.

Deploying a Chat Solution Describes how to deploy a Chat Solution.

Deploying High-Availability Chat Server Describes how to deploy multiple Chat Server
instances in high availability mode.

Multilingual Processing Describes how to configure a solution to process/
work with multiple languages.

Masking Sensitive Data
Describes how to mask out sensitive data in chat
session messages/transcripts and in Chat Server
logs.

Inactivity Monitoring Describes how to configure chat session closure
upon participants’ inactivity.

Matching Contact Attributes Describes the approach to contact identification
and creation.

Sending ESP requests to Chat Session from
Workflow

Describes how to send messages, notices, and
other requests from workflow (like URS/ORS
strategies) to an active chat session.

Chat Server Reporting Data
Describes Chat Server reporting statistics attached
to the user data of the interaction in Interaction
Server.

File Transfer in Chat Session Describes how to deploy and configure file transfer
between chat session participants.

Chat Server API selected notes and topics
Describes selected cases and topics on how to use
Chat Server API for implementation of custom
desktop and widget.

Asynchronous Chat
Describes how to work with Asynchronous (async)
chat within Genesys Chat Solution, Workspace
Desktop Edition (WDE), and Widgets.

Chat Business Process Sample

Provides a sample workflow which demonstrates
how to process chat interactions for both regular
and asynchronous chat with different channels
including web chat, Apple Business Chat, and
WhatsApp.

Rich Messaging Support
Provides information on the Chat solution's ability
to use Rich Messaging across various chat
channels.

Chat Server Administration

Chat Server Administration Guide 3

https://docs.genesys.com/Documentation/ESChat/latest/Admin/FileTransfer

Overview
Genesys Chat allows customers to communicate with live and automated (bot) agents in a contact
center. It uses a set of different components, each providing a unique piece of functionality.

From a business perspective, we view a chat communication as:

1. A customer starts a chat from a company web page, mobile application, or through a supported
messenger application.

2. From the contact center, the chat can first be answered by a bot and then be routed to a live agent, or
routed from the agent to a bot as needed.

3. Upon the chat completion, the chat transcript is saved in the historical records and the contact center
reporting reflects the processing of this chat conversation.

The diagram below depicts essential components of the chat solution and the most significant
communication channels between applications.

Chat Server Administration Overview

Chat Server Administration Guide 4

Components

From a technical standpoint, this works in the following way with the Genesys Chat Solution:

1. A contact uses either Genesys Chat Widget (or a custom web chat application), or mobile application
which communicates with Genesys Mobile Engagement (GMS) public-facing REST (or CometD) API.

2. GMS communicates with a backbone Chat Server. When a new chat session is being requested, Chat
Server:
• Communicates with Universal Contact Server (UCS) to create a record (with known attributes) and

identifies the customer with the contact attributes provided.
• Creates the interaction in Interaction Server which is sent to the workflow and executed by Universal

Routing Server (URS) and/or Orchestration Server (ORS) applications. The workflow permits system
messages to the chat session to invite bots to route the interaction to the best available agent or
the last handling agent.

3. If bots are involved, Bot Gateway Server (BGS) connects the bot to the chat session upon the request
from the workflow. As soon as the bot has finished, the workflow continues.

Chat Server Administration Overview

Chat Server Administration Guide 5

https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2CometD

4. The workflow invites an agent (represented by the agent desktop application) and Genesys provides
both Workspace Web Edition (WWE) and Workspace Desktop Edition (WDE) agent desktops. Note:
Customers can implement their own custom desktop by using Platform SDK (PSDK) or Web Services
and Applications (GWS) API to Genesys components.

5. If the agent accepts the invitation for chat, the agent desktop connects the agent to the chat session.
6. If the chat session is running in Asynchronous (async) mode, the agent can put the conversation on hold

by disconnecting from the chat session and placing the interaction into the agent Workbin. Later, the
agent can resume the conversation or, alternatively, the workflow can be configured to alert an agent
or to start routing the interaction upon a reply from the customer.

7. Upon the completion of the chat, UCS saves the final version of the chat session transcript in the UCS
record. The workflow sends the offline interaction for post-processing (for example, sends an email to
the customer with the chat session transcript) and then stops the interaction.

8. For historical reporting, during chat session closure, Chat Server provides a set of internal metrics which
describes the chat session behavior and participants. This information is absorbed by Genesys Info Mart
(GIM) (the core historical component) and later is used in historical reports provided by Genesys CX
Insights (GCXI).

9. Other messaging channels can be added to the chat solution by deploying Digital Messaging Server
(DMS) based components, such as Short Message Service (SMS), Apple Business Chat, WhatsApp,
WeChat, Facebook, or Twitter. All messaging channels communicate through Chat Server, utilizing the
same functionality in workflow, bots, and reporting. For the agent desktop in WDE, special plugins are
used which implement channel-specific features such as structured messages, and others.

Entities
Chat session Interaction UCS record

Purpose
Connects chat
participants and allows
message exchange

Used for routing, other
services invocation
(from routing
strategies), reporting
(real time and historical)

Stores information
about the chat session,
including the chat
session transcript (in
XML form), and can be
associated with the
contact record

Controlled by Chat Server
Interaction Server and
Routing (continued in
Interaction Server
database)

UCS (continued in UCS
database)

Created
When customer (or
agent in outbound
mode) initiates the chat
session

When Chat Server
submits the interaction
upon chat session
creation

When Chat Server
creates the record upon
chat session creation

Updated

For every event in chat
session (adding or
removing participant,
message or notice, idle
control)

In async mode, special
attributes are updated
when a qualified event
in chat session occurs

Chat Server stores
intermediate versions of
the chat transcript in
high availability mode

Finished
When the last
participant leaves
(either voluntarily or
forcefully) the chat

Chat Server sets an
offline attribute in
interaction, and the
workflow stops the

Record stays
permanently, with a
special "closed" status
mark

Chat Server Administration Overview

Chat Server Administration Guide 6

Chat session Interaction UCS record
session interaction

Features

For chat channels, Chat Server provides the following features:

• All chat conversations can be conducted in multiple languages (including the use of emojis) without any
special configuration. For the correct processing of chat session interaction attributes, Unicode
Transformation Format-8 (UTF-8) mode can be enabled for all components.

• The cleanup of Personally Identifiable Information (PII) can be enabled in configuration settings. For
example, forcing Chat Server to replace digits in credit card numbers with the asterisk symbol,
preventing it from appearing in the chat session transcript.

• Inactivity control can be enabled to detect a conversation's inactivity, send an alert to the chat
participants, and to close the chat session automatically if the activity is not resumed.

• For web chat, the full high-availability support is provided by utilizing either UCS or Cassandra as the
storage for the intermediate content of the chat conversation.

• Every chat session can be silently monitored by a supervisor. The agent can invite another agent into
the same chat session either in conference mode (when the second agent is visible to a customer), or
in consult/coaching mode (when the second agent is invisible to a customer).

• Most of the channels (including web chat) support file transfer, where both a customer and the agent
can send files to each other. Some channels support Rich Messages or so-called structured messages
(for example, list picker in Apple Business Chat, or a carousel for web chat).

Important
Workspace Web Edition does not support file transfer. Make sure to disable file transfer in Chat Server and CX
Widget when using WWE.

Additional functionality provided by other components:

• Agent Desktop provides:
• Agent access to the full contact history (all previous chat and non-chat interactions with a

customer).
• Standard responses with pre-populated content. Such responses are especially important when the

agent needs to send structured messages.

• A URS/ORS workflow allows the interaction to be routed to the "last called agent" (in other words, the
agent who handled the previous interaction from this customer), which is utilized in async chat when a
customer's message awakens the interaction in the workbin.

Chat Server Administration Overview

Chat Server Administration Guide 7

https://docs.genesys.com/Documentation/ESChat/latest/Admin/RMS

Sizing Guide, Setting Load Limits, and
Health Monitoring

Sizing Guide

The following guidelines are recommended for a Genesys Chat solution running on a single host with
two Intel Xeon 3.0 GHz processors. Observe these recommendations for an optimum (without
significant delay) performance.

Item Maximum

Message size 4 KB (Genesys Desktop limitation; Chat Server does not have
this restriction.)

Transcript size 54 KB (Genesys Desktop limitation; Chat Server does not have
this restriction.)

Concurrent sessions (in a realistic simple scenario) 1000 per Chat Server

Messages per second 50 (rare temporary peaks up to 150)

Sessions opened and closed per second 10 (rare temporary peaks up to 30)

Chat Server limits the maximum number of concurrent opened connections (for all protocol and
participants) with:

• 32768 on Linux.
• 4096 on Windows.

When opening and closing the connection, Chat Server prints in the log the current number of
opened connections (as "conns="). Connections, with the exception of a few persistent system ones,
are used in a couple of different ways:

• Each agent or bot connected to a chat session consumes one connection and then releases it when they
leave the chat session.

• Each time a customer chat application sends a request (either via REST API or CometD), GMS opens the
connection and then, after receiving a reply from Chat Server, closes the connection.

Note: You can configure a timeout in Chat Server that prevents keeping unused connections open.
Use the user-register-timeout option to set the maximum time between establishing the

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 8

connection and receiving:

• Either a basic protocol Register request
• Or any flex protocol request

Connection Delay with Antivirus

It may take some time (up to several minutes on some UNIX Platforms) for Chat Server to connect to
an unopened port on a Windows host that is running an antivirus program. For example, if Chat
Server is running on Linux and is trying to connect to an inactive UCS instance, it could take up to
three minutes for Chat Server to detect that the listening port is not open.

Setting Load Limits

Starting in the 8.5.0 release of Chat Server, you can impose load limits on Chat Server: when Chat
Server reaches the specified limit, it no longer creates new sessions or restores existing sessions.

Set load limits using the following configuration options (full descriptions are in the eServices Options
Reference):

• Enable or disable the general functionality of load limitation using limits-control-enabled.
• Set specific limits:

• limit-for-flex-users — Maximum number of currently logged-in flex users.
• limit-for-reply-delay — Configures the maximum average delay (in milliseconds) for processing

requests. The average value is calculated on the limit-average-interval interval. This delay increases
if the Chat Server instance is overloaded with a large number of incoming requests. Note: This
delay directly corresponds to CPU consumption by the Chat server process; it starts to grow when
the Chat Server CPU is running closer to, or higher than, 100% of one CPU core.

• limit-for-sessions — Maximum number of concurrent chat sessions (the value of which must not be
larger than the value for limit-for-flex-users).
If any of these limits is reached, Chat Server stops creating and restoring sessions.

• If Chat Server is configured in primary/backup mode (not recommended; see Deploying High-Availability
Chat Server), you may want to stop it from reporting service unavailable to SCS when a limit is
reached. You can do this using limits-reached-report-scs. Blocking the reports avoids a scenario in
which Chat Server in primary/backup mode closes a chat session because (1) Chat Server reaches any
of its configured load limits, (2) Chat Server sends a service unavailable notification to Solution
Control Server, (3) SCS switches Chat Server to backup state, which closes the chat session. (This
scenario does not apply if Chat Server is in N+1 mode: multiple Chat Servers with no backup
configured).

• Set the point at which Chat Server returns to full functionality using limits-restore-threshold. This value
is a percentage of the limit set by the three limit-for-X options.

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 9

https://docs.genesys.com/Documentation/Options/latest/ES/Welcome
https://docs.genesys.com/Documentation/Options/latest/ES/Welcome
https://docs.genesys.com/Documentation/ESChat/latest/Admin/DeployHA
https://docs.genesys.com/Documentation/ESChat/latest/Admin/DeployHA

Example
If limit-for-flex-users is set to 400 and limits-restore-threshold is set to 80, then:

1. When the number of flex users reaches 400, Chat Server stops creating and restoring sessions, and
rejects login attempts by flex users.

2. When the number of flex users falls to 320, Chat Server returns to full functionality.

KPI (Key Performance Indicator) counters

Starting with release 8.5.103, Chat Server includes KPI (Key Performance Indicator) counters that
monitor activity within the server.

Accessing KPI counters
Access KPI counters in one of two ways:

• The Chat Server log. by configuring options log-output-content, log-output-proviso, log-output-timeout
in the [health-service] section.

• The web REST interface which you can configure by:
• Adding a port with the ID=health to the ports of Chat Server.
• Adjusting the soap-* options found in the [health-service] section.

Web interface
Access the web interface through the following URL format: http://ServerName:ServerPort/
Counters?<list of parameters> where:

• ServerName is the host name where Chat Server is running.
• ServerPort is the web service port, also specified as the health port of Chat Server.

Web interface parameters:

Name Description Valid Value Default V

metadata
Returns a list (in JSON format) of
all supported counters, with
descriptions.

true, yes, false, no false

content
Returns a list (in JSON format) of
counters according to the
provided parameter value.

all—returns all available counters
new—returns only recently updated
counters
set—returns all initialized (non-zero)
counters

all

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 10

Name Description Valid Value Default V
reset Resets all counters to zero. true, yes, false, no false

prometheus

Returns metrics in Prometheus
format.
(Introduced in Chat Server version
8.5.312.10)

true, yes, false, no false

gms_info

Returns metrics about GMS nodes
and the associated chat session
(only the Prometheus format is
supported). When used, all other
parameters are ignored.
(Introduced in Chat Server version
8.5.312.10)

true, yes, false, no false

If a parameter is omitted or has an invalid value, then the default value is used for that parameter.
Parameters are processed according to the following rules:

• If reset is true, then all the counters will be reset and then the rest of the parameters will be
processed.

• If metadata is true, then the content parameter will be ignored and the metadata will be sent.

Example URLs:

• http://hostname:7000/Counters?content=set

• http://hostname:7000/Counters?metadata=true&reset=true

How counter values are calculated
All counters, except the process memory counter, are cumulative. The value begins to accumulate
the moment the application is launched or the counters are reset. To calculate the difference, the
user must use two sample counters from different times and subtract the earlier sample from the
later one. To find the counter's rate value, divide the difference by the number of elapsed seconds
between the two samples.

Important
On some platforms, the time for processing internal activities may be reported as
zero. This does not indicate an issue with the counter. On the contrary, a rapidly
growing value on the counter for internal activity indicates that the server is
overloaded.

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 11

Deploying a Chat Solution
This page outlines the essential steps of deploying a Chat Solution.

Overview

To deploy Chat Server, perform the following steps:

• Create a Chat Server application in configuration. Make sure that the following configuration is specified
correctly:

• Ports. At least 3 ports must be configured with the following IDs: default, webapi and ESP.
Additionally, if KPI must be exposed via REST API, port with ID health must be added.

• Connections. Chat Server must be connected to Interaction Server and UCS, and optionally Chat
Server could be connected to the Configuration Server application (usually confserv) and Message
Server. Setting addp is recommended for all these connections.

• Endpoints. The endpoints:*tenant_dbid* section must be renamed to contain an appropriate
tenant ID value (for example endpoints:1) and the default option must be initialized with a
queue name (to which Chat Server will submit interactions).

• Logs. By default logs are configured to hide all possible sensitive data - which however might not
be convenient if troubleshooting is required. Decide on how you want to set the hide-attached-
data and message-log-print-size options in the settings section and options in the log-filter-
data section.

• Set up Chat Server High Availability configuration if needed.
• Connect other applications to the Chat Server application:

• Interaction Server must be connected to the ESP port (addp is recommended for this
connection).

• GMS must be connected to the webapi port (addp is not recommended for this connection due
to short living nature of these connections).

• Install the Chat Server installation package (IP).
• Configure other applications to work with chat channels:

• Create/modify capacity rule to include the chat media type.
• Create/modify workflow (using either IR Designer or Composer) to route a chat interaction. For

information about sending messages to a chat session refer to How to Send Message or Notice to
Chat Session from Workflow.

• Enable GMS to provide chat API (by adding the chat.customer-support section).
• Configure agents (persons in configuration) with a chat channel access.
• Adjust configuration of Workspace (agent desktop) if needed. For WDE review the chat.* and

chatserver.* options and for the openmedia.workitem-channels option add the chat value.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 12

Interaction Server Cluster Support

Please refer to Interaction Server Cluster documentation (in particular, review Special Considerations
for Media Servers in Suggested Deployment Configuration) in order to configure Chat Server to work
with Interaction Server Cluster.

Important
The ESP Configuration Must Be Symmetrical section means that in order to be able to
send ESP messages from workflow to Chat Server using Interaction Server Cluster,
each Interaction Server node in the cluster must have its own connection to ESP port
of Chat Server.

UCS 9.1 support

In order to configure Chat Server 8.5.x with the cluster of UCS 9.1 nodes (all of which are running in
active mode):

1. Configure all UCS instances as primary and backup pairs:
a. UCS 9.1 ignores this configuration.
b. Chat Server instances will be using this configuration.

2. Divide all instances of Chat Server into the same number of groups as the number of UCS pairs.
3. For each group, connect each instance of Chat Server only to the primary UCS of a corresponding UCS

instances pair.

For maintenance/upgrade:

1. Ugrade all instances of UCS configured as backup (stop instances, upgrade the IP, and then start
instances again).

2. Stop all UCS instances configured as primary. At this point Chat Server instances will switch to UCS
instances which are configured as backup.

3. Upgrade all UCS instances configured as primary (stop instances, upgrade the IP, and then start
instances again).

Important
It is possible that in some situations—for example, after performing the upgrade
procedure—Chat Server instances could be connected to UCS instances configured as
backup (you can verify this from the Chat Server logs). In a case such as this, there
will simply be an additional reconnect in Chat Server instances to UCS during the
upgrade procedure.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 13

https://docs.genesys.com/Documentation/ES/latest/Depl/IxnClus
https://docs.genesys.com/Documentation/ES/latest/Depl/IxnClus#Special_Considerations
https://docs.genesys.com/Documentation/ES/latest/Depl/IxnClus#ESP_Configuration_Must_Be_Symmetrical

Deployment guidelines for async and
regular chat
The page provides some important guidelines regarding regular (traditional) and async
(asynchronous) chat deployment.

• Comparison of regular vs. async chat mode
• Comparison of short polling (REST-API-based) vs. CometD-based chat
• Sizing guidelines based on comprehensive stress testing
• Async chat workflow recommendations
• How disconnects and idle timeouts work

Regular vs. async chat mode

In general, both async and regular chats are processed the same way by all components. However,
async chat provides additional capabilities that require a bit more planning and workflow
implementation.

Regular Chat Async Chat
Duration of single
conversation

Lasts only minutes or dozens of
minutes.

Could potentially last for days or
even weeks.

Agent handling

An agent can:

• Accept the chat session
• Transfer the chat session
• Stop the chat session

In addition to the agent handling
found in regular chat, an agent
can also:

• Place the chat session on-hold
• Resume the chat conversation

at a later time by re-
activating the interaction
from the workbin

Mobile oriented Can be implemented, but not
suited for lengthy conversations.

Suitable for mobile applications
as it permits lengthy
conversations with periods of
inactivity.

Workflow
Mostly used for routing purposes
(in other words, selecting the
best available agent).

Additionally, must handle re-
activation of interactions placed
on hold after a qualified event
occurs (for instance, a new
incoming message from a
customer, or an async idle
timeout expiration).

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 14

Regular Chat Async Chat

Performance implications
Must be sized to conduct a
certain number of active chat
sessions.

Must take into the account the
presence of a large number of
chat sessions, most of which are
expected to be in a dormant
state. Please see below about
sizing guidelines.

Short polling vs. CometD-based chat

End-user (customer-oriented) web or mobile chat applications must communicate with Genesys
Mobile Engagement (GMS) through two alternative APIs:

• Short polling (REST API) - For this API, the chat application is required to send frequent (usually every
other 3 seconds) polling requests to keep the chat session transcript updated.

• CometD-based - This API can utilize either WebSockets or long-polling. This provides chat session
transcript updates more promptly, on the customer side.

While the CometD approach naturally appears more efficient (as it also reduces the overall load onto
the system by eliminating unproductive API calls), the table below provides a comparison of different
aspects which should be taken into account when selecting the best approach for your deployment
and implementation:

Short polling (REST API) CometD-based

Performance

Consumes more CPU and traffic
resources as it produce a lot of
unproductive API calls (according
to research, on average 98.5% of
polls are wasted). So, if a
message is expected to be
posted into the chat session
every 30 seconds, an extra 10
unproductive API requests must
be processed during this time by
the GMS and Chat Server
components. Basically, this
means that the load on these
components are measured on
how many concurrent chat
sessions an instance can hold,
independently of the scenario
density (see Sizing Guide, Setting
Load Limits, and Health
Monitoring for more information).

CPU and traffic resources are
used mostly for the productive
load.

Connections

Each API call is executed on a
separate connection, which is
closed immediately after
receiving an HTTP response. The
number of concurrent
connections (between GMS and

Number of concurrent
connections is similar to the
amount of concurrent chat
sessions. Also, GMS imposes a
limitation of only one CometD
connection every chat session.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 15

https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2CometD
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSizing
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSizing
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSizing

Short polling (REST API) CometD-based
Chat Server) depend on the
number of concurrent chat
sessions, divided by the short
polling interval (usually 3
seconds).

Complexity
Simple to implement and
troubleshoot (as it is based on
pure REST API).

Troubleshooting requires the
knowledge of CometD protocol
functionality.

Client library There are numerous stable
versions of HTTP REST libraries.

CometD client library is required,
which increases the complexity
of the chat web application.

Timeouts (in Chat Server)

The flex-disconnect-timeout
configuration option is used to
disconnect a chat participant
who has not sent any API
requests after a specified amount
of time.

The flex-push-timeout
configuration option is used to
disconnect a chat participant
who is not confirmed by GMS as
alive after a specified amount of
time.

Sizing recommendations

On the high level, sizing guidelines depend on various factors:

• Short polling (GMS Chat API Version 2) vs. CometD (GMS Chat API Version 2 with CometD) mode:
• Short polling produces a constant "background" (or, "noise") load onto GMS and Chat Server,

thereby consuming much more CPU and network resources. Also, it is important to appropriately
tune the operational system Transmission Control Protocol (TCP) parameters to minimize the
TIME_WAIT state duration, as each short polling request leads to the opening and closing of the TCP
connection.

• The CometD approach requires you to keep a long-living connection to GMS for each chat session. It
should be noted that some load balancing solutions do not handle long-living connections properly
and might result in the closure of an inactive connection.

• In chat async mode, dormant vs. active sessions:
• Active chat sessions usually constitute only a fraction of all ongoing async chat sessions. The

number of such chat sessions should be around the number of active chat agents, multiplied by the
capacity of agents (or, how many parallel chat session an agent can work on). These chat sessions
consume almost all assigned resources (first of all CPU).

• Dormant chat sessions are those which do not have an active agent (or bot) in the chat session. So,
for example, in short polling mode the customer-facing application must minimize the resource
consumption by reducing (or completely eliminating) the periodic short polling requests.

• Scenario density: Using a CometD approach, the load scales linearly with the number of messages sent
from chat participants during a certain time period. Using the short polling approach, the load is mostly
dependent on the “noise“ load, since polling requests take up most of the packets being processed.

• In High Availability (HA), UCS vs. Cassandra:
• UCS-based HA option requires less deployment and maintenance efforts, and guarantees the

presence of the latest transcript version for ongoing chat sessions in the UCS database (DB).

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 16

https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2CometD

However, with large deployments, UCS and UCS DB might be overloaded with intermediate
transcript updates which are generated by Chat Server after each chat session message.

• Cassandra allows you to off-load UCS from an unnecessary load. However, in the case of an
unplanned Chat Server switch-over during the ongoing chat session, the chat transcript can never
be propagated into the UCS record if the chat session cannot be restored on another Chat Server
instance (in other words, when it coincides with a customer-facing chat application failure or
closure).

Important
For async chat, especially in short polling mode, a customer-facing web or mobile chat
application must noticeably reduce the frequency of short polling requests when it
detects that a session was placed on hold (in other words, when the agent leaves chat
session.

Performance benchmarks
The following benchmarks were produced on:

• Hardware with "Intel Xeon E7-8880L 2 GHz" with a single instance of Chat Server which consumed in
average one CPU core. At the maximum possible load, Chat Server can consume no more than 2 CPU
cores since all chat-processing operations are executed in a single thread (similar to Node.JS) and only
auxiliary activity operations are executed by a few other working threads.

• Two instances of GMS, each consuming approximately one CPU core.

The average length of a chat session was around 35 seconds (with 3 messages from a customer and
3 messages from an agent), which is a very dense scenario. Each cell in the table contains the total
number of concurrent chat sessions (and active vs. dormant ratio).

Mode Active to dormant sessions ratio
All active 1:10 1:50

Short polling mode 1000
8000
(800 / 7200)

35000
(700 / 34300)

CometD-based mode 1500
11000
(1000 / 10000)

39000
(900 / 38100)

Important
These are performance load test benchmarks; these numbers are not expected in a
real-life scenario.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 17

Async chat workflow recommendations

For async chat, the workflow (or the set of Universal Routing Server [URS] or Orchestration Server
[ORS] strategies) must additionally provide the handling of chat sessions being placed on hold by an
agent to the regular chat workflow. The on-hold session can be processed in the follow ways:

• Upon the qualified event (a message or a configured notice) in the chat session from a customer, Chat
Server updates a special key-value pair (KVP) in the corresponding interaction, which is handled by
Interaction Server. As you see it implemented in the Chat Business Process Sample, the workflow can
force the interaction for routing, which routes the interaction to any other agent after several attempts
of trying to route it to the last handling agent.

• Alternatively, the workflow can place the interaction back to the last handling agent's workbin, if that
last handling agent is not available at the moment. However, in this case, the workflow must
implement the "escape" to avoid this interaction being stuck forever, if that last handling agent never
comes back to the interaction.

• With a custom desktop, the workflow might not force the interaction to routing at all upon the qualified
event. In this case, the agent desktop can directly subscribe to notifications from Interaction Server
when the interaction properties are changed in the agent workbin.

• The workflow must ensure that interactions are not stuck when placed on hold. In the Chat Business
Process Sample, this is implemented in async-chat-main-check-view view of async-chat-main-
queue with the condition GCTI_Chat_AsyncCheckAt < _current_time(), where
GCTI_Chat_AsyncCheckAt is set by Chat Server to the sum of async-idle-alert and async-idle-close
configuration options of Chat Server application.

How disconnects and idle timeouts work

Chat Server configuration options allows you to specify timeouts to control two different functional
areas:

• The disconnect of a chat session participant, which leads to the removal of a chat participant from a
chat session.

• The absence of an activity from participants in a chat session, which leads first to an alert notification
and then the closing of a chat session (if no activity is being produced since the alert was sent).

To describe each functional area, the following definitions must be introduced:

• "Protocol inactivity" means the absence of any protocol requests from a client to Chat Server for a
certain period of time. It is used to detect the disconnect of a chat participant. For example, if the client
application sends short polling refresh requests it still resets the timeout for protocol inactivity even if it
does not carry any useful load. So, the client is considered active on the protocol communication level.

• "Session inactivity" means the absence of qualified events (such as messages) from the chat
participants with full visibility in the chat session. For example, if a customer and an agent are not
sending messages for a certain period of time, then it is considered as a session inactivity. If, at the
same time, the agent communicates with another agent invisibly from a customer (or, consultation
call), it does not affect this decision (as this conversation is not fully visible for all chat session
participants).

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 18

https://docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP
https://docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP
https://docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP

Important
A chat session stays alive in Chat Server until at least one participant is present. As
soon as the last participant leaves, Chat Server closes the chat session forever and it
cannot be resumed again.

Chat session participant disconnect and removal
In terms of connectivity, chat session participants can be processed differently depending on how the
application (representing the participant) communicates with GMS and/or Chat Server:

• An agent (or bot) participant communicates with Chat Server via persistent TCP network connection,
thus the disconnect leads to the immediate removal of a participant from a chat session.

• A chat participant, represented as a customer in a chat session (or, "client participant") can
communicate with GMS in three different modes. Each mode utilizes different configuration options:
• Short polling (REST API). In this mode, Chat Server uses flex-disconnect-timeout which defines

the maximum amount of time of protocol inactivity. As soon as the timeout expires, Chat Server
removes the participant from a chat session. If this is the last participant, Chat Server closes the
chat session.

• CometD only. If a customer web application communicates with GMS over CometD, GMS
subscribes to unsolicited notifications from Chat Server for this chat participant immediately after
the chat session is successfully created by Chat Server. This request forces Chat Server to disable
flex-disconnect-timeout for the chat participant and instead uses flex-push-timeout for the periodic
querying of GMS to confirm that the participant is still connected over CometD. When GMS sends
the confirmation, it tells Chat Server to consider the chat participant alive. As soon as GMS detects
the disconnect over CometD, it sends an "unsubscribe" request, which forces Chat Server to enable
flex-disconnect-timeout until the new subscribe request is sent by GMS to Chat Server (upon client
re-connection over CometD to GMS).

• CometD and short polling with subscription for either mobile or custom-http push
notification. This mode operates almost exactly the same way as "CometD only" except that GMS
never sends an "unsubscribe" request upon a CometD disconnect to Chat Server. This forces Chat
Server to use only flex-push-timeout to ping GMS. In this mode, flex-disconnect-timeout is activated
only when a client chat participant is removed from the chat session forcibly by another chat
participant (such as an agent or bot).

Important
When Genesys agent desktops (WDE and WWE) receive the event indicating that a
client left the chat session (for any reason), the agent desktop automatically sends
the request to Chat Sever to close the chat session. A custom desktop can implement
this differently if needed, as Chat Server keeps the chat session alive until the last
participant leaves the chat session.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 19

Inactivity control and chats session closure
We define chat session inactivity as the absence of a qualified event in a chat session for a certain
period of time (defined by timeouts in configuration). A qualified event can be a message, a notice
(as defined by async-idle-notices or include-notices), and a participant (the agent) joining or leaving
the chat session. Only events with full visibility (in other words, visible to all participants) are taken
into account here.

There are two complementary inactivity control configurations in Chat Server:

• Generic chat configuration (applicable both for async and regular chat sessions).
• It is enabled:

• If the option enable in section [inactivity-control] is set to true.
• When both a customer and an agent (bots are not considered agents in idle control

configuration) are present in the chat session. Once the last agent leaves the chat session, Chat
Server disables this configuration.

• After a certain period of inactivity (defined by option timeout-alert), Chat Server sends an alert
notification (with text defined in message-alert option).

• If there is still no activity (for the period defined by option timeout-alert2), Chat Server sends the
second alert (with message defined in option message-alert2).

• If there is still no activity (for the period defined by option timeout-close), Chat Server sends a
"close" notification and immediately closes the chat session.

• Async only chat configuration (applicable only for async chat session):
• Is enabled from the very start of an async chat session. It is activated independently of the presence

of an agent in a chat session (in other words, it is activated even if you have only a customer in the
chat session).

• After a certain period of inactivity (defined by option async-idle-alert), Chat Server sends an alert
notification (with text defined in the message-alert option).

• If there is still no activity (for the period defined by option async-idle-close), Chat Server sends a
"close" notification and immediately closes the chat session.

Important
Chat Server resets the inactivity period after any qualified event occurs in the chat
session. Both inactivity configurations could be activated simultaneously.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 20

https://docs.genesys.com/Documentation/Options/latest/ES/ChatServer-inactivity-control

Deploying High-Availability Chat Server

Overview

Chat Server can run in high availability (HA) mode where in the case of any Chat Server failure, chat
sessions can be continued on other running Chat Server instances. Run Chat Server in load-balancing
mode (also known as N+1) to enable HA mode. In load-balancing mode, configure Chat Server to run
all instances in primary, or active, mode with no backup applications configured. Note: Primary and
backup mode are still supported, but not recommended.

When running Chat Server in HA mode:

• The web chat application (for instance, Genesys Mobile Services or GMS) selects an active Chat Server
instance to begin a new chat session. If the instance becomes unavailable during the course of the chat
session, the web chat application selects another active Chat Server instance where the session will be
restored and continued. At session restoration, Chat Server updates the interaction properties in
Interaction Server with connection parameters that reflect the new location of the chat session.

• Agent Desktop watches for interaction property updates. After receiving the appropriate notification,
Agent Desktop reconnects to the chat session at the specified Chat Server instance.

In HA mode, Chat Server stores the intermediate transcript after each submitted chat session
message in persistent storage. This allows the chat session to be restored on a different Chat Server
instance upon request. You can configure either of the following options to store the intermediate
session transcripts:

• UCS – UCS configuration is simpler but creates an additional load on UCS and its database which the
system can tolerate for small or medium sized deployments.

• Cassandra – Cassandra requires special configuration but removes the load from UCS which is beneficial
to deployments with higher loads.

Note: In both cases, once the session has ended, the final transcript will be stored in UCS.

Configure Chat Server for HA

Configure as follows:

1. Configure and deploy the required number of Chat Server instances based on the expected load.
2. Connect Web API Server (GMS) to the webapi port of all Chat Server instances.
3. Connect Interaction Server to ESP port of all Chat Server instances.
4. Set the following values for options in the settings section for Chat Server applications:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 21

• session-restoration-mode = simple

This enables Chat Server's session restoration functionality.

Note: The session-restoration-mode option has no effect unless the transcript-auto-save option is set to a valid
positive value.

• transcript-auto-save = 1
This forces Chat Server to update the transcript in persistent storage (UCS or Cassandra) after each submitted message. You
may also set this option to 2 (notify clients when the transcript is updated), however that would be effective only if the agent
desktop can process special notifications from Chat Server (in particular, the notice ucs-save-fail/save). From the
standpoint of resources, using the value 2 will slightly increase CPU usage; also Genesys Interaction Workspace does not
support this functionality.

• transcript-save-on-error = close

This forces Chat Server to close the chat session (without a final update in UCS) if, during the session, Chat Server detects a
non-recoverable error or failure message when trying to store the intermediate chat session transcript.

5. Review the values for the following options (see the eServices Options Reference for full descriptions):
• transcript-resend-attempts
• transcript-resend-delay
• transcript-save-notices

The default values are acceptable for HA functionality; however you may wish to evaluate
whether those values produce the behavior that you expect.

6. (Introduced in Chat Server version 8.5.312.10) To purge a chat session from the Chat Server instance
that was processing that chat session before the restoration, set the configuration option session-
restore-do-purge to true. While it should be used cautiously, it can be helpful in chat deployments
where a chat session might accidentally be moved to another instance of Chat Server (for example by a
malfunction in load balancing, or network issues). When enabled, and after a successful chat session
restoration, Chat Server sends a purge request through Interaction Server to the Chat Server instance
that was previously processing that chat session. That chat session is then completely removed from
the Chat Server.

7. (Introduced in Chat Server version 8.5.316.02) If session-restore-extend-by is enabled (with any non-
default value), you must:
• Set session-restore-push-send to true if your solution is using GMS CometD Chat V2 or enables push

notifications in Chat V2
• Set a value for flex-push-on-join (Introduced in Chat Server version 8.5.315.05)

8. (Introduced in Chat Server version 8.5.316.02) If you believe the workflow might stop the interaction
without closing the chat session, you may need to provide a non-empty value in ixn-submittedby-name.
This forces Interaction Server to notify all instances of Chat Server when the interaction is stopped in
the workflow. When this event is received, Chat Server closes the chat session. Otherwise, if the chat
session is restored on a different Chat Server, it will not be closed.

Deploying Chat Server with Cassandra (Optional)

When Chat Server uses UCS to save intermediate transcripts it produces an additional load on the
UCS database, especially for deployments with a high volume of customer chat interactions. To
improve the performance of UCS and its database, Chat Server (starting with release 8.5.104) can

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 22

https://docs.genesys.com/Documentation/Options/latest/ES/ChatServer

use Cassandra for this functionality. With Cassandra, Chat Server requires UCS only to store the final
chat transcript upon chat session completion.

Important
• There are no configuration options for Chat Server to enable Cassandra. Instead, the

presence of the application connection to Cassandra RAP forces Chat Server to use
Cassandra.

• Chat Server supports Cassandra only when Chat Server is deployed either on Windows
or Linux.

• Chat Server, deployed with Cassandra, must run in the UTF-8 mode to support non-ASCII
characters in chat conversations. Note: This is not required starting from Chat Server
version 8.5.301.06

To facilitate the process above, the following steps must be completed after configuring Chat Server
for HA:

• Deploy Cassandra.
• Initialize Cassandra for Chat Server.
• Connect Chat Server with Cassandra.

Deploy Cassandra
Officially, Chat Server supports Apache Cassandra 3.11, 4, and 5. Download the latest stable release
of Cassandra here.

Important
For multi-node (cluster) Cassandra installation, use NTP (Network Time Protocol) to
synchronize the clocks on all nodes.

Cassandra installation
For simple one-node Cassandra deployment:

1. Modify the cassandra.yaml configuration file:
1. Set the value of seeds, listen_address, and rpc_address to the host IPv4 address.
2. Make sure that Cassandra ports specified in the cassandra.yaml configuration file

do not overlap with ports used by existing applications.

2. For load testing purposes, modify the cassandra.yaml configuration file:
1. Set the value of auto_snapshot to false.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 23

2. Set the value of compaction_throughput_mb_per_sec to 0.
3. Set the value of write_request_timeout_in_ms to 10000.

3. Start Cassandra node.

Initialize Cassandra for Chat Server
The initialization scripts are located in the cassandra sub-folder of the Chat Server installation folder.
Before running the scripts using the Cassandra CQL Shell to create a new keyspace and the required
tables, you must set the following values:

• Replication factor: In production, Genesys recommends a replication_factor of at least 3. The
replication strategy should be set according to the cluster and datacenter configuration.

• Time-to-live: Occasionally, in case of failures some records in Cassandra are not be deleted by Chat
Server. To setup a Cassandra self-cleanup procedure that will delete records after a certain time, select
the appropriate script from the "Cassandra" sub-folder and set default_time_to_live and
gc_grace_seconds.

Note: For version 8.5.104 of Chat Server, initialization scripts are not included with installation
package. Scripts could be found here.

Connect Chat Server to Cassandra
To Connect Chat Server to Cassandra:

1. Create and configure a Chat Server Cassandra RAP application object based on the
ChatServerCassandraRAP template provided in the installation package.
1. Configure Host in the Server Info tab to point to one of the Cassandra cluster nodes. Configure the

default port to the Cassandra cluster connection port and set the Reconnect Timeout.
Note:
• The Reconnect Attempts parameter in the Server Info tab is not used.

2. In the Options tab, configure the cassandra section. Refer to the Options Reference Guide or the
contents of ChatServerCassandraRAP.xml.
Note:
• In production, the recommended read and write consistency level is quorum.
• If the contact-points option is not set, the Cassandra Cluster uses the Host defined in the

Server Info tab as a contact point. If set, this option's value is used instead of the Host defined
in the Server Info tab.

• In order to configure authenticated access to Cassandra nodes, specify username and password.
Note: You need to provide required configuration for Cassandra in the cassandra.yaml
configuration file for authenticator.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 24

https://docs.genesys.com/Documentation/Options/Current/ES/Welcome

2. Optionally, see Configure a secure connection to Cassandra for more information.
3. Add a connection from each Chat Server application to the newly created Chat Server Cassandra RAP.
4. Restart Chat Server.

Tip
In order to monitor Cassandra availability for Chat Server, configure alarms in
management framework for log messages:

• 59520: Cassandra status changed to "UNAVAILABLE".
• 59521: Cassandra status changed to "AVAILABLE".

Run a Test

A properly configured solution with HA mode must work without any additional configuration for other
components. This section describes a simple test.

Requirements:

• GMS and Widget CX
• Interaction Workspace (agent desktop)
• At least two running instances of Chat Server

Conduct the test as follows:

1. Start a chat session using Widget CX.
2. Send a message to verify that the chat session is active.
3. Then kill the Chat Server process with the ongoing chat session using Task Manager on Windows or kill

-9 on UNIX. GMS will then attempt to connect to another Chat Server instance where the chat session
will be restored. At this point you will see a message showing that a user was disconnected and
connected again.

4. Send a message to verify that the chat session continues.
5. Optionally, examine the Chat Server logs to see what actions were performed by the server to restore

the chat session.

How to Upgrade Running Chat Solution

To upgrade Chat Server to a newer version in the N+1 deployment (also called load-balancing mode,
when two or more instances are running in primary mode) without any service interruption the

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 25

following steps are necessary for each Chat Server instance:

1. Make a certain instance of Chat Server unavailable for the creation of a new chat session (from GMS) by
disabling Chat Server application in Configuration Server/Layer.

2. Wait until all current chat sessions are finished in this particular instance. This can be validated in Chat
Server logs by the message "Int 59245 data: deleting session with sid=... and intx=.. (current
sessions=0)". Or by requesting KPI counters via the web (REST) interface and validating that
"session_created-sessoin_closed" is equal to zero.

3. Stop Chat Server. Replace Chat Server with a newer version (uninstall existing IP, install a new one). If
needed, modify/update the Chat Server application. Enable the application in configuration. Start Chat
Server.

If the load allows, several instances of Chat Server could be upgraded at the same time. Make sure to
run enough Chat Server instances to handle the current load.

Chat Server could also be shutdown (not recommended) without being disabled and without waiting
for current sessions to be finished. In this case, GMS moves chat sessions, running on this instance,
to a different instances of Chat Server. This might result in short disruptions for those chat sessions
(with additional participant left/added messages in chat session transcript).

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 26

Configuring a secure connection to
Cassandra

The SSL communication mode between Chat Server and Cassandra nodes is optional and can be
configured in the [encryption] section of the Chat Server Cassandra RAP object.

Important
If a shared Cassandra ring is used, the impact of your settings on other Cassandra-
dependent components should be verified prior to making changes.

The following examples assume that:

• The Cassandra cluster consists of two nodes, node1 and node2, running on hosts with IP addresses
172.21.80.85 and 135.225.58.181.

• All passwords in this example are "genesys".
• The java keytool and openssl are available for certificate creation and manipulation.
• Only one Chat Server Cassandra RAP is configured for all Chat Servers in the solution, so relative paths

to the certificates and keys should be the same on all Chat Server hosts. Should these paths be
different, you can configure multiple Chat Server Cassandra RAP objects pointing to the same
Cassandra cluster.

Example of certificates creation
Cassandra nodes certificate creation

Create a keystore and generate a node1 certificate.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 27

keytool -genkeypair -noprompt -keyalg RSA -keysize 2048 -validity 36500 -alias node1 -keystore keystore1.jks -storepass genesys -keypass
genesys -dname "CN=172.21.80.85, O=Genesys, L=Daly City, ST=California, C=US"

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 28

Keystore keystore1.jks should be accessible by node1 and referred to in section
client_encryption_options of the cassandra.yaml file in node1 configuration.

Create a keystore and generate a node2 certificate.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 29

keytool -genkeypair -noprompt -keyalg RSA -keysize 2048 -validity 36500 -alias node2 -keystore keystore2.jks -storepass genesys -keypass
genesys -dname "CN=135.225.58.181, O=Genesys, L=Daly City, ST=California, C=US"

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 30

Keystore keystore2.jks should be accessible by node2 and referred to in section
client_encryption_options of the cassandra.yaml file in node2 configuration.

Creating Client Certificates

Generate a client certificate with a private key.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 31

openssl req -x509 -days 365 -subj "/C=US/ST=California/L=Daly City/CN=chatclient" -newkey rsa:2048 -keyout chatclientkey.pem -out
chatclient.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 32

Copy both output files chatclientkey.pem and chatclient.pem into each Chat Server host and
configure the client-private-key-file and client-certificate-file accordingly.

Exporting of Cassandra Node Certificates

Export node1 certificate:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 33

keytool -exportcert -rfc -noprompt -alias node1 -keystore keystore1.jks -storepass genesys -file cassandra1.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 34

Export node2 certificate:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 35

keytool -exportcert -rfc -noprompt -alias node2 -keystore keystore2.jks -storepass genesys -file cassandra2.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 36

Copy the exported node certificates, cassandra1.pem and cassandra2.pem, to each Chat Server
host into the directory that is passed through each Chat Server Cassandra RAP object trusted-cert-
dir option.

Importing Client Certificates

Import the client certificate into the truststore of node1:

keytool -import -file chatclient.pem -alias chatclient -keystore truststore1.jks -storepass
genesys

Import the client certificate of the truststore of node2:

keytool -import -file chatclient.pem -alias chatclient -keystore truststore2.jks -storepass
genesys

Cassandra and Java with Cryptography Extension

Cassandra nodes with client encryption enabled may fail to start unless Java is updated with the Java
Cryptography Extension.

1. Download the Java Cryptography Extension (JCE) from Oracle's website.
2. Replace US_export_policy.jar and local_policy.jar in your JRE Java folder (found in: \jre7\lib\security

for Windows or /jre/lib/security/ for Linux-like platforms).
3. Restart Cassandra.

Client encryption with different Cassandra node certificates and client authentication

In cassandra.yaml of node1:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore1.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

In cassandra.yaml of node2:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore2.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore2.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

Cassandra RAP, section encryption:

enbabled=true
trusted-cert-dir=<Path to directory containing cassandra1.pem and cassandra2.pem. The
chatclientkey.pem file should not be placed into this directory.>
client-private-key-file=chatclientkey.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 37

password=genesys ## openssl will prompt for this password to be entered during the
certificate creation
client-certificate-file=chatclient.pem
verify-peer-cert=true
verify-peer-identity=true

Using cqlsh with SSL encryption

Use the following directions to configure the cqlshrc configuration file.The following examples
assume that all relevant .pem files are copied into the local C:\certs\ directory.

1. Copy cqlshrc.sample from the ~/conf directory to another location, for example C:\certs\ directory.
2. Rename the file to cqlshrc.conf.
3. Modify the following sections to be consistent with the encryption configuration shown above:

[authentication]
;username = fred
;password = !!bang!!$
;; We assumed no user name or password is set in the Cassandra example

[cql]
version = 3.2.0
;; it would not connect with lower version

[connection]
hostname = 172.21.80.85
;; this is node1 of our example
port = 9042
;; we assume the port is default
factory = cqlshlib.ssl.ssl_transport_factory

[ssl]
certfile = C:\certs\cassandra1.pem
;; the certificate of node 1
validate = true
;; assume that we want to validate the node, optional
userkey = C:\certs\chatclientkey.pem
;;if client auth is required on cassandra
usercert = C:\certs\chatclient.pem
;;if client auth is required on cassandra

[certfiles]
172.21.80.85 = C:\certs\cassandra1.pem
;; the cert for node1
135.225.58.181 = C:\certs\cassandra2.pem
;; the cert for node2

Start cqlsh with the following command:

cqlsh --ssl --cqlshrc=C:\certs\cqlshrc.conf

Cqlsh shell should connect to node1 using the configured SSL.

Client encryption with a single Cassandra node certificate and client authentication

In cassandra.yaml of node1:

client_encryption_options:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 38

enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore1.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

In cassandra.yaml of node2:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore2.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

Cassandra RAP, section encryption

enbabled=true
trusted-cert-dir=<Path to directory containing cassandra1.pem. The chatclientkey.pem file
should not be placed into this directory.>
client-private-key-file=chatclientkey.pem
password=genesys ## openssl will prompt for this password to be entered during the
certificate creation
client-certificate-file=chatclient.pem
verify-peer-cert=true
verify-peer-identity=false

Client encryption with a single Cassandra node certificate and no client authentication

In cassandra.yaml of node1:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore1.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: false

In cassandra.yaml of node2:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore2.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: false

Cassandra RAP, section encryption

enbabled=true
trusted-cert-dir=<Path to directory containing cassandra1.pem>
client-private-key-file=
password= ## empty
client-certificate-file=
verify-peer-cert=true
verify-peer-identity=false

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 39

ECDHE Cipher Suite Support

When the Java version used does not support ECDHE cipher suite, the cipher_suites option of the
client_encryption_options section in cassandra.yaml file must be modified to exclude cipher
suites prefixed with TLS_ECDHE_. For example:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 40

cipher_suites:
[TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA]
#,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA]

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 41

Initialization Cassandra scripts for Chat
Server
Note: The content of this page is only applicable for version 8.5.104 of Chat Server. For later
versions, starting with 8.5.105, initialization scripts are included in the installation package in the
subfolder cassandra.

Create keyspace
CREATE KEYSPACE genesys_chat_server
WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 };

USE genesys_chat_server;

Create tables without a cleanup procedure
CREATE TABLE transcripts (

id text,
creatorid text,
transcript text,
PRIMARY KEY (id, creatorid))

WITH CLUSTERING ORDER BY (creatorid ASC);

Table owner
CREATE TABLE owner (

id text,
ownership_start_time timeuuid,
creatorid text,
PRIMARY KEY (id, ownership_start_time))

WITH CLUSTERING ORDER BY (ownership_start_time DESC);

Create tables with a cleanup procedure
You can specify default_time_to_live and gc_grace_seconds, as shown in the following example,
where 1209600 is the number of seconds in two weeks:

CREATE TABLE transcripts (
id text,
creatorid text,
transcript text,
PRIMARY KEY (id, creatorid))

WITH CLUSTERING ORDER BY (creatorid ASC)
AND default_time_to_live = 1209600 AND gc_grace_seconds = 1209600;

Table owner
CREATE TABLE owner (

id text,
ownership_start_time timeuuid,
creatorid text,
PRIMARY KEY (id, ownership_start_time))

WITH CLUSTERING ORDER BY (ownership_start_time DESC)

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 42

AND default_time_to_live = 1209600 AND gc_grace_seconds = 1209600;

For more information, see Deploying Chat Server with Cassandra.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 43

Multilingual Processing in Chat Server

Overview

Genesys Chat can process multiple languages simultaneously, including:

• Chat transcript messages. The data is transferred in UTF-16.
• Attached data (such as first name, last name, subject, and so on) and ESP messages (submitting

messages to chat session from the strategy). The data is transferred in UTF-8. There are the following
requirements:
• Chat Server must be running with UTF-8 locale; details are in "Internal Locale of Chat Server" below.
• If UCS is running on Windows, its startup script (ContactServerDriver.ini) must be configured to

use ‑Dfile.encoding=UTF-8. If UCS is running on UNIX, no special configuration is required.
• Routing strategies must send data in UTF-8 encoding.

• Chat Server can be configured to send inactivity system messages in different languages.

Internal Locale of Chat Server

The encoding and locale that Chat Server uses internally are determined by the following, in order of
priority:

1. The command line parameter -codepage. The value of the parameter must be a valid and enabled
encoding name. To use UTF-8 on Windows platform the value must be UTF-8.

2. Connection to a Configuration Server that is running in multi-language mode, which sets Chat Server's
internal locale to UTF-8.

3. The current system locale.

Sending Chat Messages from Routing Workflows

To send messages in different languages to a chat session from a workflow the following is required:

• Chat Server runs in UTF-8 mode.
• Workflow (strategies) must be created:

• Either by Interaction Routing Designer of version 8.1.400.10 or later (if URS is used).
• Or by any version of Composer (if ORS is used).

Chat Server Administration Multilingual Processing in Chat Server

Chat Server Administration Guide 44

Masking Sensitive Data
Chat Server logs and chat transcripts might contain sensitive data such as credit card numbers,
phone numbers, Social Security numbers, and so on. You can omit this data from logs and mask it in
transcripts.

Logs

To omit sensitive data from logs, you must configure both UCS and Chat Server, as follows:

• In the [settings] section, set message-log-print-size to 0. This means that logs do not show the
messages sent between chat participants. Where a message occurs, the log shows [truncated from
size=x], where x is the number of characters in the suppressed message.

• In the [log-filter-data] section,
• Set StructuredText to hide so that logs will omit the transcript that UCS sends to Chat Server.
• Set Transcript to hide so that logs will omit the transcript that Chat Server sends to UCS.

Chat Transcripts

Overview
Chat Server can mask sensitive data in messages during chat sessions and in saved transcripts by
using a regular expression (regex) to find and substitute the data with a configurable replacement
character. Regular expressions, specified for Chat Server, must use the same syntax and semantics
as defined for Perl 5 (however, Privacy Manager imposes additional constrain by allowing only
java.util.regex compatible expressions). When enabled this functionality will:

• Examine each chat message with an ordered set of regex rules. Use the apply-config option to configure
the source/location of regex rules that will be applied. Note: all options are located in the transcript-
cleanup section.

• Replace any part of the message that matches a regex rule with a replacement character specified by
the configuration. The default is specified by the default-repchar option.

• When replacing symbols you can choose to replace all symbols or only digits. When replacing digits, you
can also leave the last few digits unmasked —see the default-spec option.

This functionality can be applied for the messages of an ongoing chat session and/or a transcript
saved in the contact history (UCS). This is specified by the apply-area option.

Chat Server Administration Masking Sensitive Data

Chat Server Administration Guide 45

Tip
• Starting with release 8.5.103, Chat Server supports reading the regex rules from UCS. To

do this,
• Set the apply-config option to mix or ucs.
• Use Privacy Manager, a plugin for Genesys Administrator Extension (GAX), to select

and activate these rules.

• Prior to release 8.5.103, Chat Server used different options from the settings section
for this functionality. Click here to view the previous description.

Deployment steps for Personally Identifiable Information (PII) cleanup
To deploy PII cleanup, set apply-area to always (or to a different value based on your needs; see table
below) in Chat Server transcript-cleanup options and, if needed, adjust any other options in section
[transcript-cleanup].

By default only hardcoded PII rules are used (as described in Default Rules if No Configuration is
Provided). However, if you need to specify your own set of rules, you need to install Privacy Manager ,
a plugin for Genesys Administrator Extension (GAX), which brings a set of the same default PII rules
into UCS, which you can then modify and extend with your own rules.

PII cleanup is applied for:

Option apply-area value
Messages exchanged

between a customer and an
agent

Chat session transcript
stored in UCS (contact

history)
never Unmasked Unmasked
always Masked Masked
history-all or history-final Unmasked Masked

Unmasking Data for Active Agents
Starting with release 8.5.106, Chat Server allows to unmask (i.e. suppress masking) for sensitive data
in messages from a customer. It is controlled by the settings of the unmask-live-dialog configuration
option. Unmasking is applicable only in the presence of active (visible to customer) agents. Coaching
and monitoring agents will not see unmasked data. For active agents, only the data sent after the
agent joined the session is unmasked.

Example

Consider the following scenario (assuming that the rule for masking credit cards is enabled):

1. The customer initiates a chat session. Without waiting for an agent, the customer sends the credit card
number in a message. The credit card number is masked out.

Chat Server Administration Masking Sensitive Data

Chat Server Administration Guide 46

https://docs.genesys.com/Documentation/ESChat/8.5.0/Admin/ChatSrv#In_Chat_Transcripts
https://docs.genesys.com/Documentation/Options/latest/ES/ChatServer-transcript-cleanup
https://docs.genesys.com/Documentation/ESDA/latest/PrivMgr/Welcome

2. An agent joins the session. This agent sees the chat session transcript from the very beginning where
the credit card number is masked out in the message from the customer.

3. The customer sends the credit card number again. Both, the agent and the customer, see it.
4. A second agent joins the chat session for a conference conversation. The second agent sees the chat

session transcript from the very beginning where the credit card number is masked out in all messages.
5. The customer sends the credit card number again. Now both agents and the customer see it.

After this chat session is finished, the transcript, saved in the contact history (UCS), has all credit card
numbers masked out.

Default Rules if No Configuration is Provided
If the apply-config option has a value of cfg or is set to mix and no UCS PII configuration has been
provided for the given chat session, Chat Server uses the following default rules to find sensitive
data:

Order Name Regular Expression

1. Credit card GCTI_CreditCards
(?>^|(?<=[\s[:alpha:](),.:;?!"'`]))(?>4\
d{3}|5[1-5]\d{2}|6011|622[1-9]|64[4-9]\d|65\
d{2})[-.]?\d{4}[-.]?\d{4}[
-.]?\d{4}(?>$|(?=[\s[:alpha:](),.:;?!"'`]))

2. Social Security number GCTI_SSN
(?>^|(?<=[\s[:alpha:](),.:;?!"'`]))(?!000|666|9)\d{3}[-
]?(?!00)\d{2}[-
]?(?!0000)\d{4}(?>$|(?=[\s[:alpha:](),.:;?!"'`]))

3. Phone number using the North
American Numbering Plan GCTI_PhoneNANPA

(?>^|(?<=[\s[:alpha:](),.:;?!"'`]))(?:\+?1[-
.]?)?(?:\(?[2-9][0-9]{2}\)?[-.
]?)?[2-9][0-9]{2}[-.
]?[0-9]{4}(?>$|(?=[\s[:alpha:](),.:;?!"'`]))

Typing Preview
Typing preview allows an agent to see text that a customer types before the text is submitted to the
chat session. You can have Chat Server mask all digits in the typing preview by setting the typing-
preview (called transcript-cleanup-typing before release 8.5.103) option to a value other than none.
Chat Server then replaces all digits in the typing preview with the character specified by default-
repchar (called transcript-cleanup-mask before release 8.5.103).

Chat Server Administration Masking Sensitive Data

Chat Server Administration Guide 47

Inactivity Monitoring

Overview

Inactivity monitoring is a Chat Server functionality that allows closing a chat session if there is no
activity by chat participants after a certain period of time.

Inactivity monitoring is enabled:

• For all chat sessions – by setting the enabled option in inactivity-control to true.
• For async only chat sessions – see Inactivity control and chats session closure for more information.

If inactivity monitoring is enabled in the inactivity-control section, it works as following:

• Chat Server activates inactivity monitoring only if at least one customer and one agent (bots are not
considered agents in idle control configuration) are participating in the chat session. If the inactivity
monitoring is activated in a chat session, then:

• If there is no activity during the time specified by the timeout-alert option, Chat Server issues a warning
comprising the text specified by the message-alert option.

• If there is no activity for another timeout-alert2 seconds, Chat Server issues a warning comprising the
text specified by the message-alert2 option. Note, that timeout-alert2 is activated only if the option
value is greater then zero, otherwise the timeout-close is activated next.

• If there is no activity for another timeout-close seconds, Chat Server issues a notification consisting of
the text specified by the message-close option and closes the chat session (and removes all
participants from it).

• To suppress sending a message when any of the timeouts expire, set the corresponding message-xxx to
the empty value. The empty message value does not disable the timeout itself.

• If any activity occurs, Chat Server resets the current timer and reactivates the timeout-alert timer.
Activity means any activity in the chat session that is visible to all participants—so, for example,
coaching messages between agents do not count as chat activity.

Inactivity monitoring control is supported for the following components:

Component Minimum Supported Version Configuration

Chat Server 8.5.104.08
Disabled by default. Configured
in the [inactivity-control]
section.

Genesys Mobile Services 8.5.106.14 No special configuration needed.

Chat Widget 9.0.000.08 No client-side configuration
needed.

Workspace Desktop Edition 8.5.109.25 No special configuration needed
Workspace Web Edition not supported n/a

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 48

https://docs.genesys.com/Documentation/ESChat/latest/Admin/DeployAsyncReg#inac

If a component that does not support this feature is deployed in solution, inactivity monitoring control
must be disabled in the Chat Server options to avoid chat session closure without notifying all current
participants.

Configuration per Session from Workflow

There is a possibility to set a different inactivity control configuration for different chat sessions. In
order to facilitate it, the workflow (i.e. ORS/URS strategy) must send the IdleControlConfigure ESP
request. Upon receiving such request for an ongoing chat session Chat Server:

• Modifies inactivity control parameters for a given chat session.
• Resets current inactivity control timers if any are currently enabled.

Localization of System Inactivity Messages

Chat Server can be configured to send inactivity system messages in different languages.

Important
This functionality is supported only when Chat Server is configured with a single
tenant.

How to Configure Languages
A language must be configured as Attribute Values of the Language in Business Attributes. An
arbitrary number of languages with arbitrary names can be created.

Tip
Each attribute (language) has a name and a display name which can be different.
Chat Server uses the attribute name and not the display name for this functionality.

Each attribute (language) can contain the following options in the Annex:

Section Option Mandatory Possible values Notes

code language optional ISO 639 code

The value is
converted to
lowercase when
read from
configuration.

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 49

Section Option Mandatory Possible values Notes

code country optional ISO 3166 code

Only used if the
language option is
specified. The
value is converted
to uppercase when
read from
configuration.

code use-language-as-
default optional true / false

See How Chat
Server Associates
Sessions with
Languages.

chat-server message-alert optional any string (can be
empty)

If specified,
overrides the
message-alert
option's value for
this language.

chat-server message-alert2 optional any string (can be
empty)

If specified,
overrides the
message-alert2
option's value for
this language.

chat-server message-close optional any string (can be
empty)

If specified,
overrides the
message-close
option's value for
this language.

How Chat Server Associates Sessions with Languages
Each chat session in Chat Server can be associated with a language, configured as a business
attribute. For each chat session Chat Server is looking for two special key-value pairs in the initial
UserData:

• GCTI_LanguageName. If it is present in the UserData, only this parameter is used. It must contain the
name of the language business attribute. If such language business attribute does not exist, the
configuration from Chat Server options is used for this session.

• GCTI_LanguageCode. Only if GCTI_LanguageName is not present in the UserData, then
GCTI_LanguageCode is checked. It must contain code in the language-country format (or
language_country for backward compatibility). Chat Server parses this code into ISO language (value
is converted to lowercase) and ISO country (value is converted to uppercase). Then Chat Server is
trying to find the appropriate business attribute for this session as follows:
1. The business attribute with exactly the same language and country, specified in the code section. If

not found,
2. The attribute with the same language and empty (or not specified) country. If not found,
3. The attribute with the same language and any country code specified, however only among

attributes which contain the use-language-as-default=true option.

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 50

How to Change Chat Session Language
A session language can be changed during the course of a chat session by:

• Sending a request from the workflow.
• Sending a system notice from the chat wigdet or an agent desktop with the configure-session action

and user data with either GCTI_LanguageName or GCTI_LanguageCode.

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 51

Contact Identification for Regular and
Anonymous Chat
Whenever a new chat session is being created, Chat Server communicates with UCS to create a chat
interaction record where the chat transcript of a completed chat session is stored as a part of the
contact history. Each interaction record can be associated with a contact record that identifies and
describes a customer profile. Such an association is done automatically by UCS during the interaction
record creation, based on the presence of "contact attributes" in the attached data.

Contact attributes can be comprised of a default set of attributes, which are defined for each
interaction type (chat, email, voice). Additionally, or alternatively, custom contact attributes can be
configured. You can find more information on this on the Contact Identification page, in the eServices
Administrator's Guide.

Anonymous chat recommendations

If a large volume of anonymous chats is expected, a solution must be configured to avoid an
association of all anonymous interactions with a single contact record (which often leads to
performance implications). There are two alternative approaches to achieve this:

• Recommended: no default or custom contact attributes are provided when starting the chat session.
See below on how to achieve this with the Genesys Chat Widget or through the GMS API.

• Alternative: If for some reason, there is a need to associate every chat record with a contact record,
then a special custom attribute must be defined (for example: ExternalCustomerId), and it must be
configured either as the only contact attribute for the media type, or it must be set with a highest
priority if several contact attributes are defined (see Customize Contact Identification per Media Type
for directions on how to configure this). The value for this attribute can be assigned either arbitrarily
(for example, a new UUID each time) or with values coming from a customer CRM solution.

Important
Genesys strongly recommends not using First and Last name with arbitrary values for this purpose as it can
lead to performance implications due to the specifics of the contact identification algorithm. EmailAddress
should not be used either with random values as the email address can potentially be used later by other
components (in other words, when sending the transcript email).

The list of contact attributes for a new chat session can come through the GMS API in Request Chat
from:

• Genesys Chat Widget. In this case, the Widget must be launched without asking for contact attributes,
but instead by only sending a nickname (which is not being used for contact identification, but is
required by GMS API if first/last name is absent). The nickname can either be hard-coded into the
Widget or requested on the initial Widget screen. For example, from "launcher.html" this can be done
by adding the following to "webchat" under the "Additional Configuration Options" section:

Chat Server Administration Contact Identification for Regular and Anonymous Chat

Chat Server Administration Guide 52

https://docs.genesys.com/Documentation/ES/latest/Admin/IDCntct
https://docs.genesys.com/Documentation/ES/latest/Admin/IDCntMedia
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2

{
"form":{

"wrapper":"<table></table>",
"inputs":[
{
"id":"cx_webchat_form_nickame",
"name":"nickname",
"maxlength":"100",
"placeholder":"mandatory",
"label":"Nick Name"

},
{
"id":"cx_webchat_form_subject",
"name":"subject",
"maxlength":"100",
"placeholder":"@i18n:webchat.ChatFormPlaceholderSubject",
"label":"@i18n:webchat.ChatFormSubject"

}
]

}
}

This defines the nickname instead of First and Last name. Alternatively, the subject can also be
removed completely from the initial form. For more information about Widget configuration, see
Customizable Chat Registration Form.

• A custom web chat application. In this case, only the "nickname" must be provided in "Request Chat",
while firstName, lastName, and emailAddress must not be sent.

How contact identification works for chat

If the user data includes an attribute called EmailAddress, UCS looks for a contact in its database
whose EmailAddress attribute has the same value as the user data attribute. The name of the user
data attribute must be exactly EmailAddress —if it is email_address or anything else, UCS will not
try to match its value with the stored value of EmailAddress. Or, if UCS finds no matching contact, it
creates a new one using the user data.

For either a matching contact or a new one, UCS sends the following, as data about the contact for
this interaction, to Chat Server:

• The matched attribute (if not email address, then phone number, and so on).
• The attribute ContactID.

• All other attributes of this contact that UCS has stored in its database, except:
• If any user data has an attribute name that matches an attribute name in the UCS Contacts table, UCS

returns the value of the attribute from the user data, not the value from the Contacts table. It does not
modify the value in the Contacts table.

The last point can cause a problem, as in the following example:

1. Home user Steve Jones wants to open a chat session. In the web interface, he types in his correct email
address sjones@here, then erroneously types his first name as Speve.

2. UCS finds a contact record for sjones@here.

Chat Server Administration Contact Identification for Regular and Anonymous Chat

Chat Server Administration Guide 53

https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatCustCRF

3. UCS returns to Chat Server data about an existing contact whose email address is sjones@here and
whose first name is Speve. UCS still has the correct first name Steve in its database, but the user data,
with the erroneous Speve, preempts the correct data for the purposes of this chat interaction.

4. The system uses the user data to generate the message prompt that marks the home user in the chat
display. As a result, the chat session displays something like the following:
14:52:20 SpeveJ has joined the session
14:52:30 SpeveJ > Hi.

5. The Agent Desktop displays the incorrect first name (in the user data on the lower left pane) and the
correct first name (on the Customer Records pane on the right). The agent sees the incorrect first name
and opens the chat session by typing, “Hello Speve, how can I help you?”

6. The interaction passes through a strategy that generates an automatic response, which opens, “It was
good chatting with you, Speve.”

To avoid this type of problem, be sure that the system (including strategies and desktop) as well as
its users refer to the UCS database, rather than user data, for contact attributes. In the example just
cited, the agent must be sure to look at the Customer Records (right-hand) pane of the Desktop for
the name of the contact.

It is also advisable to closely monitor the inventory of contact attributes that can become user data.

Chat Server Administration Contact Identification for Regular and Anonymous Chat

Chat Server Administration Guide 54

How to send ESP requests to Chat Session
from Workflow

Introduction

Genesys can send messages, notices (types are limited), and other requests to a chat session from a
workflow (an URS [Universal Routing Server]/ORS [Orchestration Server] strategy).

For example, when a customer starts a chat session from the web page, the chat session is created in
Chat Server and corresponding interaction is submitted in Interaction Server. At some point, the
interaction is processed by the workflow, which can send a message like "agent will be with you
shortly... " and then the routing starts (to find an agent to serve this chat communication).

Prerequisites

Interaction Server application (in configuration) must be connected to Chat Server application's "ESP"
port.

How to Implement

The following steps are necessary in order to send a message or notice from the URS strategy:

1. Verify that the interaction is still online by checking that UData['IsOnline'] != '0'. If the interaction
is offline, which means that the chat session is closed, there is no sense to send messages into it.

2. Extract from the interaction properties the name of the Chat Server application which is processing/
handling the ongoing chat session. This can be achieved by assigning UData['ChatServerAppName']
to a local variable.

3. Use the External Service block in the Data and Services palette in IR Designer (or the External
Service block in the Server Side palette in Composer) to send a request. The following general
parameters must be specified:
• The Application type must be set to ChatServer.
• The Application name must be set to a value obtained from the user data in step 2.
• The Service name is set to Chat.
• The Don't send user data must be unchecked.

4. Set the corresponding Method name to send one of the ESP requests, described below.
5. Provide mandatory parameters.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 55

Tip
Each ESP request listed below requires the interaction ID to process the request. Chat
Server receives the value for the interaction ID from the userdata. This userdata is
supplied with each ESP request of the KVP with the InteractionId key. However, this
behavior can be overwritten if an explicit parameter in each ESP request with the
same InteractionId name is provided.

Example: In order for the workflow to process internal communication interactions used to invite another
agent for a conference or a consult through the queue, the skills, or the agent group, the InteractionId
parameter must be initialized with the value of the parent chat interaction UData['ParentId'].

Available in Chat Server since 8.5.314.02.

Important
Chat Server processes values for all incoming parameters as a string value, even if it
represents a number or a Boolean value. For Boolean parameters, only true is
recognized as a value for true. All other values are recognized as false.

Method Message
Message – Submits a text message to a chat session. Provide the following parameters:

Parameter Mandatory Value Description

MessageText yes Message text to submit to a chat
session

MessageType optional
Specifies any arbitrary text as
message type (transparent for
Chat Server).

Nickname optional
Specifies the nick name of a
participant on behalf of whom
the message will be shown in a
chat session.

Visibility optional

Possible values:

• ALL – message is visible to all
chat participants (default
value)

• INT – message is visible to
agents and supervisors only

• VIP – message ise visible to
supervisors only

Use visibility wisely as not all
components (including Genesys
Workspace) may show it correctly.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 56

https://docs.genesys.com/Documentation/RN/8.5.x/mm-cht85rn/mm-cht8531402

Parameter Mandatory Value Description

EventAttributes optional

Specifies a nested list of
attributes which are associated
with the message provided. For
more information, see Key-value
collection format specification
below with its Example.
Available in Chat Server since 8.5.201.05.

Event3rdServerResponse

Parameter Value type Mandatory Value Description

OccuredAt String Yes Timestamp for when the
method was processed.

ScriptPos Integer Yes
Position of the message
submitted in the chat
transcript. Positioning
starts from 0.

Method Notice
Notice – Sends a notification of the specified type to a chat session. Provide the following
parameters:

Parameter Mandatory Value Description

NoticeType yes

Possible values:

• USER_PUSHED_URL – to
implement the "push URL"
functionality (NoticeText
must contain valid URL).

• USER_CUSTOM – can be used
for any custom purpose
(completely transparent for
Chat Server).

NoticeText optional Any arbitrary text.

Nickname optional
Specifies the nick name of a
participant on behalf of whom
the message will be shown in a
chat session.

Visibility optional

Possible values:

• ALL – message is visible to all
chat participants (default
value)

• INT – message ise visible to
agents and supervisors only

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 57

https://docs.genesys.com/Documentation/RN/8.5.x/mm-cht85rn/mm-cht8520105

Parameter Mandatory Value Description

• VIP – message is visible to
supervisors only

Use visibility wisely as not all
components (including Genesys
Workspace) may show it correctly.

EventAttributes optional

Specifies a nested list of
attributes which are associated
with the notice provided. For
more information, see Key-value
collection format specification
below.
Available in Chat Server since 8.5.201.05.

Event3rdServerResponse

Parameter Value type Mandatory Value Description

OccuredAt String Yes Timestamp for when the
method was processed.

ScriptPos Integer Yes
Position of the message
submitted in the chat
transcript. Positioning
starts from 0.

Method PlaceOnHold

PlaceOnHold – Places the chat session on hold which sets
GCTI_Chat_AsyncStatus to -2.

Important
This is only applicable for async chat sessions.

After calling this ESP method, the workflow must place the interaction into the
waiting queue (in Chat Business Process Sample this is done through async-chat-
return-queue). GCTI_Chat_AsyncStatus must not be set by the workflow itself since
the Chat Server does not send a GCTI_Chat_AsyncStatus update upon the arrival of a
new message from a customer, if Chat Server was not explicitly notified through this
ESP method.

Request3rdServer

No parameters required.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 58

https://docs.genesys.com/Documentation/RN/8.5.x/mm-cht85rn/mm-cht8520105
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATOv#CHST
https://docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP

Event3rdServerResponse

Parameter Value type Mandatory Value Description

OccuredAt String Yes Timestamp for when the
method was processed.

Method CloseSession
CloseSession – Closes an alive session; Chat Server:

• Notifies active participants
• Updates the UCS record with the final transcript and chat closed date
• Updates IsOnline=0 and stat metrics (if configured) in Interaction Server
• Marks the chat session as Closed internally (but does not immediately remove it from memory, allowing

a customer time to request the last transcript fetch).

Request3rdServer

Parameter Value type Mandatory Value Description

CloseIfNoAgents String Optional

Possible values:

• true – Session closes
only when there are
no agents.

• false (default) –
Session closes even
if participants are
present in the
session.

Purge String Optional

When this value is true,
Chat Server removes
the chat session from its
memory without
executing any closing
actions (such as
notifying participants, or
updating the UCS and
Interaction Server). This
request is used
internally when
session-restore-do-
purge=true.
Available in Chat Server since
8.5.312.10.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 59

Event3rdServerResponse

Parameter Value type Mandatory Value Description

OccuredAt String Yes Timestamp for when the
method was processed.

IsClosed Integer Yes

Possible Values:

• 1 (Session closed)
• 0 (Session alive)

Method GetSessionInfo
GetSessionInfo – Returns information regarding the session.

Request3rdServer

No parameters required.

Event3rdServerResponse

Parameter Value type Mandatory Value Description

OccuredAt String Yes Timestamp for when the
method was processed.

SessionInfo Key-value list Yes

Lists the following info

• CreatedAt –
Timestamp for when
the session was
created.

• IsRestored –
Specifies whether
the session was
restored. Possible
values : 0 (false) or 1
(true).

Method IdleControlConfigure
IdleControlConfigure – allows to change the configuration for inactivity control monitoring for a
given chat session. Provide the following parameters (while all parameters are optional, at least one
parameter must be provided):

Parameter Mandatory Notes

reset-parameters optional
Resets all inactivity control
parameters to values provided in
the Chat Server application
configuration.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 60

Parameter Mandatory Notes
Valid values: true / false
(default).

enabled optional
include-notices optional
message-alert optional

message-alert2 optional Available starting with Chat
Server release 8.5.107.11

message-close optional
timeout-alert optional

timeout-alert2 optional Available starting with Chat
Server release 8.5.107.11

timeout-close optional

Event3rdServerResponse

Parameter Value type Mandatory Value Description

OccuredAt String Yes Timestamp for when the
method was processed.

Method ConfigureSession
ConfigureSession - allows you to change the language for the current chat session. At least one of
the following parameters must be included:

Parameter Mandatory Value Description

async-idle-reset optional
If the value 1 is provided, Chat
Server resets async idle timeouts
(in other words, starts counting
from zero).

GCTI_LanguageCode optional

If this parameter is present, other
parameters are ignored . The
parameter must contain the
name of the language business
attribute.

GCTI_LanguageName optional

This parameter is used only if the
GCTI_LanguageCode parameter
is not present. Parameters are
processed as described in the
How Chat Server Associates
Sessions with Languages section.

Event3rdServerResponse

Parameter Value type Mandatory Value Description

OccuredAt String Yes Timestamp for when the
method was processed.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 61

https://docs.genesys.com/Documentation/RN/8.5.x/mm-cht85rn/mm-cht8510711
https://docs.genesys.com/Documentation/RN/8.5.x/mm-cht85rn/mm-cht8510711

Key-value collection format specification

In order to provide data of type key-value collection in requests from URS workflow, the following
parameters must be included in Interaction Routing Designer:

• The parameter Name should be prefixed with {l} (lowercase L in curly brackets). This triggers URS to
process the parameter value as a nesting list of key-value pairs.

• The parameter value can be specified in either of the following formats (Note: no line breaks allowed
and whitespaces are ignored):
• JSON-like style (can only be provided through the variable)

{"key1":"value1","key2":"value2","key3":{"subkey1":"subvalue1"}}

• List-like style (can be provided directly in the parameter)
key1:value1|key2:value2|key3.subkey1:subvalue1

Example
In order to send a Rich Text message with Quick Replies, the following string must be provided as a
value for the EventAttributes parameter in the Method Message:

{"structured-content":{"genesys-
chat":{"content":"{\"type\":\"Message\",\"contentType\":\"quick-
replies\",\"content\":[{\"id\":1,\"type\":\"quick-
reply\",\"action\":\"message\",\"text\":\"Black\"},{\"id\":2,\"type\":\"quick-
reply\",\"action\":\"message\",\"text\":\"Green\"},{\"id\":3,\"type\":\"quick-
reply\",\"action\":\"message\",\"text\":\"Mint\"}]}", "type":"Generic"}}}

It is important that the actual Rich Text element body JSON (specified in content) is escaped so it will
be treated as a value instead of being converted into a nested Key/Value list structure.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 62

Integrating Chat Server with Genesys
Historical Reporting
Chat session reporting relies on Interaction Server reporting events to provide session-related data to
the products that enable Genesys historical reporting:

• Interaction Concentrator, which comprises the Interaction Concentrator (ICON) server and Interaction
Database (IDB) -- Stores detailed reporting data from Interaction Server and other sources.

• Genesys Info Mart -- Extracts, transforms, and loads (ETLs) data from IDB into the Info Mart database, a
data mart suitable for contact center reporting.

• Reporting and Analytics Aggregates (RAA) -- Aggregates Info Mart data to provide contact center
activity metrics for downstream reporting applications.

• Genesys Customer Experience Insights (GCXI) -- Extracts aggregated data from the Info Mart database
and presents it in readable historical reports.

This page describes the component and configuration requirements to enable historical reporting on
chat session activity in your deployment.

Important
For information on Asynchronous (Async) Chat, see the Asynchronous Chat section in
this guide.

Overview

1. After a chat session is finished, Chat Server attaches reporting statistics to the user data of the
interaction in Interaction Server. For more information about the attached user data key-value pairs
(KVPs), see Chat Server reporting data.

2. ICON stores the user data in the G_USER_DATA_HISTORY table in IDB in near real-time.
3. On a regular schedule, Genesys Info Mart extracts the IDB data and transforms it into the

CHAT_SESSION_FACT table and supporting dimensions in the Info Mart dimensional model. For more
information about the session-related tables in the Info Mart database, see the Genesys Info Mart
Physical Data Model for your RDBMS. For more information about managing the Genesys Info Mart ETL
jobs, see the Genesys Info Mart Operations Guide.

4. RAA summarizes and organizes the Info Mart data in ways that enable GCXI to extract meaning. For
more information about RAA data, see the RAA User's Guide.

5. GCXI uses the aggregated data in the Info Mart database to present out-of-box chat session reports,
including:
• Chat Message Statistics Report

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 63

https://docs.genesys.com/Documentation/GIM/latest/Ops/Welcome
https://docs.genesys.com/Documentation/RAA/latest/UG/Welcome

• Chat Termination Report
• Async Chat Dashboard

6. In deployments that include Bot Gateway Server (BGS) starting with version 8.5.203.09, there are
reports and dashboards on bot-related activity. Note: BGS is currently only available as a restricted
release.

7. In deployments where Async Chat functionality is enabled, the Async chat dashboard displays async
chat metrics.

8. For more information about the GCXI reports, see Chat reports in the GCXI User's Guide.

Enabling historical reporting on chat session activity

Prerequisites
The following table summarizes the minimum release requirements for the components that enable
chat session historical reporting.

Component Minimum release for chat Minimum release for async
chat

Chat Server
8.5.203.09 (restricted release)
8.5.301.06 (general release)

8.5.302.03
8.5.315.xx (for intermediate updates)

ICON 8.1.514.11 8.1.514.11

Genesys Info Mart 8.5.011.04
8.5.011.14
8.5.116.20 (for intermediate updates)

RAA 8.5.003 8.5.006
GCXI 9.0.005 9.0.007
WDE No minimum requirement 8.5.122.08

Setting up historical reporting

Important
Genesys Info Mart release 8.5.011 and later provides support for chat session
reporting out-of-box, with no additional configuration required on the Genesys Info
Mart side. However, to send chat session data to Genesys Info Mart, as well as to see
chat session data in GCXI reports, you need to modify the configuration of Interaction
Concentrator and RAA.

1. Ensure that your deployment has been configured as required for Genesys Info Mart to support

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 64

https://docs.genesys.com/Documentation/BGS/latest/BGSQS/BGSReporting
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIChatReports

reporting on eServices activity in general. If necessary, migrate Genesys Info Mart and RAA to meet the
release Prerequisites. For a summary of the configuration requirements, see Enabling Reporting on
Multimedia Activity in the Genesys Info Mart Deployment Guide.

2. Configure Chat Server:
• To attach the required statistics, set the Chat Server attach-session-statistics option to all (which is

not the default value).
• To send intermediate updates (supported by GIM version 8.5.116.20 or higher) for an async chat

session, set the required value both for attach-stats-rep-events and attach-stats-rep-place.

3. In the Route Interaction properties, ensure that the workflow always provides a "Queue" in
Interation Queue > Queue for Existing Interaction. If no Queue is provided, the interaction is
stopped by an agent desktop, and Chat Server may not be able to update the interaction with reporting
statistics.

4. Configure ICON to capture the user data KVPs that Genesys Info Mart requires. Modify the ICON
attached data specification file as necessary, to include the KVPs identified in Chat Server reporting
data as KVPs that are used by Genesys Info Mart.

Tip
The attached data specification file included in the Genesys Info Mart IP
(ccon_adata_spec_GIM_example.xml) includes all the KVPs required for the reporting features supported in
that Info Mart release. You might need to upload a new version of the attached-data specification file or
update your existing version with additional KVPs to enable reporting enhancements.

5. Enable aggregation of chat session data. (Required for GCXI reporting or other applications that use RAA
aggregation.) In the [agg-feature] section on the Genesys Info Mart application object, specify the
enable-chat option.

Chat Server reporting data

After a chat session is finished, Chat Server attaches the following types of reporting statistics to the
user data of the interaction in Interaction Server:

• Chat session characteristics
• Chat session end reason codes
• Chat session transcript statistics
• Async chat session statistics
• Bot-related statistics

Important
Starting with release 8.5.107, Chat Server attaches reporting statistics and then stops

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 65

https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMDepMMSummary
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMDepMMSummary

the interaction (if required by the configuration and scenario). Previously, Chat Server
was not able to attach the specified reporting statistics if the stop-abandoned-
interaction option was set to a value, different from the default value never and the
corresponding scenario occurred.

Chat Session Characteristics
The following chat session characteristics are attached at the end of a chat session. If the KVPs are
required for the out-of-box chat session reporting provided by Genesys Info Mart and GCXI, the "Info
Mart Database Target" column indicates the Info Mart database table and column to which the KVP is
mapped.

Unless indicated otherwise, the session characteristics KVPs were introduced in Chat Server 8.5.201.

KVP Description Info Mart Database Target

ChatServerSessionClosedAt

Timestamp of chat session
closure. Always attached.

Note: This KVP is mandatory for
Genesys Info Mart reporting.

CHAT_SESSION_FACT.END_DATE_TIME_KEY

ChatServerSessionStartedAt

Timestamp of chat session
creation. Always attached.

Note: This KVP is mandatory for
Genesys Info Mart reporting.

CHAT_SESSION_FACT.START_DATE_TIME_KEY

csg_ChatSessionID

The ID (identifier) of chat
session. Could be different from
Interaction ID. Attached only if
the value of attach-session-
statistics is not none.

Not mapped

csg_LanguageName

The value identifies the language
specified for the chat session.
Might be absent. Attached only if
the initial UserData for the chat
session includes the
GCTI_LanguageName KVP, and
the value of attach-session-
statistics is not none.

CHAT_SESSION_DIM.LANGUAGE_NAME
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

csg_MediaOrigin

The value identifies the
origination of the chat session
(web chat, social media
channels, sms, and so on). Might
be absent. Attached only if the
initial UserData for the chat
session includes the

CHAT_SESSION_DIM.MEDIA_ORIGIN
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 66

KVP Description Info Mart Database Target
MediaOrigin KVP, and the value
of attach-session-statistics is
not none.

csg_MediaType

Introduced: 8.5.203.09
(restricted release) / 8.5.301.06
(generally available release)

The MediaType for chat
interaction. Always attached.

MEDIA_TYPE.MEDIA_NAME_CODE
(referenced through
CHAT_SESSION_FACT.MEDIA_TYPE_KEY)

csg_TenantId The tenant ID for the chat
session. Always attached. CHAT_SESSION_FACT.TENANT_KEY

KVP Description Info Mart Database Target

Chat Session End Reason Codes
The following reason codes describe what triggered the end of a chat session and how it was
triggered. If the KVPs are required for the out-of-box chat session reporting provided by Genesys Info
Mart and GCXI, the "Info Mart Database Target" column indicates the Info Mart database table and
column to which the KVP is mapped.

KVP Description Info Mart Database Target

csg_SessionEndedAgent

Introduced: 8.5.109

The indication of agent presence
in chat session.
Please note that in this reason code, only
human (in other words, non-bot) agents
who are visible to a customer are taken
into account.
Valid values:

• ABSENT — Session considered
as abandoned. No agent (in
other words, not-bot
participant visible to client)
ever joins chat session.

• PRESENT — Session
considered as not
abandoned. At least one
agent is still participating in
chat session during the
moment of chat session
closure.

• VISITED — Session could be

Not mapped

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 67

KVP Description Info Mart Database Target

considered either as
abandoned or not abandoned
- depending on business
requirements. At least one
agent participated in chat
session, but no agents were
present at the moment of
chat session closure.

Note: In the very specific
condition of a session restoration
having occurred where an agent
joins the session before
restoration and does not re-join
after restoration, and no
messages are sent by any chat
party before restoration, the
value of csg_SessionEndedAgent
will be ABSENT.

csg_SessionEndedBy

Introduced: 8.5.105

The type of participant that
triggered the chat session
closure.

Valid values:

• CLIENT — Denotes a
customer. This value is
provided whenever a client
leaves the chat session first.
For example, this value will
be set when a client leaves
while the session continues
due to the presence of an
agent and ended later by an
agent.

• AGENT, SUPERVISOR, BOT —
Denotes either agent,
supervisor or chat bot
participant. This type is
provided only when:
• A session is closed

because the actor (agent/
supervisor/bot) sent the
Release request with the
close if no more
agents, or force close
after-action; or

• A session without a
customer during the
course of this chat session

CHAT_SESSION_DIM.ENDED_BY
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 68

KVP Description Info Mart Database Target

is closed because the
actor sent a Release
request.

• SYSTEM — Denotes a server/
system. See the
csg_SessionEndedReason
table for possible reasons.

csg_SessionEndedReason

Introduced: 8.5.105

The description of how a chat
session was closed.

Valid values:

• DISCONNECT — The
participant left due to a
disconnect (basic protocol) or
a flex timeout expiration
(denotes disconnect in flex
protocol).

Possible values for
the associated
csg_SessionEndedBy:
CLIENT, AGENT,
SUPERVISOR, BOT

• QUIT — The participant left a
chat session in a normal way
(flex logout or basic self-
release request, that is with
the keep alive after-action).

Possible values for
the associated
csg_SessionEndedBy:
CLIENT, AGENT,
SUPERVISOR, BOT

• FORCE — The participant left
a chat session in a normal
way and requested the
session to be closed (either
close if no more agents
or force closure after-
action).

Possible values for
the associated
csg_SessionEndedBy:
AGENT, SUPERVISOR,
BOT

• INACTIVE — Chat Server
closed a chat session due to

CHAT_SESSION_DIM.ENDED_REASON
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 69

KVP Description Info Mart Database Target

activated inactivity control
monitoring.

Possible values for
the associated
csg_SessionEndedBy:
SYSTEM

• DB_ERROR — Chat Server
closed a chat session
because it received the non-
recoverable error from UCS
while attempting to save the
intermediate chat transcript
(only possible when the
transcript-save-on-error
option is set to close).

Possible values for
the associated
csg_SessionEndedBy:
SYSTEM

KVP Description Info Mart Database Target

Chat Session transcript statistics
Chat Server attaches general and extended reporting statistics, based on the attach-session-statistics
option settings.

General transcript statistics

In the general transcript statistics, an agent means both an agent and a supervisor, when either of
those is visible to a customer. For example, the statistics do not count/include an activity for an agent
who is coaching another agent, or for a supervisor who monitors the session silently.

The following general transcript statistics are attached at the end of a chat session. If the KVPs are
required for the out-of-box chat session reporting provided by Genesys Info Mart and GCXI, the "Info
Mart Database Target" column indicates the Info Mart database table and column to which the KVP is
mapped.

Unless indicated otherwise, the general transcript statistics KVPs were introduced in Chat Server
8.5.101.

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 70

KVP Description Info Mart Database Target

cse_ActiveIdleMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
a chat session has been inactive
while at least one agent was
connected and a configured
inactivity threshold was
exceeded.

Not mapped

cse_ActiveIdleTotalCount

Introduced: 8.5.301.06

The total number of times when
an inactivity period exceeded a
configured threshold while at
least one agent was connected
to the chat session (in other
words, while the chat session
was technically in an active
state).

CHAT_SESSION_FACT.ACTIVE_IDLE_COUNT

cse_ActiveIdleTotalTime

Introduced: 8.5.301.06

The total amount of time (in
seconds), exceeding configured
threshold, without any activity
when the chat session was in the
active state (at least one Agent
participated).

CHAT_SESSION_FACT.ACTIVE_IDLE_DURATION

cse_SessionHandleMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
that at least one agent was
connected to a chat session.

Not mapped

cse_SessionHandleTotalCount

Introduced: 8.5.301.06

The total number of times a
session was in an active state,
that at least one agent was
connected to a chat session.

CHAT_SESSION_FACT.HANDLE_COUNT

cse_SessionHandleTotalTime

Introduced: 8.5.301.06

The total time (in seconds) that
at least one agent was
connected to a chat session.

CHAT_SESSION_FACT.HANDLE_DURATION

csg_MessagesFromAgentsCount

The total number of all messages
sent by all agents (messages
which are visible to customer).
Note: There can be several
agents in a chat session, for
example, conferences, transfers,
and others.

CHAT_SESSION_FACT.MSG_FROM_AGENTS_COUNT

csg_MessagesFromAgentsSize
The total character count
(including spaces) of all
messages sent by agents.

CHAT_SESSION_FACT.MSG_FROM_AGENTS_SIZE

csg_MessagesFromCustomersCount The total number of messages
sent by customers. CHAT_SESSION_FACT.MSG_FROM_CUSTOMERS_COUNT

csg_MessagesFromCustomersSize
The total character count
(including spaces) of all
messages sent by customers.

CHAT_SESSION_FACT.MSG_FROM_CUSTOMERS_SIZE

csg_PartiesAsAgentCount
The number of parties that
participated in a session as
agents.

CHAT_SESSION_FACT.AGENTS_COUNT

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 71

KVP Description Info Mart Database Target

Note: Only unique parties are counted.
For example, if the same party joins the
session several times, it only counts as
one for the purpose of this statistic.

csg_PartiesAsCoachCount

The number of parties that
participated in a session in the
coaching mode (for example, an
agent joins with the VIP
visibility).
Note: Only unique parties are counted.
For example, if the same party joins the
session several times, it only counts as
one for the purpose of this statistic.

Not mapped

csg_PartiesAsMonitorCount

The number of parties that
participated in a session in the
monitoring mode (for example, a
supervisor join with the INT
visibility).
Note: Only unique parties are counted.
For example, if the same party joins the
session several times, it only counts as
one for the purpose of this statistic.

Not mapped

csg_SessionTotalTime

The total duration of a chat
session from the time it was
created until it was completely
finished/closed in Chat Server.
Note: This does not include the time
between Chat Session End and Mark
Done, as the interaction can still be
handled by an agent.

CHAT_SESSION_FACT.SESSION_DURATION

csg_SessionUntilFirstAgentTime

The duration of the waiting
period, or the period of time a
customer waits until the first
agent (visible to a customer)
joined the session.
Note: The 0 (zero) value has two
alternative interpretations: no agents
ever joined the session (if
csg_PartiesAsAgentCount=0) or an agent
joined immediately when the session was
started (if csg_PartiesAsAgentCount > 0).

CHAT_SESSION_FACT.UNTIL_FIRST_AGENT_DURATION

csg_SessionUntilFirstReplyTime
The period of time until the first
agent submits the first visible to
a customer greeting/message
into a chat session.

CHAT_SESSION_FACT.UNTIL_FIRST_REPLY_DURATION

csg_SessionWithCustomerTime The period of time a customer is
in a chat session. Not mapped

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 72

Extended (wait-reply) statistics

The extended statistics provide details about customer and agent wait and reply times. As in the case
of general transcript statistics, an "agent" means both an agent and a supervisor, when either of
those is visible to a customer.

• Wait time - The time between a message from the reporting party (or the last message, if there were a
few messages in a row) being sent and the first message from another party being received in a reply.

• Reply time - The time between a message (or the first message, for a few messages in a row) from
another party being received and the message from reporting party being sent in a reply.

The following extended transcript statistics are attached at the end of a chat session. If the KVPs are
required for the out-of-box chat session reporting provided by Genesys Info Mart and GCXI, the "Info
Mart Database Target" column indicates the Info Mart database table and column to which the KVP is
mapped.

Unless indicated otherwise, the extended transcript statistics KVPs were introduced in Chat Server
8.5.101.

Important
The calculation of TotalCount/MaxTime/TotalTime was adjusted and does not include
dormant state for async chat sessions for "Extended (wait-reply) Statistics":
cse_AgentReply and cse_AgentWait.

KVP Description Info Mart Database Target

cse_AgentReplyMaxTime

The maximum time (in seconds)
an agent spent on replying to a
customer.
Note: For async chat sessions, if a chat
session was in a dormant state while a
customer message was received, the
time until the agent rejoins the session is
excluded.

CHAT_SESSION_FACT.AGENT_REPLY_MAX_DURATION

cse_AgentReplyTotalCount The number of times an agent
replied to a customer. CHAT_SESSION_FACT.AGENT_REPLY_COUNT

cse_AgentReplyTotalTime
The total time (in seconds) an
agent spent on replying to a
customer.

CHAT_SESSION_FACT.AGENT_REPLY_DURATION

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 73

KVP Description Info Mart Database Target

Note: For async chat sessions, if a chat
session was in a dormant state while a
customer message was received, the
time until the agent rejoins the session is
excluded.

cse_AgentWaitMaxTime

The maximum time (in seconds)
an agent spent on waiting the
reply from a customer.
Note: For async chat sessions,
cumulative dormant time until a
customer's reply is received is excluded.

CHAT_SESSION_FACT.AGENT_WAIT_MAX_DURATION

cse_AgentWaitTotalCount
The number of times an agent
waited for replies from a
customer.

CHAT_SESSION_FACT.AGENT_WAIT_COUNT

cse_AgentWaitTotalTime

The total time (in seconds) an
agent spent on waiting the reply
from a customer.
Note: For async chat sessions,
cumulative dormant time until a
customer's reply is received is excluded.

CHAT_SESSION_FACT.AGENT_WAIT_DURATION

cse_CustomerReplyMaxTime
The maximum time (in seconds)
a customer spent on replying to
an agent.

CHAT_SESSION_FACT.CUSTOMER_REPLY_MAX_DURA

cse_CustomerReplyTotalCount The number of times a customer
replied to an agent. CHAT_SESSION_FACT.CUSTOMER_REPLY_COUNT

cse_CustomerReplyTotalTime
The total time (in seconds) a
customer spent on replying to an
agent.

CHAT_SESSION_FACT.CUSTOMER_REPLY_DURATION

cse_CustomerWaitMaxTime
The maximum time (in seconds)
a customer spent on waiting the
reply from an agent.

CHAT_SESSION_FACT.CUSTOMER_WAIT_MAX_DURA

cse_CustomerWaitTotalCount
The number of times a customer
waited for the reply from an
agent.

CHAT_SESSION_FACT.CUSTOMER_WAIT_COUNT

cse_CustomerWaitTotalTime
The total time (in seconds) a
customer spent on waiting the
reply from an agent.

CHAT_SESSION_FACT.CUSTOMER_WAIT_DURATION

KVP Description Info Mart Database Target

Async chat session statistics
Async chat session statistics are provided only for async chat sessions (in other words, when

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 74

GCTI_Chat_AsyncMode=true is specified during session creation). The calculation of these statistics
takes into account the active and dormant phases of an async chat session, as well as async
inactivity control (which is different from regular inactivity control).

KVP Description Info Mart Database Target
cse_AsyncDormantMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
a chat session was staying in
dormant state.

Not mapped

cse_AsyncDormantTotalCount

Introduced: 8.5.301.06
The total number of times
session entered dormant state CHAT_SESSION_FACT.ASYNC_DORMANT_COUNT

cse_AsyncDormantTotalTime

Introduced: 8.5.301.06

The total amount of time (in
seconds), customer chat session
was in the dormant state (with
no Agent participant). Routing
time is excluded from dormant
time.

CHAT_SESSION_FACT.ASYNC_DORMANT_DURATION

cse_AsyncIdleMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
an async chat session was
staying in idle state.

Not mapped

cse_AsyncIdleTotalCount

Introduced: 8.5.301.06
Total number of times an async
session entered idle state. CHAT_SESSION_FACT.ASYNC_IDLE_COUNT

cse_AsyncIdleTotalTime

Introduced: 8.5.301.06

The total amount of time (in
seconds), exceeding configured
threshold, without any activity
when the chat session was in the
dormant state (with no Agent
participant).

CHAT_SESSION_FACT.ASYNC_IDLE_DURATION

csg_ChatAsyncMode

Introduced: 8.5.301.06

Denotes async session. Equals
"1" for async chat session or "0"
for regular chat session.

CHAT_SESSION_DIM.ASYNC_MODE
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

KVP Description Info Mart Database Target

Bot-related statistics
In deployments that include BGS, Chat Server also attaches the following KVPs:

• csg_MessagesFromBotsCount
• csg_MessagesFromBotsSize
• csg_SessionUntilFirstBotTime
• csg_PartiesAsBotCount

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 75

For more information about the bot-related KVPs, see Bot-related reporting data in the Bot Gateway
Server Quick Start Guide (accessible only to restricted release customers).

Known limitation

The following is a known limitation with async chat reporting:

• Information about a chat session running in an async mode is available only after the chat session ends.

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 76

https://docs.genesys.com/Documentation/BGS/Restricted/BGSQS/BGSReporting#reportingStats

File Transfer in Chat Solutions

Overview

Genesys Chat solutions allow transfer of files between chat customers and agents, in either direction.

Components and Support
Component, Minimum

Supported Version Remarks Configuration

Agent Desktop
8.5.115.17

Workspace Desktop
Edition supports
downloading files,
uploading files (from a
file system and from the
Standard Response
Library), and displaying
and opening uploaded
files. For custom

Allow the privileges
Chat - Can Transfer
File From File System
and/or Chat - Can
Transfer File From
Standard Response,
as described in
"Transferring Files to
Contacts" in the

Chat Server Administration File Transfer in Chat Solutions

Chat Server Administration Guide 77

https://docs.genesys.com/Documentation/RN/8.5.3/wde85rn/wde8511517

Component, Minimum
Supported Version Remarks Configuration

desktops, this
functionality can be
implemented using
Platform Services SDK.
Allowances for file
uploading by the agent
are managed by
Workspace settings.

Warning
Workspace Web Edition
does not support file
transfer. Make sure to
disable file transfer in
Chat Server and CX
Widget when using WWE.

Workspace Deployment
Guide. To disable file
transfer for agents,
remove those privileges.

Chat Server 8.5.105.05

Chat Server provides
the ability to send
notifications about files
transferred by
customers and agents.
When using Web Chat
with the GMS API, it also
manages the
allowances for file
upload and download
operations by the
customer. For example,
types of files, file size,
total file transfer size,
and number of files.

The options that control
file transfer are:

• upload-max-files
• upload-max-file-size
• upload-max-total-

size
To disable file transfer for
customers set one of these
options to zero.
All Chat Server options are
documented here.

Chat Widget 8.5.004.15

Genesys Chat Widget
supports uploading,
downloading, and
displaying files.
To implement this functionality
in your own chat widget see
GMS Chat API Version 2 and
Web Chat Configuration in the
Genesys Widgets Reference.

The Send File button is
hidden by default. To
enable it, set the
uploadsEnabled
option to true. Note
that this only controls
the visibility of the
button in the UI; to
enable or disable the
functionality itself, you
must configure the
servers appropriately.
Chat Widget options are
documented here.

E-mail Server
8.5.103.11

The chat session
transcript email displays
the name and size of
any files transmitted. To
maintain data privacy,
the files themselves are
not attached.

No special configuration
required.

Chat Server Administration File Transfer in Chat Solutions

Chat Server Administration Guide 78

https://docs.genesys.com/Documentation/IW/latest/Dep/ChatInteractions
https://docs.genesys.com/Documentation/IW/latest/Dep/ChatInteractions
https://docs.genesys.com/Documentation/RN/8.5.3/mm-cht85rn/mm-cht8510505
https://docs.genesys.com/Documentation/Options/latest/ES/ChatServer
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2
https://docs.genesys.com/Documentation/GWC/8.5/WidgetsAPI/WebChatConfiguration
https://docs.genesys.com/Documentation/GWC/8.5/WidgetsAPI/WebChatConfiguration
https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatConfiguration
https://docs.genesys.com/Documentation/RN/8.5.3/mm-emj85rn/mm-emj8510311

Component, Minimum
Supported Version Remarks Configuration

Genesys Mobile Services
8.5.106.14

GMS provides Chat API
Version 2, which
enables Chat Widget to
upload and download
files.

No special configuration
required.

Universal Contact
Server all versions 8.5.x
and later

All transferred files are
stored in UCS as
documents. The chat
session transcript
contains only the
reference IDs of the
documents. No changes
are required to UCS to
support this
functionality.

No special configuration
required.

When using file transfer, be aware that:

• File transfer puts an additional load on network communications between Widget and Genesys Mobile
Services (GMS), GMS and Universal Contact Server (UCS), and Desktop and UCS. Transferring large files
between these components affects CPU, network, and memory usage.

• The UCS database needs to store large volumes of data (files).

How It Works

This section is provided for users who want to implement a custom solution.

Agent to Customer

Chat Server Administration File Transfer in Chat Solutions

Chat Server Administration Guide 79

https://docs.genesys.com/Documentation/RN/8.5.3/gms85rn/gms8510614
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2#chatfilemng
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2#chatfilemng

1. The agent selects a file from the disk or selects a Standard Response. When the agent clicks Send, the
file is uploaded to UCS, and notification is sent about the uploaded file in chat session.

2. When the Widget receives notification about file from agent, it shows it to a customer as an icon.
3. When the customer wants to download the file, they request it from the Widget and the Widget sends a

request to GMS that:
1. Requests permission from Chat Server for file download (only a certain number of attempts are

allowed in each chat session)
2. Downloads the file from UCS and sends it to the Widget, which in turn downloads it to the customer.

Customer to Agent

1. The customer selects a file to send.
2. The Widget sends a request via GMS to Chat Server to provide current size limits and supported file

extensions.
3. If the conditions are satisfied, the Widget sends the file to GMS, which:

1. Requests permission from Chat Server to upload the file.
2. If permitted, uploads the file to UCS.
3. Sends a notification in the chat session about the uploaded file.

4. The Widget receives the notification and shows it in that chat transcript window as an icon.
5. When the agent opens the file (by double-clicking the file icon), the Desktop downloads the file directly

from UCS.

Chat Server Administration File Transfer in Chat Solutions

Chat Server Administration Guide 80

Known Limitations

• Virus scanning of transferred files is not included in the solution. Genesys recommends installing virus
scanning at the Agent's desktop to scan the files during downloading and uploading.

• In high availability mode, during Chat Server failover, all information about the transferred file is
preserved in the chat session transcript. If there is a simultaneous failover of UCS and GMS (or
Workspace) it is possible that a file might be uploaded to UCS but not be reported as uploaded in the
chat session.

Chat Server Administration File Transfer in Chat Solutions

Chat Server Administration Guide 81

Chat Server API selected notes and topics
The following pages describe only selected topics about special use cases which might require
additional clarification or explanation for the purpose of being used in custom agent desktops and
chat widgets. These pages do not contain the complete description of Chat Server API which is
implemented in Genesys PSDK as flex (Genesyslab.Platform.WebMedia.Protocols >
FlexChatProtocol) and basic (Genesyslab.Platform.WebMedia.Protocols > BasicChatProtocol)
protocols.

Throughout these pages we will be using PSDK .NET for this demonstration purpose (Java PSDK is
very similar).

• Functional capabilities of chat protocol
• File Transfer API for Agent Desktop
• Description of Chat Protocol Elements
• Reason Codes

Chat Server Client Version

Chat Server exposes two chat protocols: flex (connectionless) and basic (connection based). These
protocols are constantly evolving with new capabilities. In order to allow the protocol negotiation with
Chat Server, PSDK (which implements both protocols) has a special hard-coded attribute
ClientVersion. This attribute defines what functionality is available for a Chat Server API client (for
example, it prevents Chat Server from sending unsupported events and/or attributes in replies). The
following table describes the existing protocol versions:

ClientVersion Chat Server version PSDK version Description (features
added or changed)

101 8.0.100.07 8.0.100.06 Base chat functionality.
Default version.

102 8.1.000.33 8.1.000.08
Support for user
nickname change: new
notice type
USER_UPDATE_NICK.

103 8.5.102.06 8.5.200.03

Support for Idle control
functionality: new notice
types
IDLE_CONTROL_ALERT,
IDLE_CONTROL_CLOSE,
IDLE_CONTROL_SET.
New transcript attribute
idleTimeExpire, new
user type SYSTEM, new
protocol type NONE.

104 8.5.104.07 8.5.201.00 Support for chat system

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 82

https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatFCap
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatAPIDT
https://docs.genesys.com/Documentation/ESChat/latest/Admin/CPE
https://docs.genesys.com/Documentation/ESChat/latest/Admin/RC

ClientVersion Chat Server version PSDK version Description (features
added or changed)

commands: new notice
type SYS_COMMAND. Flex
transcript events have
been extended with
userData of type
KeyValueCollection
(only for notice event).

105 8.5.105.04 8.5.301.00

Support for chat session
silent monitoring
indication: new
transcript attribute
monitored.

106 8.5.109.06 9.0.000.00

All transcript events
have been extended
with eventAttributes
of type
KeyValueCollection.

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 83

Functional capabilities of chat protocol
This page describes various Chat Server protocol elements which can be used in the implementation
of custom agent desktop applications.

Direct Messages

Chat Server can send so called direct (or private) messages and notices to a participant in chat
session. Only chat basic protocol provides such functionality. In order to send a message or a notice
which will be visible only to a certain participant in chat session, ReceiverId in methods
RequestMessage and RequestNotify (defined in
Genesyslab.Platform.WebMedia.Protocols.BasicChat.Requests) must be initialized with the
userId of the intended participant (which can be obtained from the transcript event). In this case,
only two participants will see this message in the transcript: the sender and the recipient.

When receiving a direct message, the transcript will contain either MessageInfo or NoticeInfo
(defined in Genesyslab.Platform.WebMedia.Protocols.BasicChat) with corresponded ReceiverId.

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.108 8.5.1x not supported not supported not supported

Enhancing security when joining a chat session

Using configuration option session-password-enforce, it is possible to force Chat Server to
generate the crypto-random security token (we call it "session password") which will be associated
with a chat session during its creation. In this case, Chat Server will require this session password
each time a new participant sends a request to join an existing chat session (it must be provided in
GCTI_Chat_SessionPassword key/value pair in userdata of RequestJoin). Chat Server attaches the
session password to the userdata of the interaction (submitted to Interaction Server) in
ChatServerSessionPassword key/value pair). Only in basic chat protocol it is possible to specify a
user-defined session password by adding GCTI_Chat_SessionPassword key/value pair in userdata of
RequestJoin when creating a chat session.

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.109 8.5.1x not supported
joining an existing
chat session is not
supported

joining an existing
chat session is not
supported

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 84

Chat bot participant special treatment

Only the agent or supervisor in a chat session can be marked as "bot" participants. It happens when
the userdata of RequestJoin (when participant joins chat session) contains
GCTI_Chat_SetPartyStyle key/value pair with value "BOT". Chat Server attaches another key/value
pair GCTI_Chat_PartyStyle="BOT" to the newParty' event in basic protocol chat transcript and
GCTI_SYSTEM/party-into/style"="BOT" in eventAttributes property (both in newParty event in
basic protocol and in all events for bot participant in flex protocol).

For "bot" participants:

• Chat Server does not take such participants into account when processing after-action in
RequestReleaseParty with value CloseIfNoAgents.

• Agent Desktop must not take such participants into account when making a decision to stop the
processing of chat session and interaction.

• Reporting statistics (see Chat Server Reporting Statistics) will not count such participants as an agent or
supervisor.

Supported:

Chat Server PSDK
Workspace

Desktop
Edition

Workspace
Web Edition Chat Widget GMS

8.5.109

8.5.1x for
userdata
location,
9.0.000.01 for
eventAttributes

8.5.118 not supported not supported 8.5.201.04

Notifications about detected and masked out PII data

Chat Server can be configured to detect and replace PII data in a chat session (see Masking Sensitive
Data). If such PII data is detected according to the configuration provided, the message event (both
in flex and basic chat transcripts) will contain information in the eventAttributes property about
what parts of the message contains detected PII data, and how this data was masked out. In Chat
Server logs it can be seen as (text is formatted for presentation):

eventAttributes={'GCTI_SYSTEM'={'pii-cleanup'={
'rule-0001'={

'description'='<rule-description>',
'id'='<rule id>',
'name'='<rule name>',
'positions'={

'70-81'={'replaced'='digits'}
}}}}}

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 85

https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatReporting
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSensDat
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSensDat

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.109 9.0.000.01 not supported not supported 8.5.201.04

Read confirmation notice

Chat Server provides the possibility for chat session participants to signal about messages being
seen/read. For that, a participant must send RequestNotify with notice type SYS_COMMAND and notice
text read-confirm. The userdata of the request must contain key-value pair with key last-event-
id, and the value must contain the transcript event ID (which is being reported as being seen). Chat
Server processes read confirmation notices as follows:

• Other chat participants will receive corresponding notification with provided last-event-id in userdata
of the notice transcript event.

• The notice event will be saved in UCS transcript only if option transcript-save-notices = all.

Participant’s read confirmation notice events get annihilated from transcript:

• When a participant leaves the session.
• When another read confirmation notice is received from the same participant.
• During the session restoration.

Supported:

Chat Server PSDK
Workspace

Desktop
Edition

Workspace
Web Edition Chat Widget GMS

8.5.105 8.5.1x 8.5.122.08 not supported not supported 8.5.201.04

Nickname change

Chat Server provides the possibility for chat session participants to change their nickname during the
session. For that, a participant must send RequestNotify with notice type USER_UPDATE_NICK and
text containing a new nickname. The nickname of a participant can be changed more than once.
Upon receiving such request:

• Chat Server updates the nickname for a participant.
• Chat Server adds this notice to the session transcript.
• Only when updated the nickname for the first time, Chat Server records the original nickname value in

GCTI_Original_Nickname key-value pair of userdata of the initial newParty event for that participant.

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 86

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.0 8.1.1 not supported not supported 8.5.201.04

Using rich messaging

Chat Server provides chat session participants (either an agent or chat bot) with the ability to use
Rich Messaging (in other words to send structured messages) in a chat session. To do so, a
participant must send RequestMessage (com.genesyslab.platform.webmedia.protocol.basicchat) with
the following mandatory parameters:

• MessageText with plain text message. For backward compatibility, structured messages must be always
accompanied with so called "fallback" plain text messages. This way, a component which does not
know how to process the structured content will continue to use a regular plain text message supplied
together with the structured content.

• eventAttributes with KeyValueCollection with the following content (nested nodes):
• "structured-content" (of type kvlist)

• "<origin name>" (of type kvlist)
• "content" (of type string) - contains structured message as a valid JSON string (which varies

by channel).
• "type" (of type string) - contains the content type, and is mandatory for all channels (except

for Widgets).

"<origin name>" can be one of the following supported channels:

Channel <origin name> value
Apple Business Chat applebc-session
WhatsApp genesys-chat
Genesys Chat Widget Rich Messaging genesys-chat

If supported by a channel, the reply message from a customer can contain a "related-event-id"
attribute (under the "general-properties" node in the eventAttributes). It contains the
corresponding EventId of the original outgoing (to a customer) structured message, which is
returned in the EventSessionInfo when sending a RequestMessage in PSDK.

In Chat API Version 2, structured messages are delivered in the messages array, as shown below:

"messages":[
{

"from":{"nickname":"The Bot", "participantId":3, "type":"Agent"},
"index":15,
"text":"<plain text message (fallback version)>",
"type":"Message",
"utcTime":1561059828000,
"eventAttributes":{

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 87

https://docs.genesys.com/Documentation/ESChat/latest/Admin/RMS
https://docs.genesys.com/Documentation/MSGA/latest/ABC/Welcome
https://docs.genesys.com/Documentation/MSGA/latest/WhatsApp/Welcome
https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCRM
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2CometD

"GCTI_SYSTEM":{"party-info":{"style":"BOT"}},
"structured-content":{"genesys-chat":{"type":"Quick replies","content":"<contains

structured message as a valid escaped JSON string>"}}
}

}
]

Supported versions
Component Version

Chat Server 8.5.109.06
PSDK 9.0.000.01
Workspace Web Edition and Workspace Desktop
Edition Not supported

Chat Widget 9.0.006.02
Genesys Mobile Services 8.5.201.04

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 88

https://docs.genesys.com/Documentation/RN/8.5.3/mm-cht85rn/mm-cht8510906
https://docs.genesys.com/Documentation/RN/8.5.3/psdk-java90rn/psdk-java9000001
https://docs.genesys.com/Documentation/RN/8.5.3/gwc-wgt90rn/gwc-wgt9000602
https://docs.genesys.com/Documentation/RN/8.5.3/gms85rn/gms8520104

File Transfer API for Agent Desktop
The page describes how to implement file transfer (uploading and downloading) in custom agent
desktop application using Platform SDK (supported from version 8.5.201.00). For high-level overview
of file transfer in Chat Solution please refer to File Transfer in Chat Solutions.

Overview

It is important to understand the following general concepts about file transfer in Chat Solution:

• File storage is independent of Chat Server. Even though only Universal Contact Server (UCS) is currently
supported by Genesys components (GMS, Interaction Workspace) as a file storage, other file storage
may be used (ensuring that every Chat Server client could operate with the storage).

• Neither Chat Server nor UCS impose any restrictions on files transferred by agent applications (contrary
to a customer-faced applications like GMS), therefore performance, network load, security and other
aspects should be carefully planned (for example, large files or executables). Genesys Interaction
Workspace has a special configuration for agent-initiated file uploads.

• Security protection should be provided by a third-party system as neither Chat Server nor UCS perform
antivirus or other security checks of transferred files.

Protocol Description

Agent desktop application can perform the following operations:

• File upload (two-step process):
1. An application uploads a file to the storage (UCS). A file stored in UCS is referred to as document

and is given a unique identifier document-id.
2. The document is attached to a chat session by sending a special notice (“file-uploaded”) and is then

made available for chat participants to download. Chat Server assigns another identifier file-id
for the purpose of identifying the file in chat session.

• Whenever the application receives the “file-uploaded” notice in chat session (from any participant), it:
• Displays (to the agent) the information about the file such as the file name and file size as well as

any custom additional information, in the event/notice.
• Downloads a file from UCS by using document-id (for example, when the agent clicks on the file

pictogram).

In code samples, it is assumed that connection objects to UCS and Chat Server are initialized with the
proper connection parameters, and that Chat Server basic protocol user has registered and joined the
session.

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 89

https://docs.genesys.com/Documentation/ES/Current/Articles/filetransfer

File Upload

The following code snippet demonstrates how to upload a file:

// Prepare connections
BasicChatProtocol chatConnection = ...;
UniversalContactServerProtocol ucsConnection = ...;

// Uploading file into UCS
RequestAddDocument docReq = RequestAddDocument.Create();
// mime-type is mandatory, however not verified by UCS or Chat Server.
docReq.MimeType = "application/octet-stream";
docReq.Content = File.ReadAllBytes("C:\\myfile.txt");
docReq.TheName = "myfile.txt";
docReq.TheSize = docReq.Content.Length;
IMessage addDocReply = ucsConnection.Request(docReq);
EventAddDocument addDocEvent = addDocReply as EventAddDocument;
// Sending notification in chat session
RequestNotify fileReq = RequestNotify.Create();
fileReq.SessionId = ...;
fileReq.NoticeText = NoticeText.Create(NoticeType.SystemCommand, "file-uploaded");
fileReq.UserData = new KeyValueCollection();
fileReq.UserData.Add("file-name", docReq.TheName); // mandatory
fileReq.UserData.Add("file-size", docReq.TheSize); // mandatory
fileReq.UserData.Add("file-source", "ucs"); // mandatory
fileReq.UserData.Add("file-document-id", addDocEvent.DocumentId); // mandatory for UCS
fileReq.UserData.Add("file-upload-type", "file-system"); // optional
fileReq.UserData.Add("file-description", "Sample text file."); // optional
IMessage fileUploadedReply = chatConnection.Request(fileReq);

Input Parameters
Below is the description of input parameters which must be provided in the “file-uploaded” notice
request to Chat Server.

Name Mandatory Description
file-name Yes File name including extension.
file-size Yes File size in bytes.

file-source Yes

File storage type. Currently
supported values by Genesys
Solution (but not limited by Chat
Server itself):

• “ucs” – Universal Contact
Server

file-document-id Yes only for file-source=“ucs" Document Id in UCS.

file-upload-type Optional

Values used by Genesys
Interaction Workspace:

• “file-system” (Uploaded from
file system)

• “standard-response” (selected

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 90

Name Mandatory Description

from standard responses)

<any additional parameters> Optional Could be used by application
logic.

File Download

The following code snippet demonstrates how to download file:

// Prepare connections
UniversalContactServerProtocol ucsConnection = ...;

// Download file from UCS
RequestGetDocument docReq = RequestGetDocument.Create();
docReq.DocumentId = ...; // obtain from chat transcript event userdata
IMessage getDocReply = ucsConnection.Request(docReq);

// Saving file in filesystem
EventGetDocument getDocEvent = getDocReply as EventGetDocument;
string filePath = Path.Combine("C:\\", getDocEvent.TheName);
File.WriteAllBytes(filePath, getDocEvent.Content);

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 91

Description of Chat Protocol Elements

Chat Protocol user types and visibility levels

The following user types are defined in both (flex and basic) chat protocols:

User type Represents Description Possible visibility
level

CLIENT A customer
The only one type
available through flex
protocol when starting
chat session

ALL

AGENT An agent Used by agent desktop ALL, INT

SUPERVISOR An agent with
supervisor capabilities

A supervisor can
monitor chat session
invisibly for other chat
participants

ALL, INT, VIP

EXTERNAL Workflow
Used for messages and
notices sent from
routing strategies

ALL, INT, VIP

SYSTEM Chat Server
Used by the server for
special notifications (for
example, idle control
notices)

ALL, INT, VIP

Note: Agent and Supervisor user types can also be used by bots. This is specified by the presence of
GCTI_Chat_PartyStyle=BOT in the userdata and/or by GCTI_SYSTEM.party-info.style='BOT' in the
event attributes.

The visibility levels are defined in the table below:

Visibility level Represent a mode Description

ALL Conference
Used by default to conduct a
conversation between chat
participants

INT Coaching
Can be used by Agents and
Supervisors to communicate
invisibly from a customer

VIP Monitoring
Can be used by Supervisors to
invisibly monitor chat
participants' activity

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 92

Reason Codes

When customer leaves a chat session

Chat Server provides a "quit-reason-code" in the "GCTI_SYSTEM" node in the event attributes for
the "ABANDON" event (only about that particular participant). This code is provided through GMS
Chat API and in GMS custom-http push notifications.

Value Description

"0"
The participant left the chat session by sending a
logout request. This reason code is not delivered in
response through GMS Chat API, it is only sent in
GMS custom-http push notifications.

"3"

The participant was removed by the server due to
chat protocol inactivity (as configured by flex-push-
timeout and/or flex-disconnect-timeout options).
This reason code is not delivered in response
through GMS Chat API, it is only sent in GMS
custom-http push notifications.

"4"
The participant was removed by another
participant (for example, by the agent, supervisor,
or bot).

"5"

The participant was removed by the server
(possibly for system reasons; for example workflow
stopped the interaction, or a non-recoverable error
received from UCS when option transcript-save-
on-error=close).

"7"
The participant was removed by the server due to
chat session inactivity (both for regular and async
modes).

"8"
The participant was marked as removed by the
server during a chat session restoration (transcript
normalization procedure) in HA mode.

Example from Chat server log
ABANDON: sc='18', ei='3', nk='my nick', ut='CLIENT', pd='1'
eventAttributes={'GCTI_SYSTEM'={'quit-reason-code'='3'}}}

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 93

Asynchronous Chat
Link to video

Asynchronous (async) chat in Genesys Chat Solution means:

• Conducting single chat session between a customer and a contact center for a long period of time
(could last for days).

• Providing the possibility for an agent to return a chat session back into the workflow (in other words,
putting it into dormant state), and to reconnect to chat session later (through workbin or contact
history).

• Providing the possibility for a workflow to wake up a dormant chat session for processing upon detecting
customer activity or upon the expiration of async inactivity control timeout. Workflow tries to route the
interaction to the last handling agent for some period of time before sending it to any other available
agent.

The following table lists quick links to helpful topics on async chat within this guide:

Topic Description

Async Requirements This topic is a general overview of how to enable
async chat capabilities.

Asynchronous Chat in Workspace Desktop Edition This topic covers how to configure and use
asynchronous chat in Workspace.

Asynchronous Chat in Widgets This topic covers how to configure and use
asynchronous chat in Widgets.

Deployment guidelines for async and regular chat
This topic includes guidelines regarding sizing,
short polling vs. CometD, disconnects, and idle
timeouts.

Chat Business Process Sample
This topic describes a procedure on how to deploy
the workflow sample as well as information on
testing.

Integrating Chat Server with Genesys Historical
Reporting

This topic covers information on historical
reporting.

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 94

https://player.vimeo.com/video/377872750?title=0&byline=0&portrait=0
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATOv
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATWDE
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATGWC
https://docs.genesys.com/Documentation/ESChat/latest/Admin/DeployAsyncReg
https://docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatReporting
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatReporting

Async Chat Overview

Provisioning

In order to enable async chat capabilities, the following must be provisioned:

• During a chat session creation, special key-value pairs must be provided when creating chat session via
GMS API:
• GCTI_Chat_AsyncMode=true. This enables a special processing in Chat Server and Agent Desktop,

and can also be used in the workflow logic.
• Provide specific data to enable push notifications (even if you do not need to process them). This

forces the Chat Server to use flex-push-timeout instead of flex-disconnect-timeout for the async
chat session. If you plan to process push notifications, the corresponding push notification
functionality in GMS must also be configured and the following data must be provided:
• When using Chat API Version 2 with CometD, provide both push_notification_deviceid and

push_notification_type. Note that the CometD client is limited to a single active connection
with GMS in order to receive the chat session activity events.

• When using GMS REST API V2, see Push notifications via GMS to HTTP server. Although The REST
API does not impose a single active connection restriction, please carefully review the
performance implications described in the deployment guidelines for async and regular chat.

• Chat Server (version 8.5.301.06 and higher required) configuration must be reviewed for the following
configuration options:
• To prevent the chat session from being closed when a mobile application disconnects with GMS, set

the value of the flex-push-timeout option to a larger value (for example, 86400 seconds). If there
is no protocol activity from a mobile application for the duration of this timeout, Chat Server checks
with GMS to see if a connection with a mobile application is still alive. If GMS does not confirm the
liveness of a connection, Chat Server sets the timer again and, when the timeout expires, removes
a customer from the chat session if no protocol activity is detected.

• Consider adjusting (only if needed) async-idle-alert , async-idle-close , async-idle-notices . Default
values of these options enable async inactivity control monitoring for async chat sessions. The
value of option async-idle-notices also defines the condition when GCTI_Chat_AsyncStatus is
updated to a value of "2".

• To enable a session restoration by Agent Desktop or Workflow, set the appropriate value for the
configuration option session-restore-extend-by (introduced in Chat Server version 8.5.312.10) and
session-restore-push-send (available in Chat Server version 8.5.316.02), and also set the value for flex-
push-on-join (Introduced in Chat Server version 8.5.315.05) to true. This functionality is supported in
Workspace Desktop Edition (WDE) version 8.5.145.06 or later. Upon joining a chat session, a custom
Agent Desktop can also implement a session restoration by making several attempts to reconnect to
that chat session and providing a special KVP “ChatServerWebapiToken” in the userdata of the Join
request (this must be taken from the interaction userdata). Performing a session restoration using
Agent Desktop is required only for a GMS-based web chat; it is not used in social messaging channels
where Digital Messaging Server (DMS) is solely responsible for the chat session restoration.

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 95

https://docs.genesys.com/Documentation/GMS/latest/API/PushNotificationService
https://docs.genesys.com/Documentation/GMS/latest/API/PushNotificationService
https://docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2CometD
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATPUSH
https://docs.genesys.com/Documentation/ESChat/latest/Admin/DeployAsyncReg
https://docs.genesys.com/Documentation/RN/8.5.x/wde85rn/wde8514506

Important
WDE can only restore the chat session from the same Chat Server instance which was initially processing the
chat session prior to being restarted. WDE is not aware of (and so cannot use) any other instance of Chat
Server.

• Special workflow which implements the processing of async chat (Chat Business Process Sample
provides a demonstration of these capabilities). To extend this sample with a session restoration
(introduced by the configuration option session-restore-extend-by = esp), the following items must
be changed in async-chat-stuck-strategy:
• Extend the External Services Protocol (ESP) request GetSessionInfo method with the parameter

InduceRestore=true (alternatively, you can use any other ESP method). This triggers the session
restoration in Chat Server, however the ESP request itself will fail if the chat session does not exist
in this instance of Chat Server. Otherwise, the block will exit through the green port, and the
workflow can continue operations as normal.

• The red port of this ESP IRD block must be connected with a function to wait for a timeout (for
example 2-4 seconds).

• The function block must then be connected to another ESP block (with the same or different ESP
method). At this moment the chat session is restored and the ESP request is successful. If it fails
again (due to possible delays with the session restoration, for example), you can repeat the ESP
request a few more times with a delay between these subsequent requests. Alternatively, if the
Chat Server that had been stopped cannot be re-started immediately, you can omit the Chat Server
application name in the ESP request in order to let the chat session restore itself on a different
instance of Chat Server.

• This functionality can be tested by:
1. Setting smaller values for async-idle-alert and async-idle-close.
2. Starting the async chat session.
3. Closing the Widget.
4. Restarting the Chat Server instance before GCTI_Chat_AsyncCheckAt expires (which is slightly

larger than the sum of async-idle-alert and async-idle-close).
5. As soon as GCTI_Chat_AsyncCheckAt expires, the Workflow sends the interaction into async-

chat-stuck-strategy and attempts to restore the chat session.

Async inactivity control

• Async inactivity control is different from regular inactivity control (specified in configuration of section
[inactivity-control]) in a way that it does not require the presence of an agent in the chat session.

• Activity in inactivity control means any activity in the chat session that is visible to all participants and
that is not generated by bot participants.

• It is not recommended you enable regular inactivity control (section [inactivity-control]) for Chat
Server which handles async chat sessions, as it contradicts with the nature of long chat sessions.

• async-idle-alert/close reuses the message-alert/close options from the section [inactivity-
control] for the notification.

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 96

https://docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP

Minimum release requirements

Workspace Desktop Edition
Workspace Desktop Edition (version 8.5.122.08 and higher) provides:

• Additional Place Chat On Hold button (configuration option chat.on-hold-queue) which allows an
agent to return the chat session into the workflow (in other words, put into a dormant state) where it
can await customer activity.

• The possibility to open the active chat from the workbin and contact history windows.

Genesys Mobile Services (GMS)
The mobile or web (in other words, Widget) application, which implements a chat client for a
customer, must operate with GMS using Chat API V2 with CometD and enable push notification
functionality (either mobile or custom http). This keeps the chat session running for as long as it is
needed. GMS version 8.5.114.09 or higher is required.

Historical reporting
There are minimum release requirements for multiple additional components to enable historical
reporting on async chat sessions. For full details, see the Prerequisites table at Integrating Chat
Server with Genesys Historical Reporting.

Async chat states

GCTI_Chat_AsyncStatus is an integer and any positive value may be used to trigger the workflow to
route an interaction to an agent. The following values are possible:

Value Description

-2
Set when a chat session is placed on hold or into a
dormant state (in other words, placed into the
workbin or queue by an agent).

-1 Set when an agent is processing a chat session.
0 Undefined value (value is not used).
1 Signifies a newly created chat session.

2
Set when a customer posted a reply (sent a
message) into a chat session while there were no
agents in that chat session.

3
Set when async inactivity control timeout expires
(meaning Chat Server will soon close the chat
session).

4 Set when an agent desktop abnormally disconnects
from the Chat Server (in other words, in case of

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 97

Value Description
accidental exits).

5 Set when the agent transfers the chat interaction
by placing it into a queue.

Additional information

• Workflow with a special processing must be deployed (see the sample workflow provided in
Deployment). It must evaluate the following interaction properties:
• GCTI_Chat_AsyncCheckAt contains a timestamp when an interaction must be checked. This

property must be used to detect "stuck" interactions in workflow which happens under abnormal
situations (for example, in a case when Chat Server has stopped, and a chat session was never
restored on another instance of Chat Server).

• Async chat sessions can be processed in the same way as non-async chat sessions. Async chat simply
extends the functionality for chat session processing.

• In Async mode (in other words when CometD is used with GMS, and the rate of messages in a single
chat session is low), a single instance of Chat Server is capable to support a greater number (up to
5000) of concurrent chat sessions. However, the Chat Server limitation of concurrent connections (4K
on Windows and 32K on Linux) must be taken into account when planning your deployment. When
calculating the number of total expected connections for web or mobile chat, consider the following:
• Every agent desktop and every chat bot require a separate persistent connection to chat session.

For agents, multiply it by the maximum possible capacity of agents.
• Additionally, supervisor monitoring requires a separate persistent connection.
• Client (in other words, consumer-facing) operations do not keep a persistent connection with Chat

Server. The connection is only established when the consumer sends the request with a message or
notice, or when Chat Widget requests periodic pull transcript updates (which is applicable only in
non-CometD mode in GMS).Once the request is complete, the connection is immediately closed.

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 98

Push notifications via GMS to HTTP server
Starting with version 8.5.311.06, the Chat solution allows you to request push (in other words,
unsolicited) notifications through Genesys Mobile Server (GMS) to an HTTP server even when a
customer-facing chat web application (Chat Widget) communicates with GMS via "Chat API Version
2". Previously, this was only possible with "Chat API Version 2 with CometD".

To enable this functionality, do the following:

Application Instructions

GMS

1. Deploy GMS using Cluster Application
2. Configure GMS for Custom HTTP notification
3. Configure GMS with

push_notification_include_payload (optional)

Chat Server

1. Add new configuration option flex-push-on-join
in the settings section with value true. This
forces Chat Server to acknowledge the push
notification subscription during the creation of a
chat session.

2. Ensure that option flex-push-enabled is set to
true, and option flex-push-timeout is set with a
larger value (for example, "86400 seconds").
For more information, see Async Requirements.

3. Review the schedule for resending push
notifications, when using
GCTI_GMS_PushResend, defined by the
configuration options, flex-push-resend-
attempts and flex-push-resend-delay.

4. Adjust, if needed, the value for configuration
option flex-push-content. In addition to
session-id and user-id, it is now possible to
receive app-dbid and secure-key in push
notifications.

Customer-facing chat web application

1. The web application must supply a set of
mandatory key-value pairs in the userdata for
the "Request Chat" HTTP method (using a
userData[key-name] notation):
• GCTI_Chat_PushSubscribe with the value

true. This enables push notifications in Chat
Server when “Chat API Version 2” is used .

• GCTI_GMS_NodeGroup with the GMS

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 99

https://docs.genesys.com/Documentation/GMS/latest/Deployment/CreatinganApplicationObject#cdep
https://docs.genesys.com/Documentation/GMS/latest/API/PushNotificationService#CustomHTTP
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATOv

Application Instructions

cluster name. If the GMS version is
8.5.213.03 or greater, this key-value pair is
not required, as it is automatically provided
by GMS to Chat Server.

• GCTI_GMS_PushDeviceId with a unique
device ID. This ID is returned in the push
notifications as deviceId.

• GCTI_GMS_PushDeviceType with the
value customhttp. This defines the type of
push notification used.

• GCTI_GMS_NotifyRequestor with value
true. This forces Chat Server to send push
notifications to GMS about the customer's
own activity.

• GCTI_GMS_PushIncludePayload with
value true. This forces GMS to include the
payload (in other words, the chat transcript
event content) with a custom-http push
notification. Without providing this key-
value pair, GMS sends only the deviceId
(provided in GCTI_GMS_PushDeviceId) in
the push notification, which can prevent the
distribution of sensitive content. When
reliable delivery is requested by
GCTI_GMS_PushResend, this key-value
pair must be provided however, in this case,
no event-specific payload is provided in the
push notification (it only contains some ad
hoc data that can be used to send a
“Refresh” request).

2. Chat Server provides the ability to request a
reliable delivery of push notifications. For that,
the web application must additionally supply
the GCTI_GMS_PushResend key-value pair
with value true in the userdata. This forces
Chat Server to activate the mechanism of
resending push notifications according to a
schedule defined in the configuration. Chat
Server will start resending push notifications if
no "refresh" (in other words "pull transcript
update") request is being received within the
amount of time specified by option flex-push-
resend-delay. See below for more information
about reliable push notifications delivery.

3. The web application can additionally supply a
set of key-value pairs in the userdata:
• GCTI_GMS_PushProvider

Must be provided if you specified the
configuration for the non-default provider in

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 100

Application Instructions

GMS.
• GCTI_GMS_PushDebug

Must be provided if you specified the debug
mode for the provider configured in GMS.

• GCTI_GMS_ClientChannel
Must be provided if you want to include the
GMS service name in obfuscated secure-key
in the push notification.

Additional notes

• It is important to provide adequate throughput of the Web Server which processes the customhttp
notification. The latency (in other words, the processing time for a single HTTP POST request) must be
as low as possible as GMS sends all notifications sequentially. The next request is only sent after a reply
from the previous one. For example, if the latency is 5 milliseconds on average, then a single GMS node
is able to send 200 notifications per second. Enabling GCTI_GMS_PushResend could increase the volume
of notifications, so it must be taken into account.

• If push notifications are enabled, Chat Server tries to find the GMS node in the GMS cluster (specified by
GCTI_GMS_NodeGroup) and to associate that found node for further notifications (until the node is
disconnected). Starting with version 8.5.311.06, if no GMS node is available (in other words, registered
in Chat Server) in a given cluster, Chat Server selects another GMS cluster to seek for an available GMS
node. Otherwise, if no other cluster and/or node is available, Chat Server attempts to find an available
node the next time an activity is generated in the chat session or upon chat session restoration in HA
mode.

• If reliable delivery of a push notification is not requested by sending GCTI_GMS_PushResend, no
attempts to resubmit the same push notification will be made in case of a delivery failure between the
GMS and HTTP server, and between Chat Server and GMS. The following log messages are logged in
the event of this error condition:
• In GMS: "Dbg 09900 [com.genesyslab.PCT.invoker.default] DC Chat Server Persistent

Listener: Event 17 was not (GMS is not running in full mode or incompatible Chat
Server version) pushed for delivery to customhttp for device..."

• In Chat Server: "Trc 59758 push-flex: could not send notification - no gms node found
in group=..."

Sample configuration for custom HTTP notifications in GMS
[chat]
enable_notification_mode=true
push_notification_include_payload=true

[push]
customhttp.url=http://<hostname>:<port>/<path>
pushEnabled=comet,customhttp

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 101

Important
Ensure that the [push] section does not contain the option customhttp.message. If it is present, the value
of this option overrides the content of push notification.

Reliable push notifications delivery

When requesting reliable delivery for a push notification (in other words, when
GCTI_GMS_PushResend=true):

• All push notifications are of type:PushUrl and participantId: 0 (which is not a valid participant ID).
• No payload is provided in the push notification. Instead, each push notification must be considered a

trigger to send a “Refresh” request to GMS in order to obtain the newly published events in the chat
session.

The following is the sample JSON which is delivered in the HTTP request for a push notification.

{
"message":{

"secureKey":"G1xBGx9aTUYVBEECD0UZAVwTQEQDFgRZFVJTXEI3QSFFIShAHyVcRUI2GUJXXUEeAikkNSNTJFddQRc=",
"chatId":"deprecated",
"nextPosition":17,
"messages":[

{
"from":{

"nickname":"",
"participantId":0,
"type":"Client"

},
"index":0,
"text":"PUSH-NOTIFICATION",
"type":"PushUrl",
"utcTime":1568662361000,
"userData":{

"notify-attempt":"0",
"notify-position":"16",
"secure-key":"c6c9a6d96dc14cef5f94",
"app-dbid":"131",
"user-id":"007D5D7FE31F001B",
"session-id":"00020aEQFW6V0029"

}
}

],
"alias":"0",
"chatEnded":false,
"userId":"deprecated",
"statusCode":0,
"monitored":false

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 102

},
"deviceId":"a1a23456789123456789"

}

Important field descriptions
Field Description

participantId Always 0 and must be ignored.

notify-position Contains the starting position of content not retrieved. It can have a value of
-1 meaning that chat participant has been removed from the chat session.

notify-attempt Contains the number of attempts to deliver the push notification.

secure-key Secure key to be used with GMS REST API. The presence depends on flex-
push-content.

app-dbid App DBID (or alias) to be used with GMS REST API. The presence depends on
flex-push-content.

user-id User ID to be used with GMS REST API. The presence depends on flex-push-
content.

session-id Session ID to be used with GMS REST API. The presence depends on flex-push-
content.

chatEnded If the value is true it means the chat session is finished.

Warning
Starting with version 8.5.311.06, the secure-key for REST API requests is provided in the userData based on
the value of the configuration option flex-push-content. The secureKey provided in message must be ignored by
the REST API client, and only used for the CometD API.

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 103

Asynchronous Chat in Workspace Desktop
Edition
Asynchronous chat is supported in this restricted release of Workspace Desktop Edition. This feature
keeps chats open after the last agent leaves the session, and the agent can rejoin the session until
the session is marked Done.

This topic covers the following information about configuring and using asynchronous chat in
Workspace:

• Configuring Asynchronous Chat in Workspace Desktop Edition
• Workspace Desktop Edition Agent Use Cases

Configuring Asynchronous Chat in Workspace Desktop Edition

The Workspace Desktop Edition describes how to deploy Workspace in your Genesys environment
and configure the Chat channel. All the Workspace documentation can be found here.

Refer to the following topics for specific information about setting up agents and the chat channel
after you deploy Workspace:

• Setting Up Agents On The System
• Enabling Internal And External Communications: Chat
• Enabling Internal And External Communications: Chat Monitoring
• Team Leads and Supervisors
• Configuration Options Reference / Section interaction-workspace / Chat Options
• Configuration Options Reference / Section interaction-workspace / Chat Server Options
• Configuration Options Reference / Section interaction-workspace / Team Lead Options
• Role Privileges / Chat Privileges

The following sections list the privileges and configuration options that you must set to enable
Asynchronous Chat:

Privileges
To enable asynchronous chat in Workspace you must allow the following privileges on the agent role:

• Chat - Can Place On Hold — Allows agents to leave and rejoin an asynchronous chat session. Depends
on the Chat - Can Use Chat Channel privilege.

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 104

https://docs.genesys.com/Documentation/IW/8.5.1/Dep/Welcome
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/SettingUpAgentsOnTheSystem
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/ChatInteractions
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/MonitoringChatInteractions
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/EnableTeamLead
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/ChatOptions
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/ChatserverOptions
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/TeamLeadOptions
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/ChatPrivileges

• Chat - Can Release Async — Allows agents to manually terminate an asynchronous chat session.
Depends on the Chat - Can Use Chat Channel privilege.

• Chat - Can Release — Allows agents to manually terminate a standard non-asynchronous chat
conversation. Depends on the Chat - Can Use Chat Channel privilege.

Configuration
To configure the behavior of asynchronous chat, set the values of the following options on the
application, tenant, agent group, or agent in the interaction-workspace section:

chat.on-hold-queue

• Default Value: ""
• Valid Values: Any valid Script name of type 'Interaction Queue'.
• Changes take effect: At next interaction attempt to put a chat in a queue.
• Description: Specifies the Interaction Queue where the chat interaction is placed when the agent clicks

Place chat on hold. This option can be overridden by a routing strategy, as described in Overriding
Options by Using a Routing Strategy.

keyboard.shortcut.interaction.chat.hold

• Default Value: ""
• Valid Values: The name of a key or a key combination that begins with one of the following modifier key

names: Ctrl, Shift, and Alt, and ends with a character key. Separate the modifier key name from the
character key with the '+' character.

• Changes take effect: When the application is started or restarted.
• Description: The combination of keys that can be used as a keyboard shortcut to place a chat on hold.

For example: F1, Ctrl+Alt+V, Ctrl+Shift+Alt+V.

Workspace Desktop Edition Agent Use Cases

The Workspace Desktop Edition Agent Help provides help topics for logging into and using the
various features of Workspace. The Chat topic describes how to use the features of the Chat
interface.

Use Case - Agent puts chat on hold
An agent needs time to prepare a response to a contact in a chat session.

To avoid having the chat session time out, the agent can put the chat session on hold to keep it
active in an interaction queue or workbin. To put a chat on hold, click Place chat on hold

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 105

https://docs.genesys.com/Documentation/IW/8.5.1/Dep/ConfigurationByUsingOptionsAndAnnexes#Overriding_Options_by_Using_a_Routing_Strategy
https://docs.genesys.com/Documentation/IW/8.5.1/Dep/ConfigurationByUsingOptionsAndAnnexes#Overriding_Options_by_Using_a_Routing_Strategy
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Welcome
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Chat_Interaction

Use Case - Agent accesses chat from Workbin, Queue, or History
Agents who have the privileges to pull interactions from queues, workbins, and shared workbins can
select and open an in-progress (asynchronous) chat from one of the following locations in Workspace:

• The agent's personal workbin
• A group workbin to which the agent is a member
• My Interaction Queues
• My History view
• Contact History view
• Interaction Search view

Related Resources

The Workspace Desktop Edition User's Guide (English only) provides detailed lessons for using all the
features of Workspace. You might find the following lessons useful:

• Handle A Chat Interaction
• Handle A Chat Consultation
• Transfer A Chat Interaction
• Conference A Chat Interaction
• Main Window Basics
• Workspace Windows and Views

Related topics

• Functionality Overview
• Components, Features, and Controls

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 106

https://docs.genesys.com/Documentation/IW/8.5.1/User/HandleAChatInteraction
https://docs.genesys.com/Documentation/IW/8.5.1/User/HandleAChatConsultation
https://docs.genesys.com/Documentation/IW/8.5.1/User/TransferAChatInteraction
https://docs.genesys.com/Documentation/IW/8.5.1/User/ConferenceAChatInteraction
https://docs.genesys.com/Documentation/IW/8.5.1/User/MainWindow
https://docs.genesys.com/Documentation/IW/8.5.1/User/WindowsAndViews
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Composite_Views_Overview
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Atomic_Views_Overview

• Workspace Desktop Edition Help

Top 10 pages

1. Workspace Desktop Edition Help
2. Main Window
3. My Status
4. Contact Directory
5. Workbins
6. Functionality Overview
7. My Messages
8. Login
9. Voice Consultation

10. Components, Features, and Controls

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 107

https://docs.genesys.com/Documentation/IW/8.5.1/Help/Welcome
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Welcome
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Main_Window
https://docs.genesys.com/Documentation/IW/8.5.1/Help/My_Status
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Contact_Record
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Workbins
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Composite_Views_Overview
https://docs.genesys.com/Documentation/IW/8.5.1/Help/My_Messages
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Login
https://docs.genesys.com/Documentation/IW/8.5.1/Help/Voice_Consult
https://docs.genesys.com/Documentation/IW/latest/Help/Atomic_Views_Overview

Asynchronous Chat in Widgets
Async chat is supported in Genesys Widgets from the 9.0.002.06 release.

Configuring Async Chat in Genesys Widgets

The Genesys Widgets Deployment Guide describes how to deploy Widgets in your Genesys
environment. All the Widgets documentation can be found here.

The following sections list the configuration options that you must set to enable Async Chat within
Widgets:

• WebChat Configuration
• WebChatService Configuration
• WebChatService API Commands
• WebChatService API Events

Chat Server Administration Asynchronous Chat

Chat Server Administration Guide 108

https://docs.genesys.com/Documentation/GWC/latest/Deployment/Welcome
https://docs.genesys.com/Documentation/GWC
https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatConfiguration
https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatServiceConfiguration
https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatServiceCommands
https://docs.genesys.com/Documentation/GWC/latest/WidgetsAPI/WebChatServiceEvents

Chat Business Process Sample

Overview

Chat Business Process (BP) Sample provides a sample workflow (in other words, a set of URS
strategies combined into a business process) which demonstrates how to process chat interactions
both for regular and asynchronous chat for different channels, including web chat, Apple Business
Chat (ABC), WhatsApp. Chat BP Sample is not intended to be used in production deployments without
careful evaluation and adjustments according to customer business requirements. While initially Chat
BP Sample was developed for async chat only (which explains the naming convention for queues and
strategies), it was adjusted to support regular chat as well.

Deployment

To deploy Chat BP Sample, following must be done:

1. Stop Interaction Server.
2. Upgrade the Interaction Server Database - execute script AsyncChatSample_<database name>.sql

from “script” folder of Chat BP Sample IP.
3. Create new interaction custom properties; these are used in the workflow sample for view conditions. In

Configuration (using GAX):
• Navigate to the Business Attributes folder and create new Business Attribute with:

• type - Custom
• name - InteractionCustomProperties
• display name - Interaction Custom Properties

• Navigate to Attribute Values and create the following values (Note: that name and display
name must be the same and each value must have a translation section in the Annex tab with a
“translate-to” option):
• GCTI_Chat_AsyncStatus with translate-to=async_status
• GCTI_Chat_AsyncCheckAt with translate-to=async_check_at

4. Start Interaction Server.
5. In Interaction Routing Designer (IRD), import ChatBusinessProcessSample.wie, located in “workflow”

folder of Chat BP Sample IP, and activate strategies.
6. Connect Chat Server endpoint with async-chat-greet-queue, queue.
7. In Workspace Desktop Edition application configuration options (see Configuring Asynchronous Chat in

Workspace Desktop Edition for more information), set:
• value <media-type-name>.on-hold-queue to async-chat-return-queue (where <media-type-

Chat Server Administration Chat Business Process Sample

Chat Server Administration Guide 109

https://docs.genesys.com/Documentation/ES/latest/IxnProps/CustProps
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATWDE
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ACHATWDE

name> must be replaced with a media type value such as chat, or whatsappsession.
• value workbin.chat.on-hold to async-chat-main-workbin.

Testing through web chat

While Genesys Chat Widget only supports async mode for CometD connections, the testing of back-
end components (Chat Server, workflow and Agent Desktop) can be done using the Chat Widget
without enabling CometD. Launch the Chat Widget with the following userdata:

{ GCTI_Chat_AsyncMode: "true"}

Additionally, you can provide the following key-value pairs:

Value Description

Chat_Async_RoutingTimeout: "5" Allows the routing wait time to decrease to 5
seconds (default value in workflow is 120 seconds).

Chat_Async_WorkflowDebug: "true" Forces the workflow to send debug chat messages
about workflow execution.

Chat_Async_SendRichMessage: "true"
Introduced in: 8.5.309.12

Forces the workflow to send the welcome rich
message, "Welcome to Genesys chat".

Functional description

Functionally, Chat BP Sample can be divided into the following parts:

1. Initialization. The strategy (async-chat-greet-strategy):
a. Sends greeting message to a customer
b. Initializes routing parameters either for async or regular chat
c. Moves interaction for processing into the main (async-chat-main-queue) queue

2. Routing preparation and routing. The strategy (async-chat-main-strategy):
a. Checks if the routing rules are already assigned to the interaction (Chat_Async_LastAgentAttempts

key/value pair in userdata)
b. Tries to route to last handling agent for the specified number of attempts
c. Continues routing to any available agent as soon as attempts are exhausted

3. Processing interactions which are placed on hold by an agent. The strategy (async-chat-
return-strategy):
a. Resets routing rules (Chat_Async_LastAgentAttempts)
b. Tries to find last agent ID and place the interaction into agent's workbin (async-chat-main-

workbin)

Chat Server Administration Chat Business Process Sample

Chat Server Administration Guide 110

c. Otherwise places the interaction into the main queue

4. Processing stuck async interactions. This happens only in very rare cases when chat session
processing may get stuck due to failed components. The strategy (async-chat-stuck-strategy):
a. Checks if chat session is still alive (by sending GetSessionInfo request) and places the interaction

back into the main queue with a special async status value (to resume the routing)
b. Otherwise moves the interaction to stop queue

5. Implements transfer and conference routing. The strategy (async-chat-x-intercom-strategy):
a. Detects the type of target (from IW_RoutingBasedTargetType): Skill, AgentGroup,

InteractionQueue.
b. Routes the interaction according to detected type.
c. Demonstrates how to send the ESP message correctly from the internal auxiliary

(InteractionSubtype=InternalConferenceInvite) interaction.

Important
async-chat-x-intercom-strategy is introduced in 8.5.309.12; the required Chat Server version is
8.5.312.10 or higher.

6. Stopping of the completed chat. The strategy (async-chat-stop-strategy):
a. Stops the interaction
b. Notifies UCS

Important notes

• The main processing queue (async-chat-main-queue) contains several views (used for selecting
interaction for the processing by a strategy) with different conditions:
• async-chat-main-proc-view fetches chat sessions which are not in a dormant state, thus locking

the dormant chat sessions in the queue until a qualified event changes the status (these events can
be a new interaction, a message from a customer, idle control notification, agent desktop failure,
and others).

• async-chat-main-check-view fetches stuck chat sessions.
• async-chat-main-stop-view fetches chat interactions for which sessions were stopped by Chat

Server while the interaction was sitting in the queue.

• In this Chat BP Sample, the agent workbin is associated with the main routing queue thus forcing the
router to apply the same processing rules to workbin interactions. If you need to keep interactions in
the agent workbin without forcing routing upon a qualified event in a chat session, you need to modify
the workflow accordingly.

• In case of failure, strategies move the interaction to stop queue (async-chat-stop-queue). However, in
production the workflow must consider making a few attempts before finally surrendering the
interaction processing any further. For example, workflow may send an ESP message a few times
during a Chat Server switchover and when chat session is being moved to another Chat Server. Chat BP
Sample does not provide this logic for simplification reasons.

Chat Server Administration Chat Business Process Sample

Chat Server Administration Guide 111

• Chat BP Sample contains async-chat-media-proc-sub subroutine which provides channel-specific logic
for interaction processing. For ABC and WhatsApp channels, the strategy verifies if a customer's
nickname ("_msg_ProfileNickname") is already assigned for the contact, and assigns the default
nickname if needed.

• You can send Rich Text Messages from the workflow. For more information, see the Example in the
"Key-value collection format specification" section of the How to send ESP requests to Chat Session
from Workflow topic.

Chat Server Administration Chat Business Process Sample

Chat Server Administration Guide 112

https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCRM
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatWorkflow
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatWorkflow

Rich Messaging Support

Overview

Genesys chat solution provides the ability to use structured messages (in other words, Rich
Messaging) across various chat channels, including:

Channel Components Channel name

Web chat

Genesys Mobile Services (GMS)
(min version required 8.5.201.04)
and Chat Widget (for supported
elements, see Rich Messaging in
the Genesys Widgets
Deployment Guide)

genesys-chat

Apple Business Chat (ABC)
Digital Messaging Server (DMS)
and ABC driver (see Deploying
Apple Business Chat in the Apple
Business Chat Guide)

applebc-session

WhatsApp
DMS and Genesys Driver for use
with Genesys Hub (see Deploying
WhatsApp in the WhatsApp
Guide)

genesys-chat

Important
Support for Rich Messaging varies by channel based on what each channel service
provider supports and what is implemented in Genesys Engage. Not every Rich
Messaging element is supported in all channels.

Additionally, the following components are also involved:

Component Purpose

Chat Server Conduct chat session. Min version required
8.5.109.06.

eServices Manager

An authoring tool for creating standard responses
which can contain structured messages. Graphical
editing capabilities are provided for some channels
together with the ability to provide raw (for
example JSON) representation of a structured
message.

Bot Gateway Server
A chat bot deployment platform that provides an
API for bots to use either standard responses with
structured messages, or send Rich Messaging

Chat Server Administration Rich Messaging Support

Chat Server Administration Guide 113

https://docs.genesys.com/Documentation/RN/8.5.3/gms85rn/gms8520104
https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCRM
https://docs.genesys.com/Documentation/GWC/latest/Deployment/Welcome
https://docs.genesys.com/Documentation/GWC/latest/Deployment/Welcome
https://docs.genesys.com/Documentation/MSGA/latest/ABC/ABCDeploy
https://docs.genesys.com/Documentation/MSGA/latest/ABC/ABCDeploy
https://docs.genesys.com/Documentation/MSGA/latest/ABC/Welcome
https://docs.genesys.com/Documentation/MSGA/latest/ABC/Welcome
https://docs.genesys.com/Documentation/MSGA/latest/WhatsApp/Deploy
https://docs.genesys.com/Documentation/MSGA/latest/WhatsApp/Deploy
https://docs.genesys.com/Documentation/MSGA/latest/WhatsApp/Welcome
https://docs.genesys.com/Documentation/MSGA/latest/WhatsApp/Welcome
https://docs.genesys.com/Documentation/RN/8.5.3/mm-cht85rn/mm-cht8510906

Component Purpose
containing native or normalized JSON format.

Workspace Desktop Edition (WDE)
WDE is extended with Rich Messaging functionality
for specific channels via a plugin architecture.
Plugins are currently supported for ABC and
WhatsApp only.

Workflow Workflow allows rich messages to be sent through
the EventAttributes parameter.

Important
For backward-compatibility, structured messages are always accompanied with so
called "fallback" plain text messages. So, if an application representing a chat
participant does not know how to process the structured content, it will continue to
use a regular plain text message (which is supplied together with structured content).

How to deploy and use structured messages

In order to start using structured messages, you'll need to:

1. Configure the channel; see, Configuring structured messages.
2. Deploy eServices Manager; see, Install eServices Manager.
3. Using eServices Manager, create standard responses with structured content:

• For ABC and WhatsApp, see Structured Messages.
• For web chat (Chat Widget) provide the raw JSON.

4. Use standard responses:
• From WDE, for Apple Business Chat, see Standard Response Library, and for WhatsApp, see

Standard Response Library.
• In bots developed for BGS, see Bot implementation guidelines.

5. Alternatively, you can send structured messages from a custom desktop (or custom virtual agent)
through the Chat Server API in EventAttributes.

Important
When creating a standard response in eServices Manager, the fallback text messages
must be provided in the Plain Text Part window.

Chat Server Administration Rich Messaging Support

Chat Server Administration Guide 114

https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatWorkflow
https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCRM
https://docs.genesys.com/Documentation/ESDA/latest/ESMgr/installesm#configstructured
https://docs.genesys.com/Documentation/ESDA/latest/ESMgr/installesm
https://docs.genesys.com/Documentation/ESDA/latest/ESMgr/Interactive
https://docs.genesys.com/Documentation/MSGA/latest/ABC/ABCPlugin#Standard_Response_Library
https://docs.genesys.com/Documentation/MSGA/latest/WhatsApp/Plugin#Standard_Response_Library
https://docs.genesys.com/Documentation/BGS/latest/BGSQS/BGSDev#Bot_implementation_guidelines
https://docs.genesys.com/Documentation/ESChat/latest/Admin/ChatFCap#RM

Chat Widget support

In general, the same directions described above apply to Rich Messaging elements supported by Chat
Widget, with a few special notes:

• When creating the MediaOrigin business attribute in configuration management, genesys-chat must
be used as a name and the [rich-media-types] section must be populated with elements supported
by the Widget.

• Within the standard response for eServices Manager, raw JSON must be provided. At this time, no
graphical authoring tool is provided.

• Chat Widget Rich Messaging can currently only be used from bots (running through BGS) or by a custom
desktop.

Chat Server Administration Rich Messaging Support

Chat Server Administration Guide 115

https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCRM
https://docs.genesys.com/Documentation/GWC/latest/Deployment/GWCRM

	Chat Server Administration Guide
	Table of Contents
	Chat Server Administration
	Overview
	Sizing Guide, Setting Load Limits, and Health Monitoring
	Deploying a Chat Solution
	Deployment guidelines for async and regular chat

	Deploying High-Availability Chat Server
	Configuring a secure connection to Cassandra
	Initialization Cassandra scripts for Chat Server

	Multilingual Processing in Chat Server
	Masking Sensitive Data
	Inactivity Monitoring
	Contact Identification for Regular and Anonymous Chat
	How to send ESP requests to Chat Session from Workflow
	Integrating Chat Server with Genesys Historical Reporting
	File Transfer in Chat Solutions
	Chat Server API selected notes and topics
	Functional capabilities of chat protocol
	File Transfer API for Agent Desktop
	Description of Chat Protocol Elements
	Reason Codes

	Asynchronous Chat
	Async Chat Overview
	Push notifications via GMS to HTTP server
	Asynchronous Chat in Workspace Desktop Edition
	Asynchronous Chat in Widgets

	Chat Business Process Sample
	Rich Messaging Support

