
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Engage Chat 8.5.2

Chat Server Administration Guide

3/11/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Chat Server Administration 3

Sizing Guide, Setting Load Limits, and Health Monitoring 4
Deploying a Chat Solution 8
Deploying High-Availability Chat Server 10

Configuring a secure connection to Cassandra 15
Initialization Cassandra scripts for Chat Server 30

Multilingual Processing in Chat Server 32
Masking Sensitive Data 33
Inactivity Monitoring 36
Matching Contact Attributes 40
How to send ESP requests to Chat Session from Workflow 42
Integrating Chat Server with Genesys Historical Reporting 45
Chat Server API selected notes and topics 59

Functional capabilities of chat protocol 61

Chat Server Administration
The following topics provide information for Chat Server administrators:

Feature Description

Sizing Guide, Setting Load Limits, and Health
Monitoring

Describes how much load a solution can hold, how
to restrict the load and how to monitor the health
per Chat Server instance.

Deploying a Chat Solution Describes how to deploy a Chat Solution.

Deploying High-Availability Chat Server Describes how to deploy multiple Chat Server
instances in high availability mode.

Multilingual Processing Describes how to configure a solution to process/
work with multiple languages.

Masking Sensitive Data
Describes how to mask out sensitive data in chat
session messages/transcripts and in Chat Server
logs.

Inactivity Monitoring Describes how to configure chat session closure
upon participants’ inactivity.

Matching Contact Attributes Describes the approach to contact identification
and creation.

Sending ESP requests to Chat Session from
Workflow

Describes how to send messages, notices, and
other requests from workflow (like URS/ORS
strategies) to an active chat session.

Chat Server Reporting Data
Describes Chat Server reporting statistics attached
to the user data of the interaction in Interaction
Server.

File Transfer in Chat Session Describes how to deploy and configure file transfer
between chat session participants.

Chat Server API selected notes and topics
Describes selected cases and topics on how to use
Chat Server API for implementation of custom
desktop and widget.

Chat Server Administration

Chat Server Administration Guide 3

https://docs.genesys.com/Documentation/ES/Current/Articles/filetransfer

Sizing Guide, Setting Load Limits, and
Health Monitoring

Sizing Guide

The following guidelines are recommended for a Genesys Chat solution running on a single host with
two Intel Xeon 3.0 GHz processors. Observe these recommendations for an optimum (without
significant delay) performance.

Item Maximum

Message size 4 KB (Genesys Desktop limitation; Chat Server does not have
this restriction.)

Transcript size 54 KB (Genesys Desktop limitation; Chat Server does not have
this restriction.)

Concurrent sessions (in a realistic simple scenario) 1000 per Chat Server

Messages per second 50 (rare temporary peaks up to 150)

Sessions opened and closed per second 10 (rare temporary peaks up to 30)

Chat Server limits the maximum number of concurrent opened connections (for all protocol and
participants) with:

• 32768 on Linux.
• 4096 on Windows.

When opening and closing the connection, Chat Server prints in the log the current number of
opened connections (as "conns=").

Note: You can configure a timeout in Chat Server that prevents keeping unused connections open.
Use the user-register-timeout option to set the maximum time between establishing the
connection and receiving:

• Either a basic protocol Register request
• Or any flex protocol request

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 4

Connection Delay with Antivirus

It may take some time (up to several minutes on some UNIX Platforms) for Chat Server to connect to
an unopened port on a Windows host that is running an antivirus program. For example, if Chat
Server is running on Linux and is trying to connect to an inactive UCS instance, it could take up to
three minutes for Chat Server to detect that the listening port is not open.

Setting Load Limits

Starting in the 8.5.0 release of Chat Server, you can impose load limits on Chat Server: when Chat
Server reaches the specified limit, it no longer creates new sessions or restores existing sessions.

Set load limits using the following configuration options (full descriptions are in the eServices Options
Reference):

• Enable or disable the general functionality of load limitation using limits-control-enabled.
• Set specific limits:

• limit-for-flex-users—Maximum number of currently logged-in flex users.
• limit-for-reply-delay— Configures the maximum average delay (in milliseconds) for processing

requests. The average value is calculated on the limit-average-interval interval. This delay increases
if the Chat Server instance is overloaded with a large number of incoming requests.

• limit-for-sessions—Maximum number of concurrent chat sessions.
If any of these limits is reached, Chat Server stops creating and restoring sessions.

• If Chat Server is configured in primary/backup mode (not recommended; see Deploying High-Availability
Chat Server), you may want to stop it from reporting service unavailable to SCS when a limit is
reached. You can do this using limits-reached-report-scs. Blocking the reports avoids a scenario in
which Chat Server in primary/backup mode closes a chat session because (1) Chat Server reaches any
of its configured load limits, (2) Chat Server sends a service unavailable notification to Solution
Control Server, (3) SCS switches Chat Server to backup state, which closes the chat session. (This
scenario does not apply if Chat Server is in N+1 mode: multiple Chat Servers with no backup
configured).

• Set the point at which Chat Server returns to full functionality using limits-restore-threshold. This value
is a percentage of the limit set by the three limit-for-X options.

Example
If limit-for-flex-users is set to 400 and limits-restore-threshold is set to 80, then:

1. When the number of flex users reaches 400, Chat Server stops creating and restoring sessions, and
rejects login attempts by flex users.

2. When the number of flex users falls to 320, Chat Server returns to full functionality.

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 5

https://docs.genesys.com/Documentation/Options/Current/ES/Welcome
https://docs.genesys.com/Documentation/Options/Current/ES/Welcome

KPI (Key Performance Indicator) counters

Starting with release 8.5.103, Chat Server includes KPI (Key Performance Indicator) counters that
monitor activity within the server.

Accessing KPI counters
Access KPI counters in one of two ways:

• The Chat Server log. by configuring options log-output-content, log-output-proviso, log-output-timeout
in the [health-service] section.

• The web REST interface which you can configure by:
• Adding a port with the ID=health to the ports of Chat Server.
• Adjusting the soap-* options found in the [health-service] section.

Web interface
Access the web interface through the following URL format: http://ServerName:ServerPort/
Counters?<list of parameters> where:

• ServerName is the host name where Chat Server is running.
• ServerPort is the web service port, also specified as the health port of Chat Server.

Web interface parameters:

Name Description Valid Value Default V

metadata
Returns a list (in JSON format) of
all supported counters, with
descriptions.

true, yes
false, no false

content
Returns a list (in JSON format) of
counters according to the
provided parameter value.

all—returns all available counters
new—returns only recently updated
counters
set —returns all initialized (non-zero)
counters

all

reset Resets all counters to zero.
true, yes
false, no false

If a parameter is omitted or has an invalid value, then the default value is used for that parameter.
Parameters are processed according to the following rules:

• If reset is true, then all the counters will be reset and then the rest of the parameters will be
processed.

• If metadata is true, then the content parameter will be ignored and the metadata will be sent.

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 6

Example URLs:

• http://hostname:7000/Counters?content=set

• http://hostname:7000/Counters?metadata=true&reset=true

How counter values are calculated
All counters, except the process memory counter, are cumulative. The value begins to accumulate
the moment the application is launched or the counters are reset. To calculate the difference, the
user must use two sample counters from different times and subtract the earlier sample from the
later one. To find the counter's rate value, divide the difference by the number of elapsed seconds
between the two samples.

Important
On some platforms, the time for processing internal activities may be reported as
zero. This does not indicate an issue with the counter. On the contrary, a rapidly
growing value on the counter for internal activity indicates that the server is
overloaded.

Chat Server Administration Sizing Guide, Setting Load Limits, and Health Monitoring

Chat Server Administration Guide 7

Deploying a Chat Solution
This page outlines the essential steps of deploying a Chat Solution.

Overview

To deploy Chat Server, perform the following steps:

• Create a Chat Server application in configuration. Make sure that the following configuration is specified
correctly:

• Ports. At least 3 ports must be configured with the following IDs: default, webapi and ESP.
Additionally, if KPI must be exposed via REST API, port with ID health must be added.

• Connections. Chat Server must be connected to Interaction Server and UCS, and optionally Chat
Server could be connected to the Configuration Server application (usually confserv) and Message
Server. Setting addp is recommended for all these connections.

• Endpoints. The endpoints:*tenant_dbid* section must be renamed to contain an appropriate
tenant ID value (for example endpoints:1) and the default option must be initialized with a
queue name (to which Chat Server will submit interactions).

• Logs. By default logs are configured to hide all possible sensitive data - which however might not
be convenient if troubleshooting is required. Decide on how you want to set the hide-attached-
data and message-log-print-size options in the settings section and options in the log-filter-
data section.

• Set up Chat Server High Availability configuration if needed.
• Connect other applications to the Chat Server application:

• Interaction Server must be connected to the ESP port (addp is recommended for this
connection).

• GMS must be connected to the webapi port (addp is not recommended for this connection due
to short living nature of these connections).

• Install the Chat Server installation package (IP).
• Configure other applications to work with chat channels:

• Create/modify capacity rule to include the chat media type.
• Create/modify workflow (using either IR Designer or Composer) to route a chat interaction. For

information about sending messages to a chat session refer to How to Send Message or Notice to
Chat Session from Workflow.

• Enable GMS to provide chat API (by adding the chat.customer-support section).
• Configure agents (persons in configuration) with a chat channel access.
• Adjust configuration of Workspace (agent desktop) if needed. For WDE review the chat.* and

chatserver.* options and for the openmedia.workitem-channels option add the chat value.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 8

Interaction Server Cluster Support

Please refer to Interaction Server Cluster documentation (in particular, review Special Considerations
for Media Servers in Suggested Deployment Configuration) in order to configure Chat Server to work
with Interaction Server Cluster.

Important
The ESP Configuration Must Be Symmetrical section means that in order to be able to
send ESP messages from workflow to Chat Server using Interaction Server Cluster,
each Interaction Server node in the cluster must have its own connection to ESP port
of Chat Server.

Chat Server Administration Deploying a Chat Solution

Chat Server Administration Guide 9

https://docs.genesys.com/Documentation/ES/latest/Depl/IxnClus
https://docs.genesys.com/Documentation/ES/latest/Depl/IxnClus#Special_Considerations
https://docs.genesys.com/Documentation/ES/latest/Depl/IxnClus#ESP_Configuration_Must_Be_Symmetrical

Deploying High-Availability Chat Server

Overview

Chat Server can run in high availability (HA) mode where in the case of any Chat Server failure, chat
sessions can be continued on other running Chat Server instances. Run Chat Server in load-balancing
mode (also known as N+1) to enable HA mode. In load-balancing mode, configure Chat Server to run
all instances in primary, or active, mode with no backup applications configured. Note: Primary and
backup mode are still supported, but not recommended.

When running Chat Server in HA mode:

• The web chat application (for instance, Genesys Mobile Services or GMS) selects an active Chat Server
instance to begin a new chat session. If the instance becomes unavailable during the course of the chat
session, the web chat application selects another active Chat Server instance where the session will be
restored and continued. At session restoration, Chat Server updates the interaction properties in
Interaction Server with connection parameters that reflect the new location of the chat session.

• Agent Desktop watches for interaction property updates. After receiving the appropriate notification,
Agent Desktop reconnects to the chat session at the specified Chat Server instance.

In HA mode, Chat Server stores the intermediate transcript after each submitted chat session
message in persistent storage. This allows the chat session to be restored on a different Chat Server
instance upon request. You can configure either of the following options to store the intermediate
session transcripts:

• UCS – UCS configuration is simpler but creates an additional load on UCS and its database which the
system can tolerate for small or medium sized deployments.

• Cassandra – Cassandra requires special configuration but removes the load from UCS which is beneficial
to deployments with higher loads.

Note: In both cases, once the session has ended, the final transcript will be stored in UCS.

Configure Chat Server for HA

Configure as follows:

1. Configure and deploy the required number of Chat Server instances based on the expected load.
2. Connect Web API Server (GMS) to the webapi port of all Chat Server instances.
3. Connect Interaction Server to ESP port of all Chat Server instances.
4. Set the following values for options in the settings section for Chat Server applications:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 10

• session-restoration-mode = simple

This enables Chat Server's session restoration functionality.

Note: The session-restoration-mode option has no effect unless the transcript-auto-save option is set to a valid
positive value.

• transcript-auto-save = 1

This forces Chat Server to update the transcript in UCS after each submitted message. You may also set this option to 2
(notify clients when the transcript is updated), however that would be effective only if the agent desktop can process special
notifications from Chat Server (in particular, the notice ucs-save-fail/save). From the standpoint of resources, using the
value 2 will slightly increase CPU usage; also Genesys Interaction Workspace does not currently support this functionality.

• transcript-save-on-error = close

This forces Chat Server to close the chat session (without a final update in UCS) if, during the session, Chat Server detects a
non-recoverable error or failure message when trying to store the intermediate chat session transcript.

5. Review the values for the following options (see the eServices Options Reference for full descriptions):
• transcript-resend-attempts

• transcript-resend-delay

• transcript-save-notices

The default values are acceptable for HA functionality; however you may wish to evaluate whether those values produce the
behavior that you expect.

Deploying Chat Server with Cassandra (Optional)

When Chat Server uses UCS to save intermediate transcripts it produces an additional load on the
UCS database, especially for deployments with a high volume of customer chat interactions. To
improve the performance of UCS and its database, Chat Server (starting with release 8.5.104) can
use Cassandra for this functionality. With Cassandra, Chat Server requires UCS only to store the final
chat transcript upon chat session completion.

Important
• Chat Server supports Cassandra only when Chat Server is deployed either on Windows

or Linux.
• Chat Server, deployed with Cassandra, must run in the UTF-8 mode to support non-ASCII

characters in chat conversations.

To facilitate the process above, the following steps must be completed after configuring Chat Server
for HA:

• Deploy Cassandra.
• Initialize Cassandra for Chat Server.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 11

https://docs.genesys.com/Documentation/Options/Current/ES/ChatServer

• Connect Chat Server with Cassandra.

Deploy Cassandra
Chat Server supports Apache Cassandra 2.2. Download the latest stable release of Cassandra 2.2.x
here.

Important
For multi-node (cluster) Cassandra installation, use NTP (Network Time Protocol) to
synchronize the clocks on all nodes.

Cassandra installation
For simple one-node Cassandra deployment:

1. Modify the cassandra.yaml configuration file:
1. Set the value of seeds, listen_address, and rpc_address to the host IPv4 address.
2. Make sure that Cassandra ports specified in the cassandra.yaml configuration file

do not overlap with ports used by existing applications.

2. For load testing purposes, modify the cassandra.yaml configuration file:
1. Set the value of auto_snapshot to false.
2. Set the value of compaction_throughput_mb_per_sec to 0.
3. Set the value of write_request_timeout_in_ms to 10000.

3. Start Cassandra node.

Initialize Cassandra for Chat Server
The initialization scripts are located in the cassandra sub-folder of the Chat Server installation folder.
Before running the scripts using the Cassandra CQL Shell to create a new keyspace and the required
tables, you must set the following values:

• Replication factor: In production, Genesys recommends a replication_factor of at least 3. The
replication strategy should be set according to the cluster and datacenter configuration.

• Time-to-live: Occasionally, in case of failures some records in Cassandra are not be deleted by Chat
Server. To setup a Cassandra self-cleanup procedure that will delete records after a certain time, select
the appropriate script from the "Cassandra" sub-folder and set default_time_to_live and
gc_grace_seconds.

Note: For version 8.5.104 of Chat Server, initialization scripts are not included with installation
package. Scripts could be found here.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 12

Connect Chat Server to Cassandra
To Connect Chat Server to Cassandra:

1. Create and configure a Chat Server Cassandra RAP application object based on the
ChatServerCassandraRAP template provided in the installation package.
1. Configure Host in the Server Info tab to point to one of the Cassandra cluster nodes. Configure the

default port to the Cassandra cluster connection port and set the Reconnect Timeout.
Note:
• The Reconnect Attempts parameter in the Server Info tab is not used.

2. In the Options tab, configure the cassandra section. Refer to the Options Reference Guide or the
contents of ChatServerCassandraRAP.xml.
Note:
• In production, the recommended read and write consistency level is quorum.
• If the contact-points option is not set, the Cassandra Cluster uses the Host defined in the

Server Info tab as a contact point. If set, this option's value is used instead of the Host defined
in the Server Info tab.

• In order to configure authenticated access to Cassandra nodes, specify username and password.
Note: You need to provide required configuration for Cassandra in the cassandra.yaml
configuration file for authenticator.

2. Optionally, see Configure a secure connection to Cassandra for more information.
3. Add a connection from each Chat Server application to the newly created Chat Server Cassandra RAP.
4. Restart Chat Server.

Tip
In order to monitor Cassandra availability for Chat Server, configure alarms in
management framework for log messages:

• 59520: Cassandra status changed to "UNAVAILABLE".
• 59521: Cassandra status changed to "AVAILABLE".

Run a Test

A properly configured solution with HA mode must work without any additional configuration for other
components. This section describes a simple test.

Requirements:

• GMS and Widget CX

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 13

https://docs.genesys.com/Documentation/Options/Current/ES/Welcome

• Interaction Workspace (agent desktop)
• At least two running instances of Chat Server

Conduct the test as follows:

1. Start a chat session using Widget CX.
2. Send a message to verify that the chat session is active.
3. Then kill the Chat Server process with the ongoing chat session using Task Manager on Windows or kill

-9 on UNIX. GMS will then attempt to connect to another Chat Server instance where the chat session
will be restored. At this point you will see a message showing that a user was disconnected and
connected again.

4. Send a message to verify that the chat session continues.
5. Optionally, examine the Chat Server logs to see what actions were performed by the server to restore

the chat session.

How to Upgrade Running Chat Solution

To upgrade Chat Server to a newer version in the N+1 deployment (also called load-balancing mode,
when two or more instances are running in primary mode) without service interruption the following
steps are necessary for each Chat Server instance:

1. Make a certain instance of Chat Server unavailable for the creation of a new chat session (from GMS) by
disabling Chat Server application in Configuration Server/Layer.

2. Wait until all current chat sessions are finished in this particular instance. This can be validated in Chat
Server logs by the message "Int 59245 data: deleting session with sid=... and intx=.. (current
sessions=0)". Or by requesting KPI counters via the web (REST) interface and validating that
"session_created-sessoin_closed" is equal to zero.

3. Stop Chat Server. Replace Chat Server with a newer version (uninstall existing IP, install a new one). If
needed, modify/update the Chat Server application. Enable the application in configuration. Start Chat
Server.

If the load allows, several instances of Chat Server could be upgraded at the same time. Make sure to
run enough Chat Server instances to handle the current load.

Chat Server could also be shutdown (not recommended) without being disabled and without waiting
for current sessions to be finished. In this case, GMS moves chat sessions, running on this instance,
to a different instances of Chat Server. This might result in short disruptions for those chat sessions
(with additional participant left/added messages in chat session transcript).

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 14

Configuring a secure connection to
Cassandra

The SSL communication mode between Chat Server and Cassandra nodes is optional and can be
configured in the [encryption] section of the Chat Server Cassandra RAP object.

Important
If a shared Cassandra ring is used, the impact of your settings on other Cassandra-
dependent components should be verified prior to making changes.

The following examples assume that:

• The Cassandra cluster consists of two nodes, node1 and node2, running on hosts with IP addresses
172.21.80.85 and 135.225.58.181.

• All passwords in this example are "genesys".
• The java keytool and openssl are available for certificate creation and manipulation.
• Only one Chat Server Cassandra RAP is configured for all Chat Servers in the solution, so relative paths

to the certificates and keys should be the same on all Chat Server hosts. Should these paths be
different, you can configure multiple Chat Server Cassandra RAP objects pointing to the same
Cassandra cluster.

Example of certificates creation
Cassandra nodes certificate creation

Create a keystore and generate a node1 certificate.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 15

keytool -genkeypair -noprompt -keyalg RSA -keysize 2048 -validity 36500 -alias node1 -keystore keystore1.jks -storepass genesys -keypass
genesys -dname "CN=172.21.80.85, O=Genesys, L=Daly City, ST=California, C=US"

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 16

Keystore keystore1.jks should be accessible by node1 and referred to in section
client_encryption_options of the cassandra.yaml file in node1 configuration.

Create a keystore and generate a node2 certificate.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 17

keytool -genkeypair -noprompt -keyalg RSA -keysize 2048 -validity 36500 -alias node2 -keystore keystore2.jks -storepass genesys -keypass
genesys -dname "CN=135.225.58.181, O=Genesys, L=Daly City, ST=California, C=US"

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 18

Keystore keystore2.jks should be accessible by node2 and referred to in section
client_encryption_options of the cassandra.yaml file in node2 configuration.

Creating Client Certificates

Generate a client certificate with a private key.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 19

openssl req -x509 -days 365 -subj "/C=US/ST=California/L=Daly City/CN=chatclient" -newkey rsa:2048 -keyout chatclientkey.pem -out
chatclient.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 20

Copy both output files chatclientkey.pem and chatclient.pem into each Chat Server host and
configure the client-private-key-file and client-certificate-file accordingly.

Exporting of Cassandra Node Certificates

Export node1 certificate:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 21

keytool -exportcert -rfc -noprompt -alias node1 -keystore keystore1.jks -storepass genesys -file cassandra1.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 22

Export node2 certificate:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 23

keytool -exportcert -rfc -noprompt -alias node2 -keystore keystore2.jks -storepass genesys -file cassandra2.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 24

Copy the exported node certificates, cassandra1.pem and cassandra2.pem, to each Chat Server
host into the directory that is passed through each Chat Server Cassandra RAP object trusted-cert-
dir option.

Importing Client Certificates

Import the client certificate into the truststore of node1:

keytool -import -file chatclient.pem -alias chatclient -keystore truststore1.jks -storepass
genesys

Import the client certificate of the truststore of node2:

keytool -import -file chatclient.pem -alias chatclient -keystore truststore2.jks -storepass
genesys

Cassandra and Java with Cryptography Extension

Cassandra nodes with client encryption enabled may fail to start unless Java is updated with the Java
Cryptography Extension.

1. Download the Java Cryptography Extension (JCE) from Oracle's website.
2. Replace US_export_policy.jar and local_policy.jar in your JRE Java folder (found in: \jre7\lib\security

for Windows or /jre/lib/security/ for Linux-like platforms).
3. Restart Cassandra.

Client encryption with different Cassandra node certificates and client authentication

In cassandra.yaml of node1:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore1.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

In cassandra.yaml of node2:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore2.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore2.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

Cassandra RAP, section encryption:

enbabled=true
trusted-cert-dir=<Path to directory containing cassandra1.pem and cassandra2.pem. The
chatclientkey.pem file should not be placed into this directory.>
client-private-key-file=chatclientkey.pem

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 25

password=genesys ## openssl will prompt for this password to be entered during the
certificate creation
client-certificate-file=chatclient.pem
verify-peer-cert=true
verify-peer-identity=true

Using cqlsh with SSL encryption

Use the following directions to configure the cqlshrc configuration file.The following examples
assume that all relevant .pem files are copied into the local C:\certs\ directory.

1. Copy cqlshrc.sample from the ~/conf directory to another location, for example C:\certs\ directory.
2. Rename the file to cqlshrc.conf.
3. Modify the following sections to be consistent with the encryption configuration shown above:

[authentication]
;username = fred
;password = !!bang!!$
;; We assumed no user name or password is set in the Cassandra example

[cql]
version = 3.2.0
;; it would not connect with lower version

[connection]
hostname = 172.21.80.85
;; this is node1 of our example
port = 9042
;; we assume the port is default
factory = cqlshlib.ssl.ssl_transport_factory

[ssl]
certfile = C:\certs\cassandra1.pem
;; the certificate of node 1
validate = true
;; assume that we want to validate the node, optional
userkey = C:\certs\chatclientkey.pem
;;if client auth is required on cassandra
usercert = C:\certs\chatclient.pem
;;if client auth is required on cassandra

[certfiles]
172.21.80.85 = C:\certs\cassandra1.pem
;; the cert for node1
135.225.58.181 = C:\certs\cassandra2.pem
;; the cert for node2

Start cqlsh with the following command:

cqlsh --ssl --cqlshrc=C:\certs\cqlshrc.conf

Cqlsh shell should connect to node1 using the configured SSL.

Client encryption with a single Cassandra node certificate and client authentication

In cassandra.yaml of node1:

client_encryption_options:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 26

enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore1.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

In cassandra.yaml of node2:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore2.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: true

Cassandra RAP, section encryption

enbabled=true
trusted-cert-dir=<Path to directory containing cassandra1.pem. The chatclientkey.pem file
should not be placed into this directory.>
client-private-key-file=chatclientkey.pem
password=genesys ## openssl will prompt for this password to be entered during the
certificate creation
client-certificate-file=chatclient.pem
verify-peer-cert=true
verify-peer-identity=false

Client encryption with a single Cassandra node certificate and no client authentication

In cassandra.yaml of node1:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore1.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: false

In cassandra.yaml of node2:

client_encryption_options:
enabled: true
keystore: <path-to-keystore>/keystore1.jks
keystore_password: genesys ## The password you used when generating the keystore.
truststore: <path-to-truststore>/truststore2.jks
truststore_password: genesys ## The password you used when generating the truststore.
require_client_auth: false

Cassandra RAP, section encryption

enbabled=true
trusted-cert-dir=<Path to directory containing cassandra1.pem>
client-private-key-file=
password= ## empty
client-certificate-file=
verify-peer-cert=true
verify-peer-identity=false

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 27

ECDHE Cipher Suite Support

When the Java version used does not support ECDHE cipher suite, the cipher_suites option of the
client_encryption_options section in cassandra.yaml file must be modified to exclude cipher
suites prefixed with TLS_ECDHE_. For example:

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 28

cipher_suites:
[TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA]
#,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA]

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 29

Initialization Cassandra scripts for Chat
Server
Note: The content of this page is only applicable for version 8.5.104 of Chat Server. For later
versions, starting with 8.5.105, initialization scripts are included in the installation package in the
subfolder cassandra.

Create keyspace
CREATE KEYSPACE genesys_chat_server
WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 };

USE genesys_chat_server;

Create tables without a cleanup procedure
CREATE TABLE transcripts (

id text,
creatorid text,
transcript text,
PRIMARY KEY (id, creatorid))

WITH CLUSTERING ORDER BY (creatorid ASC);

Table owner
CREATE TABLE owner (

id text,
ownership_start_time timeuuid,
creatorid text,
PRIMARY KEY (id, ownership_start_time))

WITH CLUSTERING ORDER BY (ownership_start_time DESC);

Create tables with a cleanup procedure
You can specify default_time_to_live and gc_grace_seconds, as shown in the following example,
where 1209600 is the number of seconds in two weeks:

CREATE TABLE transcripts (
id text,
creatorid text,
transcript text,
PRIMARY KEY (id, creatorid))

WITH CLUSTERING ORDER BY (creatorid ASC)
AND default_time_to_live = 1209600 AND gc_grace_seconds = 1209600;

Table owner
CREATE TABLE owner (

id text,
ownership_start_time timeuuid,
creatorid text,
PRIMARY KEY (id, ownership_start_time))

WITH CLUSTERING ORDER BY (ownership_start_time DESC)

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 30

AND default_time_to_live = 1209600 AND gc_grace_seconds = 1209600;

For more information, see Deploying Chat Server with Cassandra.

Chat Server Administration Deploying High-Availability Chat Server

Chat Server Administration Guide 31

Multilingual Processing in Chat Server

Overview

Genesys Chat can process multiple languages simultaneously, including:

• Chat transcript messages. The data is transferred in UTF-16.
• Attached data (such as first name, last name, subject, and so on) and ESP messages (submitting

messages to chat session from the strategy). The data is transferred in UTF-8. There are the following
requirements:
• Chat Server must be running with UTF-8 locale; details are in "Internal Locale of Chat Server" below.
• If UCS is running on Windows, its startup script (ContactServerDriver.ini) must be configured to

use ‑Dfile.encoding=UTF-8. If UCS is running on UNIX, no special configuration is required.
• Routing strategies must send data in UTF-8 encoding.

• Chat Server can be configured to send inactivity system messages in different languages.

Internal Locale of Chat Server

The encoding and locale that Chat Server uses internally are determined by the following, in order of
priority:

1. The command line parameter -codepage. The value of the parameter must be a valid and enabled
encoding name. To use UTF-8 on Windows platform the value must be UTF-8.

2. Connection to a Configuration Server that is running in multi-language mode, which sets Chat Server's
internal locale to UTF-8.

3. The current system locale.

Sending Chat Messages from Routing Workflows

To send messages in different languages to a chat session from a workflow the following is required:

• Chat Server runs in UTF-8 mode.
• Workflow (strategies) must be created:

• Either by Interaction Routing Designer of version 8.1.400.10 or later (if URS is used).
• Or by any version of Composer (if ORS is used).

Chat Server Administration Multilingual Processing in Chat Server

Chat Server Administration Guide 32

Masking Sensitive Data
Chat Server logs and chat transcripts might contain sensitive data such as credit card numbers,
phone numbers, Social Security numbers, and so on. You can omit this data from logs and mask it in
transcripts.

Logs

To omit sensitive data from logs, you must configure both UCS and Chat Server, as follows:

• In the [settings] section, set message-log-print-size to 0. This means that logs do not show the
messages sent between chat participants. Where a message occurs, the log shows [truncated from
size=x], where x is the number of characters in the suppressed message.

• In the [log-filter-data] section,
• Set StructuredText to hide so that logs will omit the transcript that UCS sends to Chat Server.
• Set Transcript to hide so that logs will omit the transcript that Chat Server sends to UCS.

Chat Transcripts

Overview
Chat Server can mask sensitive data in messages during chat sessions and in saved transcripts by
using a regular expression (regex) to find and substitute the data with a configurable replacement
character. Regular expressions, specified for Chat Server, must use the same syntax and semantics
as defined for Perl 5 (however, Privacy Manager imposes additional constrain by allowing only
java.util.regex compatible expressions). When enabled this functionality will:

• Examine each chat message with an ordered set of regex rules. Use the apply-config option to configure
the source/location of regex rules that will be applied. Note: all options are located in the transcript-
cleanup section.

• Replace any part of the message that matches a regex rule with a replacement character specified by
the configuration. The default is specified by the default-repchar option.

• When replacing symbols you can choose to replace all symbols or only digits. When replacing digits, you
can also leave the last few digits unmasked —see the default-spec option.

This functionality can be applied for the messages of an ongoing chat session and/or a transcript
saved in the contact history (UCS). This is specified by the apply-area option.

Chat Server Administration Masking Sensitive Data

Chat Server Administration Guide 33

Tip
• Starting with release 8.5.103, Chat Server supports reading the regex rules from UCS. To

do this,
• Set the apply-config option to mix or ucs.
• Use Privacy Manager, a plugin for Genesys Administrator Extension (GAX), to select

and activate these rules.

• Prior to release 8.5.103, Chat Server used different options from the settings section
for this functionality. Click here to view the previous description.

Unmasking Data for Active Agents
Starting with release 8.5.106, Chat Server allows to unmask (i.e. suppress masking) for sensitive data
in messages from a customer. It is controlled by the settings of the unmask-live-dialog configuration
option. Unmasking is applicable only in the presence of active (visible to customer) agents. Coaching
and monitoring agents will not see unmasked data. For active agents, only the data sent after the
agent joined the session is unmasked.

Example

Consider the following scenario (assuming that the rule for masking credit cards is enabled):

1. The customer initiates a chat session. Without waiting for an agent, the customer sends the credit card
number in a message. The credit card number is masked out.

2. An agent joins the session. This agent sees the chat session transcript from the very beginning where
the credit card number is masked out in the message from the customer.

3. The customer sends the credit card number again. Both, the agent and the customer, see it.
4. A second agent joins the chat session for a conference conversation. The second agent sees the chat

session transcript from the very beginning where the credit card number is masked out in all messages.
5. The customer sends the credit card number again. Now both agents and the customer see it.

After this chat session is finished, the transcript, saved in the contact history (UCS), has all credit card
numbers masked out.

Default Rules if No Configuration is Provided
If the apply-config option has a value of cfg or is set to mix and no UCS PII configuration has been
provided for the given chat session, Chat Server uses the following default rules to find sensitive
data:

Order Name Regular Expression

1. Credit card GCTI_CreditCards
(?>^|(?<=[\s[:alpha:](),.:;?!"'`]))(?>4\
d{3}|5[1-5]\d{2}|6011|622[1-9]|64[4-9]\d|65\
d{2})[-.]?\d{4}[-.]?\d{4}[

Chat Server Administration Masking Sensitive Data

Chat Server Administration Guide 34

https://docs.genesys.com/Documentation/ES/latest/Admin/SensDat#Deploying_Privacy_Manager
https://docs.genesys.com/Documentation/ESChat/8.5.0/Admin/ChatSrv#In_Chat_Transcripts

Order Name Regular Expression
-.]?\d{4}(?>$|(?=[\s[:alpha:](),.:;?!"'`]))

2. Social Security number GCTI_SSN
(?>^|(?<=[\s[:alpha:](),.:;?!"'`]))(?!000|666|9)\d{3}[-
]?(?!00)\d{2}[-
]?(?!0000)\d{4}(?>$|(?=[\s[:alpha:](),.:;?!"'`]))

3. Phone number using the North
American Numbering Plan GCTI_PhoneNANPA

(?>^|(?<=[\s[:alpha:](),.:;?!"'`]))(?:\+?1[-
.]?)?(?:\(?[2-9][0-9]{2}\)?[-.
]?)?[2-9][0-9]{2}[-.
]?[0-9]{4}(?>$|(?=[\s[:alpha:](),.:;?!"'`]))

Typing Preview
Typing preview allows an agent to see text that a customer types before the text is submitted to the
chat session. You can have Chat Server mask all digits in the typing preview by setting the typing-
preview (called transcript-cleanup-typing before release 8.5.103) option to a value other than none.
Chat Server then replaces all digits in the typing preview with the character specified by default-
repchar (called transcript-cleanup-mask before release 8.5.103).

Chat Server Administration Masking Sensitive Data

Chat Server Administration Guide 35

Inactivity Monitoring

Overview

Inactivity monitoring is a Chat Server functionality that allows closing a chat session if there is no
activity by chat participants after a certain period of time.

Inactivity monitoring is configured in the inactivity-control section. To enable this functionality
set the enabled option to true.

If inactivity monitoring is enabled, it works as following:

• Chat Server enables inactivity monitoring only if at least one customer and one agent are participating
in the chat session. If the inactivity monitoring is enabled in a chat session, then:

• If there is no activity during the time specified by the timeout-alert option, Chat Server issues a warning
comprising the text specified by the message-alert option.

• If there is no activity for another timeout-alert2 seconds, Chat Server issues a warning comprising the
text specified by the message-alert2 option. Note, that timeout-alert2 is activated only if the option
value is greater then zero, otherwise the timeout-close is activated next.

• If there is no activity for another timeout-close seconds, Chat Server issues a notification consisting of
the text specified by the message-close option and closes the chat session (and removes all
participants from it).

• To suppress sending a message when any of the timeouts expire, set the corresponding message-xxx to
the empty value. The empty message value does not disable the timeout itself.

• If any activity occurs, Chat Server resets the current timer and reactivates the timeout-alert timer.
Activity means any activity in the chat session that is visible to all participants—so, for example,
coaching messages between agents do not count as chat activity.

Inactivity monitoring control is supported for the following components:

Component Minimum Supported Version Configuration

Chat Server 8.5.104.08
Disabled by default. Configured
in the [inactivity-control]
section.

Genesys Mobile Services 8.5.106.14 No special configuration needed.

Chat Widget 9.0.000.08 No client-side configuration
needed.

Workspace Desktop Edition 8.5.109.25 No special configuration needed
Workspace Web Edition not supported n/a

If a component that does not support this feature is deployed in solution, inactivity monitoring control
must be disabled in the Chat Server options to avoid chat session closure without notifying all current
participants.

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 36

Configuration per Session from Workflow

There is a possibility to set a different inactivity control configuration for different chat sessions. In
order to facilitate it, the workflow (i.e. ORS/URS strategy) must send the IdleControlConfigure ESP
request. Upon receiving such request for an ongoing chat session Chat Server:

• Modifies inactivity control parameters for a given chat session.
• Resets current inactivity control timers if any are currently enabled.

Localization of System Inactivity Messages

Chat Server can be configured to send inactivity system messages in different languages.

Important
This functionality is supported only when Chat Server is configured with a single
tenant.

How to Configure Languages
A language must be configured as Attribute Values of the Language in Business Attributes. An
arbitrary number of languages with arbitrary names can be created.

Tip
Each attribute (language) has a name and a display name which can be different.
Chat Server uses the attribute name and not the display name for this functionality.

Each attribute (language) can contain the following options in the Annex:

Section Option Mandatory Possible values Notes

code language optional ISO 639 code

The value is
converted to
lowercase when
read from
configuration.

code country optional ISO 3166 code

Only used if the
language option is
specified. The
value is converted
to uppercase when

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 37

Section Option Mandatory Possible values Notes
read from
configuration.

code use-language-as-
default optional true / false

See How Chat
Server Associates
Sessions with
Languages.

chat-server message-alert optional any string (can be
empty)

If specified,
overrides the
message-alert
option's value for
this language.

chat-server message-alert2 optional any string (can be
empty)

If specified,
overrides the
message-alert2
option's value for
this language.

chat-server message-close optional any string (can be
empty)

If specified,
overrides the
message-close
option's value for
this language.

How Chat Server Associates Sessions with Languages
Each chat session in Chat Server can be associated with a language, configured as a business
attribute. For each chat session Chat Server is looking for two special key-value pairs in the initial
UserData:

• GCTI_LanguageName. If it is present in the UserData, only this parameter is used. It must contain the
name of the language business attribute. If such language business attribute does not exist, the
configuration from Chat Server options is used for this session.

• GCTI_LanguageCode. Only if GCTI_LanguageName is not present in the UserData, then
GCTI_LanguageCode is checked. It must contain code in the language-country format (or
language_country for backward compatibility). Chat Server parses this code into ISO language (value
is converted to lowercase) and ISO country (value is converted to uppercase). Then Chat Server is
trying to find the appropriate business attribute for this session as follows:
1. The business attribute with exactly the same language and country, specified in the code section. If

not found,
2. The attribute with the same language and empty (or not specified) country. If not found,
3. The attribute with the same language and any country code specified, however only among

attributes which contain the use-language-as-default=true option.

How to Change Chat Session Language
A session language can be changed during the course of a chat session by:

• Sending a request from the workflow.
• Sending a system notice from the chat wigdet or an agent desktop with the configure-session action

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 38

and user data with either GCTI_LanguageName or GCTI_LanguageCode.

Chat Server Administration Inactivity Monitoring

Chat Server Administration Guide 39

Matching Contact Attributes
When a home user asks to open a chat session, the web interface gets him or her to fill in some
identifying information, such as email address, phone number, first name, last name, an so on.

This identifying information becomes a part of the user data that is associated with the interaction.
The web interface relays this user data to Chat Server, and Chat Server sends it to UCS.

UCS then looks to see if the home user matches any of the people that it has represented as contacts
in its database. It does this according to the following algorithm:

Attribute Name Search Order

EmailAddress 0

PhoneNumber 1

FirstName 2

LastName 2

UCS is hard-coded to use this algorithm with interactions coming from Genesys media servers,
namely email, chat, and callback interactions. For other media the algorithm can be customized.

So if the user data includes an attribute called EmailAddress, UCS looks for a contact in its database
whose EmailAddress attribute has the same value as the user data attribute. (For details on the
structure of this part of the UCS database, see the "Contact Package" chapter in eServices 8.0
Selected Conceptual Data Models for the UCS Database.) The name of the user data attribute must
be exactly EmailAddress —if it is email_address or anything else, UCS will not try to match its
value with the stored value of EmailAddress.

If UCS finds no matching contact, it creates a new one using the user data (see See Contact
Identification and Creation for more information).

For either a matching contact or a new one, UCS sends the following, as data about the contact for
this interaction, to Chat Server:

• The matched attribute (if not email address, then phone number, and so on).
• The attribute ContactID.

• All other attributes of this contact that UCS has stored in its database, except:
• If any user data has an attribute name that matches an attribute name in the UCS Contacts table, UCS

returns the value of the attribute from the user data, not the value from the Contacts table. It does not
modify the value in the Contacts table.

The last point can cause a problem, as in the following example:

Chat Server Administration Matching Contact Attributes

Chat Server Administration Guide 40

1. Home user Steve Jones wants to open a chat session. In the web interface, he types in his correct email
address sjones@here, then erroneously types his first name as Speve.

2. UCS finds a contact record for sjones@here.
3. UCS returns to Chat Server data about an existing contact whose email address is sjones@here and

whose first name is Speve. UCS still has the correct first name Steve in its database, but the user data,
with the erroneous Speve, preempts the correct data for the purposes of this chat interaction.

4. The system uses the user data to generate the message prompt that marks the home user in the chat
display. As a result, the chat session displays something like the following:
14:52:20 SpeveJ has joined the session
14:52:30 SpeveJ > Hi.

5. The Agent Desktop displays the incorrect first name (in the user data on the lower left pane) and the
correct first name (on the Customer Records pane on the right). The agent sees the incorrect first name
and opens the chat session by typing, “Hello Speve, how can I help you?”

6. The interaction passes through a strategy that generates an automatic response, which opens, “It was
good chatting with you, Speve.”

To avoid this type of problem, be sure that the system (including strategies and desktop) as well as
its users refer to the UCS database, rather than user data, for contact attributes. In the example just
cited, the agent must be sure to look at the Customer Records (right-hand) pane of the Desktop for
the name of the contact. However, it is not possible to avoid the use by the system of user data to
generate the message prompt (SpeveJ in the example).

It is also advisable to closely monitor the inventory of contact attributes that can become user data.

Chat Server Administration Matching Contact Attributes

Chat Server Administration Guide 41

How to send ESP requests to Chat Session
from Workflow

Introduction

Genesys can send messages, notices (types are limited), and other requests to a chat session from a
workflow (an URS/ORS strategy).

For example, when a customer starts a chat session from the web page, the chat session is created in
Chat Server and corresponding interaction is submitted in Interaction Server. At some point, the
interaction is processed by the workflow, which can send a message like "agent will be with you
shortly... " and then the routing starts (to find an agent to serve this chat communication).

Prerequisites

Interaction Server application (in configuration) must be connected to Chat Server application's "ESP"
port.

How to Implement

The following steps are necessary in order to send a message or notice from the URS strategy:

1. Verify that the interaction is still online by checking that UData['IsOnline'] != '0'. If the interaction
is offline, which means that the chat session is closed, there is no sense to send messages into it.

2. Extract from the interaction properties the name of the Chat Server application which is processing/
handling the ongoing chat session. This can be achieved by assigning UData['ChatServerAppName']
to a local variable.

3. Use the External Service block in the Data and Services palette in IR Designer (or the External
Service block in the Server Side palette in Composer) to send a request. The following general
parameters must be specified:
• The Application type must be set to ChatServer.
• The Application name must be set to a value obtained from the user data in step 2.
• The Service name is set to Chat.
• The Don't send user data must be unchecked.

4. Set the corresponding Method name to send one of the ESP requests, described below.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 42

Method Message
Message – submits a text message to a chat session. Provide the following parameters:

Parameter Mandatory Value Description

MessageText yes Message text to submit to a chat
session

MessageType optional
Specify any arbitrary text as
message type (transparent for
Chat Server).

Nickname optional
Specify a nick name of a
participant on behalf of whom
the message will be shown in a
chat session.

Visibility optional

Possible values:

• ALL – message will be visible
to all chat participants
(default value)

• INT – message will be visible
to agents and supervisors
only

• VIP – message will be visible
to supervisors only

Use visibility wisely as not all
components (including Genesys
Workspace) may show it correctly.

Method Notice
Notice – sends a notification of the specified type to a chat session. Provide the following
parameters:

Parameter Mandatory Value Description

NoticeType yes

Possible values:

• USER_PUSHED_URL – to
implement the "push URL"
functionality (NoticeText
must contain valid URL).

• USER_CUSTOM – could be used
for any custom purpose
(completely transparent for
Chat Server).

NoticeText optional Any arbitrary text.

Nickname and Visibility The same as in the Message
Method.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 43

Method IdleControlConfigure
IdleControlConfigure – allows to change the configuration for inactivity control monitoring for a
given chat session. Provide the following parameters (while all parameters are optional, at least one
parameter must be provided):

Parameter Mandatory Notes

reset-parameters optional

Resets all inactivity control
parameters to values provided in
the Chat Server application
configuration.
Valid values: true / false
(default).

enabled optional
include-notices optional
message-alert optional

message-alert2 optional Available starting with Chat
Server release 8.5.107.

message-close optional
timeout-alert optional

timeout-alert2 optional Available starting with Chat
Server release 8.5.107.

timeout-close optional

Method ConfigureSession
ConfigureSession - allows you to change the language for the current chat session. At least one of
the following parameters must be included:

Parameter Mandatory Value Description

GCTI_LanguageCode optional

If this parameter is present, other
parameters are ignored . The
parameter must contain the
name of the language business
attribute.

GCTI_LanguageName optional

This parameter is used only if the
GCTI_LanguageCode parameter
is not present. Parameters are
processed as described in the
How Chat Server Associates
Sessions with Languages section.

Chat Server Administration How to send ESP requests to Chat Session from Workflow

Chat Server Administration Guide 44

Integrating Chat Server with Genesys
Historical Reporting
Chat session reporting relies on Interaction Server reporting events to provide session-related data to
the products that enable Genesys historical reporting:

• Interaction Concentrator, which comprises the Interaction Concentrator (ICON) server and Interaction
Database (IDB) -- Stores detailed reporting data from Interaction Server and other sources.

• Genesys Info Mart -- Extracts, transforms, and loads (ETLs) data from IDB into the Info Mart database, a
data mart suitable for contact center reporting.

• Reporting and Analytics Aggregates (RAA) -- Aggregates Info Mart data to provide contact center
activity metrics for downstream reporting applications.

• Genesys Customer Experience Insights (GCXI) -- Extracts aggregated data from the Info Mart database
and presents it in readable historical reports.

This page describes the component and configuration requirements to enable historical reporting on
chat session activity in your deployment.

Important
For information on Asynchronous (Async) Chat, see the Asynchronous Chat section in
this guide.

Overview

1. After a chat session is finished, Chat Server attaches reporting statistics to the user data of the
interaction in Interaction Server. For more information about the attached user data key-value pairs
(KVPs), see Chat Server reporting data.

2. ICON stores the user data in the G_USER_DATA_HISTORY table in IDB in near real-time.
3. On a regular schedule, Genesys Info Mart extracts the IDB data and transforms it into the

CHAT_SESSION_FACT table and supporting dimensions in the Info Mart dimensional model. For more
information about the session-related tables in the Info Mart database, see the Genesys Info Mart
Physical Data Model for your RDBMS. For more information about managing the Genesys Info Mart ETL
jobs, see the Genesys Info Mart Operations Guide.

4. RAA summarizes and organizes the Info Mart data in ways that enable GCXI to extract meaning. For
more information about RAA data, see the RAA User's Guide.

5. GCXI uses the aggregated data in the Info Mart database to present out-of-box chat session reports,
including:
• Chat Message Statistics Report

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 45

https://docs.genesys.com/Documentation/GIM/latest/Ops/Welcome
https://docs.genesys.com/Documentation/RAA/latest/UG/Welcome

• Chat Termination Report
• Async Chat Dashboard

6. In deployments that include Bot Gateway Server (BGS) starting with version 8.5.203.09, there are
reports and dashboards on bot-related activity. Note: BGS is currently only available as a restricted
release.

7. In deployments where Async Chat functionality is enabled, the Async chat dashboard displays async
chat metrics.

8. For more information about the GCXI reports, see Chat reports in the GCXI User's Guide.

Enabling historical reporting on chat session activity

Prerequisites
The following table summarizes the minimum release requirements for the components that enable
chat session historical reporting.

Component Minimum release for chat Minimum release for async
chat

Chat Server
8.5.203.09 (restricted release)
8.5.301.06 (general release) 8.5.302.03

ICON 8.1.514.11 8.1.514.11
Genesys Info Mart 8.5.011.04 8.5.011.14
RAA 8.5.003 8.5.006
GCXI 9.0.005 9.0.007
WDE No minimum requirement 8.5.122.08

Setting up historical reporting

Important
Genesys Info Mart release 8.5.011 and later provides support for chat session
reporting out-of-box, with no additional configuration required on the Genesys Info
Mart side. However, to send chat session data to Genesys Info Mart, as well as to see
chat session data in GCXI reports, you need to modify the configuration of Interaction
Concentrator and RAA.

1. Ensure that your deployment has been configured as required for Genesys Info Mart to
support reporting on eServices activity in general. If necessary, migrate Genesys Info Mart
and RAA to meet the release Prerequisites.
For a summary of the configuration requirements, see Enabling Reporting on Multimedia Activity in the

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 46

https://docs.genesys.com/Documentation/BGS/latest/BGSQS/BGSReporting
https://docs.genesys.com/Documentation/GCXI/latest/User/HRCXIChatReports
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMDepMMSummary

Genesys Info Mart Deployment Guide.

2. Configure Chat Server to attach the required statistics.
Set the Chat Server attach-session-statistics option to all (which is not the default value).

3. Configure ICON to capture the user data KVPs that Genesys Info Mart requires.
Modify the ICON attached data specification file as necessary, to include the KVPs identified in Chat
Server reporting data as KVPs that are used by Genesys Info Mart.

Tip
The attached data specification file included in the Genesys Info Mart IP
(ccon_adata_spec_GIM_example.xml) includes all the KVPs required for the reporting features supported in
that Info Mart release. You might need to upload a new version of the attached-data specification file or
update your existing version with additional KVPs to enable reporting enhancements.

4. Enable aggregation of chat session data. (Required for GCXI reporting or other applications
that use RAA aggregation.)
In the [agg-feature] section on the Genesys Info Mart application object, specify the enable-chat
option.

Chat Server reporting data

After a chat session is finished, Chat Server attaches the following types of reporting statistics to the
user data of the interaction in Interaction Server:

• Chat session characteristics
• Chat session end reason codes
• Chat session transcript statistics
• Async chat session statistics
• Bot-related statistics

Important
Starting with release 8.5.107, Chat Server attaches reporting statistics and then stops
the interaction (if required by the configuration and scenario). Previously, Chat Server
was not able to attach the specified reporting statistics if the stop-abandoned-
interaction option was set to a value, different from the default value never and the
corresponding scenario occurred.

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 47

Chat Session Characteristics
The following chat session characteristics are attached at the end of a chat session. If the KVPs are
required for the out-of-box chat session reporting provided by Genesys Info Mart and GCXI, the "Info
Mart Database Target" column indicates the Info Mart database table and column to which the KVP is
mapped.

Unless indicated otherwise, the session characteristics KVPs were introduced in Chat Server 8.5.201.

KVP Description Info Mart Database Target

ChatServerSessionClosedAt

Timestamp of chat session
closure. Always attached.

Note: This KVP is mandatory for
Genesys Info Mart reporting.

CHAT_SESSION_FACT.END_DATE_TIME_KEY

ChatServerSessionStartedAt

Timestamp of chat session
creation. Always attached.

Note: This KVP is mandatory for
Genesys Info Mart reporting.

CHAT_SESSION_FACT.START_DATE_TIME_KEY

csg_ChatSessionID

The ID (identifier) of chat
session. Could be different from
Interaction ID. Attached only if
the value of attach-session-
statistics is not none.

Not mapped

csg_LanguageName

The value identifies the language
specified for the chat session.
Might be absent. Attached only if
the initial UserData for the chat
session includes the
GCTI_LanguageName KVP, and
the value of attach-session-
statistics is not none.

CHAT_SESSION_DIM.LANGUAGE_NAME
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

csg_MediaOrigin

The value identifies the
origination of the chat session
(web chat, social media
channels, sms, and so on). Might
be absent. Attached only if the
initial UserData for the chat
session includes the
MediaOrigin KVP, and the value
of attach-session-statistics is
not none.

CHAT_SESSION_DIM.MEDIA_ORIGIN
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

csg_MediaType

Introduced: 8.5.203.09
(restricted release) / 8.5.301.06
(generally available release)

The MediaType for chat
interaction. Always attached.

MEDIA_TYPE.MEDIA_NAME_CODE
(referenced through
CHAT_SESSION_FACT.MEDIA_TYPE_KEY)

csg_TenantId The tenant ID for the chat CHAT_SESSION_FACT.TENANT_KEY
KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 48

KVP Description Info Mart Database Target
session. Always attached.

KVP Description Info Mart Database Target

Chat Session End Reason Codes
The following reason codes describe what triggered the end of a chat session and how it was
triggered. If the KVPs are required for the out-of-box chat session reporting provided by Genesys Info
Mart and GCXI, the "Info Mart Database Target" column indicates the Info Mart database table and
column to which the KVP is mapped.

KVP Description Info Mart Database Target

csg_SessionEndedAgent

Introduced: 8.5.109

The indication of agent presence
in chat session.
Please note that in this reason code, only
human (in other words, non-bot) agents
who are visible to a customer are taken
into account.
Valid values:

• ABSENT — Session considered
as abandoned. No agent (in
other words, not-bot
participant visible to client)
ever joins chat session.

• PRESENT — Session
considered as not
abandoned. At least one
agent is still participating in
chat session during the
moment of chat session
closure.

• VISITED — Session could be
considered either as
abandoned or not abandoned
- depending on business
requirements. At least one
agent participated in chat
session, but no agents were
present at the moment of
chat session closure.

Note: In the very specific
condition of a session restoration

Not mapped

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 49

KVP Description Info Mart Database Target
having occurred where an agent
joins the session before
restoration and does not re-join
after restoration, and no
messages are sent by any chat
party before restoration, the
value of csg_SessionEndedAgent
will be ABSENT.

csg_SessionEndedBy

Introduced: 8.5.105

The type of participant that
triggered the chat session
closure.

Valid values:

• CLIENT — Denotes a
customer. This value is
provided whenever a client
leaves the chat session first.
For example, this value will
be set when a client leaves
while the session continues
due to the presence of an
agent and ended later by an
agent.

• AGENT, SUPERVISOR, BOT —
Denotes either agent,
supervisor or chat bot
participant. This type is
provided only when:
• A session is closed

because the actor (agent/
supervisor/bot) sent the
Release request with the
close if no more
agents, or force close
after-action; or

• A session without a
customer during the
course of this chat session
is closed because the
actor sent a Release
request.

• SYSTEM — Denotes a server/
system. See the
csg_SessionEndedReason
table for possible reasons.

CHAT_SESSION_DIM.ENDED_BY
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

csg_SessionEndedReason

Introduced: 8.5.105
The description of how a chat
session was closed.

CHAT_SESSION_DIM.ENDED_REASON
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 50

KVP Description Info Mart Database Target

Valid values:

• DISCONNECT — The
participant left due to a
disconnect (basic protocol) or
a flex timeout expiration
(denotes disconnect in flex
protocol).

Possible values for
the associated
csg_SessionEndedBy:
CLIENT, AGENT,
SUPERVISOR, BOT

• QUIT — The participant left a
chat session in a normal way
(flex logout or basic self-
release request, that is with
the keep alive after-action).

Possible values for
the associated
csg_SessionEndedBy:
CLIENT, AGENT,
SUPERVISOR, BOT

• FORCE — The participant left
a chat session in a normal
way and requested the
session to be closed (either
close if no more agents
or force closure after-
action).

Possible values for
the associated
csg_SessionEndedBy:
AGENT, SUPERVISOR,
BOT

• INACTIVE — Chat Server
closed a chat session due to
activated inactivity control
monitoring.

Possible values for
the associated
csg_SessionEndedBy:
SYSTEM

• DB_ERROR — Chat Server
closed a chat session
because it received the non-
recoverable error from UCS
while attempting to save the
intermediate chat transcript

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 51

KVP Description Info Mart Database Target

(only possible when the
transcript-save-on-error
option is set to close).

Possible values for
the associated
csg_SessionEndedBy:
SYSTEM

KVP Description Info Mart Database Target

Chat Session transcript statistics
Chat Server attaches general and extended reporting statistics, based on the attach-session-statistics
option settings.

General transcript statistics

In the general transcript statistics, an agent means both an agent and a supervisor, when either of
those is visible to a customer. For example, the statistics do not count/include an activity for an agent
who is coaching another agent, or for a supervisor who monitors the session silently.

The following general transcript statistics are attached at the end of a chat session. If the KVPs are
required for the out-of-box chat session reporting provided by Genesys Info Mart and GCXI, the "Info
Mart Database Target" column indicates the Info Mart database table and column to which the KVP is
mapped.

Unless indicated otherwise, the general transcript statistics KVPs were introduced in Chat Server
8.5.101.

KVP Description Info Mart Database Target

cse_ActiveIdleMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
a chat session has been inactive
while at least one agent was
connected and a configured
inactivity threshold was
exceeded.

Not mapped

cse_ActiveIdleTotalCount

Introduced: 8.5.301.06

The total number of times when
an inactivity period exceeded a
configured threshold while at
least one agent was connected
to the chat session (in other
words, while the chat session

CHAT_SESSION_FACT.ACTIVE_IDLE_COUNT

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 52

KVP Description Info Mart Database Target
was technically in an active
state).

cse_ActiveIdleTotalTime

Introduced: 8.5.301.06

The total amount of time (in
seconds), exceeding configured
threshold, without any activity
when the chat session was in the
active state (at least one Agent
participated).

CHAT_SESSION_FACT.ACTIVE_IDLE_DURATION

cse_SessionHandleMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
that at least one agent was
connected to a chat session.

Not mapped

cse_SessionHandleTotalCount

Introduced: 8.5.301.06

The total number of times a
session was in an active state,
that at least one agent was
connected to a chat session.

CHAT_SESSION_FACT.HANDLE_COUNT

cse_SessionHandleTotalTime

Introduced: 8.5.301.06

The total time (in seconds) that
at least one agent was
connected to a chat session.

CHAT_SESSION_FACT.HANDLE_DURATION

csg_MessagesFromAgentsCount

The total number of all messages
sent by all agents (messages
which are visible to customer).
Note: There can be several
agents in a chat session, for
example, conferences, transfers,
and others.

CHAT_SESSION_FACT.MSG_FROM_AGENTS_COUNT

csg_MessagesFromAgentsSize
The total character count
(including spaces) of all
messages sent by agents.

CHAT_SESSION_FACT.MSG_FROM_AGENTS_SIZE

csg_MessagesFromCustomersCount The total number of messages
sent by customers. CHAT_SESSION_FACT.MSG_FROM_CUSTOMERS_COUNT

csg_MessagesFromCustomersSize
The total character count
(including spaces) of all
messages sent by customers.

CHAT_SESSION_FACT.MSG_FROM_CUSTOMERS_SIZE

csg_PartiesAsAgentCount

The number of parties that
participated in a session as
agents.
Note: Only unique parties are counted.
For example, if the same party joins the
session several times, it only counts as
one for the purpose of this statistic.

CHAT_SESSION_FACT.AGENTS_COUNT

csg_PartiesAsCoachCount

The number of parties that
participated in a session in the
coaching mode (for example, an
agent joins with the VIP
visibility).
Note: Only unique parties are counted.
For example, if the same party joins the
session several times, it only counts as

Not mapped

KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 53

KVP Description Info Mart Database Target

one for the purpose of this statistic.

csg_PartiesAsMonitorCount

The number of parties that
participated in a session in the
monitoring mode (for example, a
supervisor join with the INT
visibility).
Note: Only unique parties are counted.
For example, if the same party joins the
session several times, it only counts as
one for the purpose of this statistic.

Not mapped

csg_SessionTotalTime

The total duration of a chat
session from the time it was
created until it was completely
finished/closed in Chat Server.
Note: This does not include the time
between Chat Session End and Mark
Done, as the interaction can still be
handled by an agent.

CHAT_SESSION_FACT.SESSION_DURATION

csg_SessionUntilFirstAgentTime

The duration of the waiting
period, or the period of time a
customer waits until the first
agent (visible to a customer)
joined the session.
Note: The 0 (zero) value has two
alternative interpretations: no agents
ever joined the session (if
csg_PartiesAsAgentCount=0) or an agent
joined immediately when the session was
started (if csg_PartiesAsAgentCount > 0).

CHAT_SESSION_FACT.UNTIL_FIRST_AGENT_DURATION

csg_SessionUntilFirstReplyTime
The period of time until the first
agent submits the first visible to
a customer greeting/message
into a chat session.

CHAT_SESSION_FACT.UNTIL_FIRST_REPLY_DURATION

csg_SessionWithCustomerTime The period of time a customer is
in a chat session. Not mapped

KVP Description Info Mart Database Target

Extended (wait-reply) statistics

The extended statistics provide details about customer and agent wait and reply times. As in the case
of general transcript statistics, an "agent" means both an agent and a supervisor, when either of
those is visible to a customer.

• Wait time - The time between a message from the reporting party (or the last message, if there were a

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 54

few messages in a row) being sent and the first message from another party being received in a reply.
• Reply time - The time between a message (or the first message, for a few messages in a row) from

another party being received and the message from reporting party being sent in a reply.

The following extended transcript statistics are attached at the end of a chat session. If the KVPs are
required for the out-of-box chat session reporting provided by Genesys Info Mart and GCXI, the "Info
Mart Database Target" column indicates the Info Mart database table and column to which the KVP is
mapped.

Unless indicated otherwise, the extended transcript statistics KVPs were introduced in Chat Server
8.5.101.

Important
The calculation of TotalCount/MaxTime/TotalTime was adjusted and does not include
dormant state for async chat sessions for "Extended (wait-reply) Statistics":
cse_AgentReply and cse_AgentWait.

KVP Description Info Mart Database Target

cse_AgentReplyMaxTime

The maximum time (in seconds)
an agent spent on replying to a
customer.
Note: For async chat sessions, if a chat
session was in a dormant state while a
customer message was received, the
time until the agent rejoins the session is
excluded.

CHAT_SESSION_FACT.AGENT_REPLY_MAX_DURATION

cse_AgentReplyTotalCount The number of times an agent
replied to a customer. CHAT_SESSION_FACT.AGENT_REPLY_COUNT

cse_AgentReplyTotalTime

The total time (in seconds) an
agent spent on replying to a
customer.
Note: For async chat sessions, if a chat
session was in a dormant state while a
customer message was received, the
time until the agent rejoins the session is
excluded.

CHAT_SESSION_FACT.AGENT_REPLY_DURATION

cse_AgentWaitMaxTime

The maximum time (in seconds)
an agent spent on waiting the
reply from a customer.
Note: For async chat sessions,
cumulative dormant time until a
customer's reply is received is excluded.

CHAT_SESSION_FACT.AGENT_WAIT_MAX_DURATION

cse_AgentWaitTotalCount The number of times an agent CHAT_SESSION_FACT.AGENT_WAIT_COUNT
KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 55

KVP Description Info Mart Database Target
waited for replies from a
customer.

cse_AgentWaitTotalTime

The total time (in seconds) an
agent spent on waiting the reply
from a customer.
Note: For async chat sessions,
cumulative dormant time until a
customer's reply is received is excluded.

CHAT_SESSION_FACT.AGENT_WAIT_DURATION

cse_CustomerReplyMaxTime
The maximum time (in seconds)
a customer spent on replying to
an agent.

CHAT_SESSION_FACT.CUSTOMER_REPLY_MAX_DURA

cse_CustomerReplyTotalCount The number of times a customer
replied to an agent. CHAT_SESSION_FACT.CUSTOMER_REPLY_COUNT

cse_CustomerReplyTotalTime
The total time (in seconds) a
customer spent on replying to an
agent.

CHAT_SESSION_FACT.CUSTOMER_REPLY_DURATION

cse_CustomerWaitMaxTime
The maximum time (in seconds)
a customer spent on waiting the
reply from an agent.

CHAT_SESSION_FACT.CUSTOMER_WAIT_MAX_DURA

cse_CustomerWaitTotalCount
The number of times a customer
waited for the reply from an
agent.

CHAT_SESSION_FACT.CUSTOMER_WAIT_COUNT

cse_CustomerWaitTotalTime
The total time (in seconds) a
customer spent on waiting the
reply from an agent.

CHAT_SESSION_FACT.CUSTOMER_WAIT_DURATION

KVP Description Info Mart Database Target

Async chat session statistics
Async chat session statistics are provided only for async chat sessions (in other words, when
GCTI_Chat_AsyncMode=true is specified during session creation). The calculation of these statistics
takes into account the active and dormant phases of an async chat session, as well as async
inactivity control (which is different from regular inactivity control).

KVP Description Info Mart Database Target
cse_AsyncDormantMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
a chat session was staying in
dormant state.

Not mapped

cse_AsyncDormantTotalCount The total number of times CHAT_SESSION_FACT.ASYNC_DORMANT_COUNT
KVP Description Info Mart Database Target

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 56

KVP Description Info Mart Database Target

Introduced: 8.5.301.06 session entered dormant state

cse_AsyncDormantTotalTime

Introduced: 8.5.301.06

The total amount of time (in
seconds), customer chat session
was in the dormant state (with
no Agent participant). Routing
time is excluded from dormant
time.

CHAT_SESSION_FACT.ASYNC_DORMANT_DURATION

cse_AsyncIdleMaxTime

Introduced: 8.5.301.06

The maximum time (in seconds)
an async chat session was
staying in idle state.

Not mapped

cse_AsyncIdleTotalCount

Introduced: 8.5.301.06
Total number of times an async
session entered idle state. CHAT_SESSION_FACT.ASYNC_IDLE_COUNT

cse_AsyncIdleTotalTime

Introduced: 8.5.301.06

The total amount of time (in
seconds), exceeding configured
threshold, without any activity
when the chat session was in the
dormant state (with no Agent
participant).

CHAT_SESSION_FACT.ASYNC_IDLE_DURATION

csg_ChatAsyncMode

Introduced: 8.5.301.06

Denotes async session. Equals
"1" for async chat session or "0"
for regular chat session.

CHAT_SESSION_DIM.ASYNC_MODE
(referenced through
CHAT_SESSION_FACT.CHAT_SESSION_DIM_KEY)

KVP Description Info Mart Database Target

Bot-related statistics
In deployments that include BGS, Chat Server also attaches the following KVPs:

• csg_MessagesFromBotsCount
• csg_MessagesFromBotsSize
• csg_SessionUntilFirstBotTime
• csg_PartiesAsBotCount

For more information about the bot-related KVPs, see Bot-related reporting data in the Bot Gateway
Server Quick Start Guide (accessible only to restricted release customers).

Known limitation

The following is a known limitation with async chat reporting:

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 57

https://docs.genesys.com/Documentation/BGS/Restricted/BGSQS/BGSReporting#reportingStats

• Information about a chat session running in an async mode is available only after the chat session ends.

Chat Server Administration Integrating Chat Server with Genesys Historical Reporting

Chat Server Administration Guide 58

Chat Server API selected notes and topics
The following pages describe only selected topics about special use cases which might require
additional clarification or explanation for the purpose of being used in custom agent desktops and
chat widgets. These pages do not contain the complete description of Chat Server API which is
implemented in Genesys PSDK as flex (Genesyslab.Platform.WebMedia.Protocols >
FlexChatProtocol) and basic (Genesyslab.Platform.WebMedia.Protocols > BasicChatProtocol)
protocols.

Throughout these pages we will be using PSDK .NET for this demonstration purpose (Java PSDK is
very similar).

• Functional capabilities of chat protocol
• File Transfer API for Agent Desktop

Chat Server Client Version

Chat Server exposes two chat protocols: flex (connectionless) and basic (connection based). These
protocols are constantly evolving with new capabilities. In order to allow the protocol negotiation with
Chat Server, PSDK (which implements both protocols) has a special hard-coded attribute
ClientVersion. This attribute defines what functionality is available for a Chat Server API client (for
example, it prevents Chat Server from sending unsupported events and/or attributes in replies). The
following table describes the existing protocol versions:

ClientVersion Chat Server version PSDK version Description (features
added or changed)

101 8.0.100.07 8.0.100.06 Base chat functionality.
Default version.

102 8.1.000.33 8.1.000.08
Support for user
nickname change: new
notice type
USER_UPDATE_NICK.

103 8.5.102.06 8.5.200.03

Support for Idle control
functionality: new notice
types
IDLE_CONTROL_ALERT,
IDLE_CONTROL_CLOSE,
IDLE_CONTROL_SET.
New transcript attribute
idleTimeExpire, new
user type SYSTEM, new
protocol type NONE.

104 8.5.104.07 8.5.201.00
Support for chat system
commands: new notice
type SYS_COMMAND. Flex
transcript events have

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 59

ClientVersion Chat Server version PSDK version Description (features
added or changed)

been extended with
userData of type
KeyValueCollection
(only for notice event).

105 8.5.105.04 8.5.301.00

Support for chat session
silent monitoring
indication: new
transcript attribute
monitored.

106 8.5.109.06 9.0.000.00

All transcript events
have been extended
with eventAttributes
of type
KeyValueCollection.

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 60

Functional capabilities of chat protocol
This page describes various Chat Server protocol elements which can be used in the implementation
of custom agent desktop applications.

Direct Messages

Chat Server allows to send so called direct (or private) messages and notices to a participant in chat
session. Only chat basic protocol provides such functionality. In order to send a message or a notice
which will be visible only to a certain participant in chat session, ReceiverId in methods
RequestMessage and RequestNotify (defined in
Genesyslab.Platform.WebMedia.Protocols.BasicChat.Requests) must be initialized with the
userId of the intended participant (which can be obtained from the transcript event). In this case,
only two participants will see this message in the transcript: the sender and the recipient.

When receiving a direct message, the transcript will contain either MessageInfo or NoticeInfo
(defined in Genesyslab.Platform.WebMedia.Protocols.BasicChat) with corresponded ReceiverId.

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.108 8.5.1x not available not available not available

Enhancing security when joining a chat session

Using configuration option session-password-enforce, it is possible to force Chat Server to
generate the crypto-random security token (we call it "session password") which will be associated
with a chat session during its creation. In this case, Chat Server will require this session password
each time a new participant sends a request to join an existing chat session (it must be provided in
GCTI_Chat_SessionPassword key/value pair in userdata of RequestJoin). Chat Server attaches the
session password to the userdata of the interaction (submitted to Interaction Server) in
ChatServerSessionPassword key/value pair). Only in basic chat protocol it is possible to specify a
user-defined session password by adding GCTI_Chat_SessionPassword key/value pair in userdata of
RequestJoin when creating a chat session.

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.109 8.5.1x not available not available not available

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 61

Chat bot participant special treatment

Only the agent or supervisor in a chat session can be marked as "bot" participants. It happens when
the userdata of RequestJoin (when participant joins chat session) contains
GCTI_Chat_SetPartyStyle key/value pair with value "BOT". Chat Server attaches another key/value
pair GCTI_Chat_PartyStyle="BOT" to the newParty' event in basic protocol chat transcript and
GCTI_SYSTEM/party-into/style"="BOT" in eventAttributes property (both in newParty event in
basic protocol and in all events for bot participant in flex protocol).

For "bot" participants:

• Chat Server does not take such participants into account when processing after-action in
RequestReleaseParty with value CloseIfNoAgents.

• Agent Desktop must not take such participants into account when making a decision to stop the
processing of chat session and interaction.

• Reporting statistics (see Chat Server Reporting Statistics) will not count such participants as an agent or
supervisor.

Supported:

Chat Server PSDK
Workspace

Desktop
Edition

Workspace
Web Edition Chat Widget GMS

8.5.109

8.5.1x for
userdata
location,
8.5.303 for
eventAttributes

8.5.118 not available not available 8.5.201.04

Notifications about detected and masked out PII data

Chat Server can be configured to detect and replace PII data in a chat session (see Masking Sensitive
Data). If such PII data is detected according to the configuration provided, the message event (both
in flex and basic chat transcripts) will contain information in the eventAttributes property about
what parts of the message contains detected PII data, and how this data was masked out. In Chat
Server logs it can be seen as (text is formatted for presentation):

eventAttributes={'GCTI_SYSTEM'={'pii-cleanup'={
'rule-0001'={

'description'='<rule-description>',
'id'='<rule id>',
'name'='<rule name>',
'positions'={

'70-81'={'replaced'='digits'}
}}}}}

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 62

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.109 8.5.303 not available not available not available

Read confirmation notice

Chat Server provides the possibility for chat session participants to signal about messages being
seen/read. For that, a participant must send RequestNotify with notice type SYS_COMMAND and notice
text read-confirm. The userdata of the request must contain key-value pair with key last-event-
id, and the value must contain the transcript event ID (which is being reported as being seen). Chat
Server processes read confirmation notices as follows:

• Other chat participants will receive corresponding notification with provided last-event-id in userdata
of the notice transcript event.

• The notice event will be saved in UCS transcript only if option transcript-save-notices = all.

Participant’s read confirmation notice events get annihilated from transcript:

• When a participant leaves the session.
• When another read confirmation notice is received from the same participant.
• During the session restoration.

Supported:

Chat Server PSDK
Workspace

Desktop
Edition

Workspace
Web Edition Chat Widget GMS

8.5.105 8.5.1x 8.5.122.08 not available not available 8.5.201.04

Nickname change

Chat Server provides the possibility for chat session participants to change their nickname during the
session. For that, a participant must send RequestNotify with notice type USER_UPDATE_NICK and
text containing a new nickname. The nickname of a participant can be changed more than once.
Upon receiving such request:

• Chat Server updates the nickname for a participant.
• Chat Server adds this notice to the session transcript.
• Only when updated the nickname for the first time, Chat Server records the original nickname value in

GCTI_Original_Nickname key-value pair of userdata of the initial newParty event for that participant.

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 63

Supported:

Chat Server PSDK Workspace
(both) Edition Chat Widget GMS

8.5.0 8.1.1 not available not available not available

Chat Server Administration Chat Server API selected notes and topics

Chat Server Administration Guide 64

	Chat Server Administration Guide
	Table of Contents
	Chat Server Administration
	Sizing Guide, Setting Load Limits, and Health Monitoring
	Deploying a Chat Solution
	Deploying High-Availability Chat Server
	Configuring a secure connection to Cassandra
	Initialization Cassandra scripts for Chat Server

	Multilingual Processing in Chat Server
	Masking Sensitive Data
	Inactivity Monitoring
	Matching Contact Attributes
	How to send ESP requests to Chat Session from Workflow
	Integrating Chat Server with Genesys Historical Reporting
	Chat Server API selected notes and topics
	Functional capabilities of chat protocol

