
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Engage Digital (eServices) 8.1.4

eServices Field Codes Reference
Manual

1/11/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Genesys eServices Field Codes Reference Manual 3
Escape Codes and Sequences 5
Data Types 6
Operator Precedence 11
Named Constants 13
Functions 14

String Functions 15
Date and Time Functions 23
Type Conversion 31
Mathematical Functions 41
Miscellaneous Functions 42

Objects 44
Agent Object 45
Contact Object 47
Interaction Object 49

Genesys eServices Field Codes Reference
Manual
This guide describes eServices Field Codes that are used in standard responses.

With field codes, you can compose standard responses that are automatically personalized when they
are used. This feature is very similar to the Mail-Merge feature in word-processing applications such
as Microsoft Word. Consider, for example, this standard response:

Dear <$Contact.FirstName$>,

…...

<$Agent.Signature$>

This response has two field codes. When an agent inserts this response into an e-mail, the first field
code, <$Contact.FirstName$>, is replaced by the contact’s first name as it appears in Universal
Contact Server. The second field code, <$Agent.Signature$>, is replaced by the agent’s signature
as it appears in Configuration Manager.

For example, if an agent named Danielle uses this standard response while replying to an e-mail from
a contact named Sam, the result might look like this:

Dear Sam,

…

Thank you for choosing My Cloud Security Systems.

Sincerely,
Danielle Rodriguez
Customer Support
www.MCSS.com

See the "Field Codes" section of the Knowledge Manager User's Guide for information on how to use
field codes in standard responses.

The remainder of this manual provides the following reference sections:

• Escape Codes and Sequences
• Data Types
• Operator Precedence

Genesys eServices Field Codes Reference Manual

eServices Field Codes Reference Manual 3

https://docs.genesys.com/Documentation/ES/latest/KMUser/fieldcode

• Named Constants
• Functions
• Objects

Genesys eServices Field Codes Reference Manual

eServices Field Codes Reference Manual 4

Escape Codes and Sequences

Since the delimiters <$ and $> have special meanings when they appear in field codes, you cannot
include them “as is” in a standard response. If you want to write a standard response that includes
either or both of these field code delimiters, you must insert a space between the two symbols that
make up each delimiter. For example, here is a valid standard response:

These field codes are great! You begin them with < $ and end
them with $ >.

Escape Codes and Sequences

eServices Field Codes Reference Manual 5

Data Types
The eServices Field Codes include the following data types:

Number

You use numbers in field code formulas in much the same way you would in other applications, such
as Microsoft Excel. All arithmetic calculations are performed internally using floating point arithmetic
(with the decimal point). Rounding occurs only during formatting.

When you write numbers in formulas, you can use scientific notation (for example, 12.34e-2 is the
same as0.1234).

The Operators table lists the operators that you can use with numbers. (Some rows show more than
one symbol for the same operator. In these cases, the symbols are synonyms.)

Operators

Operator Description Example Result

- Unary Minus -4 -4

^ Exponentiation 2^3 8

• Multiplication 2*3 6

/ Division 8/2 4

Mod Modulus (Remainder) 14 Mod 5 4

+ Addition 2 + 3 5

- Subtraction 2 – 3 -1

> GT Greater Than 2 > 3 False

>= GE Greater Than or Equal To 2 >= 2 True

< LT Less Than 2 < 3 True

Data Types

eServices Field Codes Reference Manual 6

Operator Description Example Result

<= LE Less Than or Equal To 2 <= 3 True

= == EQ Equal To 2 = 3 False

<> != NE Not Equal To 2 <> 3 True

: Format 2 : “#.##” 2.00

String

Use the String data type to represent textual data. When you write a string in a formula, you must
enclose it in double quotation marks. For example:

"The sixth sheik's sixth sheep's sick."

You can use the escape sequences shown in the Escape Sequences table to include special
characters in a string, such as tabs or carriage returns.

It is also possible to use HTML tags in field codes.

Escape Sequences

Escape Translates to

\a Alert (Bell)

\b Backspace

\f Form Feed

\n Line Feed (Newline)

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

\' Single Quotation Mark

Data Types

eServices Field Codes Reference Manual 7

https://docs.genesys.com/Documentation/ES/8.1.4/KMUser/FCanatomy

Escape Translates to

\" Double Quotation Mark

\\ Backslash

The Operators and Strings table lists the operators that you can use with strings. All the comparison
operators are case insensitive. (Some rows show more than one symbol for the same operator. In
these cases, the symbols are synonyms.)

Operators and Strings

Symbol Meaning Example Result

+ Concatenation "How" + "die" "Howdie"

>GT Greater Than "A" > "B" False

>=GE Greater Than or Equal To "A" >= "B" False

<LT Less Than "A" < "B" True

<=LE Less Than or Equal To "A" <= "a" True

= ==EQ Equal To "A" = "a" True

<> != NE Not Equal To "A" NE "B" True

Date and Time

Date/Time values in field-code formulas represent specific moments (for example, February 3, 2002,
at 10:03:55 AM). The most common operations performed on Date/Times are comparisons (for
example, <, =, and so on).
If you subtract two Date/Time values, the result is the number of days between them. See the Date/
Time Example 1 table for examples.

Data Types

eServices Field Codes Reference Manual 8

Date/Time Example 1

Formula Result

Date(2002, 11, 23) – Date(2002, 11, 22) 1

Date(2002, 11, 22) – Date(2002, 11, 23) -1

Date(2002, 11, 23) – Date(2002, 11, 23, 12) -0.5

If you add (or subtract) a number to (from) a Date/Time, the result is the Date/Time moved forward
(or backward) by that many days. See the Date/Time Example 2 table for examples.

Date/Time Example 2

Formula Result

Date(2003, 11, 23) + 1 2003-11-24 00:00:00

Date(2003, 11, 23) – 0.5 2003-11-22 12:00:00

Boolean

Set Boolean values in field-code formulas to either True or False. You can use the True and False
keywords to write a Boolean value explicitly, although this is rarely required. Comparison operators
(for example, <, =, and so on) always yield Boolean results.
The Operators and Booleans table lists the operators that you can use with Booleans. (Some rows
show more than one symbol for the same operator. In these cases, the symbols are synonyms.)

Operators and Booleans

Symbol Meaning Example Result

Not ! Unary Not Not False Not True True False

And && Logical And False And False False And True
True And False True And True False False False True

Or || Logical Or False Or False False Or True
True Or False True Or True False True True True

Data Types

eServices Field Codes Reference Manual 9

Symbol Meaning Example Result

XOr Logical Exclusive Or False XOr False False XOr True
True XOr False True XOr True False True True False

= == EQ Equal To True = False False

<> != NE Not Equal To True <> False True

Data Types

eServices Field Codes Reference Manual 10

Operator Precedence
The Operator Precedence table lists all the operators that you can use in field-code formulas.

• Unary operators are shown with [Unary] after their symbols.

• The operators are listed in order of precedence, with operators of higher precedence above those of
lower precedence.

• Operators in the same row have the same precedence. If two operators of the same precedence are
used in a formula, then they are computed left to right if they are binary, and right to left if they are
unary.

• You can write some operators using more than one symbol. In these cases, the alternatives are shown in
parentheses.

Operator Precedence Table

<toggledisplay linkstyle font-size:larger showtext="[+] Operator Precedence Table" hidetext="[-]
Operator Precedence Table">

Operator Precedence Table

Operator

+ [Unary], - [Unary]

^

• , /, Mod

+, -

< (LT), <= (LE), > (GT), >= (GE), = (==, EQ), <> (!=, NE)

Not (!) [Unary]

And (&&)

XOr

Operator Precedence

eServices Field Codes Reference Manual 11

Operator

Or (||)

:

Operator Precedence

eServices Field Codes Reference Manual 12

Named Constants
The Keyword Equivalents table lists keywords that are equivalent to certain useful values. Many of
these values can be represented in other ways, but the keywords are provided for convenience.

Keyword Equivalents Table

[+] Keyword Equivalents Table

Keyword Equivalent

iccCr "\r"

iccLf "\n"

iccCrLf "\r\n"

iccBackslash "\\"

Null None

True None

False None

Pi 3.14159265358979

E 2.71828182845904

Named Constants

eServices Field Codes Reference Manual 13

Functions
The eServices Field Codes include the following functions:

• String Functions
• Date/Time Functions
• Type Conversion
• Mathematical Functions
• Miscellaneous Functions

Functions

eServices Field Codes Reference Manual 14

String Functions
The eServices Field Codes include the following string functions:

[+] Find
Find

Description
Finds a substring within a string. Returns the 0- based character position of the found substring.
Returns –1 if the substring is not found.
Syntax
Find(SearchIn, SearchFor)

Find String

Argument Description

SearchIn The string to search in

SearchFor The string to search for

Remarks

Examples of Find String

Example Result

<$Find("Hello, World!", "H")$> 0

<$Find("Hello, World!", "lo")$> 3

<$Find("Hello, World!", "Qbert")$> -1

[+] Left
Left

Description
Returns a string containing a specified number of characters from the left side of a specified string.

Functions String Functions

eServices Field Codes Reference Manual 15

Syntax
Left(String, Number)

Left String

Argument Description

String The string from which the leftmost characters are returned.

Number
The number of characters to return. If 0, an empty string ("") is
returned. If greater than the length of String, then the entire
string is returned.

Remarks

Examples of Left String

Example Result

<$Left("Hello, World!", 5)$> "Hello"

<$Left("Hello, World!", 0)$> ""

<$Left("Hello, World!", 25)$> "Hello, World!"

[+] Length
Length

Description
Returns the length of a string.
Syntax
Length(String)
Remarks

Example of Length String

Example Result

<$Length("Hello")$> 5

Functions String Functions

eServices Field Codes Reference Manual 16

[+] Mid
Mid

Description
Returns a specified substring of a string.
Syntax
Mid(String, Start, Length)

Mid String

Argument Description

String The string from which the substring is returned.

Start
The 0- based character position at which the substring begins. If
Start is greater than the length of String, then an empty string
("") is returned.

Length
The number of characters to return. If Length is 0, then an
empty string ("") is returned. If Length is greater than the
portion of String after Start, then all the characters after Start
are returned.

Remarks

Examples of Mid String

Example Result

<$Mid("Hello, World!", 2, 3)$> "llo"

<$Mid("Hello, World!", 25, 5)$> ""

<$Mid("Hello, World!", 7, 25)$> "World!"

[+] Replace
Replace

Description
Returns a string in which all instances of a specified substring have been replaced with another
string.

Functions String Functions

eServices Field Codes Reference Manual 17

Syntax
Replace(String, Find, ReplaceWith)

Replace String

Argument Description

String The string containing the substring to replace

Find The substring to search for

ReplaceWith The replacement string

Remarks

Examples of Replace String

Example Result

<$Replace("Hello", "l", "*")$> "He**o"

<$Mid("Hello", "j", "*")$> "Hello"

<$Mid("Hello", "Hello", "")$> ""

[+] Right
Right

Description
Returns a string containing a specified number of characters from the right side of a specified string.
Syntax
Right(String, Number)

Right String

Argument Description

String The string from which the rightmost characters are returned.

Functions String Functions

eServices Field Codes Reference Manual 18

Argument Description

Number
The number of characters to return. If 0, an empty string ("") is
returned. If greater than the length of String, then the entire
string is returned.

Remarks

Examples of Right String

Example Result

<$Right("Hello, World!", 5)$> "orld!"

<$Right("Hello, World!", 0)$> ""

<$Right("Hello, World!", 25)$> "Hello, World!"

[+] To Lower
ToLower

Description
Returns a string that has been converted to lowercase.
Syntax
ToLower(String)
Remarks

Example of ToLower String

Example Result

<$ToLower("Hello, World!")$> "hello, world!"

[+] ToUpper
ToUpper

Description
Returns a string that has been converted to uppercase.
Syntax
ToUpper(String)

Functions String Functions

eServices Field Codes Reference Manual 19

Remarks

Example of ToUpper String

Example Result

<$ToUpper("Hello, World!")$> "HELLO, WORLD!"

[+] Trim
Trim

Description
Returns a copy of a specified string without specified leading or trailing characters.
Syntax
Trim(String, [CharSet])

Trim String

Argument Description

String The string from which to trim

CharSet Optional. The characters to trim. If omitted, then white space ("
\t\r\n") is trimmed.

Remarks

Examples of Trim String

Example Result

<$Trim(" Howdie ")$> "Howdie"

<$Trim("Howdie", "Howd")$> "ie"

<$Trim("Howdy", "y")$> "Howd"

[+] TrimLeft

Functions String Functions

eServices Field Codes Reference Manual 20

TrimLeft

Description
The same as Trim, except it trims only leading characters.
Syntax
TrimLeft(String, [CharSet])

[+] TrimRight
TrimRight

Description
The same as Trim, except it trims only trailing characters.
Syntax
TrimRight(String, [CharSet])

[+] FullName
Wrap

Description
Returns a string that has been word-wrapped to a specified line length.
Syntax
Trim(String, LineLength, [LinePrefix, [Eol]])

Wrap String

Argument Description

String The string to wrap.

LineLength The maximum length, in characters, of any line, including
LinePrefix (if specified), but not Eol.

LinePrefix Optional. A string to prefix to each line. Often used to “quote” e-
mails being replied to. If omitted, lines are not prefixed.

Eol Optional. A string to use as a line terminator. If omitted, lines
are terminated with "\r\n" as usual.

Remarks
Example:
<$Wrap(> "Once upon a midnight dreary",<
11,<
">",<
"*\r\n")$>

Functions String Functions

eServices Field Codes Reference Manual 21

Result:
>Once upon*<
>a midnight*<
>dreary*

Functions String Functions

eServices Field Codes Reference Manual 22

Date and Time Functions
The eServices Field Codes include the following date/time functions:

[+] Date
Date

Description
Returns a Date/Time constructed from individual components or a string.
Syntax
Date(Year, Month, Day [, Hour[, Minute[, Second]]])
Or
Date(String[, String])

Date String

Argument Description

First argument The string to parse.

Second argument

Optional. The locale that must be used to parse the first
segment. Some examples include: en_US for English (United
States), en_GB for English (United Kingdom), and fr_FR for
French (France). See See Values for fieldcode-format-locale
Option for a complete list.

Important
Date(String[, String]) is not recommended. See the “Remarks” section.

Remarks

• When using the first syntax function, the optional arguments each default to 0 if omitted. For example,
<$Date(1965, 11, 23)$> is equivalent to <$Date(1965, 11, 23, 0, 0, 0)$>.

• When using the second syntax function, the date is constructed by parsing the first string. If the
optional argument is omitted, first the E-mail Server fieldcode-format-locale option (See fieldcode-
format-locale) in the email-processing section is used if present. Otherwise, the platform locale is
used. For example:
• <$Date("November 23, 1965 9:03 AM")$> if the fieldcode-format-locale option or platform

locale is set to en_US.

• <$Date(“23 novembre 1965 21:03:00”, “fr_FR”)$>

Functions Date and Time Functions

eServices Field Codes Reference Manual 23

Important
Avoid using this second syntax function, since it successively tries multiple Date/Time
patterns in order to parse the first argument and so consumes a great deal of CPU
time. Also, these patterns are not very lenient. For example, <$Date(“November 23,
1965, at 9:03 AM”)$> will not parse due to the word at. This method of constructing
Date/Time values is less exact than specifying the individual components directly, and
may yield incorrect results if the day appears before the month.

[+] Day
Day

Description
Returns the numeric day component of a Date/Time (1 to 31) .
Syntax
Day(DateTime)

[+] Hour12

Hour12
Description
Returns the numeric hour component of a Date/Time based on a 12-hour clock (1 to 12) .
Syntax
Hour12(DateTime)

[+] Hour24

Hour24
Description
Returns the numeric hour component of a Date/Time based on a 24-hour clock (0 to 23) .
Syntax
Hour24(DateTime)

[+] IsAm

IsAm
Description

Functions Date and Time Functions

eServices Field Codes Reference Manual 24

Returns a Boolean indicating whether a specified Date/Time is AM (between midnight and noon).
True indicates AM and False indicates PM.
Syntax
IsAm(DateTime)

[+] IsPm

IsPm
Description
Returns a Boolean indicating whether a specified Date/Time is PM (between noon and midnight).
True indicates PM and False indicates AM.
Syntax
IsPm(DateTime)

[+] Minute

Minute
Description
Returns the numeric minute component of a Date/Time (0–59) .
Syntax
Minute(DateTime)

[+] Month

Month
Description
Returns the numeric month component of a Date/Time (1–12) .
Syntax
Month(DateTime)

[+] MonthName

MonthName
Description
Converts a month number or a Date/Time to a month name.
Syntax
MonthName(Arg[, String])

Functions Date and Time Functions

eServices Field Codes Reference Manual 25

MonthName String

Argument Description

First argument
If it is a numeric value (1 to 12), it is converted to the
appropriate month name. If it is a Date/Time, the month number
is extracted and converted.

Second argument

Optional. The locale that must be used to format the first
argument. Some examples include: en_US for English (United
States), en_GB for English (United Kingdom), and fr_FR for
French (France). See See Values for fieldcode-format-locale
Option for a complete list.

Remarks
If the optional argument is omitted, first the E-mail Server fieldcode-format-locale option (See
fieldcode-format-locale) in the email-processing section is used if present. Otherwise, the platform
locale is used.

[+] MonthNameShort

MonthNameShort
Description
The same as the MonthName, but this returns an abbreviated version of the month name instead.

Syntax
MonthNameShort(Arg[, String])

MonthNameShort String

Argument Description

First argument
If it is a numeric value (1 to 12), it is converted to the
appropriate abbreviated name. If it is a Date/Time, the month
number is extracted and converted.

Second argument

Optional. The locale that must be used to format the first
argument. Some examples include: en_US for English (United
States), en_GB for English (United Kingdom), and fr_FR for
French (France). See See Values for fieldcode-format-locale
Option for a complete list.

Remarks
If the optional argument is omitted, first the E-mail Server fieldcode-format-locale option (See
fieldcode-format-locale) in the email-processing section is used if present. Otherwise, the platform
locale is used.

Functions Date and Time Functions

eServices Field Codes Reference Manual 26

[+] Second

Second
Description
Returns the numeric second component of a Date/Time (0–59) .
Syntax
Second (DateTime)

[+] Time

Time
Description
Returns a Date/Time constructed from individual time components.
Syntax
Time ([Hour, [Minute, [Second]]])
Remarks
The date components of the result (year, month, and day) are set to the current system date. The
optional arguments default to 0 if omitted. If all the optional arguments are omitted, then the time is
set to the current system time.

Important
The examples in the Examples of Time String table assume that the current system
date is November 23, 2003, @ 09:03:10.

Examples of Time String

Example Result

<$Time()$> 2003-11-23 09:03:10

<$Time(15)$> 2003-11-23 15:00:00

<$Time(15, 23, 10)$> 2003-11-23 15:23:10

[+] TimeGMT

Functions Date and Time Functions

eServices Field Codes Reference Manual 27

TimeGMT()
Description
Returns a Date/Time set to the current system time and converted to GMT (Greenwich mean time),
also called Universal Time Coordinated, or UTC.
Syntax
TimeGMT()

[+] ToTimeZoneDate

ToTimeZoneDate
Returns a Date/Time constructed from a string and a time zone.
Syntax
ToTimeZoneDate(DateString, TimeZoneString)
Remarks
This date is constructed by parsing the <DateString> string and using the specified time zone
<TimeZoneString> . Examples include the following:
<$ToTimeZoneDate(Date(“November 23, 1965 9:03 AM”), “America/Los_Angeles”)$>
<$ToTimeZoneDate(Date(“11/23/65 9:03:00”), “Europe/Paris”)$>

[+] Weekday

Weekday
Description
Returns the numeric weekday component of a Date/Time (0 = Sunday to 6 = Saturday).
Syntax
Weekday (DateTime)

[+] WeekdayName

WeekdayName
Description
Converts a number of a Date/Time to a weekday name.
Syntax
WeekdayName(Arg[, String])

WeekdayName String

|- valign="top" | rowspan="1" colspan="1" | Argument
| rowspan="1" colspan="1" | Description
|- valign="top" | rowspan="1" colspan="1" | First argument
| rowspan="1" colspan="1" | If it is a numeric value (0 to 6), it is converted to the appropriate
weekday name. If it is a Date/Time, the weekday number is extracted and converted.
|- valign="top" | rowspan="1" colspan="1" | Second argument

Functions Date and Time Functions

eServices Field Codes Reference Manual 28

| rowspan="1" colspan="1" | Optional. The locale that must be used to format the first argument.
Some examples include: en_US for English (United States), en_GB for English (United Kingdom),
andfr_FR for French (France). See See Values for fieldcode-format-locale Option for a complete list.
|} Remarks
If the optional argument is omitted, first the E-mail Server fieldcode-format-locale option (See
fieldcode-format-locale) in the email-processing section is used if present. Otherwise, the platform
locale is used.

[+] WeekdayNameShort

WeekdayNameShort
Description
The same as WeekdayName but this returns an abbreviated weekday name instead.
Syntax
WeekdayNameShort(Arg[, String])

WeekdayNameShort String

|- valign="top" | rowspan="1" colspan="1" | Argument
| rowspan="1" colspan="1" | Description
|- valign="top" | rowspan="1" colspan="1" | First argument
| rowspan="1" colspan="1" | If it is a numeric value (0 to 6), it is converted to the appropriate
abbreviated weekday name. If it is a Date/Time, the weekday number is extracted and converted.
|- valign="top" | rowspan="1" colspan="1" | Second argument
| rowspan="1" colspan="1" | Optional. The locale that must be used to format the first argument.
Some examples include: en_US for English (United States), en_GB for English (United Kingdom), and
fr_FR for French (France). See See Values for fieldcode-format-locale Option for a complete list.
|} Remarks
If the optional argument is omitted, first the E-mail Server fieldcode-format-locale option (See
fieldcode-format-locale) in the email-processing section is used if present. Otherwise, the platform
locale is used.

[+] Year

Year
Description
Returns the numeric year component of a Date/Time with the century.
Syntax
Year (DateTime)

[+] YearShort

YearShort
Description

Functions Date and Time Functions

eServices Field Codes Reference Manual 29

Returns the numeric year component of a Date/Time without the century (0 – 99).
Syntax
YearShort (DateTime)

Functions Date and Time Functions

eServices Field Codes Reference Manual 30

Type Conversion
The eServices Field Codes use the following type conversions:

Bool

[+] Bool
Description
Returns a Boolean converted from a number or a string.
Syntax
Bool(Arg, [Default])

Bool String

Argument Description

Arg
If a number, then converts 0 to False and nonzero to True.
If a string, then converts Off, No, and False to False, and On,
Yes, and True to True. If another string, then returns Default.
If Default is omitted, then returns False.

Remarks

Examples of Bool String

Example Result

<$Bool(0)$> False

<$Bool(25.23)$> True

<$Bool("Yes")$> True

<$Bool("off", True)$> False

<$Bool("Asteroids")$> False

<$Bool("Asteroids", True)$> True

Num

[+] Num

Functions Type Conversion

eServices Field Codes Reference Manual 31

Description
Returns a number converted from a string.
Syntax
Num (String[, String])

Num String

Argument Description

First argument
The string to be converted. May be expressed in scientific
notation. Returns 0 if the string is not recognizable as a number.
Ignores nonnumeric characters following the number.

Second argument

Optional. The locale that must be used to parse the first
argument. Some examples include: en_US for English (United
States), en_GB for English (United Kingdom), and fr_FR for
French (France). See the Values for fieldcode-format-locale
Option in the eServices 8.1 Reference Manual for a complete
list.

Remarks

If the optional argument is omitted, first the E-mail Server fieldcode-format-locale option (see
option description in the eServices 8.1 Reference Manual) in the email-processing section is used if
present. Otherwise, the platform locale is used.
For clarity, the results shown in the Examples of Num String table appear with three digits after the
decimal point and always in the en_US format. Default number formatting shows no digits after the
decimal point. Use the Text function (see Field Codes in Standard Responses Reference: Text) or
format operator (%) to override the default formatting.

Examples of Num String

Example Result

<$Num("10")$> 10.000

<$Num("10.00")$> 10.000
(Assuming the locale is en_US.)

<$Num("10,00", "fr_FR")$> 10.000
(Note the comma-decimal separator in the first argument.)

<$Num("12e-2")$> 0.120

<$Num("12.2e2Zork")$> 1220.000
(Assuming the locale is en_US .)

Functions Type Conversion

eServices Field Codes Reference Manual 32

Example Result

<$Num("12,2e2Zork", "fr_FR")$> 1220.000
(Note the comma-decimal separator in the first argument.)

<$Num("Zaxxon")$> 0.000

Text

[+] Text
Text

Description
Returns a string converted from an argument of any data type. Use the format operator (:) as
shorthand for this function.
Syntax
Text (Arg[, Pattern[, String]])
or
Arg:Pattern

Text String

Argument Description

Arg The value to be converted

Pattern
Optional. The picture string to use for formatting. If omitted,
default formatting is used. The syntax of the picture string
depends on the data type. See Number Formatting - “Number
Formatting (Arg is a Number)”).

String

Optional. The locale that must be used to parse the first
argument. Some examples include: en_US for English (United
States), en_GB for English (United Kingdom), and fr_FR for
French (France). See Values for the fieldcode-format-locale
Option in the eServices 8.1 Reference Manual for a complete
list.
If the optional argument is omitted, first the E-mail Server
fieldcode-format-locale option in the email-processing
section is used, if present. Otherwise, the platform locale is
used.

[+] Number Formatting

Functions Type Conversion

eServices Field Codes Reference Manual 33

Number Formatting (Arg is a Number)

If Arg is a number, then the regular expression syntax of the optional pattern string is as follows:

#*.?#*

Where:

–The pound sign (#) represents a digit. Any number of # s, including 0
may appear before the decimal character. Specify the minimum number
of digits that should appear to the left of the decimal. If the integer part of
the formatted number contains fewer than the specified number of digits,
the number is padded with leading zeros.

Any number of # s, including 0, may appear after the decimal character.
Specify the precision of the fractional part of the number. The number is
rounded to the specified precision.

Only the decimal separator in the result is locale dependent (There is no
grouping separator).

The Examples of Number Formatting table contains some examples.

Examples of Number Formatting

Pattern Arg Value Locale Result

"" 0 en_US "0"

"" 123.456 en_US "123"

"#" 0 en_US "0"

"##" 0 en_US "00"

"##" 123.456 en_US "123"

"#." 0 en_US "0. "

"#." 123.456 en_US "123. "

".##" 0 en_US ".00"

Functions Type Conversion

eServices Field Codes Reference Manual 34

Pattern Arg Value Locale Result

".##" 0.456 en_US ".46"

".##" 123.456 en_US "123.46"

".##" 20000.456 en_US
"20000.46"
(Note the decimal point
separator in the result.)

".##" 123.456 fr_FR
"123,46"
(Note the comma-decimal
separator in the result.)

".##" 20000.456 fr_FR
"20000,46"
(Note the comma-decimal
separator in the result.)

[+] Duration Formatting
Duration Formatting (Arg is a Number)

If Arg is a number, then the regular expression syntax of the optional pattern string is as follows:

(<dur>).?#*

Where:
<dur> represents a duration and can be any of the sequences in the following list. (Upper- or
lowercase letters are accepted.)
HH
HH:MM
HH:MM:SS
MM
MM:SS
SS
H
H:MM
H:MM:SS
M
M:SS
S

<dur> may be followed by a .## string, which specifies the precision of
the last element of the duration. Any C or % suffixes are ignored. When
you format a value as a duration, the value is always assumed to be
expressed in days.

The pound sign (#) represents a digit. Any number of # s, including 0, may appear before the

Functions Type Conversion

eServices Field Codes Reference Manual 35

decimal character and specify the minimum number of digits that should appear to the left of the
decimal. If the integer part of the formatted number contains fewer than the specified number of
digits, the number is padded with leading zeroes.
Any number of # s, including 0, may appear after the decimal character and specify the precision of
the fractional part of the number. The number is rounded to the specified precision.
The Examples of Duration Formatting table contains some examples.

Examples of Duration Formatting

Pattern Arg Value Locale Result

"HH" 10.5083 en_US "11"

"HH.## " 10.5083 en_US "10.51"

"HH:MM" 10.5083 en_US "10:30"

"HH:MM.# " 10.5083 en_US "10:30.5"

"HH:MM:SS" 10.5083 en_US "10:30:30"

"MM" 10.5083 en_US "630"

"MM.## " 10.5083 en_US "630.50"

"MM:SS" 10.5083 en_US "630:30"

"SS" 10.5083 en_US "37830"

[+] Currency Formatting
Currency Formatting (Arg is a Number)

If Arg is a number, then the regular expression syntax of the optional parameter string is as follows:

#*.?#*[Cc]

Where:
A C or a c means format as currency. The grouping separator, the decimal separator, and the
currency sign in the result are locale dependent.
The Examples of Currency Formatting table contains some examples

Functions Type Conversion

eServices Field Codes Reference Manual 36

Examples of Currency Formatting

Pattern Arg Value Locale Result

"C" 12.34 en_US "$12.34"

"C" -12.34 en_US "($12.34)"

"#.#C" 12.34 en_US "$12.3"

"#.#C" -12.34 en_US "($12.3)"

"C" 12.34 en_GB "£12.34 "

"C" -12.34 en_GB "-£12.34 "

"#.#C" 12.34 en_GB "£12.3 "

"#.#C" -12.34 en_GB "-£12.3 "

".##C" 20000.456 en_US
"$20,000.46"
(Note the comma grouping
separator and point decimal
separator in the result.)

".##C" 20000.456 fr_FR
"20 000,46 €"
(Note the decimal comma
separator in the result.)

[+] Percentage Formatting
Percentage Formatting (Arg is a Number)

If Arg is a number, then the regular expression syntax of the optional pattern string is as follows:

#*.?#*%

Where:
The percent sign (%) means multiply by 100 and append the locale-dependent sign for percent
values. If the % appears by itself, the formatter rounds to the nearest integral value and omits a
decimal point (equivalent to the format #%).
The grouping separator, the decimal separator, and the percent sign in the result are locale
dependent.
The Examples of Percentage Formatting table contains some examples.

Functions Type Conversion

eServices Field Codes Reference Manual 37

Examples of Percentage Formatting

Pattern Arg Value Locale Result

"%" 0 en_US "0%"

"%" 0.123456 en_US "12%"

"#.##%" 0.123456 en_US "12.35%"

"#.##%" 0.123456 fr_FR
"12,35%"
(Note the comma-decimal
separator in the result.)

[+] Date/Time Formatting
Date/Time Formatting

Use elements shown in the Date/Time Pattern Letters table to construct a Date/Time pattern string.
The letters must be in uppercase or lowercase, as shown in the table (for example, MM not mm).
Characters that are not picture elements, or that are enclosed in single quotation marks, will appear
in the same location and unchanged in the output string.

Date/Time Pattern Letters

Element Meaning

d Day of month as digits, with no leading zero for single-digit days

dd Day of month as digits, with leading zero for single-digit days

ddd Day of week as a three-letter abbreviation

dddd Day of week as its full name

M Month as digits, with no leading zero for single-digit months

MM Month as digits, with leading zero for single-digit months

MMM Month as a three-letter abbreviation

Functions Type Conversion

eServices Field Codes Reference Manual 38

Element Meaning

MMMM Month as its full name

y Year as last two digits, but with no leading zero for years less
than 10

yy Year as last two digits, but with leading zero for years less than
10

yyyy Year represented by full four digits

h Hours, with no leading zero for single-digit hours; 12-hour clock

hh Hours, with leading zero for single-digit hours; 12-hour clock

H Hours, with no leading zero for single-digit hours; 24-hour clock

HH Hours, with leading zero for single-digit hours; 24-hour clock

m Minutes, with no leading zero for single-digit minutes

mm Minutes, with leading zero for single-digit minutes

s Seconds, with no leading zero for single-digit seconds

ss Seconds, with leading zero for single-digit seconds

tt Time-marker string, such as AM or PM

The examples in the Examples of Date/Time Formatting table assume that the date being formatted
is August 6, 2003, @ 15:05:10:

Examples of Date/Time Formatting

Pattern Locale Result

"MMMM d, yyyy @ hh:mm:ss tt" en_US "August 6, 2003 @ 03:05:10 PM"

"MMMM dd, yyyy @ HH:mm:ss" en_US "August 06, 2003 @ 15:05:10"

Functions Type Conversion

eServices Field Codes Reference Manual 39

Pattern Locale Result

"dd MMMM yyyy HH:mm:ss" fr_FR "06 aout 2003 15:05:10"

"MMM d, yy @ h:mm:ss tt" en_US "Aug 6, 03 @ 3:05:10 PM"

"M/dd/yy" en_US "8/06/03"

[+] Boolean Formatting
Boolean Formatting

A Boolean picture string is simply two words separated by a comma. The first word is used if the
Boolean value is True, and the second is used otherwise.
The Examples of Boolean Formatting table shows some examples:

Examples of Boolean Formatting

Field Code Result

<$Text(True, "Yup,Nope")$> "Yup"

<$Text(False, "Si,No")$> "No"

<$Text(False, "walnut,peach")$> "peach"

[+] String Formatting
String Formatting

Picture strings do not apply to string values. Strings are always output unchanged. If you want to
output a piece of a string, or change the case, then you can use one of the string-manipulation
functions previously described.

Functions Type Conversion

eServices Field Codes Reference Manual 40

Mathematical Functions
The eServices Field Codes include the following mathematical functions:

Abs

[+] Abs
Description
Returns the absolute value of a number.
Syntax
Abs (Number)
Remarks
The absolute value of a number is the number without regard to its sign.

Ceil

[+] Ceil
Description
Returns the ceiling of a number.
Syntax
Ceil (Number)
Remarks
The ceiling of a number is the smallest integer that is greater than or equal to that number.

Floor

[+] Floor
Description
Returns the floor of a number.
Syntax
Floor (Number)
Remarks
The floor of a number is the largest integer that is less than or equal to that number.

Functions Mathematical Functions

eServices Field Codes Reference Manual 41

Miscellaneous Functions
The eServices Field Codes include the following miscellaneous functions:

If

[+] If
Description
Returns either the second or the third argument, depending on the value of the first (Boolean)
argument.
Syntax
If (Boolean, TrueResult, FalseResult)

IsBoolean

[+] IsBoolean
Description
Returns True if the data type of the argument is Boolean; otherwise, it returns False.
Syntax
IsBoolean (Arg)

IsDateTime

[+] IsDateTime
Description
Returns True if the data type of the argument is Date/Time, and False otherwise.
Syntax
IsDateTime (Arg)

IsNumber

[+] IsNumber
Description
Returns True if the data type of the argument is number, and False otherwise.
Syntax
IsNumber (Arg)

Functions Miscellaneous Functions

eServices Field Codes Reference Manual 42

IsString

[+] IsString
Description
Returns True if the data type of the argument is string, and False otherwise.
Syntax
IsString (Arg)

Type

[+] Type
Description
Returns the type name (String, Boolean, and so on) of its argument.
Syntax
Type (Arg)

Functions Miscellaneous Functions

eServices Field Codes Reference Manual 43

Objects
The following objects can be accessed through eServices Field Codes:

• Agent Object
• Contact Object
• Interaction Object

Objects Miscellaneous Functions

eServices Field Codes Reference Manual 44

Agent Object
The Agent object is associated with the Interaction object. For an automated reply, this object is
the agent whose login name equals the E-mail Server autobot-agent-login option (see option
description in the eServices 8.1 Reference Manual) in its email-processing section.

FirstName

[+] FirstName
Description

Returns this agent’s first name.

Syntax

Agent.FirstName

LastName

[+] LastName
Description

Returns this agent’s last name.

Syntax

Agent.LastName

FullName

[+] FullName
Description

Returns this agent’s full name (first and last).

Syntax

Agent.FullName

Objects Agent Object

eServices Field Codes Reference Manual 45

Signature

[+] Signature
Description

Returns this agent’s signature.

Syntax

Agent.Signature

Objects Agent Object

eServices Field Codes Reference Manual 46

Contact Object
The Contact object is associated with the current EmailIn interaction. The properties include:

Id

[+] Id
Description

Returns this contact’s ID.

Syntax

Contact.Id

FirstName

[+] FirstName
Description

Returns this contact’s first name.

Syntax

Contact.FirstName

LastName

[+] Lastname
Description

Returns this contact’s last name.

Syntax

Contact.LastName

FullName

[+] FullName

Objects Contact Object

eServices Field Codes Reference Manual 47

Description

Returns this contact’s full name (first and last).

Syntax

Contact.FullName

Title

[+] Title
Description

This contact’s title (for example, Mr., Ms., and so on).

Syntax

Contact.Title

PrimaryEmailAddress

[+] PrimaryEmailAddress
Description

Returns this contact’s primary e-mail address.

Syntax

Contact.PrimaryEmailAddress

PrimaryPhoneNumber

[+] PrimaryPhoneNumber
Description

Returns this contact’s primary phone number.

Syntax

Contact.PrimaryPhoneNumber

Objects Contact Object

eServices Field Codes Reference Manual 48

Interaction Object
The Interaction object is the currently processed interaction that is built from a standard response
and includes Field Codes.

• For Acknowledgement, Redirect, Autoresponse, Chat Transcript, Forward, and Reply From
External Resource strategy objects, this Interaction object handles EmailIn.

• For the Send object, which only supports Field Codes for this Subject, this Interaction object handles
EmailOut.

• This distinction affects the the FromAddress and ToAddresses properties.

The properties for this object include:

Id

[+] Id
Description

Returns the Interaction’s ID.

Syntax

Interaction.Id

DateCreated

[+] DateCreated
Description

Returns the Date/Time at which this Interaction was created in the system.

Syntax

Interaction.DateCreated

Subject

[+] Subject

Objects Interaction Object

eServices Field Codes Reference Manual 49

Description

Returns the Subject of this Interaction.

Syntax

Interaction.Subject

ToAddress

[+] ToAddress
Description

Returns the recipient (To field) of this Interaction.

Syntax

Interaction.ToAddress

Important
For the Send strategy object, this syntax translates into the current
EmailOut.ToAddresses. For the Acknowledgement, Redirect, Autoresponse,
Chat Transcript, Forward, and Reply From External Resource strategy objects,
this translates into the current EmailIn.ToAddresses.

FromAddress

[+] FromAddress
Description

Returns the originator (From field) of this Interaction.

Syntax

Interaction.FromAddress

Objects Interaction Object

eServices Field Codes Reference Manual 50

Important
For the Send strategy object, this syntax translates into the current
EmailOut.ToAddresses. For the Acknowledgement, Redirect, Autoresponse,
Chat Transcript, Forward, and Reply From External Resource strategy objects,
this translates into the current EmailIn.FromAddresses.

AttachedData

[+] AttachedData
Description

Returns the attached data (Interaction Attribute) value associated with a specified key. The
value can be either a string or a number.

Syntax

Interaction.AttachedData (“Key”)

Example

Interaction.AttachedData (“ParentId”)
Interaction.AttachedData (“Language”)

TimeZone

[+] TimeZone
Description

Returns the time zone of the parent interaction (Interaction in general). The value is a string
formatted as“GMT”, “GMT+”hh.mm, or “GMT-”hh.mm.

Syntax

Interaction.TimeZone.

Examples

GMT+01.00 indicates a Paris time zone.
GMT-04.00 indicates a Canada east coast (Maritimes) time zone.
GMT-05.00 indicates an eastern U.S./Canada time zone.

Objects Interaction Object

eServices Field Codes Reference Manual 51

Objects Interaction Object

eServices Field Codes Reference Manual 52

	eServices Field Codes Reference Manual
	Table of Contents
	Genesys eServices Field Codes Reference Manual
	Escape Codes and Sequences
	Data Types
	Operator Precedence
	Named Constants
	Functions
	String Functions
	Date and Time Functions
	Type Conversion
	Mathematical Functions
	Miscellaneous Functions

	Objects
	Agent Object
	Contact Object
	Interaction Object

