
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Bonus Example

Genesys Designer Quick Start Guide

4/25/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Bonus Example
• 1.1 Play Greeting
• 1.2 Pizza Size Menu
• 1.3 Save and Validate
• 1.4 Testing
• 1.5 Time to Segment
• 1.6 Routing to an Agent
• 1.7 Adding a Shared Module
• 1.8 Handling the Result
• 1.9 Applying What You Have Learned

Genesys Designer Quick Start Guide 2



Bonus Example
Now it's time to apply all of the knowledge you have learned so far. This example uses Menu,
Segmentation, and Shared Module blocks to demonstrate how you can use Genesys Designer to
create an application for a pizzeria.

Tip
This example aims to help you demonstrate what you have learned so far. Therefore,
it does not provide you with step-by-step instructions for each task. If you think you
need extra help, click [+] Show Tip to see the steps that you need to do.

Play Greeting

First, let's play a greeting for the caller. Click and drag the Play Message block from the Palette to
the Application Flow and drop it in the Self Service phase.

Next, let's configure the block to play a greeting. Ensure the Play Message block is selected and go
to the block properties section to the right of the Application Flow. Click Add Prompt and
configure a TTS prompt that will say "Welcome to Pizza Palace!"

[+] Show Tip

• Type - TTS
• Variable? - Disabled
• Value - Welcome to Pizza Palace!
• Play as - text

As we might add several Play Message blocks to our application, it is a good practice to rename the
block to describe what it does. In this case, let's rename the block to Play Greeting.

[+] Show Tip

To rename a block, hover over it and click the pencil icon to display a text

Bonus Example

Genesys Designer Quick Start Guide 3



field.

Pizza Size Menu

Now let's ask the caller to specify a pizza size. Add a Menu block below the Play Greeting block.
Rename the block to Pizza Size Menu. Ensure the Pizza Size Menu block is selected and go to the
block properties to configure the block to provide the following functions:

• Play a prompt that asks the caller to choose a size.
• Use DTMF Options to input a size:

• 1 - Small
• 2 - Medium
• 3 - Large

• Use Retry Prompt to allow two No Match events and one No Input event. After each event, the caller
is asked to "Please try again" and the menu options are repeated.

• Store the outcome of the interaction in two variables: pizza_size and menu_result.

[+] Show Tip

1. In the Menu Prompts tab, click Add Prompt and configure the prompt as
follows:
• Type - TTS
• Variable? - Disabled
• Value - What size pizza would you like? For Small, press 1. For Medium,

press 2. For Large, press 3.
• Play as - text

2. In the DTMF Options tab, enable DTMF keys 1, 2, and 3 and name them
Small, Medium, and Large, respectively.

3. In the Retry Prompt tab, enable the Allow retries check box and configure
the retries as follows:
• Number of No Input retries allowed - 1
• Number of No Match retries allowed - 2
• No Input #1 - Click Add Prompt and add a TTS prompt with the value

of Please try again. Enable the Play original menu prompt after

Bonus Example

Genesys Designer Quick Start Guide 4



this retry prompt check box.
• After Final No Input - Skip.
• No Match #1 - Click Add Prompt and add a TTS prompt with the value

of Please try again. Enable the Play original menu prompt after
this retry prompt check box.

• No Match #2 - Click Add Prompt and add a TTS prompt with the value
of Please try again. Enable the Play original menu prompt after
this retry prompt check box.

• After Final No Match - Skip.

4. Click the Initialize phase and add the following variables: pizza_size and
menu_result. Do not provide a default value.

5. Click the Pizza Size Menu block to and then click the Results tab.
Configure the tab as follows:
• Store user entered digits in this variable - pizza_size
• Store the outcome of the user interaction in this variable -

menu_result

Save and Validate

It is a good idea to save often (although Designer will periodically save a temporary version of your
application automatically). Click Save Flow.

Designer saves your application, but it also displays a warning icon beside Validation Status to
indicate that it has found warnings or errors with your application. This is expected, as the application
is not yet complete.

Click the warning icon to view the warnings.

Bonus Example

Genesys Designer Quick Start Guide 5



The warnings indicate that each of our menu options do not provide a prompt. Let's take a closer look
and investigate these warnings. You can click the warning to open the block to which the warning
refers. For now, let's look at these blocks in the Application Flow.

Click the Small block and view its properties. Click the Play Audio tab and add a TTS prompt with
the value You chose small. Add similar prompts to the Medium and Large blocks.

Next, click Save Flow. You have fixed the warnings, and a green check mark is displayed by
Validation Status.

Testing

Like saving, it's a good idea to regularly test your application to ensure it is working as you intend.
Click Publish.

In the navigation bar, click Applications to return to the applications list. In the Phone Number(s)
column, click Manage and assign a phone number to your application. Finally, click the Status slider
to enable your application.

Bonus Example

Genesys Designer Quick Start Guide 6



That's it—give your application a call and test it to ensure it is working.

Time to Segment

We now have a simple application to determine the pizza size that the customer wants, but what
happens next? Let's add an option to let the customer choose toppings for the pizza. Also, just in
case the caller was not successful in making a size selection, let's add an option to transfer to a live
operator.

So, after the Pizza Size Menu blocks, we need to branch into two different paths, depending on
whether or not the caller gave a valid response at the menu.

Add a Segmentation block after the Pizza Size Menu blocks. When done, check to see if the
Segmentation is indented to the right of Pizza Size Menu parent block. What happened? Now is a
good time to review layers. Click [+] Show Tip below to see how to fix this problem. Or, if you know
how to resolve this problem, skip ahead to continue with this example.

[+] Show Tip

First, look at how the blocks are indented underneath the Pizza Size Menu
block. The Application Flow uses indentation to indicate that these blocks
are child blocks of the parent block. In other words, the child blocks are
contained within the parent block, and the child blocks are only executed if
the parent block is executed.

You can also determine that a block has sub-blocks by looking at the ^ or v
icons on its right edge. Notice that both the Pizza Size Menu block and the
Self Service blocks have these icons, which means you can show or hide
the blocks within.

If you move a parent block, its child blocks move with it. If you delete a
parent block, its child blocks are also deleted.

However, we do not want the Segmentation block to be a child block of
the Pizza Size Menu block. We have two options to resolve this situation:

• Hover over the Segmentation and click the left-arrow icon to move this
block up a layer.

• Delete the Segmentation block block, then click the ^ icon beside the
Pizza Size Menu block to hide its child blocks. Now you can add the
Segmentation block to your application on the same layer as the Pizza
Size Menu block.

Bonus Example

Genesys Designer Quick Start Guide 7



Change the name of the Segmentation block to Size result. Next, go to the block properties. In
the Conditions tab, click Add Condition to create a branch under this Segmentation block. Change
the name of the condition from Segment to Size Error. For Condition Expression, enter
menu_result.success == false.

This expression refers to the menu_result variable that we used to store the outcome in the Pizza
Size Menu block. If its success element is false, it means the customer exited the menu due to a no-
input or no-match error, and the application did not receive a valid response from the customer. In
this case, the expression evaluates to true, and the application executes the Size Error block. If the
application did receive a valid response from the customer, the application executes the next block
after the Size Result block and its child blocks (we are adding more blocks to the Size Result block
a little later).

Click the Size Error block in the Application Flow to select it and display its properties. Click the
Navigation tab near the bottom. In the drop-down menu, choose the Assisted Service phase. The
application now skips directly to the Assisted Service phase whenever there is an error result from
the Pizza Size Menu block.

Bonus Example

Genesys Designer Quick Start Guide 8



Did you notice that when you set the Navigation property, Designer applied a blue bar to the right
edge of the Size Error block in the Application Flow? This indicates that the block contains a Go To
command, which means it jumps to a specific location after executing, rather than continuing with
the normal top-down execution flow.

Click Save Flow to save your work. Designer displays the following validation warning: Expression
may have undefined reference: "success".

Designer tracks that you have created variables, but it does not track which types of objects are
stored in them. As a precaution, it warns you if it detects expressions that reference elements of
variables.

It is always important to pay attention to validation warnings. However, some of them (such as this
example) can be safely ignored once you have verified that your logic is correct.

Routing to an Agent

If the Self Service phase cannot handle the call, the application proceeds to the Assisted Service
phase and it can transfer the call to an agent.

Drag and drop a Route Call block under the Assisted Service phase.

The Route Call block can provide several types of routing, such as skills-based routing, Agent Group
routing, routing by priority ranking, and more. For this example, select Direct number routing. You
could enter a phone number in the Number field, but for this example we will create a User Variable,
routing_number, to hold the number. The default value of this variable must be a number that you

Bonus Example

Genesys Designer Quick Start Guide 9



can use to test the routing function.

[+] Show Tip

1. In the Application Flow, select the Initialize phase and view its properties.
2. In the User Variables tab, click Add Variable.
3. In the Name field, enter routing_number.
4. In the Default Value field, enter a test phone number that you can use to

test the application.

Tip
As this is a string, you must include the value in single
quotation marks. For example: '18005555555'.

Ensure you have selected the routing_number variable for the Direct number routing option in
the Route Call block. Next, go to the Routing Priority tab and disable the Use Priority during
Routing check box, as we are not using this feature for this example.

Tip
You could add more numbers to the Direct number routing list by clicking Add
Number. Then, you could weight them to control the percentage of calls that go to
each number.

We are almost done. However, before we route the call, we should play a message to the caller to let
them know that we are transferring the call. We do not use the options in the Play Audio tab of the
Route Call block for this function, because those options are used for audio that loops while the
caller is being transferred (hold music).

Add a Play Message block at the beginning of the Assisted Service phase, before the Route Call
block. Change the block name to Announce Transfer and have it play this TTS prompt: "Please hold
while we transfer your call."

[+] Show Tip

1. In the Application Flow, select the Announce Transfer block and view its

Bonus Example

Genesys Designer Quick Start Guide 10



properties.
2. Click Add Prompt and configure the prompt as follows:

• Type - TTS
• Variable? - Disabled
• Value - Please hold while we transfer your call
• Play as - text

Click Save Flow to save your work. Designer displays the following new validation warning: "Prompts
should not be empty."

In this case, the warning refers to the Play Audio tab of the Route Call block. It is not always
necessary to enter a prompt for every audio property slot. If you determine that it is best for your
application design to leave some of these slots empty, you can safely ignore the resulting warnings.

Adding a Shared Module

Let's add a shared module to offer the caller a menu of specialty pizzas. As you might recall, shared
modules are small pieces of applications that you can use in one or more applications.

Click Shared Modules in the navigation bar to open the list of shared modules. Next, click Add
Module and create a module named Specialty Pizza Menu and set its type to Self Service, since
it will use Self Service functionality that we will include in the Self Service phase of our application.
Click Create and Open to create the shared module and open it for editing.

Bonus Example

Genesys Designer Quick Start Guide 11



The edit window for shared modules looks similar to the application editing window, except that the
Application Flow contains only two phases: Initialize and Self Service. This is because we chose
Self Service as the type for this shared module; if we selected Assisted Service, the Application
Flow would contain only Initialize and Assisted Service phases.

You build a shared module in a manner similar to how you build an application:

• Drag blocks from the Palette and drop them into the Application Flow.
• Edit block properties.
• Rearrange blocks to suit the execution order in the Application Flow, which is usually from top to

bottom.

Usually, when you call a shared module from within an application, your application passes some
input parameters to the shared module. After the shared module finishes executing, the application
receives some output parameters. You define these input and output parameters in the Initialize
phase of your shared module.

For our Specialty Pizza Menu shared module, the application will pass in the size of pizza that the
caller selected. Then the module will present a menu of choices (for example: plain cheese, meat
lovers, and so on) and will return the selection back to the application. It will also return a flag to
indicate whether the caller made a valid choice in the shared module.

Input/Output Parameters
First, let's define our input/output parameters. Select the Initialize phase and view its properties.
Let's create one input and two output parameters, and one more parameter to store the result of the
interaction. In the User Variables tab, click Add Variable four times to create four variables.

Each variable has two check boxes, In and Out. This specifies whether the variable is used for input
or output.

Bonus Example

Genesys Designer Quick Start Guide 12



Configure the four variables as shown below:

Next, let's create a menu for the shared module to present to the caller.

Toppings Menu
Add a Menu block to the Self Service phase and rename it to Toppings Menu. Configure it as shown
below:

Bonus Example

Genesys Designer Quick Start Guide 13



Bonus Example

Genesys Designer Quick Start Guide 14



Bonus Example

Genesys Designer Quick Start Guide 15



Bonus Example

Genesys Designer Quick Start Guide 16



You might have noticed that we did not assign a variable to the Store user entered digits in this
variable menu, as we do not need to store which key the caller pressed. Instead, we will store a
readable string in the pizza_type variable that can be passed back to the application.

Click the Plain Cheese block and view its properties. Click the Set Variables tab, and then click
Add Assignment. Select the pizza_type variable and enter 'plain cheese' in the Expression
field. This sets the pizza_type variable to the string 'plain cheese' whenever the caller selects
option 1 at this menu.

Repeat the above steps for the Meat Lovers and Veggie Supreme blocks and and use the strings
'meat lovers' and 'veggie supreme', respectively. If you need help, click [+] Show Tip below.

[+] Show Tip

Bonus Example

Genesys Designer Quick Start Guide 17



Bonus Example

Genesys Designer Quick Start Guide 18



Return Block
Next, we need a Return block to tell the shared module to exit and return to the application. We can
also use the Return block to assign values to any output variables that have not been updated.

Tip
A shared module also returns to the application automatically when it reaches the end
of its flow, even if there is no Return block.

Place a Return block at the bottom of the Application Flow.

[+] Show Tip

When you add the Return block to the Application Flow, you might only
be able to place the block in an indented position underneath the Veggie
Supreme block. If so, hover over the block to make its editing icons appear
on its right side, then click the green left-arrow icon to move the block to
the left. This puts the Return block at the same level as the Toppings

Bonus Example

Genesys Designer Quick Start Guide 19



Menu block, so that it executes after any Toppings Menu result.

In the Return block’s properties, click Add Assignment and choose the output variable success.
Assign it the following expression value: menu_outcome.success.

Saving and Versioning
Click Save Flow to save your work. Designer will identify validation errors, but you can ignore those
for now.

You might also notice another button named Create Version. You click Create Version when you
want to publish the final version of your shared module. If necessary, you can develop and publish
several different versions of a shared module, and your various applications could each use different
versions, or the same version, as appropriate.

Adding the Shared Module to the Application
Now that you have a shared module, let's put it in your application.

Click Applications in the navigation bar and click the name of your application to open it for editing.

Drag the Shared Module block onto the Application Flow and drop it beneath the Size Result
block. If it ends up indented under the Size Error block, click its left-arrow icon to move it to the left,
so it is in line with the Size Result block.

Next, view the properties of the Shared Module block and use the drop-down menu to select the
Specialty pizza menu shared module. When you select a shared module, a list of its published
versions appears below. Select the version that we created in the previous step (Cheese, meat, or

Bonus Example

Genesys Designer Quick Start Guide 20



veggie).

[+] Show Tip

The Signature tabs let you set up the parameters of the shared module. As you recall, we designed
the shared module to do the following:

• Input
• pizza_size - Holds a string value for pizza size.

• Output
• success- Holds a Boolean value to indicate whether a valid selection was made.
• pizza_type - Holds a string value to describe which type of pizza was selected (if any).

We need to create new variables to hold these values. In the Application Flow, click the Initialize
phase and view its properties. Add two new User Variables: pizza_size_str, and pizza_type_str.
Set both default values to empty strings (''). To hold the Boolean return value, we can reuse the
menu_result variable.

[+] Show Tip

Bonus Example

Genesys Designer Quick Start Guide 21



Select the Shared Module' and click its Signature tab. Select Input Parameters and set the
default value of the pizza_size input parameter to the variable pizza_size_str.

Next, select Output Parameters and assign the pizza_type output to the pizza_type_str variable,
and assign the success output to the menu_result variable.

[+] Show Tip

Bonus Example

Genesys Designer Quick Start Guide 22



Next, we need to assign the proper string values to the pizza_size_str variable. For each Small,
Medium, and Large block, click the Set Variables tab and assign the pizza_size_str variable to
the value small, medium, or large, respectively.

[+] Show Tip

Bonus Example

Genesys Designer Quick Start Guide 23



Finally, change the Shared Module block name to something more descriptive, such as Toppings

Bonus Example

Genesys Designer Quick Start Guide 24



Module.

Handling the Result

Our application is taking shape. Next, we need to consider what happens when the caller returns
from the Toppings Module.

Let's look at the Application Flow. After the caller exits the Toppings Module block, he will enter
the Assisted Service phase and be unnecessarily transferred to an agent, even if he made a
successful order selection in the Self Service phase.

We need to add the following functions:

• If the Toppings Module returns an error, the caller is directed to the Assisted Service phase so they
can speak to an agent.

• If the Toppings Module returns a valid result, the order is considered complete and we play a wrap-up
message to the caller and end the call.

To accomplish this, add a Segmentation block below the Toppings Module block. Change the
name of this Segmentation block to Toppings Result.

In the Toppings Result block properties, add two conditions:

• Toppings error - menu_result == false (This condition executes if the caller did not give a valid
response in the shared module.)

• Order complete - true

[+] Show Tip

Bonus Example

Genesys Designer Quick Start Guide 25



When a Segmentation block is executed, its conditions are evaluated in order from the top. The first
condition that is satisfied is executed, and no further conditions are evaluated. In our Toppings
Result block, if the first condition evaluates to true, Toppings error is executed. Otherwise, the
next condition is evaluated. In our case, we want the last condition to execute whenever it is reached,
so we set the expression to true.

In the Toppings Error block, click the Navigation tab and set the target block to Assisted Service.
This transfers the call to an agent.

In the Order complete block, we want to play a message and then end the call. Place a Play
Message block under the Order complete block so that it is indented inside that block. Next, place
a Terminate Call block under the Play Message block so that it is lined up at the same indentation
level as the Play Message block. Since these two blocks are indented blocks (child blocks)
underneath the Order complete block (parent block), they execute in top-down order only if the
Order complete block executes.

Configure the Play Message block as shown below:

Bonus Example

Genesys Designer Quick Start Guide 26



The Terminate Call block has no property settings - it signals the application to jump to the Finalize
phase. You might notice that the Terminate Call block has a red bar on its right edge, to indicate
that it causes the call to end, bypassing any blocks that might be below it.

Click Publish and call your application to test it.

Applying What You Have Learned

You now have a solid foundation for understanding how to use Genesys Designer to build and deploy
voice applications.

Refer to the Designer Help to learn more about blocks, Shared Modules, Audio Resources, and more.

Bonus Example

Genesys Designer Quick Start Guide 27


	Genesys Designer Quick Start Guide
	Bonus Example

