
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Variables Project and Workflow

Composer Help

7/28/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Variables Project and Workflow

Contents

• 1 Variables Project and Workflow
• 1.1 Types of Variables
• 1.2 Block Properties as Variables
• 1.3 Application Variables Dialog Box
• 1.4 System Variables
• 1.5 Upgrading from Composer 8.1.1 or earlier
• 1.6 Project Variables
• 1.7 Internal Variables Naming
• 1.8 Attaching Results to User Data

Variables Project and Workflow

Composer Help 2



This page discusses Project, Workflow, and internal variables.

Types of Variables

As can be seen in the Application Variables dialog box, Composer uses the following types of
variables:

• System—Pre-defined system variables hold Project and application-related values. You cannot delete
system variables, but applications can modify their values.

• User—User-defined custom variables that you create by clicking the Add button in the Application
Variables dialog box shown below and selecting User. Applications can delete and modify these types
of variables.

• Project_Variables in the Project Variables dialog box, which opens when you click the Access
Project Variables button on the toolbar with the IPD in focus. Use Project variables when you need to
share information across different workflows. Once defined, Project variables are accessible for use in
expressions in Expression Builder.

For example, the Assign block allows you to assign entered values or values created in
ExpressionBuilder to variables. Once defined, those variables are accessible for use in expressions in
Expression Builder.

Block Properties as Variables

Many block properties can be specified as workflow variable. To name just a few:

• Target Block properties: Statistic, Timeout, Target Name (if type = Variable), Target Component
Selected, Target Object Selected, Target Selected, Virtual Queue Selected, Virtual Queue

• Play Application properties: Resource
• Play Sound Block properties: Resource, Duration
• Play Message Block properties: Prompts > Values field in Prompts dialog box
• User Input Block properties: Prompts > Values field in Prompts dialog box. AbortDigits, BackspaceDigits,

Collected Digits Variable, IgnoreDigits, Number of Digits, Termination Digits, ResetDigits, Resource,
StartTimeout, DigitTimeout, TotalTimeout, Verification Attempts, Verification Data

• Set Default Route Block: Destination property
• Route Interaction Block: Statistics property
• Subroutine Block: Parameters property
• Stop Interaction Block Reason to Stop Interaction Property
• Context Services: All blocks have certain properties that allow you to select a variable.
• eService: All blocks have certain properties that allow you to select a variable.

Variables Project and Workflow

Composer Help 3

https://docs.genesys.com/Documentation/IW/8.1.5/Help/EntryBlockRouting#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.5/Help/MainToolbar
https://docs.genesys.com/Documentation/IW/8.1.5/Help/MainToolbar
https://docs.genesys.com/Documentation/IW/8.1.5/Help/AssignBlockCommon
https://docs.genesys.com/Documentation/IW/8.1.5/Help/ExpressionBuilder


Upgrading from Composer 8.0.2 or earlier
Prior to 8.0.3 release, Composer defined workflow variables in the data model of the SCXML
application so they were required to be accessed by prefixing the name of a workflow variable with
"_data.". For example, if you defined a workflow variable named var1, you would access it as
_data.var1. Starting with 8.0.3, Composer defined these variables in the ECMAScript scope so the
variable is accessed simply as var1.

Application Variables Dialog Box

Note: When using the ORS Debugger, are not displayed correctly in the variables view toolbar if the
value contains XML or variables that are of type E4X.

To define/view variables:

1. In the Properties tab, click opposite Variables under Value to display the button.
2. Select Project, System, or User Variables.
3. Click the arrow to display the selected type. An example dialog box is shown below.

Variables Project and Workflow

Composer Help 4

https://docs.genesys.com/Documentation/IW/8.1.5/Help/DebuggingRoutingApplications
https://docs.genesys.com/Documentation/IW/8.1.5/Help/DebuggingToolbars


To add a new variable:

1. Click Add. Composer add a row for variable and generates a temporary name and number; for
example: var7.

2. Select the row and supply the Name, Type, Value, and Description fields.
3. Click OK.

System Variables

• system.Language—Holds the application language setting. The value should be the RFC 3066

Variables Project and Workflow

Composer Help 5

https://docs.genesys.com/Documentation/IW/8.1.5/Help/Locales


language tag of an installed language pack. Examples of valid RFC 3066 language tags include en-US
and fr-FR. This setting also acts as a default language for the application.

• system.CallID—Call identifier created by the switch. It is initialized
from _genesys.ixn.interactions[system.InteractionID].voice.callid (voice only).

• system.DNIS—Number that the caller dialed. It is initialized
from _genesys.ixn.interactions[system.InteractionID].voice.dnis (voice only).

• system.ANI—Caller's phone number. It is initialized
from _genesys.ixn.interactions[system.InteractionID].voice.ani (voice only).

• system.LastErrorEvent—Stores the last error that was handled in a block.
• system.LastErrorEventName—Stores the name of the error that was handled in a block.
• system.LastErrorDescription—Stores the description of the last error that was handled in a block.
• system.WebServiceStubbing— Flag to control Web Services Stubbing (1 = ON).
• system.TerminateIxnOnExit—Used to automatically stop an interaction that was not stopped by the

Route Interaction, Queue Interaction, or Stop Interaction block in a multimedia workflow. New workflow
entry blocks have this variable pre-populated with 1.

• system.TenantID—The current Tenant identifier. It is initialized from _genesys.session.tenantid or
from _genesys.ixn.interactions[system.InteractionID].tenantid (if available). See the Update
Contact, Identify Contact, Create Interaction, or Render Message block for more information.

• system.TenantName—The current Tenant name. It is initialized from _genesys.session.tenant.
• system.LastTargetComponentSelected—Target to which the interaction was routed definitively. See

the Target Component Selected property of the Target block.
• system.LastTargetObjectSelected—High-level target to which the interaction was routed definitively.

See the Target Object Selected property of the Target block.
• system.LastTargetSelected—DN and Switch name to which the interaction was routed definitively.

See the Target Selected property of the Target block.
• system.LastVirtualQueueSelected—The Alias of the Virtual Queue specified in the target list where

the interaction was routed. See the Virtual Queue Selected property of the Target block.
• system.LastSubmitRequestId—RequestId value of the last <queue:submit> execution. This variable

is automatically updated when a successful (queue.submit.done) or unsuccessful (error.queue.submit)
event is received. <queue:submit> is generated when using Target or RouteInteraction blocks.
<queue:submit> may also be used if using SCXMLState or BeginParallel blocks.

Operational Parameter Management (OPM): These parameters are defined and provisioned in
Genesys Administrator Extension (GAX)

• system.OPM—Used by the OPM Block (App_OPM is used in callflow diagrams).

• system.ThisDN— Initially set to the same value as system.DNIS. The value is updated by the
interaction party state changed event handler (see IPD/Events property below) to the value of
focusdeviceid. This variable becomes the default value for properties: ForceRoute/From,
SingleStepTransfer/From, Target/From.

• system.ParentInteractionID— In case of Transfer scenario, this variable is assigned the ID of the
parent interaction of the current interaction being processed.

• system.OriginatingSession— In case of context passing (see 'Pass Context' property description

Variables Project and Workflow

Composer Help 6

https://docs.genesys.com/Documentation/IW/8.1.5/Help/WebServiceStubbing
https://docs.genesys.com/Documentation/IW/8.1.5/Help/RouteInteractionBlock
https://docs.genesys.com/Documentation/IW/8.1.5/Help/QueueInteractionBlock
https://docs.genesys.com/Documentation/IW/8.1.5/Help/StopInteractionBlock
https://docs.genesys.com/Documentation/IW/8.1.5/Help/OPMCommonBlock


above), this variable holds the context of the originating session.

Outbound Contact Server (OCS) variables used by
[http://internalwiki.us.int.genesyslab.com/Outbound%20Common%20Blocks Outbound
blocks]:

• system.OCS_RecordURI— Its default value is set when the application starts executing from data
passed into the application by the GVP or Orchestration platform. For workflows (SCXML), it is initialized
from the userdata key "GSW_RECORD_URI". For callflows (VXML),
session.com.genesyslab.userdata.GSW_RECORD_URI is used. This variable points to the 'current'
record as determined by OCS and is provided to the application as a convenient way to communicate
actions back to OCS for the current record.

• system.OCS_URI— Holds the OCS resource path in the format "http(s)://<ocs host>:<ocs port>".
Its default value is deduced from OCS_Record_URI. The application can change this variable's value to
use a different OCS application for all Outbound blocks in the workflow. Any downstream blocks will use
the new value.

• system.OCS_Record— Holds the Record Handle deduced from the value of OCS_Record_URI.

Upgrading from Composer 8.1.1 or earlier

The system variables have been renamed in Composer 8.1.2 to improve the usability and to support
new features. When upgrading a workflow that was initially developed with Composer 8.1.1 or earlier,
the old set of system variables is kept, in addition to the new one, to ensure compatibility as some of
those variables might be used in the application (for block properties or even in ECMAScript code).
However, users are now encouraged to use the variables that are "system." prefixed.

Composer 8.1.1 Composer 8.1.2
ANI system.ANI
App_Language system.language
App_Last_Error_Description system.LastErrorDescription
App_Last_Error_Event system.LastErrorEvent
App_Last_Error_Event_Name system.LastErrorEventName
App_Last_Submit_Request_Id system.LastSubmitRequestId
App_Last_Target_Component_Selected system.LastTargetComponentSelected
App_Last_Target_Object_Selected system.LastTargetObjectSelected
App_Last_Target_Selected system.LastTargetSelected
App_Last_VirtualQ_Selected system.LastVirtualQueueSelected
App_RelativePathURL system.RelativePathURL
App_StartEvent system.StartEvent
App_Terminate_Ixn_On_Exit system.TerminateIxnOnExit
CallID system.CallID
COMPOSER_WSSTUBBING system.WebServiceStubbing
DNIS system.DNIS

Variables Project and Workflow

Composer Help 7



Composer 8.1.1 Composer 8.1.2
InteractionID system.InteractionID
Tenant_Name system.TenantName
TenantID system.TenantID

Project Variables

Project variables encompass all the workflows in a Project. These types of variables are defined in the
data model of the interaction process diagram (IPD) SCXML application and so are required to be
accessed by prefixing the name of a project variable with "_data.". For example, if you define a
project variable named var1, you would access it as _data.var1. Project variables are also accessible
in ExpressionBuilder. Select Project Variables and then Variables under the Data Subcategory.

Use Project variables when information needs to be shared across workflows in an IPD. For example, if
you want to get the e-mail address in one workflow and would like to create and send out an email in
another workflow present in the same project. Genesys suggests defining at least one appropriately
named Project variable like varProjectXYZ. Any properties that accept a variable will show this
variable prefixed with _data in their list.

To define a project variable in Composer Design perspective:

1. Click the default.ixprocess tab (or the tab for a renamed IPD) to bring it into focus (tab is highlighted).
2. Click the Access Project Variables toolbar button. This opens the Project Variables dialog box. An

example dialog box with one entry is shown below.

Variables Project and Workflow

Composer Help 8

https://docs.genesys.com/Documentation/IW/8.1.5/Help/InteractionProcessDiagrams
https://docs.genesys.com/Documentation/IW/8.1.5/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.5/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.5/Help/InterfaceOverview#Perspectives


1. Click Add. The variable Name, Type, Value, and Description fields become editable.
2. Name the variable.
3. Specify an initial value if appropriate.
4. Describe the variable.
5. Click OK.

Internal Variables Naming

Starting with 8.1.1, Composer changes its naming policy for internal variables, which are variables
that do not appear in any Variable edition dialog. They can be seen only in the generated SCXML
code. Composer uses those variables to temporarily store data during an application execution.

Most Composer users will not be affected by this change. However, it is possible that some advanced
users may have written applications that use those variables although they were not available "out-
of-the-box." In such cases, those users will need to upgrade their application to use the variables with
the new names.

Example
In 8.1.0, for a DB Data block named DBDataBlock Composer could declare in the SCXML application
the variables:

Variables Project and Workflow

Composer Help 9



App_DbDataBlock, App_DbDataBlockDBResult, App_DbDataBlockDBResultColumnNames,
App_DbDataBlock_cursor, App_DbDataBlock_mapping

In 8.1.1, for a DbData block named DbDataBlock Composer could declare in the SCXML application
only one variable named App_DbDataBlock.

Various properties of this variable will be used, such as App_DbDataBlock[‘requestid’],
App_DbDataBlock[‘data’], App_DbDataBlock[‘DBResult’],
App_DbDataBlock[‘DBResultColumnNames’], App_DbDataBlock[‘cursor’],
App_DbDataBlock[‘mapping’]

Attaching Results to User Data

While you can assign Classify object results to a variable, Genesys does not recommend this. The
recommended way of dealing with the classification results is to attach them to the interaction. Then
User Data will have the keys listed in the table below with the corresponding values returned by
Classification Server. As an example, User Data would have the following pairs after the attachment:

Parameter Value
CtgId 00001a05F5U900QW
CtgRelevancy 95
CtgName Cooking
CtgId_00001a05F5U900QW 95
CtgId_00001a05F5U900QX 85
CtgId_00001a05F5U900QY 75
CtgId_00001a05F5U900QZ 65

Variables Project and Workflow

Composer Help 10


	Composer Help
	Variables Project and Workflow

