
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Composer 8.1.5

Composer Help

3/17/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Welcome 13

Composer Overview 16
Getting Help 19
Composer Installation Video 20
Composer Quick Start 21
Eclipse Workbench 35

Introduction to Composer 36
Software Prerequisites 39
Interface Overview 40
Using the Interface 45
Connection Links 47
Composer Code Editors 49
Enabling/Disabling Functionality 51
Hiding File Types and Blocks 52
Localization 54
Composer Compared to IRD 56

Getting Started with Composer 62
Running Composer for the First Time 63
Software Updates Functionality (Plugins) 65
Integrating with Source Control 67
Project Types and Directories 74
Project Properties 91
Multiple User Environments 110
Security Configuration 111
Upgrading Projects and Diagrams 112
Working with Diagram Layouts 122
Accessing the Editors and Templates 124
Keyboard Shortcuts 127
Default Logging 129
IRD Functionality Included in Composer 130
Diagram Search 134

Masking Sensitive Information in Composer Tomcat Logs 139
Composer Menus 141

File Menu 142
Edit Menu 144

Diagram Menu 145
Navigate Menu 148
Search Menu 150
Project Menu 151
Run Menu 153
Configuration Server Menu 156
Window Menu 157
Help Menu 159
Canvas Shortcut Menu 160
Palette Group Menu 162

Composer Toolbars and Views 163
Toolbars Overview 164
Main Toolbar 165
View Toolbars 171
Perspective Switcher Toolbar 183
Trimstack Toolar 185
Debugging Toolbars 186
Minimizing and Restoring Views 193
Strategy Manager View 195

Voice Applications and Callflows 197
Getting Started with Voice Applications 198
Callflow Post Installation 199
Working with Java Composer Projects 203
Working with .NET Composer Projects 204

Preferences for Voice Applications 206
CCXML File Preferences 207
Diagram Preferences 209
GAX Server Preferences 213
GRXML File Preferences 214
VXML File Preferences 216
GVP Debugger Preferences 218
IIS.NET Preferences 219
Setting Context Services Preferences 220
Time Zone Preferences 224
Tomcat Preferences 225
XML Preferences 226

Creating Voice Apps for GVP 227

What is GVP and How Do Voice Apps Work 228
Creating CCXML Applications 231
Creating VXML Applications 232
Hello World Sample 238
Callflow Blocks 241
Variables in Callflows 242
VXML Properties 246

Voice Block Palette Reference 264
Voice Blocks Basic 266

Assign Common Block 268
Branching Common Block 272
Disconnect Block 276
End FCR Block 278
Entry Block and Variables 280
Exit Block 289
GoTo Block 291
Grammar Menu Block 295
Input Block 302
Log Common Block 315
Looping Common Block 317
Menu Block 322
Prompt Block 331
Raise Event Block 335
Record Block 337
Release ASR Engine Block 344
Script Block 346
Set Language Block 348
SNMP Block 350
Start FCR Block 352
Subdialog Block 355
Transfer Block 361
VXML Form Block 372

Voice Database Blocks 374
DB Data Block 376
Database Input Block 377
DB Prompt Block 383
Working with Database Blocks 386

Supported SQL Datatypes 399
Voice CTI Blocks 401

CTI Scenarios 402
Get Access Number 405
Interaction Data Block 408
Route Request Block 411
Statistics Block 419
ICM Interaction Data Block 424
ICM Route Request Block 426
Working with CTI Applications 435

Voice External Message Blocks 441
Receive Block 442
Send Data Block 444
Send Event Block 447
Send Info Block 449

Reporting Blocks 451
Action Start Block 452
Action End Block 455
Set Call Data Block 458
Set Call Result Block 460

Genesys Voice Platform (GVP) Blocks 463
IVR Recording Block 464

Using Voice Blocks 467
Working with Grammar Builder 468
Working with CTI Applications 435
Working with Prompts 480
Connection Pooling 491

Common Properties for Callflow Blocks 498
Routing Applications and Workflows 510

Routing FAQs 511
Getting Started with Route Applications 520
IRD Functionality Included in Composer 130
Workflow Post Installation 525
Upgrading Workflows 530

Preferences for Routing Applications 531
Business Rule Preferences 532
Configuration Server Preferences 533

Diagram Preferences 209
Setting Context Services Preferences 220
Customizer Preferences 542
ORS Debugger Preferences 544
GAX Server Preferences 213
Help Preferences 546
IIS.NET Preferences 219
Orchestration Preferences 548
Orchestration Options 549
Orchestration Extensions 552
Detaching Interactions 553
SCXML File Preferences 558
Security Preferences 560
Tomcat Preferences 225

Introduction to Routing Workflows 562
What is a Routing Workflow? 563
Architecture Diagram for Workflows 565
Workflow Example and Palette 567
SCXML File Editor 568
Sessions and Interactions 570
Interaction Process Diagrams 571

Creating Routing Applications 574
575

Starting SCXML Page 577
Creating a New Project 578
Creating the IPD 580
Creating a New Workflow Diagram 584
Using the SCXML Editor 585
Using SCXML Templates 586
Your First Application: Routing Based on DNIS or ANI 587
Using URS and ORS Functions 597

Routing Block Palette Reference 600
Interaction Process Diagram Blocks 602

IPD Differences Voice and Multimedia 603
Starting a New IPD 604
Interaction Queue Block 612
Adding an Interaction Queue 616

Interaction Queue Views 617
Media Server Block 625
Workflow Block 629
Workbin Block 633
Flow Control Blocks 637
Workflow Generated Blocks 638
Linking IPDs with Workflows 641
Publishing Updates 642

Route Flow Control Blocks 650
Assign Common Block 652
Attach Block 656
Begin Parallel Block 658
Branching Common Block 661
Cancel Event Block 664
Detach Block 666
Disconnect Block Routing 668
ECMAScript Block 670
End Parallel Block 675
Entry Block and Variables 677
Exit Block Routing 685
Response Block 688
Log Common Block 692
Looping Common Block 694
Raise Event Block 699
SCXML State Block 702
Subroutine Block 710
User Data Block 715
Wait Event Block 720

Routing Blocks 723
Cancel Block 724
Default Routing Block 726
Force Route Block 729
Queue Interaction Block 734
Query Block 738
Route Interaction Block 741
Routing Rule Block 753
Set Ideal Agent Block 757

Single Step Transfer Block 760
Stop Interaction Block 763
Target Block 768
Update Block 784
Percent and Conditional Routing 786

Routing to the Last Called Agent 788
Voice Treatment Blocks 790

Composer Equivalent to IRD Treatment 792
Cancel Call Block 795
Create User Announcement Block 797
Delete User Announcement Block 802
IVR Block 804
Pause Block 808
Play Application Block 810
Play Sound Block 816
Play Message Block 820
Set Default Route 824
User Input Block 826
Single Session Treatments 835

eServices Blocks 841
Composer Equivalent to IRD Multimedia 844
Analyze Block 847
Chat Transcript Block 857
Classify Interaction Block 862
Create E-mail Block 867
Create Interaction Block 872
Create SMS Block 877
Email Forward Block 881
Email Response Block 887
Find Interactions Block 893
Identify Contact Block 896
Render Message Block 900
Screen Interaction Block 904
Send Email Block 910
Send SMS Block 914
Set Agent State Block 917
Update Contact Block 926

Update Interaction Block 929
Update UCS Record 932
Using eServices Blocks 937
Handling eServices Switchovers 943
How To: Automate an SMS Response to a Customer Call 945

Common Properties for Workflow Blocks 955
Social Media Blocks 971

Twitter Block 974
Facebook Block 979

Other Workflow Functionality 985
Variables Project and Workflow 986
User Data 994
Custom Events 997
Skill Expression Builder 998
List Objects Manager 1004
Statistics Manager and Builder 1009
Orchestration Extensions 552
Service Level Routing 1014
Exception Events 1017
Working with URS Functions 1027
Working with URS API Calls 1028

1029
Code Generation 1030
Custom Blocks 1032
Customization Manager 1035
Diagram Preferences 209
Exception Events 1017
Expression Builder 1052
GAX Server Preferences 1064
Getting Using Email Addresses 1065
Import and Export 1069
Link Tool 1072
Locales 1073
Time Zone Preferences 224
Using User Data 1083
Variables Mapping 1086

1087

Context Services Common Blocks 1089
Context Services 8.5 Support 1091
Context Services and Composer 1092
Associate Service Block 1094
Complete Service Block 1098
Complete State Block 1101
Create Customer Block 1104
Complete Task Block 1107
Enter State Block 1110
Identify Customer Block 1114
Query Customer Block 1119
Query Services Block 1122
Query States Block 1128
Query Tasks Block 1132
Start Service Block 1135
Start Task Block 1139
Update Customer Block 1143
Using Context Services Blocks 1146
Common Properties Context Services 1147
Online and Offline Modes 1153
Runtime Configuration 1154
Context Services Exception Events 1157

Outbound Common Blocks 1158
Add Record Block 1159
Cancel Record Block 1166
Do Not Call Block 1169
Record Processed Block 1172
Reschedule Record Block 1175
Update Record Block 1178

Server-Side Common Blocks 1181
Backend Common Block 1186
Business Rule Common Block 1190
DB Data Common Block 1201
External Service Block 1207
NDM Block 1212
HTTP Rest Block 1216
OPM Common Block 1225

TLib Block 1228
URS Function Block 1229
Web Request Common Block 1235
Web Service Common Block 1246
Web Service Stubbing 1266
Web Service SOAP Messages 1268
Signed SOAP Requests 1271
Connection and Read Timeout 1273
Server-Side Troubleshooting 1274

Sample Applications and Templates 1276
Project Templates 1277
Diagram Templates 1278
GVP Voice Project Templates 1281
Application Metrics Collection Project Template 1292
Integrated Voice Route Project Templates 1300
Routing Templates and Samples 1307
Context Services Template 1309
Database Query Result Template 1314
Forward to External Resource Template 1316
Route After Autoresponse Template 1318
Routing Based on Variables Template 1321
Routing Based on Date and Time Sample 1323
Routing Based on a Statistic Sample 1327
Routing Based on Percent Allocation 1330
Routing Using Web Request Sample 1333
Last Called Agent Routing 1336

Validation, Debugging, and Deployment 1345
Validation 1346
Debugging Routing Applications 1349
Debugging Voice Applications 1362
Deploying Composer Applications 1378

Best Practices 1392
Troubleshooting 1394

General Troubleshooting 1396
1397

Bundled Help contents are always in English 1398
Chat Messages in Queues 1399

Checkin Error During Source Code Integration 1401
Composer Project Not Deployed on Tomcat 1402
Composer Project Not Currently Deployed 1403
Connection Profile and ASCII Characters 1404
Chinese Characters Do Not Display 1405
Connection to a Database Fails 1406
Context Services URL Message 1408
CTI Block Issues 1409
Debugging Failure 1410
Deployment Failure on IIS 1411
DOTNet (.NET) Project Issues 1412
Failed to Deploy Message 1414
Installation and Uninstallation 1415
JSON objects and JavaScript keywords 1416

1417
Plugin Installation 1418
Proxy Configurations .NET Composer Projects 1419
Request Form Error Message 1420
SCXML Editor Element Not Bound Message 1421
Server-Side Troubleshooting 1274
Slow Response Time 1424
Stored Procedure Helper and DB Data Block 1425
Tomcat Service Failed to Start 1426
Test Calls Do Not Work 1427
Upgrade Errors and Error Messages 1429
Validation Error upon publishing IPD 1431
Web Service Block Issues 1432
Workflow Does Not Compile 1439
Workspace in Use or Cannot be Created 1440
Workspace Files Not in Sync 1441

Tomcat Service - File Permissions Issue 1442
Links to Useful Resources 1443
Composer Product Videos 1445

Welcome
Welcome to the Composer 8.1.5 Help. Composer is an Integrated Development Environment (IDE),
based on Eclipse, for developing:

• Routing applications for the Genesys Orchestration Platform 8.x (ORS)—which takes the Genesys core
capability of routing, extends it, and integrates it tightly with other Genesys products.

• Voice applications for Genesys Voice Platform (GVP) 8.1+—a software suite, which unifies voice and web
technologies to provide a complete solution for customer self-service or assisted service.

Expand the Table of Contents on the left to view all topics. Use the links below to get started in
functional areas.

Tip
You can also click Search at the top right. To search all Genesys docs, or just
Composer, position the cursor immediately after the magnifying glass and press Enter.
A search page appears. Composer is under On-Premise Content.

Quick Start

See the Composer Videos, specifically the video on Getting Started After Installation.

• Use the information below Quick Start to learn how to create a simple routing strategy, attach data
that will appear on the agent desktop, and route to the preferred agent.

Videos

Don't miss the Composer videos. Since Orchestration Server executes the SCXML-based routing
strategies created in Composer, you might also be interested in the Orchestration Video.

Introduction to Composer
This section includes the following
information:

Validation, Debugging & Deployment
This section includes information on:

Welcome

Composer Help 13

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/IRD
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/RoutingFAQs
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/QuickStart

Quick Start
Introduction to Composer
Interface Overview
Samples and Templates
Getting Started with Composer

Validation
Debugging Routing Applications
Debugging Voice Applications
Testing on Tomcat
Deploying Composer Applications

GVP Voice Applications
This section includes information on:

Creating Voice Applications
Sample Text-to-Speech Application
Preferences for Voice Applications
How Do Voice Applications Work?
Voice Block Palette Reference

Sample Applications & Templates
This section includes information on:

Routing Templates and Samples
Project Templates
Diagram Templates
GVP Voice Project Templates
Last Called Agent Routing

Orchestration Routing Applications
This section includes information on:

Creating Routing Applications
Sample DNIS Routing Application
Preferences for Routing Applications
Interaction Process Diagrams
Routing Block Palette Reference

Installation, Videos, Troubleshooting
This section includes information on:

Installation Video
Installation/Deployment Guide
Troubleshooting
Best Practices
Useful Resources

Common Voice & Route Functionality
This section includes information on:

Links to Useful Docs
This section includes information on:

Welcome

Composer Help 14

https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Welcome

Code Generation
Exception Events
Diagram Preferences
Defining Variables
Expression Builder

Orchestration Server Wiki
Orchestration Server Extensions
SCXML Language Reference
Genesys Voice Platform Wiki
System-Level Guides

Welcome

Composer Help 15

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/OrchExt
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

Composer Overview

Use to Create Routing and Voice Applications

Composer is an Integrated Development Environment (IDE), based on Eclipse, for developing:

Routing applications for the Genesys Orchestration Platform 8.x, which includes:

• Universal Routing Server (URS)—which enables intelligent distribution of voice and multimedia
interactions throughout the enterprise.

• Orchestration Server (ORS)—an open standards-based platform with an SCXML engine, which enables
the customer service process. ORS is responsible for executing orchestration logic (SCXML) that is
provided by an application server (such as an application server hosting an SCXML-based routing
application created in Composer). The responsibility of URS within the Orchestration Platform is to
provide a necessary service to Orchestration Server to support Routing functions.

Voice applications for Genesys Voice Platform (GVP) 8.1+—a software suite, which unifies voice and
web technologies to provide a complete solution for customer self-service or assisted service.

Tip
• In the past, Interaction Routing Designer was used to create routing applications.

Genesys Composer is now the tool of choice for creating both routing and voice self-
service applications.

• Previously Composer was known as "Composer Voice," as it was used only to develop
voice applications for Genesys Voice Platform. Starting with 8.0.2, the capabilities of the
IDE were expanded to include support for Universal Routing application development.
Due to this expansion in scope, the product name was shorted to "Composer."

• The terms Composer Voice and Composer Route are used in some places in the product,
to refer to the collection of product features that are used specifically for Genesys Voice
Platform application development, and Universal Routing Application development,
respectively.

• Users may enable/disable Composer Voice and/or Composer Route capabilities through a
Composer preference setting (Window > Preferences > General > Capabilities >
Advanced). This is useful for developers who are only using one of these Genesys
platforms.

Application Development

Composer provides both drag-and-drop graphical development of voice applications (or “callflows”)

Welcome

Composer Help 16

and routing strategies (or “workflows”) as well as syntax-directed editing of these applications.

• For voice applications for the Genesys Voice Platform, Composer supports editing of VoiceXML 2.1,
CCXML1.0 and SRGS 1.0.

• For routing applications for the Genesys Orchestration Platform, Composer supports editing of SCXML
1.0. Applications may be developed in an "offline” mode, without requiring the user to connect to
Genesys Configuration Server.

Application Debugging

Composer provides real-time debugging capabilities for both voice and routing applications.

• The Genesys Voice Platform Debugger is integrated with GVP for making test calls, viewing call traces,
and debugging applications. It supports accessing SOAP and REST-based Web Services. Database
access is possible using server-side logic and a Web Services interface.

• The Orchestration Server Debugger, integrated within the workflow editor, works with both live and
simulated calls. For live calls, it places those calls into a T-Server/SIP Server connected to a URS/ORS
system. The capabilities include setting breakpoints, stepping through a workflow, viewing and setting
the values of variables, and viewing event messages from the URS/ORS platform.

Eclipse

Composer is an Eclipse-based application. The use of Eclipse as the underlying framework enables
the use of third party IDE plug-ins, supporting integration with third party source code control
systems, server-side development enhancements, and side-by-side development of any business
logic required to support your applications.

Operating Systems

For information on supported operating systems, see the Genesys Supported Operating Environment
Reference Guide.

Composer Help Wiki URL

The URL to the Composer Help wiki is configurable by using the Online Wiki URL field: Window >
Preferences > Help. The default works with English but if, for example, Japanese pages were
available in a different location, then you could change the URL accordingly.

Welcome

Composer Help 17

Third Party Software

For information on the third party software used in Composer, see the Legal Notices under More
Release Information at the bottom of the Composer main page.

Welcome

Composer Help 18

Getting Help
• Use the Search This Manual (or Product) box at the top right. You can search by product, book type,

version, and book type.
• Create a searchable PDF. Scroll down to PDF version at the bottom left of a page.
• Use the TOC on the left of each page to locate information.
• Depending on your location in the user interface, Composer's context sensitive help triggers wiki pages.
• Press F1 to get help on a page. A Help view opens on the right.

Block Palette Reference

For information on Composer blocks and block properties, you can go directly to the following:

• Voice Block Palette Reference (when building applications for Genesys Voice Platform (GVP))
• Interaction Process Diagram Block Palette Reference (used for multimedia/routing applications to

define how interactions move through various processing objects)
• Routing Block Palette Reference (when building routing applications for the Orchestration Platform)
• Common Blocks Block Palette Reference (blocks used for both voice and routing applications)

Welcome

Composer Help 19

Composer Installation Video

Video Tutorial
Below is a video tutorial on installing Composer 8.1.4 on Windows in an Eclipse environment.

For additional installation information, see Installation in the Composer 8.1.4 Deployment Guide.

Welcome

Composer Help 20

https://docs.genesys.com/Documentation/Composer/8.1.5/Deployment/Preinstallation

Composer Quick Start

Tip
See Getting Started After Installation the Composer Videos.

The information below is intended to be a Quick Start for routing strategy development with Genesys
Composer. A routing strategy is comprised of one or more routing workflows. Regardless of the
version of Composer you have installed, this Quick Start (which reflects the Composer 8.1.2 interface)
will help you get started using Composer.

The goal of this Quick Start is to:

1. Create a simple routing strategy workflow that will distribute an inbound call to an agent.
2. Add attached data to this workflow that will be popped when the call is delivered to the agent desktop.
3. Route the call to a preferred agent and if the agent is not available then expand the agent pool.

The steps below assume you have already installed a Genesys environment and have configured an
Orchestration Solution, which includes Workspace Desktop Edition, Interaction Server, Composer, and
Orchestration Server.

Creating a Sample Workflow

1. In Workspace Desktop Edition (or "Interaction Workspace"), log in and make agents Ready). This
example uses 04 Agent KSippo, and 05 Agent KMilburn. Also make Ready the customer phone. This
example uses the Pat Thompson customer phone.

2. Click the Eclipse icon on your desktop to open Genesys Composer.
3. Ensure that Genesys Composer is connected to Configuration Server. The current status of the

connection to Configuration Server is displayed in the lower right of Composer.

Tip
When you set up your Configuration Database (Configuration Server), you define certain database objects,
such as agents (Persons), Agent Groups, Skills, and so on. These objects can be defined in Configuration
Manager or in Genesys Administrator. When you use Composer to create SCXML-based routing strategies
executed by Orchestration Server (and Universal Routing Server), there is a button to connect to
Configuration Server. When creating a routing workflow in Composer, those Configuration Database objects
will be available in the Composer workflow building blocks that use them. For example, you might be creating
a workflow that routes to an Agent Group and using Composer’s Target block. The Agent Group you defined in
the Configuration Database would be available for selection in the Target block.

4. If Composer indicates Disconnected from Configuration Server, then select Configuration Server

Welcome

Composer Help 21

https://docs.genesys.com/Documentation/ES/8.5.1/Depl/archi

from the main toolbar and click Connect.
5. Enter the appropriate connection information and click Next.

6. Select the tenant, such as Environment, or the name of another tenant (business entity).
7. Within Composer, create a new Project: File > New > Java Composer Project.
8. Give the Project a name, for example, MySample.
9. Ensure that Integrated Voice and Route is selected.

10. Click Finish.
11. Go to the new Project folder that you was just created (MySample) and open the Main workflow and

default workflow.
Upon selecting the default.workflow a blank workflow palette will appear.

12. Within the .workflow, drag and drop an Entry block, Target block, and Exit block from the palette of
blocks onto the workspace. Make sure you are working within .workflow and not the .callflow (used
for GVP voice self-service applications).

13. Go to the Target block and select the Targets property. This is done by selecting: Target > Properties
> Target Selection > Targets on the far right. Upon selecting the Targets property, a new Targets box
will appear:

14. Within the Target block, select Add and enter the following:
• Type: Agent Group
• Name: SIP Group
• Stat Server: Stat_Server

Welcome

Composer Help 22

Tip
If you are connected to Configuration Server, you are able to directly pull information from Configuration
Server to populate the options. You are not required to be connected to Configuration Server to perform
development as Composer allows you to perform development offline and then connect and validate against
Configuration Server at a later time.

15. In the Target block set the Timeout property to 99.
16. Click the main toolbar buttons to validate your workflow and then generate the code.

Tip
To validate the workflow and generate the code, the focus must be within the palette where the workflow is
being designed. To validate you can enter Alt+V. Or you can validate by right clicking the default.workflow
from the Project Explorer window and selecting Validate from the main toolbar. Code can be generated by
entering Alt+G or clicking on the Generate button on the main toolbar.

17. Go to the Interaction Processes folder in the left Project Explorer. Right-click on the interaction process
diagram file (default.ixnprocess) and perform a similar process to validate and generate the code
validate the default interaction process diagram.

18. Right-click on the interaction process diagram file (default.ixnprocess) and select Publish to
Configuration Server. You should receive a message that the interaction process diagram was validated
and published to Configuration Server.

Tip
An SCXML-based workflow is first invoked by the interaction process diagram. If you open the interaction
process folder, you will see that there is a workflow named defaultworkflow. This workflow in turn points to
the actual workflow that you just created, which is in the Location/Resource property of the Workflow block. If
you change the name or have multiple workflows, you need to ensure that the appropriate association is
maintained.

19. Assuming this routing strategy only contains one workflow, you are now ready to "provision" the new
workflow. Within Genesys Administrator, provision a new DN on the SIP_Switch

Welcome

Composer Help 23

Example: Number: 4000 Type: Routing Point
20. Under Routing > Orchestration (see below), select the workflow that was just created:

MySample.default.defaultWorkflow.

Welcome

Composer Help 24

21. Confirm that your routing strategy works:
• Make your agents Not Ready.
• Place a call from the customer phone to 4000. Note: We do not yet have a treatment so the caller

will not hear any initial treatment.
• Make KSippola Ready.
• Confirm that the call is delivered to the available agent and they receive a screen pop.

Welcome

Composer Help 25

Add a Treatment
Add a simple queue treatment that the caller will hear while waiting for an available agent.

1. Utilizing the existing workflow, select the Target block. In the properties under Route Target, set Use
Treatments to true.

2. Add a Play Sound block from the Voice Treatment icons palette. Connect the Busy Treatments from
the Target block to the Play Sound block. Connect the output from the Play Sound block to look back
to the Target block.

Welcome

Composer Help 26

3. Within the Play Sound block set the Resource property to play back the badon_hold.wav file, which
is already present on the Demo Server.

4. Proceed to validate the code, generate the code, and then place a call back into to your Routing
Point with all agents in a Not Ready state. Confirm that queue music is received by the caller.

Attaching Data
Add attached data to this strategy that will be popped when the call is delivered to the agent desktop. In this example you will
need to add your name as a value for one of the appropriate keys and ensure that it is popped to the Interaction Workspace
desktop.

1. Utilizing the existing workflow that was just created add a User Data block from the palette in
between the Entry and Target blocks.

Welcome

Composer Help 27

2. In the Assign property of the User Data block configure an appropriate key and value where the
value is your name; for example, Don Huovinen.

While we are attaching data using this block you must also ensure that the new key; NewKVP in the
example shown above, will appear properly in Interaction Workspace.

3. Validate your workflow and then generate the code.
4. Modify the settings of Interaction Workspace to display the key-value pair ,which we just added, in

our case the key is ”NewKVP” and we want this displayed in Workspace as ”My Complete Name”.
Within Interaction Workspace, the key-value pairs that will be displayed are based on the keys that

Welcome

Composer Help 28

are listed in the CaseData Business Attribute so we need to add ”NewKVP” as one of the values in
the CaseData business attribute for this KVP to be properly displayed in Interaction Workspace. This
can be done by searching for the Case Data business attribute.

5. Then double-click on Case Data, select the Attribute Values tab, and then select to Add a new
attribute. The Name will be the name of the key (NewKVP) and the Display Name is the name we
want displayed in Interaction Workspace.

Welcome

Composer Help 29

https://docs.genesys.com/Documentation/GA/latest/user/CfgEnumeratorValue#Business_Attribute_Values

6. Make your agents Not Ready.
7. Place a call from the customer phone to 4000. The caller should hear music.
8. Make the agent Ready.
9. Confirm that the call is delivered to the available agent and they receive a screen pop.

Welcome

Composer Help 30

Routing to a Preferred Agent (Add Flexibility)
Provide routing to a preferred (last handling) agent and if that agent is not available within the defined threshold expand the pool
of available agents so that the call can be successfully delivered.

1. Using the existing routing workflow, add a new Target block from the palette in between the
UserData block and existing Target blocks.

2. Within the new Target block label it ”Personal_Agent” and set the Target block to target KSippola.
• Type: Agent
• Name: KSippola
• StatServer: Stat_Server

Welcome

Composer Help 31

3. Set the Timeout property of the block to 15.

4. Set the Exceptions property to capture an exception of error.queue.submit
5. Within the workspace, connect the error.queue.submit exception from the new Target block you

just added to the previous SIP group target block that you already have. Connect the normal outlink
from this new Target block to the existing Exit block. A example flow is provided below.

Welcome

Composer Help 32

6. Validate your workflow and then generate the code.
7. Test that your routing and logic works as desired:
8. Make KSippola and KMilburn ready.
9. Place a call from the customer phone to 4000.

10. Confirm that the call is delivered to KSippola and he receives a screen pop.
11. Make KSippola NotReady

12. Place a call from the customer phone to 4000.
13. Confirm that the caller waits and after the timeout the set of targeted agents has been expanded

the call is delivered to KMilburn. Note: The prior example is a scenario that shows target
expansion, but can be improved if another different treatment is provided while the caller is waiting
for their personal agent. As the target expansion occurs, you could also change the treatment to
provide an audible queue position. An example is callflow is shown below.

Welcome

Composer Help 33

14. Validate your workflow, Generate the code and then proceed to place a call to show the new
scenario:

15. Make KSippola Not Ready and KMilburn Ready.
16. Place a call from the customer phone to 4000.
17. Confirm that the caller waits and after the timeout the set of targeted agents has been expanded

the call is delivered to KMilburn.

Summary of Example Workflow
• This example workflow strategy could represent a "last agent routing" approach or preferred/

personal agent routing. If the preferred destination is not available, you could expand the target list
so that you have 1) optimal routing and 2) do so within the context of desired service levels. As the
target group is expanded, you not just moving from A to B when expanded. The workflow is now
looking at the A + B. You coulde alternatively just overflow to B if desired through the Target
Selection properly (Clear Targets = True).

• You could also place a subsequent call, wait until the timeout and then make KSippola available
showing that KSippola is still part of the target group and will receive the call. Technically KSippola
is a subset of SIP agents therefore you really don’t have the A+B as described previously as A is a
member of B but the A+B target expansion discussed previously is still valid.

• When attaching User Data. you can utilize any key name you want. However. you need to make the
necessary changes in Interaction Workspace to display the desired attached data. The workspace
will utilize attached data present in the call such as the caller ID to look up information from
Universal Contact Server and use the information obtained from UCS for the screen pop in Contact
area.

• Interaction Workspace may take a long time to start. This is becasue the Interaction Workspace
agents are configured for a number of interaction channels such as e-mail, SMS, chat, and so on.
Therefore, when Workspace starts, it attempts to connect to Interaction Server. If Interaction Server
is unavailable, then each channel will be attempted sequentially and need to time out before
proceeding to the subsequent channel.

Welcome

Composer Help 34

Eclipse Workbench
• As described in the Composer Deployment Guide, Composer 8.1.4 is installed as an Eclipse plugin.

Since Composer is based on based on Eclipse, you may wish to familiarize yourself with basic Eclipse
concepts by referring to the Workbench User Guide although this is not mandatory. The Workbench
User Guide presents an overview of many of the same concepts used within Composer, but from the
Eclipse development environment framework perspective. Reviewing this information can be valuable
as a first step in getting familiar with the Eclipse user interface on which Composer is based. To
access the Workbench User Guide online help:

1. Select Help > Help Contents. The system displays the Help - Composer window.
2. In the Contents navigation pane, click Workbench User Guide.
3. Click Concepts in the main Help pane.

Review the multiple sections of the Concepts section to gain familiarity with Eclipse.

• Select Search from the main Help menu to search the Eclipse Help.

Welcome

Composer Help 35

Introduction to Composer
Composer is an Integrated Development Environment (IDE) based on Eclipse for building voice
applications for the Genesys Voice Platform (GVP) 8.1+ and routing applications for the Orchestration
Server 8.0+.

What is Composer?

Composer is the next generation version of Genesys Studio based on Eclipse 3.5.1. It provides a rich
development experience, which Web Application developers are already used to, for building
VoiceXML, CCXML, and SCXML applications. Familiarize yourself with basic Eclipse concepts by
referring to the Workbench User Guide (Help > Help Contents). Composer provides ability to
develop the following types of applications.
For the GVP 8.x NGI Interpreter:

• Pure VoiceXML Applications with full support for Genesys extensions
• CCXML + VXML Applications requiring advanced call control features including Conferencing
• CTI + VXML Applications for Genesys Framework

For the Orchestration Server 8.x SCXML Engine/Interpreter:

• Pure SCXML Applications with full support for all Genesys predefined SCXML functional modules and
extensions used for creating SCXML-based strategies and routing applications.

• Voice Routing SCXML applications for handling media of type voice for Inbound channels.
• Integrated CTI + VoiceXML applications for end-to-end treatment handling in conjunction with GVP and

Stream Manager.

GUI Designer

Composer provides a drag-and-drop based interface for creating VXML and SCXML applications. Users
can easily create flow diagrams by placing and connecting blocks and configuring properties. This
approach also provides an easy mechanism for invoking Web Services and doing database lookups
from the Application server-side. Custom blocks can be created that can be added to the supplied
palette of blocks.

Code Editors

For those who prefer to write their own code, Composer provides a set of rich editors for SCXML,
VXML, CCXML, and GRXML along with use case templates.

Introduction to Composer

Composer Help 36

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/Welcome
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/Welcome

Templates

Out-of-the-box, reusable template applications are provided. These can act as a starting point for new
projects and visual flows and serve as guidelines and tutorials for routing and voice application
developers. Composer also provides templates for its rich editors with the ability to create user-
defined custom code snippet templates, which can be exported and imported to share across team
members.

Code Generation

When generating code, Composer provides the ability to generate Static VXML pages to take
advantage of the Platform optimizations. For SCXML routing strategies, Composer provides the ability
to generate Static SCXML pages for improved performance due to caching.

Debugging

Debugging functionality includes the ability to debug VoiceXML applications and callflow diagrams
with the GVP Debugger and GVP Debugging perspective. The real-time GVP Debugger supports both
Run and Debug modes. In the Run mode, call traces are provided and the application continues
without any breakpoints. In the Debug mode, you can input breakpoints, single-step through the
code, inspect variable and property values, and execute any ECMAScript from the query console.
Composer provides real-time debugging capabilities for SCXML-based Orchestration Server (ORS)
applications. The ORS Debugger is integrated within the workflow designer for making test calls,
creating breakpoints, viewing call traces, stepping through an SCXML document/workflow, and
debugging applications. Debugging can be started on an existing session or it can wait for the next
session that runs the application at a given URL.

Deployment

Composer provides the ability to deploy applications. Future releases will provide the ability to deploy
routing applications.

Project Management

Composer provides full project management capabilities for managing all the resources in a
Composer project.

Introduction to Composer

Composer Help 37

Routing Strategies

Composer is integrated with Genesys Configuration Server, which provides the ability to define and
fetch strategy-related data residing in the Configuration Server database. This integration allows
developers to find and select routing targets when using Composer's Target block. When creating
routing strategies, developers can define List objects and routing-related Statistics.

Introduction to Composer

Composer Help 38

Software Prerequisites
Consult the following:

• Installation topic in the Composer 8.1.4 Deployment Guide.
• The Composer section in the Genesys Supported Operating Environment Reference Guide.

Introduction to Composer

Composer Help 39

https://docs.genesys.com/Documentation/Composer/8.1.5/Deployment/Preinstallation

Interface Overview
Note: The minimum screen resolution for Composer is 1024x768 on a standard 4:3 aspect ratio
monitor. The recommended resolution is 1280x1024. Lesser resolutions, such as 800x600, are not
supported.

Introduction to the Interface

Below is a short video introducing the Composer interface.

Link to video

Sample Applications

For a sample voice applications, see Hello World Sample, which describes a text-to-speech
application. For a sample routing applications, see Your First Application, which describes a DNIS
routing application.

Blocks, Connectors, and Properties

The Composer interface uses workflow and callflow design components (blocks and connectors) to
create voice and routing applications

Introduction to Composer

Composer Help 40

https://player.vimeo.com/video/152599254?title=0&byline=0&portrait=0

It uses drag-and-drop to arrange, add, and delete blocks on a design area. The blocks are connected
within the design area to build the flow for the application. You define the properties for a selected
block in Composer's Properties view. Also see: Working With Diagram Layouts

Interface Elements

The first time you enter the Composer perspective, since your workspace is empty and does not
contain any Projects, you will see an empty Project Explorer on your top-left, and a blank center area.
After you create a voice or routing Project, the Project Explorer shows all the files and resources

that make up the Project. The figure below shows the GUI elements in Composer perspective for a
sample routing application.

Introduction to Composer

Composer Help 41

GUI Element Descriptions

The numbers in the figure above are keyed to the table below.

1
The Project Explorer shows all the files and
resources that make up a Project. See Composer
Projects and Directories for more information.

2
For large flows, the Outline view (shown above)
allows you to navigate to the portion of the flow to
view in the design area.

3
The History view maintains previous versions of
flows and application files, allowing you to revert to
any previous version if needed.

Introduction to Composer

Composer Help 42

4
The design area is where you create flows by
placing and connecting blocks. Composer's design
area is the work area that you will use for building
your applications.

5
The Palette contains workflow diagram-building
blocks or callflow diagram-building blocks grouped
in various categories: Voice Block Palette Reference
and Routing Block Palette Reference.

6

The Properties view shows block properties and
allows you to modify settings, set variables, and
otherwise change or set the properties
corresponding to a block. This area also displays
Call Traces during debugging, or Problems during
validation or testing.

7,8
In the top toolbar, the Validate button allows you
to check for syntax errors. The Generate Code
button creates VXML and SCXML pages from the
diagrams you create.

9 Menus and Toolbars provide commands and
operations for running Composer.

10

Perspective buttons show the active perspective
and let you easily move between perspectives. By
default, when you enter the workbench for the first
time, you will be taken inside the Composer
perspective. Perspectives are arrangements of
different sections of the GUI in a manner that
facilitates easy use of a particular feature. For
example, the GVP and ORS Debugging
perspectives will show those sections (Breakpoints,
Call Trace, Variables, and so on) that are useful
when debugging an application.

Composer displays a Help view on the right if you select Help > Search or Help > Dynamic Help.

Perspectives

When you select Window > Perspective > Open Perspective > Other, all perspectives available
in Eclipse are listed, including those not used by Composer.

Use the following Composer perspectives for building applications:

• GVP Debugger, for debugging applications you build or import
• ORS Debugger, for debugging routing applications you build or import
• Prompts Manager perspective, which provides the ability to quickly review all prompts in a Composer

Project
• The Composer perspective shows the Project Explorer, Outline view, design area, and Palette of blocks.

Composer perspective can show the following tabs in the lower pane: Properties, Prompts Manager,
Problems, Console, and Call Trace. Select Window > Open Perspective.

Introduction to Composer

Composer Help 43

• Composer Design perspective can be used to show only the palette of blocks, the canvas area, and the
Properties tab.

Any customized perspective appears in this list. You can configure perspectives on the Window >
Preferences > General > Perspectives preference page.

Customizing the Show View Menu

A view can be displayed by selecting it from the Window > Show View menu. You can customize
this menu by using Window > Customize Perspective. Click the Submenus down arrow and
select Show View.

Introduction to Composer

Composer Help 44

Using the Interface

Blocks

A block is the basic building unit that you use to create applications. In Composer perspective, the
palette of blocks is located in the right-most part of the main window (unless the Help window is also
visible) and contains various categories of blocks. Every application must start with an voice Entry
block or routing Entry block. You can also create Custom Blocks. A routing applications starts with
Interaction Process Diagram Blocks.

Using Blocks

When creating voice application callflows and routing application workflows using the designer:

• You double-click or drag-and-drop callflow blocks and/or workflow blocks to place them onto the center
area (canvas).

• You configure properties for each block.
• You connect the blocks together by drawing connection links to define the flow.

Block Names and Multi-Byte Characters

Composer block names can contain only alphanumeric characters. If multiple-byte characters are
used in block names, the code generation step fails and no SCXML or VXML file is generated from the
Composer diagram.

Methods for Adding Blocks

There are a few ways to add blocks from the Palette to the canvas. The most common methods are
as follows:

• Click on the block icon on the palette, release the mouse and click on the target location on the canvas
area.

• Double-click a block icon on the palette.
• Click on the block icon on the palette, and while holding down the mouse button, drag and drop the

block to the canvas.

Any of these methods will add the new block and you can then type the name of the block on the
canvas itself. Click here to read about block naming restrictions.

Introduction to Composer

Composer Help 45

Outline View

For large call or workflows, the Outline view allows you to navigate to a portion of the flow diagram to
view in the main canvas. It can also be used to facilitate navigation for other types of elements that
might appear in the canvas or editor window, such as a large VXML file displayed in the VXML Editor.
For more information, see the Outline View topic in the Eclipse Workbench User Guide (Help > Help
Contents).

Simulation View

Simulation view shows the VoiceXML or SCXML code (read only) for a selected block (IPD blocks do
not have this view). To add the Simulation view to the current perspective:

• Click Window > Show View > Other > Composer > Simulation.

Block Context Menus

Or, you can use a block's context menu as follows:

• Select a block in the canvas, then right-click the box and select Simulate Code from the context menu
as shown in the figure below. The Simulation view displays the code for the selected block.

The History view maintains previous versions of call and workflows and application files, allowing
you to revert to any previous version if needed.

• For more information, see the Local History topic in the Eclipse Workbench User Guide (Help > Help
Contents).

The Problems view is used during validation of callflows, workflows, and files (VXML, SCXML, GRXML,
and so on). It displays information about errors encountered when validating an application.

• For more information, see the Problems View topic in the Eclipse Workbench User Guide (Help > Help
Contents).

Introduction to Composer

Composer Help 46

Connection Links
Blocks are connected to each other using connection links. There are two types of connection links:

1. Use OutLinks to connect one block's output port to another block's input port:
2. Use Exception Links to indicate error or exception conditions by connecting from a block's exception

port to another block's input port:

Find the connection links at the top of the palette on the right side of the Composer window.

Example

The figure below shows examples of using the link tools:

In the above example, the red links (going from the Menu block to the Prompt block) result from using
the Exception Link tool to connect the two blocks. The black links (going from the Menu block to the
Record block and the Log link) result from using the Outlink tool.

Adding a Link

To add a new Output Link (or Exception Link):

1. Click the Output Link (or Exception Link) icon in the palette.
2. Move the mouse over to the source block. The cursor will change to an upward arrow.
3. Click once on the source block and keep the mouse button pressed. Then drag the mouse onto the

target block and release the mouse button.

This will add the connection link between the two blocks. To use an Exception Link, the source block
must have an exception port defined. This is done by selecting at least one supported exception

Introduction to Composer

Composer Help 47

within the block's Exceptions property. Another method for adding an Output Link or Exception Link
between two blocks is as follows:

1. Click once on the source block to select it.
2. Hold the Ctrl key and click once on the target block to select it as well.
3. Double-click the Output Link (or Exception Link) icon in the palette to create a connection between the

two blocks.

Again, to use an Exception Link, the source block must have an exception port defined.

Changing Style and Appearance

Composer allows you to change the style and appearance of your connection links to suit your needs.
To change connection link appearance:

1. Select the connection link(s) you wish to change on the diagram (Ctrl-click to select multiple links). If
the Properties view for the selected link is not visible, select Window > Show View > Properties. Or
right-click the link and select Show Properties View from the shortcut menu.

2. In the Properties view, click the Appearance button to the left. A palette of appearance options is
displayed in the Properties view.

You may change any of the following:

• Font, Font Size, Font Style, and Color
• Line and Arrow Style
• Smoothness of the connection line (None, Normal, Less, or More)
• Routing Style (Oblique, Rectilinear [default], or Tree), as well as the option to avoid obstructions or

choose the closest distance for the link (even if it must cross over another block)
• Jump links set how links will be displayed when a link needs to jump over or cross another link (None,

All, Below, Above), and the shape of the link crossing over can be Semi-Circle, Square, or Chamfered
• Reverse jump links switches the orientation of the semi-circle, square, or chamfered shape of a crossing

link

Introduction to Composer

Composer Help 48

Composer Code Editors
File > New > <file_type>

Composer provides the ability to hand-code SCXML, VoiceXML, CCXML, GRXML, JSP, and ASP.NET for
custom scripts as a part of the application development process. The editors have standard editing
capabilities and time-saving features such as a code snippet library, validation checks for errors
(during design and save time), and syntax highlighting.

Code Editing Features

The editors provide:

Introduction to Composer

Composer Help 49

• Standard editing features such as cut, copy, paste, undo, show line numbers, search and replace,
bookmarks and TODO markers

• Standard Eclipse Editor features; local file history support, Team support for source code control,
compare files.

• The ability to do background validation of the text as the user types, showing squiggly marks for errors
as is done in Microsoft Word.

• A Validate option to validate against the schemas.

• A code snippet library with the ability for developers to add their own custom scripts.

• An outline view for quick navigation and the ability to view and edit the XML in tree format.

• Syntax coloring with the ability to customize the colors.

• A spell checking feature; a yellow squiggly line is shown below words that are misspelled.

• Quick-fix choices to fix the spelling or ignore / disable the check.

• Task tags features for setting preferences to auto scan comments with TODO in comments, and
automatically add tasks corresponding to these comments.

• Context-sensitive help as the user types in the code

Using the Editors

Composer editors are embedded/integrated within the user interface and are made available to you
whenever a .scxml, .vxml, .ccxml, .grxml, or .jsp file is created or accessed within Composer.

For additional information, see Accessing the Editors and Templates.

Introduction to Composer

Composer Help 50

Enabling/Disabling Functionality
You may hide voice application (GVP) and/or routing application development capabilities through a
Composer preference setting. This feature is useful for developers who are only developing
applications for GVP or Universal Routing. To hide voice or routing development capabilities:

1. Select Window > Preferences.
2. Expand General and select Capabilities.
3. Click the Advanced button.
4. In the Advanced Capabilities dialog box, expand Composer.
5. Check or uncheck Composer Route or Composer Voice based on your need.

• If you uncheck Composer Voice, the ability to create Projects and diagrams with callflows will no
longer be available. Also, perspectives and views exclusive to callflows will not be available. This
means you temporarily won't be able to design voice applications for GVP until you re-enable
Composer Voice capability.

• If you uncheck Composer Route, the ability to create Projects and diagrams with workflows is not
available. Also, perspectives and views exclusive to workflows are not available. This means you
temporarily won't be able to design routing applications for Universal Routing 8.x until you re-
enable Composer Route capability.

6. Click OK in both dialog boxes.

Introduction to Composer

Composer Help 51

Hiding File Types and Blocks
You can hide Composer file types by using basic Eclipse functionality in Composer. This may be
desired when certain functionality is not applicable to your environment. For example, when using
Voice capabilities, and VXML is used but not CCXML, you may wish for the CallControlXML file type to
be hidden from the File > New menu. The following steps may be used:

1. Select Window > Customize Perspective. The Customize Perspective dialog appears.
2. Click the Shortcuts tab.
3. Expand Composer and check Others.
4. In the list of shortcuts, uncheck <file-type>, where <file-type> is the type to be hidden.
5. Click OK.
6. Repeat for other perspectives if desired.

This customization is specific to the workspace. If you use other workspaces, you must customize
them as well. This is base Eclipse behavior where customization is saved within the workspace.

Hiding Diagram Building Blocks

You can also customize the palette of diagram-building blocks. Right-click a block category (such as
Flow Control) and select Customize. You can then hide and unhide blocks in that category.

Hiding/Displaying the Palette

Should you accidentally cause the palette to disappear, click the Hide/Show Palette (right-pointing)
triangle.

Introduction to Composer

Composer Help 52

Introduction to Composer

Composer Help 53

Localization
The information below describes translating various elements of the Composer user interface in your
preferred language. For information on translating the entire user interface in French Canadian, see
Language Locales in the Composer 8.1.4 Deployment Guide.

Important
To localize Eclipse IDE supplied strings, installation of Eclipse language packs is
required. You can download the required Eclipse language packs from Eclipse Babel
Project Downloads.

Limitations

There are some limitations to localization, which are detailed here.

Translating the Palette
After installing the Composer Language Pack, if you open Composer and continue to use an existing
workspace, you will discover that the Palette is not localized. This is because Palette customization
happens within Composer. You can change the labels, descriptions, and visibility of individual tools in
the Palette. Composer preserves your customizations and, for that reason, Composer keeps the
settings of your workspace Palette even after a Language Pack is installed. To workaround this issue,
you can perform one of the following actions.

1. Start a new workspace. The Palette will be localized in the new workspace.
2. If you are willing to lose your current Palette settings:

• Shut down Composer.
• In a file explorer, go to <workspace>\.metadata\.plugins\com.genesyslab.composer.diagram,

where <workspace> is your Composer workspace.
• Delete the file paletteSettings.xml.
• Restart Composer. The Palette will be localized in your existing workspace.

Translating Diagram Properties
The diagram preferences shown below use the Eclipse GMF runtime preferences, including their
message strings. Due to limitations in Eclipse related to translating GMF Runtime, when localizing,
certain diagram preferences are not translated.

• Window > Preferences > Composer > Composer Diagram > Appearance

Introduction to Composer

Composer Help 54

https://docs.genesys.com/Documentation/Composer/8.1.5/Deployment/Locales

• Window > Preferences > Composer > Composer Diagram > Connections
• Window > Preferences > Composer > Composer Diagram > Pathmaps
• Window > Preferences > Composer > Composer Diagram > Printing
• Window > Preferences > Composer > Composer Diagram > Rulers and Grid

Translating Enumeration Properties
In the Properties view, many properties of blocks are enumerations, which are collection of fixed
values, from which one is selected. Internally within Composer, a number of different dialogs, drop-
down boxes, and various other mechanisms are used to display the various enumeration properties.
The 8.1.3 release of Composer does not to enforce uniform behavior when translating enumeration
properties. As a result, some enumeration properties will appear localized, while others may not. This
has no impact on diagram validation, code generation, or runtime behaviour. It is merely the values
displayed in the Properties view that appear either translated or untranslated. The underlying code
that is generated will always be the same.

East Asian Characters
If you are using characters from an East Asian language (for example, Chinese, Japanese, Korean) in
Expression Builder, you may find that they do not display properly, and appear as squares rather
than the expected characters. The most likely cause of this issue is that the operating system font
does not support East Asian language characters. As a workaround, change the Dialog Font setting
from within Composer.

1. In Composer, go to Window > Preferences.
2. Select General > Appearance > Colors and Fonts.
3. In the preference dialog, select Basic > Dialog Font.
4. Click Edit to bring up the font selection dialog.
5. Choose a font which can render East Asian languages, such as Arial Unicode MS.
6. Click OK on the font selection dialog, then click OK on the preferences dialog.

Connection Profile and Non-ASCII Characters
Database Connection Profiles do not support non-ASCII characters. Use only ASCII characters when
creating Connection Profiles.

Introduction to Composer

Composer Help 55

Composer Compared to IRD
Here is a short video on the advantages of moving to Composer from Interaction Routing Designer as
well as an interface comparison.

Composer Compared to IRD
Link to video

Integrated Development Environment

• Composer is a single Integrated Development Environment (IDE) for creating applications to routing
interactions as well as to orchestrate the entire customer experience. Composer-created voice and
routing applications can command and control the customer experience through all channels (IVR,
voice, e-services, and so on).

• Composer's open framework enables widely-available, existing competencies to be used to create
reusable components that manage the customer experience. The IDE allows both customers and
integrators to utilize existing code sets (HTML, VXML, java, perl, REST and others) to control the
customer experience.

• The open framework also allows simplified integration into all Enterprise applications to harness the
information within the Enterprise to drive and personalize the customer experience.

Session-Based Versus Interaction-Based

Composer works with the Orchestration Server platform, which is session-based as compared to the
Universal Routing Server (URS) platform, which is "interaction based.' A session can last for the
length of the customer journey, across multiple interactions. URS only executes strategies
(workflows) that interact on a single interaction. In contrast, ORS does not need to have an
interaction to perform useful functionality. All ORS requires is an API call in order to execute. In this
manner, the ORS platform can be thought of as a general purpose workflow platform to control the
workflow regardless of whether or not you have an interaction (email, SMS, mobile, social, voice, and
so on).

Differences from IRD

In the past, Universal Routing's Interaction Routing Designer was the only Genesys tool to create
routing applications. Genesys Composer is now the tool of choice for creating both routing and voice
self-service applications.

A few of the differences between Composer and Interaction Routing Designer are listed below.

Introduction to Composer

Composer Help 56

https://player.vimeo.com/video/179832505?title=0&byline=0&portrait=0
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/InterfaceOverview#Interface_Elements
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Session_Interface

• Composer is integrated with Orchestration Server allowing you to manage customer conversations
spread out over time using the ORS session-based functionality and persistent storage as well as
Orchestration Extensions.

• Composer encompasses IRD's functionality and much more routing functionality in general.
• Composer lets you create routing applications using an open language (SCXML) and ECMAScript for

decision-making. In contrast, IRD uses a closed Genesys proprietary language (IRL) and you are limited
to IRD's objects and functions.

• Composer gives the option of writing your own SCXML code and/or using predefined blocks.
• Unlike IRD, you can also use Composer to create voice self-service applications for Genesys Voice

Platform, including VoiceXML and CCXML-based applications. You can also create integrated voice and
routing applications.

• Any routing application created in IRD can easily be created in Composer.

Composer Routing Application Types

You can use Composer's predefined blocks and/or write your own SCXML code to create routing
applications that route based on various criteria such as:

• Agent, Agent Group, ACD Queue, Place, Place Group, Route Point, Skill, or Variable
• last called agent
• date and time
• the value of a statistic,
• dialed number (DNIS)
• originating number (ANI)
• percent and conditional routing
• Service Level Routing

The above list is by no means complete. It represents only a few types of routing applications that
can be created in Composer. Since Composer uses open languages (SCXML and ECMAScript), you are
not limited to its pre-defined blocks, but are free to create many types of routing applications.

Composer Blocks Mapped to IRD Objects

Composer refers to the fundamental element of a workflow as a block whereas in IRD documentation,
this element is referred to as an object. A few IRD object/Composer block equivalents are presented
below. The tables group IRD objects based on their IRD toolbar category name and point to the
corresponding functionality in Composer.

Introduction to Composer

Composer Help 57

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ArchitectureDiagramforWorkflows
https://docs.genesys.com/Documentation/OS/8.1.3/Deployment/Persist
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/Welcome
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/RoutingBlockPaletteReference
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ComposerCodeEditors
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/RoutingBlockPaletteReference
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/RoutingBlockPaletteReference
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/YourFirstApplication
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/YourFirstApplication

Tip
For a complete list of Composer blocks, including all those without an IRD equivalent,
see RoutingBlockPaletteReference.

IRD Data & Services
IRD Object Name Composer Block Name Description

Database Wizard DB Data
DB Data retrieves information
from the database. Uses a Query
Builder.

Web Service Web Service
Invokes Web Services. GET, POST
and SOAP over HTTPS are
supported.

Web Request
Invoke any supported HTTP web
request or REST-style web
Service. See sample: Routing
Based on Web Request.

IRD Miscellaneous
IRD Object Name Composer Block Name Description

Assign
Multi-Assign Assign

Assigns a computed value/
expression or a literal value to a
variable. Variables are defined
in the Entry block. Capable of
multiple assignments.

Call Subroutine Subroutine Creates reusable sub-modules.

Entry Entry

Sets global error (exception)
handlers. Defines global
variables (see Variables section
below).. All routing strategy
diagrams must start with an
Entry block.

Exit Exit
Terminates the strategy and
returns control back to calling
workflow in case of a subroutine.

Error Segmentation
Multiple error output ports can be
created in Composer blocks
based on each block's Exception
property.

Function
Multi-Function ECMAScript

Builds an ECMAScript expression
using the Expression Builder.
Many URS functions are

available as Genesys Functional
Modules described the
Orchestration Server

Introduction to Composer

Composer Help 58

Documentation Wiki Can invoke
multiple functions.

If
Assign, Branching,
ECMAScriptBlock blocks all open
Expression Builder

Expression Builder can be used
to create IF expressions.

Multi-Attach ECMAScript Can be used for attaching data to
an interaction.

IRD Routing
IRD Object Name Composer Block Name Description

Selection Target

Routes an interaction to a target,
which can be Agent, AgentGroup,
ACDQueue, Place, PlaceGroup,
RoutePoint, Skill, or Variable. Skill
target uses Skill Expression
Builder.

Percentage Target

Statistics Order property in
Target block, lets you perform
percentage allocation. Also see
sample: Routing Based on
Percent Allocation.

Default Default Route Routes the interaction to the
default destination.

Routing Rule
Orchestration Server 8.1 does
not support service level routing
rules.

Switch to Strategy
Orchestration Server 8.1 does
not support switch to strategy
routing rules.

Force Route Force Route Not exposed as a routing rule in
Composer.

Statistics Target

Although statistical routing rules
are not yet supported as in IRD's
Statistics routing object, users
can use the Target object
Statistic property to route based
on the value of a statistic. A
Statistics Manager and Builder let
you create your own statistics
from URS predefined statistics.

IRD Segmentation
IRD Object Name Composer Block Name Description

ANI Branching See YourFirstApplication: DNIS
Routing for an example.

DNIS Branching See Your First Application: DNIS
Routing for an example.

Introduction to Composer

Composer Help 59

Date Branching See the sample: Routing Based
on Date and Time.

Day of Week Branching See the sample: Routing Based
on Date and Time.

Time Branching See the sample: Routing Based
on Date and Time.

Classification Segmentation Branching

For classification segmentation,
an ECMAScript function
determines if a particular
category name or ID exists in the
array of category objects
represented by an application
variable.

Generic Branching

Use as a decision point in a
workflow. It enables you to
specify multiple application
routes based on a branching
condition.

Also see Context Services Blocks.

IRD Voice Treatment
See Composer Equivalent to IRD Treatment.

IRD Multimedia
See Composer Equivalent to IRD Treatment.

IRD Outbound
See Outbound Common Blocks

Context Services
See Context Services Blocks

Business Process
See Interaction Processing Diagrams Overview and Interaction Process Diagram Blocks.

Reusable Objects

• IRD List Object: See Composer's List Object Manager.
• IRD Variable List Dialog Box: See Entry block Variables property.

In contrast to IRD, which defines variables in a special dialog box outside of the strategy, Composer

Introduction to Composer

Composer Help 60

defines both workflow and Project variables.

Introduction to Composer

Composer Help 61

Getting Started with Composer
This section is your first stop for getting started with Composer. It discusses the following topics:

• Running Composer for the First Time
• Software Updates Functionality
• Integrating with Source Control Systems
• Composer Projects and Directories
• Working with Diagram Layouts
• Accessing the Editors and Templates
• Multiple User Environments
• Security Configuration
• Upgrading Projects/Diagrams
• Keyboard Shortcuts
• Default Logging
• IRD Functionality Included in Composer

Also see: Composer 8.1 Routing Applications User's Guide

Getting Started with Composer

Composer Help 62

Running Composer for the First Time
When running Composer for the first time, check out the video Getting Started After Installation.
Composer is built on Eclipse. If you have not already done so, run Eclipse as described in the video.

Workspaces

When you run Composer, before the user interface appears, a dialog box opens with a suggested
workspace, which is a location (folder) for your projects and files in addition to any special folders
that Eclipse needs to maintain for its internal bookkeeping. The dialog box gives the option of
changing the workspace to a different location. New projects created in Composer will be created
under this workspace as subfolders. After the Composer interface opens, the Project Explorer shows
this location. You can change this location by selecting File > Switch Workspace.

Important
• Genesys recommends that the workspace folder name has no spaces in its path (for

example, c:\comp81dev). This recommendation is not required and Composer does not
enforce this. Genesys also recommends using the component version in the name to
avoid confusion during upgrades.

• When prompted for a workspace folder, do not specify parenthesis in the workspace
path.

• The workspace should not be located in a ClearCase view, as this will cause problems
accessing files later during development.

Setting Up Your Workspace

The first time you open Composer, it asks you to specify the location of your workspace. Eclipse
remembers this location and will present it for all subsequent times when you open Composer. If you
do not wish to be prompted each time for this path and plan to use the same location for all your
projects, you can check the Use this as the default and do not ask again option to skip this screen on
future launches.

Getting Started with Composer

Composer Help 63

https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Preinstallation#Installing_Composer_as_an_Eclipse_Plugin

Welcome Screen

When a new workspace is created for the first time, you will be taken to the Welcome screen, which
provides getting started overview topics, tutorials and links for references on the Web. The next time
you open Composer, if the Welcome screen still opens, close it by clicking the "x" on the Welcome
tab. To go back to the Welcome screen at any time:

• Select Help > Welcome.

Opening Composer Perspective

Select Window > Perspective > Open Perspective > Other. All perspectives (views) available in
Eclipse are listed, including those not used by Composer. Select Composer perspective.

Getting Started with Composer

Composer Help 64

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/InterfaceOverview#Perspectives

Software Updates Functionality (Plugins)
You can find information on installing new software (such as for Dynamic Web Projects or updating
existing plug-ins in the Eclipse help. For example, using "update software" as search words displays
plugin topics in the Eclipse Workbench User Guide (Help > Contents).

Plugin Installation Requirements

It is standard Eclipse behavior for plugins to be installed in C:\Program Files\... (i.e. the base
Composer installation directory), and NOT in the user's workspace. The installation of plugins must be
performed by an adminn user.

Getting Started with Composer

Composer Help 65

Dynamic Web Projects

After you install Java EE Developer Tools plugins, you can create a Dynamic Web Project containing
pages with active content. Unlike with static Web Projects, dynamic Web Projects enable you to
create resources such as JavaServer Pages and servlets. Here's how to get started:

1. Composer Help >> Install New Software.
2. Click Add. In the resulting box, enter http://download.eclipse.org/releases/galileo/
3. Select it to see the available package.
4. Select the Web, XML, and Java EE Development Eclipse Java EE Developer Tools entry.
5. Install the plugins.
6. Restart Composer.
7. Create a Dynamic Web Project.

Note: Other missing project types can be similarly enabled.

Getting Started with Composer

Composer Help 66

Integrating with Source Control

This section describes setup instructions for using source control with Composer. The ClearCase
source control system is supported as well as Subversion.

ClearCase Plug-in Installation

To install ClearCase plug-ins for use with Composer:

1. Install ClearCase on the machine that Composer will run on.
2. Exit Composer. If you want to print these instructions to use after closing Composer, click the Print Page

icon at the top-right of the Eclipse Help window.
3. Install the ClearCase Eclipse plug-in from IBM:

a. Get the following files from IBM's website:com.rat.cc.win32-20080131A.zip and
com.r.cc.ccrefresh.all-20061107.zip

http://www.ibm.com/developerworks/rational/library/content/03July/2500/2834/ClearCase/
clearcase_plugins.html

Note: Actual ZIP file and directory names may change as IBM continues to update the plug-ins.
These documented names are current at the time of this writing. These plug-ins are for Eclipse v3.3
and not 3.4. Even though Composer 8.1. is based on Eclipse 3.4, Genesys recommends that you
install the plug-ins listed for Eclipse 3.3.

b. Extract the two ZIP files to a location of your choosing, essentially merging the contents.
There is a duplicate file .eclipseextension in the two ZIPs; you can safely ignore that file. The
ZIP files, when extracted, create a directory structure like:

c. If it does not already exist, create the directory ${Composer 8.1.Install}\features, where
${Composer 8.1.Install} is the installation root of your Composer 8.1 installation.For

Getting Started with Composer

Composer Help 67

example, ${Composer 8.1.Install} might be C:\Program Files\GCTI\gvp\Composer
8.1

d. From the directory where the ZIP files were extracted, copy the folders in the features
directory to ${Composer 8.1.Install}\features, and copy the directories in the plugins
directory to ${Composer 8.1.Install}\plugins.

Note: Instead of dropping the extracted zip file content in these two locations, you may place the
entire (eclipse folder) extracted content in the following folder location ${Composer 8.1.Install
dir}\dropins.

4. Ensure that ClearCase capabilities are enabled.
a. Go to Window > Preferences > General > Capabilities.
b. Make sure that the Team checkbox is checked. It must be checked in order for ClearCase

MVFS Support and ClearCase SCM Adapter preference items to appear in the Preferences
window. Please note you must restart Composer to see the changes.

5. Enable MVFS Support:

a. Start Composer.
b. Select Window > Preferences > Team > ClearCase MVFS Support.
c. Click the Workspace link underMVFS Support Preferences and select the Refresh

Automatically check box.
d. Click the Apply button.
e. Click OK to close the Workspace dialog box.
f. Again, open Window > Preferences > Team > ClearCase MVFS Support and make sure

that Enable ClearCase dynamic view file system support is selected, then click OK.

6. Configure the ClearCase plug-in. Configuration can be accessed from Window > Preferences > Team
> ClearCase SCM Adapter from the tree in the left-side panel. The recommended settings are shown
in the image below:

Getting Started with Composer

Composer Help 68

Note: You can read more about ClearCase features and working with ClearCase view from the help
topic Rational ClearCase SCM Adapter available from the Eclipse Help system. These help topics will
be available only after installing ClearCase plugins.

ClearCase Usage

To use ClearCase functionality within Composer:

1. Create a view using ClearCase Explorer, or use an existing view.
2. In Eclipse, if you don’t see the ClearCase toolbar, make the toolbar appear by clicking Window >

Customize Perspective. In the dialog box that displays, click the Commands tab, select the
ClearCase command group and click OK.

Getting Started with Composer

Composer Help 69

3. Once the toolbar is available, click on the button.

After this, any Composer Project that resides in a ClearCase view will have the view name displayed
next to it in the Project Explorer window. Also, the icons for files and folders under source control will
show the status, such as checked out, hijacked, and so on.

Creating a Composer Project Managed by ClearCase

To create a new Composer Project that will be managed by ClearCase:

Getting Started with Composer

Composer Help 70

1. Bring up the Project wizard (File > New).
2. Clear the Use default location check box and enter in the Location field a path that resides inside

your ClearCase view.

The path becomes the root of the Composer Project. Note that the files in the new project will not be
checked into ClearCase until you use the Add to Source Control function.

To add a project that is already checked into ClearCase to your Composer 8.x workspace:

1. Use the Import wizard (File > Import).
2. Select Existing Projects into Workspace.
3. In the Select root directory field, enter the path of the project residing in your ClearCase view. Check

the box corresponding to the Project name.

Important: Leave the Copy projects into workspace box unchecked. If it is checked, the imported
project will not be under ClearCase control.

To edit a file that is under source control, it must be checked out from ClearCase. After editing, it can
either be checked in to create a new source control version, or the checkout can be undone to revert
the file back to its previous version. You can also compare changes to the previous version before
checking it. All of these operations can be accessed in several alternative ways:

• Right-click the file name in Composer's Project Explorer view, and use the Team submenu.
• Select the file in Composer's Project Explorer view, and use the ClearCase menu on the top menubar.
• Select the file in Composer's Project Explorer view, and use one of the buttons on the ClearCase toolbar.

Note: If you choose to remove a ClearCase-managed Composer Project from your workspace, you
will be prompted with a Confirm Project Delete message. Genesys strongly recommends that you
choose the Do not delete contents option. This leaves the files in your ClearCase view untouched.
Otherwise, the files may be removed from source control.

Subversion Configuration

Subversion is a client–server versioning system. You can integrate Subversion with Composer in order
to have a version control over Projects. Subversion creates and maintains a repository on the Project
web server. Its clients run on Composer machines and connect to the Subversion server over the
Internet.

Note! The integration steps below are not version-specific or Composer-specific. The steps refer to
the interface and capabilities provided by the Eclipse Integrated Development Environment (IDE)
(Subclipse Team Provider plug-in) and CollabNet (CollabNet Subversion Server) products.

The recommended steps are as follows:

1. Install and Configure Subversion Server.
2. Download the Collabnet Subversion server from the website: http://www.collab.net/downloads/

subversion/

Getting Started with Composer

Composer Help 71

3. Follow the installation and configuration instructions from the vendor for the operating system you are
working with. Complete registration if required. When the installation executable runs, the wizard has
an option to View Installation Information.

Note: If you are running IIS on the server machine during installation of Collabnet Subversion server,
you may wish to change the Apache port to “81” instead of the default 80 to avoid conflict.

4. Follow post installation instructions from the vendor and complete Collabnet Subversion server
configuration.

5. Configure the Subversion repository. Follow the instructions provided by the vendor
(http://www.collab.net/downloads/subversion/) to define the permissions, user name, and password for
accessing the repository. Use the instructions for the specific version of the Callabnet Subversion server
that you installed in step 1.

Note: Subclipse provides an option for creating a repository, but this is more suited for personal
development where you do not need to share your code. Typically, you would set up a Subversion
server, create the repository on the server and then point Subclipse at the server.

6. Install the Subversion client using the capabilities of Eclipse by adding Subclipse to the Eclipse IDE.
Subclipse is a project to add Subversion support to the Eclipse IDE. Use Eclipse's Software Manager to

add Subclipse to our Eclipse IDE.

a. Add the Subclipse update version compatible with Subversion server installed in step 1.
b. From Composer's Help menu, choose Install New Software to open the Install wizard.
c. Select the required Subclipse update from the site: (http://subclipse.tigris.org/update_1.6.x/)

Getting Started with Composer

Composer Help 72

Note: The above link may not be current. In this case, check the http://subclipse.tigris.org/ site. The
Download and Install section lists update sites for various Eclipse versions. Choose the correct site
based on the Eclipse version for Composer. Composer’s Eclipse version can be determined from Help
> About and clicking the Eclipse.org icon.

d. Click on the Download link to go to the download page. There you will find the URL to enter
into the Eclipse Install wizard.

e. Follow the wizard and instructions provided in the Help > Contents > Workbench User
Guide for installing new software.

f. Restart Composer if required by installer.

7. Create the CVN (Subversion) item in Composer menu bar. Follow the Eclipse instructions on customizing
perspectives /creating command groups (Help > Contents > Workbench User Guide > Concepts
> Perspectives > Configuring perspective command groups.

8. Define CVN repository location to your Eclipse IDE. Follow the instructions provided in Help > Contents
> Workbench User Guide > Getting Started > Team SVN Tutorial. Use the instructions for
Specifying a project location.

For more details working with CVN, please, see Help: Subclipse - Subversion Eclipse plugin.

Checkin Error

If you are using Source Control tools, checking in Composer Projects contents after a Project Upgrade
may results in an error. See Checkin Error During Source Code Integration.

Getting Started with Composer

Composer Help 73

Project Types and Directories
A Composer Project is associated with either:

• A voice application for Genesys Voice Platform or
• A routing application for the Orchestration Platform.

In general, a Project consists of a predefined, structured set of files and folders that contain all
resources for the application. See the Project Explorer below.

For information on Projects referencing other Projects, see the figure in topic Project Properties dialog
box. Expand Project References.

Getting Started with Composer

Composer Help 74

Java and .NET Projects

There are two types of Composer Projects:

• Java Composer Projects -- Use JSP and Java to implement custom business logic. These Projects can
be deployed on web applications servers as described in the Composer 8.1 Deployment Guide. See
Creating a New Project.

• .NET Composer Projects -- Use ASP.NET and C# to implement server-side blocks and custom business
logic. The Project can only be deployed to Microsoft IIS. See .DOTNet Troubleshooting for steps for
working with Composer .NET Projects when a machine does not have WSE 3.0.

Starting a New .NET Project
To start a new .NET Project:

1. Click the Create a NET Composer Project button in the menu bar. You can also click the button above the
Project Explorer and select Composer > Composer > Projects > .NET Composer Project.

2. In the Project dialog box, type a name for your Project.
3. If you want to save the Composer Project in your default workspace, select the Use default location

check box. If not, clear the check box, click Browse, and navigate to the location where you wish to
store the Composer Project.

4. Select the Project type.
5. Click Next.
6. If you want to use templates, expand the appropriate Project type category and select a template for

your application.

.NET Project Warning

.NET Projects may show this warning in the Console View: include\getWebServiceData.aspx(482):
warning CS0618: 'Microsoft.Web.Services3.SoapContext.Security' is obsolete:
'SoapContext.Security is obsolete. Consider deriving from SendSecurityFilter or
ReceiveSecurityFilter and creating a custom policy assertion that generates these
filters. This warning can be ignored and no workarounds are needed. It will not show up as an error
or warning in the Problems View.

.NET Project Logging
Starting with 8.1.410.14, .NET Project logging configuration is handled with file web.config located in
the Project root directory. The level of logging can be changed to values:

OFF The highest possible rank and is intended to turn off logging.
FATAL Severe errors that cause premature termination. Expect these to be immediately
visible on a status console.
ERROR Other runtime errors or unexpected conditions. Expect these to be immediately
visible on a status console.
WARN Use of deprecated APIs, poor use of API, 'almost' errors, other runtime
situations that are undesirable or

unexpected, but not necessarily "wrong". Expect these to be immediately visible on a

Getting Started with Composer

Composer Help 75

https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Preinstallation#Application_Server_Requirements
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/DotNETProjectIssues#netwse

status console.
INFO Interesting runtime events (startup/shutdown). Expect these to be immediately
visible on a console, so be

conservative and keep to a minimum.
DEBUG Detailed information on the flow through the system. Expect these to be written
to logs only.
TRACE More detailed information. Expect these to be written to logs only.

Maven Support for Building Java Projects
Beginning with release 8.1.550.08, Composer supports Maven for building Java projects. Maven is a
software project management and comprehension tool by Apache. It is a build automation tool used
primarily for Java projects. Based on the concept of a project object model (POM), Maven can manage
a project's build, reporting and documentation from a central piece of information. A Java Composer
Maven project's structure and contents are declared in an XML file, pom.xml.

A new project type, Java Composer Maven Project, is introduced in Composer's project creation
wizard for Java projects. A Maven project will inherit all the features and functionalities of a regular
Java Composer project in addition to the Maven specific features.

A new button is introduced in the Main toolbar to create a new Java Composer Maven project from the
toolbar.

A new page, Maven POM, is introduced as part of the project creation wizard to specify Maven
related values such as GroupID and ArtifactID.

Getting Started with Composer

Composer Help 76

Here is a short video on creating a Maven project in Composer:

The Maven Project Builder is added to a Composer project on creating a new Java Composer
Maven project.

Getting Started with Composer

Composer Help 77

The following a sample Java Composer Maven project's folder structure.

Maven Build Configuration and Goals

The Maven build follows a specific life cycle to deploy and distribute target projects. Each life cycle
consists of a sequence of phases. The default build life cycle consists of 23 phases as it is the main

Getting Started with Composer

Composer Help 78

build lifecycle.

On the other hand, the clean life cycle consists of 3 phases, while the site lifecycle is made up of 4
phases.

Each phase is a sequence of goals, and each goal is responsible for a specific task.

When you run a phase, all goals bound to the phase are executed in order.

The following is a list of some of the phases and default goals bound to them:

• compiler:compile – the compile goal from the compiler plugin is bound to the compile phase
• compiler:testCompile is bound to the test-compile phase
• surefire:test is bound to the test phase
• install:install is bound to the install phase
• jar:jar and war:war are bound to the package phase

When using Maven to build a Java Composer project, you must specify the goal in order to be able to
build the project. For example, in the screenshot below, a clean compile package has been specified
as the goal:

Getting Started with Composer

Composer Help 79

The following is a sample screenshot of the Maven runtime console view:

Getting Started with Composer

Composer Help 80

Important
A Maven project augments the capability of Composer to build (or compile) the Java
and Composer sources (VXML & SCXML) seamlessly. With this support, users can
directly consume or access Composer's backend APIs (composerBackend.jar) in their
Java counterparts (src/main/java).

WebSphere Application Server Files

The custom Build.xml and Maven Pom.xml files will not create the ibm-web-bnd.xmi and jboss-
web.xml WebSphere Application Server files, respectively. Users must create these files manually
and place it under the project's WEB-INF directory. Once created, the files are updated automatically.

Sample ibm-web-bnd.xmi file:

<?xml version="1.0" encoding="UTF-8"?>
<webappbnd:WebAppBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:webappbnd="webappbnd.xmi" xmi:id="WebAppBinding_1276009185886"
virtualHostName="default_host">

Getting Started with Composer

Composer Help 81

<webapp href="WEB-INF/web.xml#WebApp_ID"/>
<resRefBindings xmi:id="ResourceRefBinding_1276009394684" jndiName="jdbc/pooledDS">
<bindingResourceRef href="WEB-INF/web.xml#ResourceRef_1276009394684"/>
</resRefBindings>
</webappbnd:WebAppBinding>

Sample jboss-web.xml' file:

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
<resource-ref>
<res-ref-name>jdbc/oraclePooled</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<jndi-name>java:comp/env/jdbc/oraclePooled</jndi-name>
</resource-ref>

</jboss-web>

Important
The generic WAR Export wizard generates these files only during WAR export. In other
instances, users must create these files manually.

Voice Application Project Types

Voice applications are VoiceXML applications with full support for the Genesys Voice Platform. A Voice
application can be deployed on a web application server that meets the minimum prerequisites
described in the Composer 8.1 Deployment Guide. Also see Creating Voice Applications for GVP.

Routing Application Project Types

Routing applications are SCXML applications with full support for the modules described in the
Orchestration Developer's Guide. A Routing application can be deployed on a web application server
meeting the minimum prerequisites described in the Composer 8.1 Deployment Guide. Also see
Creating a New Routing Project.

Project Structure/Directories

A Composer Project (Java or .NET) will contain some or all of these subfolders depending on the type
of Project:

• App_Code -- .NET Composer Projects only. This folder will be empty by default as Composer bundles all
the C# classes in to the ComposerBackend.dll file. Custom C# classes will also go into this folder.

• bin -- Any libraries used in a .NET Composer Project go here.

Getting Started with Composer

Composer Help 82

https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Preinstallation#Application_Server_Requirements
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/OrchExt
https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Preinstallation#Application_Server_Requirements

• Callflows -- Folder for storing all the callflow diagrams (.callflow files)
• db -- Database connection.properties and .sql files are stored here.
• include -- Composer-provided standard include files used by Backend logic blocks.
• debugging-results -- The Run As option on a VXML file creates a debugging-results folder when no

debugging-results folder exists in the Project.

Custom JavaScript files (.js) can be included in a routing application by placing the file(s) in the
include/user folder. Re-generating code for all IPD diagrams in the project is required after placing
the files. The JavaScript functions in the specified .js file can then be used from any Workflow block
that supports writing expressions e.g. the Assign, Branching and ECMASCript blocks.

• META-INF -- Created when you create a new Java Composer Project. It is needed for Java and is included
when a .war file is exported from Composer. Do not make changes to this directory.

• WEB-INF/lib -- Java Composer Projects only. Folder for external dependency libraries such as JAR files.
Note: The Tomcat application server should be restarted after changing any JAR files in this folder.

• Interaction Processes -- Folder for storing all the interaction process diagrams (.ixnprocess files).
• Resources -- Folder for the audio and grammar resources.Resources/grammars -- Folder for Grammar

Builder (.gbuilder files) and GrXML files.

• Resources/grammars/<language code> -- Place language-specific grammars here (such as
en-US or es-MX folders).

• Resources/prompts -- Folder for prompts files.
• Resources/prompts/<language code> -- Place language-specific prompts here. If the

application language is changed mid-call using a Set Language block, prompts audio
resource paths in these language folders will be translated to the current language at run
time.

• Scripts -- Folder for user-written ECMAScript. Custom JavaScript files (.js) can be included in a voice
application by placing the file(s) in the Scripts folder.

• src-gen -- Folder for the code generation VXML/SCXML files.
• upgradeReports -- When migrating IRD strategies into Composer, folder for migration reports. Also

used for reports as result of upgrading Projects and diagrams.
• src -- Folder for custom code such as backend logic pages written by the user. The

ComposerPlayTreatments VXML file is located here.
• Workflows -- Folder for storing all the workflow diagrams (.workflow files).

Static VXML/SCXML code is generated with the name of the Composer diagram file. The code will be
saved in the src-gen folder under the current active Project. The two types of Projects have different
Project natures. Based on these Project natures, different builders, editors and preferences are
associated with the Projects. For example, .NET Composer Projects and Java Composer Projects have
different preferences for deployment since they are deployed to different web/application servers.

Project Folders and Resources
Common Project folders and resources (Resources, src, include, db, and so on) do not change
between .NET and Java Projects. Project Export and deployment procedures related resources will
differ between .NET and Java Projects (bin folder for .NET and WEB-INF, META-INF folders for Java).

Getting Started with Composer

Composer Help 83

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SingleSessionTreatments#ComposerPlayTreatments_VXML_File

For more information, see Migrating a Composer Application From Lab to Production.

Sub-Directories

Composer 8.1.440.18 adds support for sub-directories:

Feature Scope Comments

Generate All Project
Instead of selecting direct files
from the diagram folders,
Generate All now includes all the
folders and files recursively.

Locales Project property Project
Used to update Project locales.
Now includes all the folders and
files recursively.

Command Line Code Generation Project
Used to generate code for all the
diagrams. Now includes all the
folders and files recursively.

Command Line Upgrade Project
Used to upgrade callflow,
workflow, and IPD diagram files.
Now includes all the folders and
files recursively.

Command Line Publish Project
Used to publish all IPD files. Now
includes all the folders and files
recursively.

Java Project Export Project
Used to generate code while
exporting WAR files. Now
includes all the folders and files
recursively.

Debugger Diagram
Includes all the folders and files
recursively for code generation
during debugging.

Project Upgrade Project
Used to upgrade callflow,
workflow, and IPD diagram files.
Now includes all the folders and
files recursively.

SubModule handling Diagram
Used to find the sub-module
diagram when using auto-
synchronization of parameters.

New callflow/workflow file
creation Project

Allows you to create new
callflow/workflow files under the
selected sub-directories (right-
click and New > Other >
Composer > Diagrams).
Previously, it was created only
under the callflows or workflows
directory.

Getting Started with Composer

Composer Help 84

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/DeployingComposerApplications#Migrating_a_Composer_Application_From_Lab_to_Production

Folders Created When Upgrading Projects and Diagrams

The following additional folders may also be created in the Project Explorer:

• When upgrading to 8.1, a Project upgrade creates the folder ./WEB-INF/lib, copies files from ./lib to
./WEB-INF/lib, then removes the ./lib folder from the Java Composer Project.

• archive -- For placing zipped original contents of the Composer Project (created during an upgrade).
• upgradeReports -- For upgrade reports (created during an upgrade).

Adding Files to an Existing Project

Composer recommends adding files (i.e., a prompts audio file) to an existing Project within Composer
using the following methods:

• Use the File > Import capability.
• Add directly from Windows Explorer and then refresh the resource list by pressing F5 in Composer’s

Project Explorer.
• Drag and drop files onto Composer’s Project Explorer.

For out of sync files, please see troubleshooting topic Workspace Files Not in Sync.

Project Permissions

Composer Project upgrade and code generation processes need current\launching user WRITE
permission to the Composer Project Directories and Files. If you move Projects between Windows and
OS X, these considerations may apply:

WRITE permission:

In Windows 7 OS, Projects created using Mac OS needs Effective Permission to be set. To do that:

1. Open Windows Explorer and browse to Composer Project directory.

2. Right Click the Project folder and select the Properties option to open the properties dialog.

3. Select the Security tab and click the Advanced button.

4. In the Advanced properties dialog, select the Effective Permissions tab.

5. In the Effective Permissions tab, select the current User / Groups to grant Full Permission.

Also uncheck the Read-only and Hidden properties in the General tab for the Project and sub
directories. Note: While importing Composer Projects, if the Copy Projects into Workspace option
is selected, the above mentioned permissions needs to be set for the copied Project directory
separately.

Getting Started with Composer

Composer Help 85

Using Composer Shared Subroutines

Typically subroutines are a part of the Project in which other diagrams call them. This makes the
project self-contained that can be deployed as a unit with minimum dependencies on other Projects.
However, in some cases subroutines may be used by multiple Projects but are required to be present
in only one location in the workspace. This need for residing in a single Project within the workspace
is usually governed by the need to deploy to all subroutines to a single location from where these
subroutines may be referenced by multiple applications - similar to how a service is exposed. It is
recommended that subroutines be a part of the Project they are consumed in and to enable this
"sharing" via an SCM system (e.g., symbolic links in ClearCase; other system will support this
capability differently). If that is not an option, subroutines in Composer can be placed into a
"common" Project, so that multiple other Projects can access and reuse them. NOTE: In order to
support the URL substitution from the "$$" tokens, this feature requires Orchestration Server version
8.1.300.27 and above.

In our example, we will create two Projects:

• CommonProject – the Project containing subroutines
• MainProject – the Project containing the main diagrams, which will use the subroutines in

CommonProject

After subroutines have been created in CommonProject, MainProject must be set to reference
CommonProject. This means that MainProject can use the subroutines files in CommonProject.

To do this, open the Project properties page of MainProject by right-clicking and selecting
Properties. Select the Project References page on the left-hand side, and enable the checkbox for
CommonProject:

Getting Started with Composer

Composer Help 86

In a callflow in MainProject, you can create a Subdialog block which uses a Subcallflow diagram in
CommonProject:

Getting Started with Composer

Composer Help 87

Debug and Release Modes
When using shared subroutines, it may be helpful to separate the development process from the final
deployed application. During the development process, it is assumed that CommonProject resides in
the same Workspace as MainProject. However, in a production environment, a more complex
service may be needed to host subroutines.

Composer supports the concept of Debug and Release mode code generation. Using this mode flag,
the same Project can generate different code suitable for specific tasks.

Debug and Release mode can be set by Project properties dialog:

Getting Started with Composer

Composer Help 88

To apply Release Mode to shared subroutines development, open the Properties view of the
Subdialog block in the the callflow for MainProject. Enable the Show Advanced Properties option:

This will reveal a Release Mode URI property:

Note that any token delimited by “$$” in this property can be substituted at runtime.

Once the Application is ready to deploy, set the Code Generate Mode of the Project to Release.

Getting Started with Composer

Composer Help 89

This will generate code that uses the Release Mode URI property value.

Project Properties

Selecting Properties from the Project menu opens a dialog box showing the properties of the
selected Project or of the Project that contains the selected resource.

Getting Started with Composer

Composer Help 90

Project Properties
Right-click a Project and select Properties to bring up a dialog box where you can view/update
various Project properties. This topic describes the various Project Properties pages. For more help on
each property, select the property and press F1. A help view appears on the right.

Resource

The Resource page contains general information on the selected Project. For information on UTF-8,
see the VXML File Preferences topic.

Getting Started with Composer

Composer Help 91

Builders

The Builders page indicates the Project type, It indicates whether the Project is a Java Composer
Project, a .NET Composer Project, or another type of Project.

Getting Started with Composer

Composer Help 92

Code Generation Mode

Used to determine whether a Project will be used in a production or development environment. See
the Debug and Release Modes topic.

Getting Started with Composer

Composer Help 93

Composer Callflow Options

See the GVP SessionID System Variable topic.

Getting Started with Composer

Composer Help 94

ICM Support

See the ICM Interaction Data Block topic.

Getting Started with Composer

Composer Help 95

Default Logging

See the Assign Common Block topic.

Getting Started with Composer

Composer Help 96

Locales

See the Locales topic.

Getting Started with Composer

Composer Help 97

Orchestration Options

See the
Orchestration Options topic.

Getting Started with Composer

Composer Help 98

Project Facets

Getting Started with Composer

Composer Help 99

Project Properties

See the Project Properties section of the Project Menu topic.

Getting Started with Composer

Composer Help 100

Project References

Use when a Project refers to other Projects in the workspace.

Prompt Management

Use this dialog box to configure the recording of prompts and to enable dynamic prompts.

Recording Prompts
See the Recording Prompts topic.

Enabling Dynamic Prompts
Starting with 8.1.440.18, Composer provides support to optionally include dynamic prompts
supporting JavaScript files in the generated VoiceXML. Use the Enable Dynamic Prompts property
in the Prompt Management page to enable or disable dynamic prompts. If enabled (default), use of

Getting Started with Composer

Composer Help 101

dynamic prompt options in the Prompt or other blocks will be validated during code generation. If
disabled, callflow diagram code generation will exclude the Javascript files related to the dynamic and
custom Prompts (including locale JavaScript files).

For information on dynamic prompts, see:

• GVP 8.1 VoiceXML Help
• GVP 8.1 Legacy Genesys VoiceXML 2.1 Reference Manual

Getting Started with Composer

Composer Help 102

Reset IPD Publish Information

See the Publishing Updates topic.

Getting Started with Composer

Composer Help 103

Run Debug Settings

See the Debugging Routing Applications topic.

Getting Started with Composer

Composer Help 104

Task Repository

Getting Started with Composer

Composer Help 105

Task Tags

Use to specify or add a Task Repository.

Getting Started with Composer

Composer Help 106

Tomcat Deployment

See the Testing your Application topic.

Getting Started with Composer

Composer Help 107

Validation

See the Validation topic.

Getting Started with Composer

Composer Help 108

WikiText

Selecting Enable validation causes WikiText to validate wiki markup files in your project. This is
done as part of the Project build process, so it helps to have automatic building enabled (Preferences
>Workspace >Build Automatically). Validation is performed on all resources that match a wiki markup
file extension. In addition, validation includes any files for which the markup language setting was
set, even if the file does not have a registered wiki markup file extension.

Getting Started with Composer

Composer Help 109

Multiple User Environments
When more than one Composer user attempts to log into the same Workspace, the following
message appears: Workspace in use or cannot be created, choose a different one.
Whenever Composer uses a Workspace, it locks the Workspace so other Composer instances cannot
access it. A Workspace is meant to be a "private" development area, until the developer decides to
share it with the team. It is not possible to share a single Workspace among multiple users, so you
need to set up (private) workspaces for each developer. To merge the work of different developers
together, use source control, which could be be SVN (Subversion), Git, or something else. This is the
best way to manage a Composer Project with multiple users working simultaneously on it, and
prevent the developers from interferring with each other's work.

You could consider the Subversion plugin in Composer as a connector to source countrol like SVN. To
install the Subversion plugin, see Software Updates Functionality (Plugins). Continuing with this
example, once the Subversion plugin is installed, the Project can be shared using source control.
When you right-click on a Project, you will find all the relevant options under the Team menu. For the
first time, a Project needs to be shared with source control. After this, there will be options on the
Team menu.

Getting Started with Composer

Composer Help 110

Security Configuration
You have the option of configuring:

• A secure Transport Layer Security (TLS) connection between Composer and Universal Contact Server
(UCS) during application design when connecting to Context Services.

• A secure TLS connection when connecting to Configuration Server during design time.

You can also configure:

• A security banner that displays when users establish a Configuration Server connection.
• An inactivity timeout. If a Composer user has authenticated with Configuration Server, Composer times

out after a configurable number of minutes of inactivity.
• Both certificate-based and key-based authentication.

For information on configuring the above features, see the Genesys Security Deployment Guide.

Getting Started with Composer

Composer Help 111

Upgrading Projects and Diagrams
When deciding whether to upgrade, consult the Composer 8.1.x Release Note for a summary of new
features and other updates.

Important
Composer does not support upgrading diagram files from 8.0.4 versions to 8.1.2 or
higher versions. If a callflow/workflow diagram upgrade is required, first upgrade the
Projects to 8.1.1 versions and then upgrade to 8.1.2 or higher versions.

Project Upgrade Report

Introduced in 8.1.400.33. Whenever a Project is imported into the workspace as part of the process of
upgrading to a newer version, you must perform a Project Upgrade. Composer applications will not
work or work unpredictably unless the Project is successfully upgraded. Right-click the Project and
select Upgrade Composer Project. After the upgrade completes, a Project Upgrade report appears
in the design area. An example is shown below.

Important
Other than when pooling reusable subflows, accessing system resources (include/jsp)
across Projects is not supported.

Getting Started with Composer

Composer Help 112

Java Composer Projects

Java Composer Projects were referred to as Java Voice projects in earlier versions of Composer, such
as Composer Voice. While working with the current version of Composer, an upgrade is required for a
previously-created Composer Project and Project diagrams. If you simply copy diagrams into a new
Composer Project instead of upgrading the Project itself, then you must use the diagram upgrade
procedure as described below. Genesys recommends that you create a dedicated workspace for 8.1
Projects and do not reuse the previously created workspace. This will provide a clean separation
between the two versions as well as ensure that a backup copy is preserved for later reference or
rollback.

Upgrade Summary

A summary of the Composer diagram upgrade process is as follows:

1. Obtain Composer 8.1 through Genesys Technical Support.
2. Uninstall the older version of Composer. Before uninstalling the older version of Composer:

• Make a copy of your Composer workspace folder (which contains all your Project files), as your
workspace may be deleted if it is located under the installation directory (C:\Program Files\GCTI\
Composer 8.1\workspace).

• Uninstall the older version of Composer.

3. Install Composer 8.1.
4. Upgrade at a Project level or at the Diagram level as described below.

Routing Upgrade Limitations

See IRD To Composer Migration Guide.

Project Upgrades

A Project-level upgrade will automatically apply diagram-level upgrades for all the diagram files
directly residing within the diagram (Callflows or Workflows) folder. As part of the upgrade process,
Composer makes a back-up of the Project and its files, which are saved under the archived folder; for
example: ./JavaComposerProject/archive/JavaComposerProject20100809184446388.zip

Note: If you are using your previous Workspace, importing Projects is not required. For a new
Workspace folder, Projects have to be imported.

Getting Started with Composer

Composer Help 113

https://docs.genesys.com/Documentation/Composer/8.1.2/Migration/Welcome

Important
Composer does not support importing projects directly from network mapped drives.
Instead, you can use shared drives to load and deploy Composer projects into the
Tomcat server.

To upgrade a Project when using a new Workspace folder:

1. Import an old Composer Project into Composer's Project Explorer view. From the menu, select File >
Import.

2. In the Import dialog, navigate to General and double-click Existing Projects into Workspace.
3. Browse to the Composer Project location and select the Project(s).
4. Mark the checkbox Copy projects into workspace.
5. Click Finish.
6. In the Project Explorer, select the imported project and type F5 to refresh.
7. Right-click the imported Project and select Upgrade Composer Project from the context menu.
8. If the Project is upgraded, a message appears indicating that it is the current version. Otherwise, a

prompt appears asking if you would like to upgrade this Project. Click the Yes button to start the
upgrade process.

9. View the upgrade report. Once the upgrade process is complete, Composer displays a report. The report
is located in the Reports folder of the Project; for example:C:\Work\Temp1\Gate3IPTest\Reports\
UpgradeReport_Gate3IPTest20090513155840979.html

Project Version Validation
Starting with Release 8.1.410.14, Composer validates the Project version during the Generate All
and Upgrade Project operations. Projects of a version lower than installed version are validated to
upgrade before continuing with these operations. Projects of a version higher than the installed
version are not allowed to proceed with these operations.

Example Scenarios

Scenario #1

• Create A JAVA/.NET Project in any older version of Composer.
• Uninstall the older version and install Composer 8.1.410.xx.
• Open Eclipse and import the Project.
• Right click the Project and select Generate All. The Finish button is disabled state. The Generate All

dialog shows Project is not up-to-date, upgrade the Project and then Generate Code. The
error message is Project version is not up-to-date. Project version should match the
Composer IP version.

Scenario #2

Getting Started with Composer

Composer Help 114

• Create A JAVA/.NET Project in any older version of Composer.
• Uninstall the older version and install Composer 8.1.410.xx.
• Open Eclipse, select the Project menu from the menu bar and select Build Automatically.
• Import the Project and open the Problems view. A warning message appears: The diagram version

is not up-to-date. Consider upgrading the diagram or the enclosing Project.

Scenario #3

• Create a JAVA/.NET Project in Composer 8.1.410.xx.
• Uninstall 8.1.410.xx and install an earlier Composer 8.1.410.xx version.
• Open Eclipse and perform a Generate All or Upgrade Project. A warning message appears:

Mismatched project version or Project version is higher than IP version.

Workbench Project builds will validate Project versions and show any error in the Problems View.

Intra Version Upgrades

Starting with Release 8.1.400.33, Composer Project and Diagram upgrades between minor versions
are now supported (for example, 8.1.400.26 to 8.1.400.32). This enables upgrading diagrams to the
IP version from both the major and minor versions. An intra-version upgrade for an IPD diagram to
the 8.1.400.33 version works as follows:

1. IPD events are categorized to media-specific sets to improve the interaction handling. Please check the
Events property for more details on this and the items below.

1. The pre-defined sets are non-editable: Voice, Multimedia, and Ixn-less processing.

1. A Custom category can be used for customizing the events.

1. If Events were customized, an upgrade from 8.1.301.01 versions and later would use the Custom
category. Older versions will be chosen to one of the pre-defined sets based on the media-specific
blocks used in the IPD diagram.

1. If Events are not customized, one of the predefined sets will be selected upon an upgrade.

1. Using the pre-defined sets provides improved future upgrades.

1. In the case where a Composer upgrade overwrites any custom changes, use the Load Last Revision
option in the Events dialog to reload the selected event to the last revision. This is applicable only for
the Custom category.

Upgrade Error Message

After a Composer Project upgrade, the Project Upgrade Report may display the following error
message: error while updating the .studio_config.properties file or error while

Getting Started with Composer

Composer Help 115

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/StartingaNewIPD#Events_Property

updating the .composer file. In this case, permissions for the .studio_config.properties and/
or the .composer file may be read-only or hidden. To resolve this issue, go to the file system and
check for the studio_config.properties file and the .composer file located under the Composer
Project directory. Set the file permissions so that the read-only and hidden file attributes are disabled/
unchecked. Hint: To find where the current Project directory is located, do the following:

1. Go to Composer's Project Explorer view.
2. Right-click the Composer Project.
3. From the shortcut menu, select Properties > Resource and look for Location., for example, Location:

C:\Program Files\GCTI\Composer 8.1\workspace\JavaComposerProject.

Tip
While upgrading Composer 812 projects to higher versions, if you encounter the error,
The project is corrupted or version higher than the IP version. Project cannot be
upgraded., check the .studio_config.properties file for unwanted timestamp texts
and remove them. The .studio_config.properties file must not have multiple lines
and any extra characters and must only contain the following:
createdVersion=8.1.2xx.xx.

Diagram File Upgrade

Important
Composer does not support upgrading diagram files from 8.0.4 versions to 8.1.2 or
higher versions. If a diagram upgrade is required, first upgrade the Projects to 8.1.1
versions and then upgrade to 8.1.2 or higher versions.

In Composer 8.0.2 and later, diagrams for voice applications are called callflow diagrams whereas in
earlier versions of Composer they were called studio_diagrams. Follow the steps below if you have
only copied older diagram files to a current version of Composer Project (or to an already upgraded
Composer Project).

1. In Composer's Project Explorer, select the Project destination folder to where you want the files to be
imported, such as the Callflows or Workflows Project folder.

2. Right-click and select Import.
3. In the Import wizard, select the diagram files to import.
4. After the import operation completes, right-click the imported diagram file and select the upgrade

option: Upgrade Callflow Diagram or Upgrade Workflow Diagram.

Getting Started with Composer

Composer Help 116

Changes as a Result of Upgrading

It is important to note the following:

• When upgrading to 8.1.1, references to internal variable names may have to be edited manually. See
Variables Project and Workflow, Internal Variables Naming for details and examples. It is recommended
that internal variables such as DB Data block database result variables not be used; instead, create
User variables to store these results.

• A Project upgrade does not upgrade any custom blocks. When Composer is launched, it checks if any
custom blocks need upgrading and upgrades them. There are no manual steps involved.

• When upgrading to 8.0.4/8.1, Project upgrading creates the folder ./WEB-INF/lib, copies files from
./lib to ./WEB-INF/lib, then removes the ./lib folder from the Java Composer Project.

• When upgrading from 8.0.2, the Entry block variable _COMPOSER_WSSTUBBING is
renamedCOMPOSER_WSSTUBBING.

• When upgrading from 8.0.1 to 8.0.2, the Studio Diagram file extension changes from .studio_diagram
to .callflow. For example: MyDiagram.studio_diagram changes to MyDiagram.callflow.

• To avoid any resulting file name conflict, the diagram upgrade will append a timestamp to the file name
only if a .callflow file with the same file name already exists in the same folder; for example:
Main_2010_02_19_123010.callflow. The Timestamp is of the following format: yyyy_MM_dd_HHmmss

• Starting with 8.0.2, the following callflow blocks contain a mandatory Output Result property: Menu, DB
Input, Grammar Menu, Input, Get Access Number, Transfer, Statistics and Record. You supply this
property by selecting a variable. Since this property is mandatory; if not supplied, an error occurs in the
Problems View when validating the callflow.

• Upgrading to 8.0.2 or higher automatically populates this variable. For example, if the block is a Menu
block and the block's name is Main_Menu, upgrading will add a Main_Menu variable to the Entry block
(as if you added it manually) and will set the Output Results property to this variable.

• The GVP Next Generation Interpreter does not support the error.badfetch.badxmlpage event. If
upgrading a callflow application from an earlier version that listed this event under Supported in its
Entry block Exceptions dialog box, you will need to modify that Entry block by removing that event
under Supported in the Exceptions dialog box.

• Composer workflow and callflow diagrams do not directly store diagram grid information. This
preference is workspace-specific. If you are using a new workspace, you can set this value prior to
upgrading Projects and diagrams so that the grid information does not change during the upgrade
process.

Note: Workspace preferences can be exported and imported from File > Export or Import >
General - Preferences.

Command Line Code Generation

A command line option is available in Composer to generate code for all diagrams for all Projects in a
Workspace.

eclipse.exe -application com.genesyslab.composer.voice.generator.commandline.app
-nosplash -console -consoleLog -data .\workspace -options

Getting Started with Composer

Composer Help 117

Where:

• You open the command prompt as Administrator.
• You execute the command line application under where eclipse.exe is located.
• .\workspace is the relative path to the workspace from where the command line is run. You can specify

an absolute path.
• Code will be generated for all the diagram files irrespective of the options specified.
• At least one of the below options is specified.

Options
Option Description Comment

-p

Upgrade the Projects in the
workspace including common
and diagram files. Mutually
exclusive with -u option
(recommended option).

Note: The -p option does not
work for Composer Maven
projects.

–u
Upgrade diagram files only.
Mutually exclusive with -p
option.

-d

Deploys the .NET Project to the
IIS Web Server. Port number must
be specified, for example, -d 80.
For .NET Projects, open the
Command prompt as
Administrator.

-j

Deploys the Java Project to the
Tomcat web server. Port number
must be specified, for example,
-j 8090. For Tomcat admin role
access login should be admin/
admin.

-i Update the IPD diagrams Events
Property to Voice default set.

-c

Publish IPD to Configuration
Database. Publishes to default
Tenant. Parameters:
$CMEApplicationName$
$HostIP$ $CmePort$
$UserName$ $Password$

Release 8.1.410.14 adds support
publishing IPDs at the command
line:

Operation Status
Starting with release 8.1.530.17, a report in text format is displayed at the console, indicating the
status of the operation being performed (success/failure), and Composer returns an exit code of 0 or
1.

• 0 indicates success and 1 indicates failure.

Getting Started with Composer

Composer Help 118

For example, if you are performing a bulk deployment of projects and, some projects are deployed
successfully and some have failed, Composer will now display the associated status (success/failure)
at the console and return an exit status of 1 indicating that the intended operation has not been
completed successfully.

Sample:

Important
The exit code is returned for all supported command line operations such as, -p, -u, -d,
-j, -i, and -c.

Getting Started with Composer

Composer Help 119

In addition to displaying an exit code, when an exit code of 1 is returned, Eclipse will display a pop-up
message (sample shown below). To suppress this message prompt, you can add the --
launcher.suppressErrors switch to the command.

Beginning with release 8.1.540.07, different exit codes are returned (see table below) to help identify
which operation has failed:

Operation Exit Code
Diagram related errors (code gen) 1
Tomcat/IIS Deployment (-j & -d) 2
Project upgrade (-p & -u) 3
IPD Publish (-c) 4
IPD Event update (-i) 5

Important

Getting Started with Composer

Composer Help 120

If multiple issues are present in the workspace (say for instance that both deployment
and code generation has failed), then the most recently executed operation's exit
code is returned. So, if project deployment and code generation fails in the Composer
workspace, the exit code 1 is returned to indicate that code generation has an issue,
and once that is fixed, issue with project deployment - that is, the exit code 2 is
returned. In short, exit codes are returned in the following order: Code Generation >
IPD Publish > Project Deployment > IPD Diagram update > Diagram upgrade >
Project upgrade.

Notes

• Eclipse should not be running. This command line will launch a headless instance of Eclipse that will exit
once code generation is complete.

• Eclipse.exe should be executed from its installed location.
• .\workspace is the relative path to the Workspace that contains your Projects for which code should be

generated. This will generate code for all supported types of diagrams:
• callflow : VXML
• sub-callfow : VXML
• workflow : SCXML
• sub-workflow : SCXML
• interaction process diagram : SCXML

Examples

Project Upgrade Report

eclipse.exe –application com.genesyslab.composer.voice.generator.commandline.app
-nosplash -console -consoleLog -data .\workspace –p)

Publishing IPDs

eclipse.exe -refresh -application
com.genesyslab.composer.voice.generator.commandline.app -nosplash -console
-consoleLog -data “WorkspacePath” -c $CMEApplicationName$ $HostIP$ $CmePort$
$UserName$ $Password$

Getting Started with Composer

Composer Help 121

Working with Diagram Layouts
Composer routing workflow and voice callflow diagrams follow a vertical layout scheme by default.
The in port of a block is always positioned at the top of the block while one or more out ports are
positioned at the bottom edge of the block. Exception ports are displayed on the left edge. Following
this vertical layout can quickly exceed the available vertical screen space. The Outline view can then
be used to determine which part of a large diagram is being displayed currently and to quickly
navigate to a different part by clicking the outline view.

It is possible to follow a horizontal layout where the in ports and out ports can be manually re-
positioned to any edge of the block and lose some features. For example, elbowed (bent) connectors
and individual ports may not display on the block making it difficult to know how many unconnected
ports are present and also to connect out ports out of order. See Show Connection Ports for more
details. Please note that switching between the default vertical layout and the more flexible
horizontal layout will rearrange connection links and manual rearrangement may be necessary. While
working with diagrams, you may run into odd looking links. The figures below show some of these
and lists suggestions on how to fix them.

Getting Started with Composer

Composer Help 122

To make it easier to align blocks, Composer diagrams have enabled "just in time" guides. They show
up when a block is dragged near another block, when blocks are aligned, and help for about a
second. To place the block in an aligned position, drop the block when the guides confirm the block is
aligned.

Getting Started with Composer

Composer Help 123

Accessing the Editors and Templates

Composer editors are embedded/integrated within the user interface and are made available to you
whenever a .scxml, .vxml, .ccxml, .grxml, or .jsp file is created or accessed within Composer.

Creating a New File

In Composer or Composer Design perspective, create a new VoiceXML, SCXML, or CallControlXML
file as follows:

• Select File > New > Other > Composer > Others > Others> Others.
• Select the file type, such as SCXML.
• Select the parent folder; usually an existing Project.
• Enter a name for the file.
• If applicable, click Advanced to link to the file system and use an existing file.
• Click Finish.

Using an Existing Template

• Select File > New > Other > Composer > Others.
• Select the file type.
• Select the parent folder; usually an existing Project.
• Enter a name for the file.
• If applicable, click Advanced to link to the file system and use an existing file.
• Click Next.
• Select the template.
• Click the Use SCXML Template checkbox.

• Click Finish.

The editor opens with your new file. When working with XML files, the view contains Source and
Design tabs. All editor functions described at the top of this topic are available to you. The
appropriate Composer editor also opens whenever you open an existing .vxml, .ccxml, .grxml, .aspx,
or .jsp file, whether previously created as described above, or previously imported into Composer.

Getting Started with Composer

Composer Help 124

Open an Existing File

Open an existing file as follows:

• Select File > Open File.
• Navigate to the file to open, OR

Open a Composer Project's src or src-gen folder in the Project Explorer, then double-click the file to
open it in the editor.

Creating a Custom Code Template

When writing manual SCXML/VXML/CCXML/GRXML code in the file editors, you may run into code that
becomes repetitive. You may consider creating a code template to avoid retyping this block of code.
Creating templates will improve the speed and consistency for writing code. The following steps show
how to create a code template.

• Select Window > Preferences.
• In the Preferences dialog box, navigate through the Composer category, and expand the file type (VXML

Files / CCXML Files / GRXML / SXCML Files) in which you want to add your template. Then select the
Templates section. For example, select VXML Templates.

• Click the New button to add a new code template.
• Fill in the fields for the new template. The Context drop down box specifies at what context level you

want the code template to appear as a context sensitive help.
• Click the OK button when finished.

XML File Preferences

You can also set XML File Preferences: Window > Preferences > XML > XML Files. When
specifying Encoding formats in the XML Preference page: encoding formats are applicable only for
new File creation using the Template option: (File > New > XML > XML File > Create XML File
from an XML Template > Select XML Template). This applies only to new XML, VXML, CCXML and
SCXML files. Existing files within the Project will not get impacted.

Creating a Backend JSP File

• Create a new JSP file by selecting File > New > Backend JSP file.
• In the Create Backend JSP File folder, navigate to the src folder within the Java Composer Project in

which the Backend JSP file belongs.
• Type a name In the File Name field.

Getting Started with Composer

Composer Help 125

• Click Finish.

The Editor opens with a JSP file template. You can see your new file in the src folder of your Java
Composer Project in the Project Explorer. A template is provided when you create a new Backend JSP
file in Composer. You implement a performLogic method as a JSON object, store a result and return it
to the voice application if desired. You have the flexibility to enter any valid JSP code that you wish.

Creating a Backend ASP .NET File

• Create a new ASP.NET file by selecting File > New > Backend ASPX file.
• In the ASPX File folder, navigate to the include folder within the .NET Composer Project in which the

Backend ASPX file belongs.
• Type a name In the File Name field.
• Click Finish.

The Editor opens with an ASPX file template. You can see your new file in the include folder of your
.NET Composer Project in the Project Explorer. A template is provided when you create a new
Backend ASPX file in Composer. You implement a performLogic method as a JSON object, store a
result and return it to the voice application if desired. You have the flexibility to enter any valid
ASP.NET/C# code that you wish.

Getting Started with Composer

Composer Help 126

Keyboard Shortcuts
When working in Composer, you can use the following keyboard shortcuts. Click in the Package
Explorer on the left. Then use the keyboard shortcuts shown below.

Ctrl+Alt+P Create new interaction process
diagram

Create Interaction Process
Diagram Wizard opens

Ctrl+Alt+J Create new Java Composer
project

Wizard for Java Composer project
opens

Ctrl+Alt+T Create new .NET Composer
project

wizard for .NET Composer project
opens

Ctrl+Alt+O Create a new voice callflow Callflow Diagram wizard opens
Ctrl+Alt+R Create a new routing workflow Workflow Diagram wizard opens

Alt+I+C Open dialog box for connecting
to Configuration Server

Connect to Configuration Server
dialog box opens

Alt+I+D Disconnect from a connected
Configuration Server

A connected Configuration Server
is disconnected

Ctrl+Alt+C Generate all

Brings up the Generate All
wizard. Creates properly
formatted VoiceXML (callflows) or
SCXML (workflows) diagram files
for the Project.

Alt+M Open Prompt Manager
perspective

Prompt Manager perspective
opens

Alt+P+P Open Project properties Properties dialog box opens

Alt+H Open Composer Help Help menu appears. Select Help
Contents.

Alt+H+C Open Cheat Sheet Help menu appears. Select Cheat
sheets.

Alt+H+A Open About Composer About Composer dialog box
opens

Ctrl+Alt+D Open Database Connection
Profiles

Database Connection Profiles
opens

Ctrl+Alt+S Open Statistic Builder Statistic Builder opens.

Space To toggle a check box The check box mark toggles on/
off

Alt+A Jump to an Add button in a
wizard The Add button is selected

Alt+D Jump to a Delete button in a
wizard The Delete button is selected

Alt+R Jump to a Remove button in a
wizard The Remove button is selected

Getting Started with Composer

Composer Help 127

ALT+U Jump to an UP button in a wizard The UP button is selected

ALT+W Jump to a DOWN button in a
wizard The DOWN button is selected

Alt+T Jump to a Test/Preview button in
a wizard

The Test/Preview button is
selected

Alt+R/Alt+W Jump to a Browse button in a
wizard

The Browse Event button is
selected

Alt+B Jump to a Back button in a wizard The Back button is selected
Alt+N Jump to a Next button in a wizard The Next button is selected

Alt+F Jump to a Finish button in a
wizard The Finish button is selected

Getting Started with Composer

Composer Help 128

Default Logging
For information on setting Default Logging, see the figure in topic Project Properties.

Getting Started with Composer

Composer Help 129

IRD Functionality Included in Composer
Composer enables you to create SCXML-based routing applications to run on the Universal Routing
8.x platforms and, as such, it includes functionality that was previously provided through Genesys
Interaction Routing Designer (IRD). The information below is provided for existing Genesys customers
transitioning to Composer, who are familiar with creating strategies in IRD.

Composer Blocks and IRD Objects

Composer refers to the fundamental element of a workflow as a block; whereas in IRD
documentation, this element is referred to as an object. The tables below group IRD objects based on
their IRD toolbar category name and point to the corresponding functionality in this release of
Composer. Summary information is presented below.

• Learn about the differences between Composer and Interaction Routing Designer, which has
historically been used to create routing applications.

• See the Composer Quick Start for how to create a simple routing strategy, attach data that will appear
on the agent desktop, and route to the preferred agent.

Data & Services
IRD Object Name Composer Block Name Description

Database Wizard DB Data
DB Data retrieves information
from the database. Uses a Query
Builder.

Web Service Web Service
Invokes Web Services. GET, POST
and SOAP over HTTPS are
supported.

Web Request
Invoke any supported HTTP web
request or REST-style web
Service. See sample: Routing
Based on Web Request.

Also see Composer's Server Side Blocks.

Miscellaneous
IRD Object Name Composer Block Name Description

Assign Assign Assigns a computed value/
expression or a literal value to a

Getting Started with Composer

Composer Help 130

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/IRD

Multi-Assign
variable. Variables are defined
in the Entry block. Capable of
multiple assignments.

Call Subroutine Subroutine Creates reusable sub-modules.

Entry Entry

Sets global error (exception)
handlers. Defines global
variables (see Variables section
below).. All routing strategy
diagrams must start with an
Entry block.

Exit Exit
Terminates the strategy and
returns control back to calling
workflow in case of a subroutine.

Error Segmentation
Multiple error output ports can be
created in Composer blocks
based on each block's Exception
property.

Function
Multi-Function ECMAScript

Builds an ECMAScript expression
using the Expression Builder.
Many URS functions are

available as Genesys Functional
Modules described the
Orchestration Server
Documentation Wiki can invoke
multiple functions.

If
Assign, Branching, ECMAScript
blocks all open Expression
Builder

Expression Builder can be used
to create IF expressions.

Multi-Attach ECMAScript Can be used for attaching data to
an interaction.

Also see Composer's Routing Flow Control Blocks.

Routing
IRD Object Name Composer Block Name Description

Selection Target

Routes an interaction to a target,
which can be Agent, AgentGroup,
ACDQueue, Place, PlaceGroup,
RoutePoint, Skill, or Variable. Skill
target uses Skill Expression
Builder.

Percentage Target

Statistics Order property in
Target block, lets you perform
percentage allocation. Also see
sample: Routing Based on
Percent Allocation.

Default Default Route Routes the interaction to the
default destination. Can be

Getting Started with Composer

Composer Help 131

overrridden by the Set Default
Route block.

Routing Rule
Orchestration Server 8.1 does
not support service level routing
rules.

Switch to Strategy
Orchestration Server 8.1 does
not support switch to strategy
routing rules.

Force Route Force Route Not exposed as a routing rule in
Composer.

Statistics Target

Although statistical routing rules
are not yet supported as in IRD's
Statistics routing object, users
can use the Target object
Statistic property to route based
on the value of a statistic. A
Statistics Manager and Builder let
you create your own statistics
from URS predefined statistics.

Also see Composer's Routing Blocks.

Segmentation
IRD Object Name Composer Block Name Description

ANI Branching See Your First Application: DNIS
Routing for an example.

DNIS Branching See Your First Application: DNIS
Routing for an example.

Date Branching See the sample Routing Based on
Date & Time.

Day of Week Branching See the sample Routing Based on
Date & Time.

Time Branching See the sample Routing Based on
Date & Time.

Classification Segmentation Branching

For classification segmentation,
an ECMAScript function
determines if a particular
category name or ID exists in the
array of category objects
represented by an application
variable.

Generic Branching

Use as a decision point in a
workflow. It enables you to
specify multiple application
routes based on a branching
condition.

Getting Started with Composer

Composer Help 132

Also see:

Composer Common Blocks

Context Services Blocks.

Voice Treatment

See Composer Equivalent to IRD Treatment.

eServices Multimedia

See Composer Equivalent to IRD Multimedia.

Outbound

See Outbound Common Blocks

Context Services

See Context Services Blocks

Business Process

See Interaction Processing Diagrams Overview and Interaction Process Diagram Blocks. Reusable
Objects

• IRD List Object: See Composer's List Object Manager.
• IRD Variable List Dialog Box: See Entry block Variables property.

In contrast to IRD, which defines variables in a special dialog box outside of the strategy, Composer
defines both workflow and Project variables.

Getting Started with Composer

Composer Help 133

Diagram Search
Beginning with release 8.1.500.03, you can search for blocks in diagram files using the Diagram
Search feature. Both simple and advanced search options are available.

Simple Search

Simple search is limited to the currently active diagram. You can search for a block by its name and if
found, the block is selected in the active diagram.

1. Select Diagram > Find Block from the menu bar or press Ctrl+J from the active diagram. The
following dialog is displayed:

2. Enter the name of the block in the field provided and click Find.

Important
You can also use the input drop-down to select and repeat or modify a recent search.

3. In addition you can select one or more of the following checkboxes for additional validation during the
find operation:

• Case Sensitive: Select this option to match the casing of the value provided in the input field with the
search results.

• Whole Word: Select this option to search for whole words identical to the input value. If this option is
not selected, the find operation locates the immediate possible match to the input value.

• Incremental Search: Select this option to progressively search for the blocks and filter through text.
As the user types the text, one or more possible matches for the blocks are found and immediately

Getting Started with Composer

Composer Help 134

presented to the user. Composer will begin matching the next find based on what you
type. Additionally, once you have typed your search string to the length you desire, you can press
Enter on the keyboard or the Find button to continue searching for other occurrences of the
block names matching the text input you have typed.

Advanced Search

Advanced search provides options to search by block name, block type, and diagram types. You can
also extend the search to include the complete project that the active diagram is part of or even the
current workspace that is being accessed. Advanced search results are listed in a separate Search
Results page in the Search view.

Important
Regular expressions are not supported.

1. Press Ctrl+H from the active diagram. The Eclipse Search dialog is displayed.
2. Select the Diagram Search tab. The following is displayed:

3. Enter the name of the block in the field provided and click Search.

Getting Started with Composer

Composer Help 135

Important
You can also use the input drop-down to select and repeat or modify a recent search.

4. In addition you can select one or more of the following checkboxes for additional validation during the
find operation:

• Case Sensitive: Select this option to match the casing of the value provided in the input field with the
search results.

• Diagram Type: Select the required diagram type(s).
• Search By: Select either Block Type to search by type of block or Block Name to search by name of

block.
• Scope: Select Current diagram to search within the currently active diagram or Enclosing projects

to search within the complete currently active project or Workspace to search within the current
workspace that is being accessed.

The search performed here is a Whole Word search where names completely identical to the text
provided in the input field are retrieved and displayed on the Search Results page.

Getting Started with Composer

Composer Help 136

Important
You can sort the listed results by any of the four columns; Block Name, Block
Category, Diagram File, or Project Name. Click an item from the listed results to
locate and the select the associated block in the active diagram.

On the top right corner of the Search Results page, the following additional Eclipse search interface
options are available:

• Run the Current Search Again (F5) - Press F5 or click this icon to run the current search again.
• Cancel Current Search - Click this icon to cancel the current search operation.
• Pin the Search View - Click this icon to pin the current Search Results page. Results of subsequent

searches are shown on another Search Results page.
• Show Previous Searches - Click this icon to open the Previous Searches dialog, from which you can

run any of the previous searches listed.

• To run a previous search again, select an item from the list and click Open to display the results in
the existing Search Results page or click Open New to display the results on a new Search
Results page.

• You can remove an item from the list by selecting the item and clicking Remove.
• The number of previous searches listed in the dialog is configured using the Configure... option

(hyperlinked text) at the bottom of the dialog.

Getting Started with Composer

Composer Help 137

Important
You can also view previous search items, select and run a previous search, or clear
search history by clicking the drop-down next to the Previous Searches icon and
selecting the required option.

Getting Started with Composer

Composer Help 138

Masking Sensitive Information in Composer
Tomcat Logs

Important
This feature is applicable only for Java Composer projects.

Starting with release 8.1.550.08, Composer's Java backend logging support has been upgraded from
Log4j1 to Log4j2. This enables sensitive information to be masked in the Composer Tomcat logs
using configurable patterns. A new field, Composer Log Masking Regex Pattern, is included in
the Default Logging project-level property, to specify the regex pattern to be used for masking.

The user specified regex pattern from the new field is stored in the makingPattern.json file located
in the WEB-INF\lib folder within the corresponding Java Composer project folder.

You can use the Default Logging project-level property section to specify the log levels for the Voice
and Routing blocks and provide a regex pattern for masking sensitive information in the Composer
Tomcat logs. These log levels will be applied to the blocks where the Log Level is set to Project
Default.

Composer will need administrator privileges if the project's workspace location is under the EXE
installation directory (C:\Program Files (x86)\). In this case, run Composer as an administrator when
providing the regex pattern in the new Composer Log Masking Regex Pattern field in the
Default Logging project-level property section.

Masking Sensitive Information in Composer Tomcat Logs

Composer Help 139

Here is a short video on masking sensitive information in Tomcat Logs:

Link to video

Masking Sensitive Information in ORS/GVP Application Logs

Starting with release 8.1.550.08, the existing log levels functionality has been enhanced to apply to
all log expressions generated as part of VoiceXML or SCXML code snippets. This helps mask sensitive
information in ORS/GVP application logs. Earlier, log levels were applicable only for custom log
expressions specified in a block's properties.

Important
All Composer blocks in both Callflow and Worklfow diagrams provide properties to
configure log levels except the VXML Form block (in callflows) and SCXML State block
(in workflows).

Log levels can be used to control the expressions being printed in the ORS/GVP log files. They can be
used to mask sensitive information by increasing or decreasing the the log levels as required to
control the level of detail printed in the log ORS/GVP log files.

Masking Sensitive Information in Composer Tomcat Logs

Composer Help 140

https://player.vimeo.com/video/440228421?title=0&byline=0&portrait=0

Composer Menus

Tip
This help wiki discusses the menu items that you use for Composer. Other menu items
are part of the Eclipse integrated development environment.

This section discusses Composer's top-level menus.

• FileMenu
• EditMenu
• DiagramMenu
• NavigateMenu
• SearchMenu
• ProjectMenu
• ConfigurationServerMenu
• RunMenu
• Window_Menu
• Help_Menu
• CanvasShortcutMenu
• PaletteGroupMenu

Composer Menus

Composer Help 141

File Menu
The commands active in the File menu change depending on the object you have selected, the
perspective, and where you are within the perspective. Commands available from the File menu are
described below. Also see the Hiding File Types topic.

New
(Alt+Shift+N)

Select New > Other, which can be a new:

• Java Composer Project
• .NET Composer Project
• Project
• Callflow Diagram
• Workflow Diagram
• Grammar builder file
• VoiceXML file
• SCXML file
• GrammarXML file
• CallControlXML file
• Backend JSP file
• Folder
• File

You can also select Example... or Other... (for example, to create
a new Interaction Process Diagram). Both of these bring up the
Select a Wizard dialog box.

Open File Opens the selected object.
Close
(Ctrl+W)

Closes the current callflow or workflow diagram in
the canvas.

Close All
(Ctrl+Shift+W) Closes all open elements in the workbench area.

Save
(Ctrl+S) Saves the selected object.

Save As Saves the selected object under another name
Save All
(Ctrl+Shift+S) Saves all files in all open editors.

Revert Reverts to an earlier saved version of a file

Composer Menus

Composer Help 142

selected from the History.
Move Moves Project resources.
Rename Renames Project resources.
Refresh Reloads the configuration.

Convert Line Delimiters To

Converts line delimiters within the callflow design
canvas to one of the following:

• Windows (default)
• Unix
• MacOS 9

Print Prints the selected object(s) within the callflow
design canvas

Page Setup
Brings up a dialog box where you can specify to
use workplace settings or diagram settings. You
can also change orientation, units, size, and the
margin as well as configure workplace settings.

Print Preview Previews the output before printing.

Switch Workspace...
Browses for/selects a different workspace storage
area. Changes the set of projects and resources
that you are working on.

Restart Restarts Composer.

Import

Brings up a wizard that leads you through the
process of importing various types of files.
Expand Composer to import from the file systems, such an IRD
strategy or a Realtime Debugger Launch Configuration.

Export Brings up a wizard that leads you through the
process of exporting various types of files.

Properties
Shows properties for the selected resource (such as
a Project). When a Project is selected, includes the
Deployment property.

Exit Exits Composer.

Composer Menus

Composer Help 143

Edit Menu
Use the Edit menu to move around within the current application; cut, copy, paste, and delete blocks
from the displayed callflow or workflow; find individual blocks within the callflow; and open the
Properties dialog box for a selected block. Edit menu items include standard Windows and Eclipse
edit functions:

Undo
(Ctrl+Z)

After you perform an action on an object, the Undo
command becomes Undo <action>. For example,
Undo Deleting appears after you perform a
deletion.

Redo Select Redo <action> after using Undo <action> to
go back to the most recent edit.

Cut Removes selected object(s) and moves the objects
to the clipboard.

Copy Copies the selected object(s) to the clipboard.

Paste Moves copies of selected object(s) from the
clipboard to the selected location.

Delete Deletes the selected object(s).

Select All Selects all text or objects in the currently active
view or editor.

Find/Replace

Use in text files, such as JSP, VXML, CCXML, and
SCXML files. Place your cursor inside the file and
then select from Edit menu. Not used for callflows
or workflows. Brings up the Find/Replace dialog
box.

Add Bookmark

When the cursor is positioned on a file in the
Project Explorer, opens the Bookmark Properties
window. A bookmark helps you quickly navigate to
a frequently used resource. You can place an
"anchor" either on a resource within the
Workbench, or at a specific line within a file, by
creating a bookmark. Then you can use the
Bookmarks view to return to those files quickly. The
Bookmarks view (Window > Show View >
Bookmarks) displays all bookmarks that you have
created.

Add Task

When a Project is selected in the Project Explorer,
opens a properties dialog box. You can associate
tasks with an editable resource, for instance to
remind yourself to update a line of source code
later.

Composer Menus

Composer Help 144

Diagram Menu
This menu contains a number of standard diagram-related menu commands that can be used within
the Project Explorer view and callflow/workflow diagram canvas.

Font Invokes the system font dialog used to modify the
font associated with the selected diagram element

Fill Color Applies a color to the selected diagram element's
interior

Line Color Applies a color to the selected diagram element
lines

Line Type

Modifies the style of the selected diagram
connector element to one of the following:

• solid
• dash
• dot
• dash dot
• dash dot dot

Line Width

Modifies the width of the selected diagram
connector to one of the following:

• one point
• two points
• three points
• four points
• five points

Arrow Type

Modifies either the source end or the target end of
the arrow connector element to one of the
following:

• no arrow
• solid arrow
• open arrow

Line Style

Changes the diagram connector to one of the
following:

• Rectilinear Style Routing
• Oblique Style Routing

Composer Menus

Composer Help 145

• Tree Style Routing

Select Select all diagram elements, all shapes, or all
connectors

Arrange Applies a layout to all diagram elements, or to the
selected ones only

Align
Aligns all selected diagram elements to: the left,
the right, the center, the top, the bottom, or the
middle of the selection

Text Alignment Aligns the text left, right, or center

Order Re-orders the selected diagram elements to: the
front, the back, forward once, or backward once

Auto Size
Resets the size of the selected diagram elements
to the default size, usually just enough to see an
embedded label within the shape

Make Same Size
Sets the size of the selected diagram elements to
the size of the last selected element, either
horizontally, vertically, or both

Filters

Does one of the following:

• sort/filter Compartment items
• show/hide Compartment items

(all Compartments or named Compartments only).
Compartment items refer to Composite attributes within your
editor, which can optionally be collapsed or expanded.

View

Shows or to hides various diagram features:

• ruler
• grid
• page breaks

Controls the snap to grid behavior.

Zoom

Changes the diagram magnification to one of:

• in
• out
• 100%
• To Fit
• To Width
• To Height
• To Selection

Apply Appearance Properties Copies various appearance properties, such as fill
color, of the first selected diagram element to the

Composer Menus

Composer Help 146

other selected ones

Generate Code
(Alt+G)

Creates a properly-formatted VoiceXML file from a
callflow diagram built with Composer. Static VXML
pages (pure VXML code) are generated in the src-
gen folder of the Composer Project. This selection
is enabled when the Project is selected in the
Explorer after a new edit.
In the case of a routing workflow, check the Problems tab for
errors and fix any problems. If code generation succeeds, click
OK at the confirmation dialog box. The SCXML code is generated
in the src-gen folder.

Import Custom Blocks
Allows you to import a custom block that was
previously exported so the block can be shared
across multiple users/installations of Composer.

Export Custom Blocks
Allows you to export a custom block so the block
can be shared across multiple users/installations of
Composer.

Validate
(Alt+V)

Validates the diagram that is open for
completeness and accuracy. This selection is
enabled when the Project is selected in the
Explorer after a new edit.

Composer Menus

Composer Help 147

Navigate Menu
This menu allows you to locate and navigate through resources and other artifacts displayed in the
Workbench. The Navigate menu differs from the Find/Replace command on the Edit menu. Instead of
entering text to find, the Navigate menu uses directional commands. The Navigate menu contains
the following items:

Go Into
Refocuses the active view so that the current
selection is at the root. This allows web browser
style navigation within hierarchies of artifacts.

Go To

Refocuses the active view to one of the following:

• Back: Displays the hierarchy that was displayed
immediately prior to the current display. For
example, if you Go Into a resource, then the
Back command in the resulting display returns
the view to the same hierarchy from which you
activated the Go Into command. This command
is similar to the Back button in an HTML
browser.

• Forward: Displays the hierarchy that was
displayed immediately after the current display.
For example, if you've just selected the Back
command, then selecting the Forward
command in the resulting display returns the
view to the same hierarchy from which you
activated the Back command. This command is
similar to the Forward button in an HTML
browser.

• Up one level: Displays the hierarchy of the
parent of the current highest-level resource.

Show In
(Alt+Shift+W)

Finds and selects the currently selected resource in
another view. If an editor is active, these
commands are used to select the resource
currently being edited in another.

Next
Navigates to the next item in a list or table in the
active view. For example, when the search results
view is active, this navigates to the next search
result.

Previous
Navigates to the previous item in a list or table in
the active view. For example, when the search
results view is active, this navigates to the previous
search result.

Last Edit Location Jumps to the last edit position

Back
Navigates to the previous resource that was viewed
in an editor. Analogous to the Back button on a web
browser.

Forward Navigates to undo the effect of the previous Back

Composer Menus

Composer Help 148

command. Analogous to the Forward button on a
web browser.

Composer Menus

Composer Help 149

Search Menu
Search results are displayed in the Search view, which appears if not previously present. The Search
menu contains the following items:

Search

Opens the Search dialog box, where you can
perform file, text or Java searches. Java searches
operate on the structure of the code. File searches
operate on the files by name and/or text content.
Java searches are faster, since there is an
underlying indexing structure for the code
structure. Text searches allow you to find matches
inside comments and strings.

File

Opens the Search dialog box. If it is not already
selected, select the File Search tab. In the
Containing text field, type the search string. For a
Java search, make sure that the File name patterns
field is set to *.java. The Scope should be set to
Workspace. Then click Search. Note: To find all files
of a given file name pattern, leave the Containing
Text field empty.

Text

After selecting text, searches a workspace, a
project, a file, or a working set. Working sets group
elements for display in views or for operations on a
set of elements. They restrict the set of resources
that are displayed. If a working set is selected in
the navigator, only resources, children of
resources, and parents of resources contained in
the working set are shown.

Composer Menus

Composer Help 150

Project Menu
The Project menu contains the following items:

Open Project
Opens the currently selected Project(s). The
selected Project(s) must currently be closed for this
command to be available.

Close Project
Closes the currently selected(s) Projects. Closing a
Project will remove all of that Project's state from
memory, but the contents on disk are left
untouched.

Build All
(Ctrl+B)

Performs an incremental build on all Projects in the
Workbench. This command builds (compiles) all
resources in the Workbench that are affected by
any resource changes since the last incremental
build. This command is only available if auto-build
is turned off. Auto-build is turned off via the Build
Automatically menu option or from the General >
Workspace preference page.

Build Project

Performs an incremental build on the currently
selected Project. This command builds (compiles)
all resources in the Project that are affected by any
resource changes since the last build. This
command is only available if auto-build is turned
off. Auto-build is turned off via the Build
Automatically menu option or from the General >
Workspace preference page.

Build Working Set

Performs an incremental build on a working set.
This command builds (compiles) all resources in
the working set that are affected by any resource
changes since the last build. This command is only
available if auto-build is turned off. Auto-build is
turned off via the Build Automatically menu option
or from the General > Workspace preference page.

Clean Discards all previous build results. If autobuild is
on, then this invokes a full build.

Build Automatically
Toggles the auto build preference on and off. The
auto-build preference is also located on the
General > Workspace preference page.

Properties Opens the Project Properties dialog box as
described below.

Project Properties

Selecting Properties from the Project menu opens a dialog box showing the properties of the
selected Project or of the Project that contains the selected resource.

Composer Menus

Composer Help 151

Composer Menus

Composer Help 152

Run Menu
• See the Debugging voice applications and Debugging routing applications topics for supported

functionality.

The Run Menu contains all of the actions required to run, debug, step through code and work with
breakpoints. Different parts of the menu are visible at different times, as each perspective can be
customized to show only specific capabilities. The Run menu contains the following items:

Resume Resumes execution of the currently selected Debug
target.

Suspend
Halts the execution of the currently selected thread
in a debug target. Once the selected thread is
suspended, you can then examine it.

Terminate Terminates the selected debug target.
Step Into [Disabled for GVP Debugger]

Step Over

Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it will
continue in the method from which the current
method was called.
The cursor jumps to the declaration of the method and selects
this line.

Step Return [Disabled for GVP Debugger]
Run to Line [Disabled for GVP Debugger]
Use Step Filters
(Shift+F5)

Toggles step filters on and off. When on, all step
functions apply step filters.

Run

Re-launches the most recently launched
application, or launches the selected resource or
active editor depending on the launch operation
preference settings found on the Run/Debug >
Launching preference page.

Debug

Re-launches the most recently launched application
under debugger control, or launches the selected
resource or active editor depending on the launch
operation preference settings found on the Run/
Debug > Launching preference page.

Run History Displays a submenu of the recent history of launch
configurations launched in run mode

Run As

When a callflow is selected, displays Run Callflow.
In the Run mode, call traces are provided and the
application continues without any breakpoints.
Note: Run on Server is an Eclipse feature and is not
used by Composer.

Run Configurations Used for debugging callflow diagrams. Opens the

Composer Menus

Composer Help 153

Run Configurations dialog box that lets you create,
manage, and run launch configurations of different
types.

Debug History Displays a submenu of the recent history of launch
configurations launched in debug mode.

Debug As

Displays a sub menu of registered debug launch
shortcuts. Launch shortcuts provide support for
workbench or active editor selection sensitive
launching.
Note: Debug on Server is an Eclipse feature and is not used by
Composer.

Debug Configurations
Used for debugging callflow diagrams. Opens the
Debug Configurations dialog box that lets you
create and modify launch configurations and debug
applications.

External Tools

Displays external tools that allow you to configure
and run programs, batch files, Ant buildfiles, and
others using the Workbench. You can save these
external tool configurations and run them at a later
time. Output from external tools is displayed in the
console view. Selecting External Tools presents the
following sub-menus: Run As, External Tool
Configurations, Organize Favorites.

Create URL Breakpoint
Creates a breakpoint, which suspends the
execution of a workflow at the location where the
breakpoint is set.

Toggle Breakpoint

Appears in Debugging perspective. Select to
suspend the execution of a program at a particular
location in a callflow. When a breakpoint is
encountered during execution of a program, the
program suspends and triggers a SUSPEND debug
event with BREAKPOINT as the reason.

Toggle Line Breakpoint Select to set a breakpoint on an executable line of
a program.

Toggle Method Breakpoint

Use when working with types that have no source
code (binary types).
Open the class in the Outline View, and select the method
where you want to add a method breakpoint. Select Toggle
Method Breakpoint to have a breakpoint appear in the
Breakpoints View. If source exists for the class, then a
breakpoint also appears in the marker bar in the file's editor for
the method that was selected. While the breakpoint is enabled,
thread execution suspends when the method is entered, before
any line in the method is executed.

Toggle Watchpoint

Appears in GVP Debugging perspective. You must
select a Java field object to use this command. Use
after you have created a watchpoint on the
currently selected field. Whenever that field is
accessed or modified, execution will be suspended.
If the selected field already has a watchpoint,
selecting this command will remove it.

Composer Menus

Composer Help 154

Skip All Breakpoints
Select to mark all breakpoints in the current view
as skipped. Breakpoints marked as skipped will not
suspend execution.

Remove All Breakpoints Select to remove all breakpoints from the
Breakpoints View.

Composer Menus

Composer Help 155

Configuration Server Menu
URS applications may be developed either:

• With a connection to Configuration Server
• Or in an offline mode, without connecting to Configuration Server

Connect Select to connect to Configuration Server.
Disconnect Select to disconnect from Configuration Server

Composer Menus

Composer Help 156

Window Menu
The Window menu allows you to display, hide, and otherwise manipulate the various views,
perspectives, and actions in the Workbench. The Window menu contains the following items:

New Window
Opens a new workbench window with the same
perspective as the current perspective. The
Composer perspective is the default for building
your application.

New Editor
Opens an editor based on the currently active
editor. It will have the same editor type and input
as the original.

Open Perspective Opens a new perspective in this workbench window

Show View

Displays the selected view in the current
perspective. Views support editors and provide
alternative presentations as well as ways to
navigate the information in your workbench. For
example, the Project Explorer and other navigation
views display projects and other resources that you
are working with. You can configure how views are
opened on the Window > Preferences > General >
Perspectives preference page.

Customize Perspective

Opens the Customize Perspective dialog box. The
Shortcuts tab lets you select shortcuts you want
added as cascade items to submenus. The
Commands tab lets you select command groups
that you want added to the current perspective.

Save Perspective As

Saves the current perspective thereby creating
your own custom perspective. You can open more
perspectives of this type using the Window > Open
Perspective > Other menu item once you have
saved a perspective.

Reset Perspective Changes the layout of the current perspective to its
original configuration

Close Perspective Closes the active perspective

Close All Perspectives Closes all open perspectives in the workbench
window

Navigation

Displays the following submenu and shortcut keys:

• Show System Menu (Alt+-): Shows the menu
that is used for resizing, closing or pinning the
current view or editor

• Show View Menu (Ctrl+F10): Shows the drop
down menu that is available in the toolbar of
the active view

• Quick Access (Ctrl+3): Shows a listing of
available quick access categories

Composer Menus

Composer Help 157

• Maximize active view or editor (Ctrl+M): Causes
the active part to take up the entire screen, or if
it already is, returns it to its previous state

• Minimize active view or editor: Causes the
active part to be minimized.

• Activate Editor (F12): Makes the current editor
active

• Next Editor (Ctrl+F6): Activates the next open
editor in the list of most recently used editors

• Previous Editor (Ctrl+Shift+F6): Activates the
previous open editor in the list of most recently
used editors

• Switch to editor (Ctrl+Shift+E): Shows a dialog
that allows switching to opened editors. Shows
a dialog that allows switching to opened
editors.

• Next View: Activates the next open view in the
list of most recently used views

• Previous View (Ctrl+F7): Activates the previous
open view in the list of most recently used
editors

• Next Perspective (Ctrl+F8): Activates the next
open perspective in the list of most recently
used perspectives

• Previous Perspective (Ctrl+Shift+F8): Activates
the previous open perspective in the list of
most recently used perspectives

Preferences

Opens a dialog box for indicating various Composer
preferences. There are a wide variety of
preferences for configuring the appearance of
Composer and its views, and for customizing the
behavior of all tools that are installed in the
workbench. See Preferences for Voice Applications
and Preferences for Routing Applications.

Composer Menus

Composer Help 158

Help Menu
The Help menu contains the following items:

Welcome Displays a welcome screen.

Help Contents

Displays the Eclipse help system.
Note: The Composer Help, which introduces the Composer Help
wiki, is integrated as a workbook within the overall Eclipse Help
system.

Search Opens a help pane where you can enter a search
expression and view results.

Dynamic Help Opens a help pane to show context-sensitive help.
Key Assist
(Ctrl+Shift+L)

Opens a help pane with a listing of keyboard
shortcuts.

Tips and Tricks Opens a Tips and Tricks dialog box with a variety of
topics:

Cheat Sheets
Opens the Cheat Sheet Selection dialog box with
several available Cheat Sheets that lead you
through key tasks.

Check for Updates Currently not used by Composer.

Install New Software

Opens the Install dialog box where you can select
or enter a site that has the software you want to
install. As described in the Composer 8.1
Deployment Guide, use this menu item to install
later versions of Composer. Use the About Eclipse
SDK menu item to uninstall the current version of
Composer prior to updating to a later version. For
another usage example, see the Integrating with
Source Control Systems topic, Subversion section.

About Composer
Opens the About Composer dialog box, which
displays version, licensing, and Eclipse links. It also
contains buttons to access Feature Details, Plug-in
Details, and Configuration Details.

Composer Menus

Composer Help 159

Canvas Shortcut Menu
When creating a callflow or workflow in Composer or Composer Design perspective, a shortcut menu
opens when you right-click inside the canvas area. The figure below shows the menu when creating a
workflow.

Canvas Menu

The Canvas menu contains the following items:

Add

Allows you to add a note, text, or one of the shapes
shown in the figure above.
When creating note objects in a diagram there are two ways to
create them. After selecting the note tool, you can either click a
single point or drag a box to indicate initial size. In the former
case, the note will continue to grow horizontally as text is
entered. With the latter case, text will automatically wrap text
using the input width.

File

Gives the option of printing the diagram or saving
it as an image file.
Selecting Save as Image opens a dialog box giving the option to
save in one of the following formats: GIF, BMP, JPEG, SVG, PNG,

Composer Menus

Composer Help 160

or PDF. You can also select Export to HTML.

Delete from Model Deletes the selected block from the workflow.

Select

Allows you to select:

• All
• All Shapes
• All Connectors

Arrange All
Use to arrange blocks and connectors in a callflow/
workflow in a more orderly fashion. If you don't like
the result, select Undo Arrange All from the Edit
menu.

Filters Allows you to show/hide connector labels.

View Use to view a grid, snap to a grid, view rulers, view
page breaks, and re-calculate page breaks.

Zoom

Use to:

• Zoom In
• Zoom Out
• Zoom 100%
• Zoom to Fit
• Fit to Width
• Fit to Height
• Fit to Selection

Upgrade Workflow Diagram
or Upgrade Callflow Diagram

Use to upgrade a previously created diagram to the
current version of Composer.

Load Resource Allows you to browse for/load Resource URIs.

Show Properties View Shows the Properties view for the selected block or
diagram.

Composer Menus

Composer Help 161

Palette Group Menu
When creating a callflow or workflow in Composer or Composer Design perspective, a shortcut menu
opens when you right-click on a palette title bar. The figure below shows an example:

Note: You can customize the palette of diagram building blocks. Right-click a block category (such as
Flow Control) and select Customize. You can then hide and unhide blocks.

The Palette Group menu contains the following items:

Layout

Allows you to specify how the blocks in this palette
group should be displayed:

• Columns
• List
• Icons Only
• Detail

Use Large Icons Allows you to increase the size of the icons
representing the callflow or workflow blocks.

Customize

Opens a dialog box where you can change block
names and descriptions, hide/unhide blocks from
the palette, configure the block drawer to open
upon Composer startup, and pin the block drawer
open upon Composer startup.

Settings Opens a dialog box where you can change the font,
layout, and palette drawer options.

Pinned Allows you to prevent a block drawer from closing
when you switch to a different palette group.

Composer Menus

Composer Help 162

Composer Toolbars and Views
This section discusses Composer's toolbars.

• ToolbarsOverview
• MainToolbar
• View Toolbars
• PerspectiveSwitcherToolbar
• TrimStackToolbar
• Debugging Toolbar
• MinimizingandRestoringViews

Composer Toolbars and Views

Composer Help 163

Toolbars Overview
Composer has a number of toolbars for various purposes:

• Main Toolbar
• View Toolbars
• Perspective Switcher Toolbar
• Trim Stack Toolbar
• Debugging Toolbars
• Minimizing and Restoring Views

Note: To see a tooltip containing the name of a toolbar button (icon), hover the cursor over the
button.

Composer Toolbars and Views

Composer Help 164

Main Toolbar
The Composer main toollbar is shown below (8.1.440 release).

Tip
Buttons on the main toolbar change based on the active perspective. Items in the
toolbar might also be enabled or disabled based on the state of either the active view
or editor. Sections of the main toolbar can be rearranged using the mouse.

Toolbar Buttons

The table below identifies buttons that can appear on the toolbar.

New
Select to create one of the following new resources: Java
Composer Project (includes callflows and workflows), .NET
Composer Project, Project..., Grammar builder file, VoiceXML file,

Composer Toolbars and Views

Composer Help 165

GrammarXML file, CallControlXML file, Backend JSP file, SCXML
file, or Folder, or File. You can also select Example or Other.
Note: Before you can create a new file, you must create a
project in which to store the file.

Save
Saves the content of the active editor.

Print
Prints the contents of the active editor.

Debug
Re-launches the most recently launched application under
debugger control, or launches the selected resource or active
editor depending on the launch operation preference settings
found on the Run/Debug > Launching preference page. Used for
voice applications.

Run
Re-launches the most recently launched application, or launches
the selected resource or active editor depending on the launch
operation settings found on the Run/Debug > Launching
preference page. Click the down arrow to select Run As or Run
Configurations. You can also organize favorites.

Run Last Tool
Allows you to quickly repeat the most recent launch in run mode
or quickly run the selected resource, if that mode is supported
(based on your current launch settings). Click the down arrow to
select Run As or bring up the External Tool Configurations dialog
box.

Search
Brings up a Search dialog box where you can perform one of the
following types of searches: File, Java, Java Script. The General
> Search preference page allows you to set preferences for
searches.

Launch GAX Server portal
Launches the Genesys Administrator Extension used by the GAX
Server (see GAX Server OPM Block). Composer uses the host,
port, username, and password used on the GAX Server
Preferences page to fetch ARM parameters or audio resource IDs
list.

Access Project Variables
Opens a dialog box where you can set or delete application
variables. The appearance of this button changes depending on
what type of diagram you are working with. When working with
a callflow or workflow, the button appears as shown on the top
left. When working with an interaction process diagram, the
button appears as shown on the bottom left.

Composer Toolbars and Views

Composer Help 166

Create Java Composer Project
Brings up a wizard dialog box for creating a new Java Composer
Project.

Create .NET Composer Project
Brings up a wizard dialog box for creating a new .NET Composer
Project.

Create New Callflow
Brings up a wizard dialog box for creating a main callflow
diagram or a sub-callflow diagram.

Create New Workflow
Brings up a wizard dialog box for creating a main workflow
diagram or sub-workflow diagram.

Create New Interaction Process
Brings up a wizard dialog box for creating an interaction process
diagram.

Show Properties View
Shows the properties of the selected diagram.

Open the Prompts Manager View
Displays the Prompts Manager view in the lower center pane of
the Composer main window.

Open Database Connection Properties
Opens the Connection Profiles tab where you can define a
database connection profile and test the connection. This button
becomes enabled when you select the connection.properties file
in the Project db folder.

Generate All
Opens the Generate all dialog box, which lets you create
properly formatted VoiceXML or SCXML files for all callflow and/
or workflows in the Project.

Start Tomcat
Starts the Tomcat web server, which can be used for testing and
deployment. If Tomcat has already started, displays a message
to this effect.

Stop Tomcat
Stops the Tomcat web server.

Connect to Configuration Server
Opens a dialog box where you can connect to Configuration
Server. Used for routing applications. When you set up your
Configuration Database (Configuration Server), you define

Composer Toolbars and Views

Composer Help 167

certain database objects, such as agents (Persons), Agent
Groups, Skills, and so on. These objects can be defined in
Configuration Manager or in Genesys Administrator. When you
use Composer to create SCXML routing strategies executed by
Orchestration Server (and Universal Routing Server), there is a
button to connect to Configuration Server. When creating a
routing strategy in Composer, those Configuration Database
objects will be available in the Composer routing strategy
building blocks that use them. For example, you might be
creating a routing strategy that routes to an Agent Group and
using Composer’s Target block. The Agent Group you defined in
the Configuration Database would be available for selection in
the Target block.

Disconnect from Configuration Server
Disconnects from Configuration Server.

Statistics Manager
Opens the Statistics Manager view for working with Universal
Routing Server predefined statistics. Used for routing
applications.

List Objects Manager
Opens the List Object Manager view, which allows you to create
List Objects in Configuration Server. Use for creating
parameterized applications. This provides System
Administrators with the control to configure and change values
from inside Configuration Server. Used for routing applications.

Publish active interaction process diagram to
Configuration Server
If an interaction process diagram is selected, this toolbar button
appears.

Generate Code
Creates a properly-formatted VoiceXML file from a callflow
diagram or a SCXML file from a workflow diagram. Static pages
(pure VXML or SCXML code) are generated in the src-gen folder
of the Composer Project.

Validate
Checks your diagram files and other source files for
completeness and accuracy. In the case of errors, the Problems
view becomes visible and error markers are put on the blocks
that contain errors. Double clicking on an error in the Problems
view will take you to the corresponding blocks that contain the
errors. Review each of the errors and do the fixes, then validate
again.

Next Annotation
Selects the next annotation. Supported in the Java editor.

Previous Annotation
Selects the previous annotation. Supported in the Java editor.

Composer Toolbars and Views

Composer Help 168

Last Edit Location
Reveals the location where the last edit occurred.

Back To
Reveals the previous editor location in the location history.

Forward To
Reveals the next editor location in the location history.

Turn Grammar Constraints Off
When editing an XML file that has a set of constraints or rules
defined by a DTD or an XML schema, you can turn the
constraints on and off to provide flexibility in the way you edit,
but still maintain the validity of the document periodically. When
the constraints are turned on, and you are working in the Design
view, the XML editor prevents you from inserting elements,
attributes, or attribute values not permitted by the rules of the
XML schema or DTD, and from removing necessary or
predefined sets of tags and values.

Reload Dependencies
If you make changes to a DTD file or XML schema associated
with an XML file (that is currently open), click to update the XML
file with these changes. The changes will be reflected in the
guided editing mechanisms available in the editor, such as
content assist.

Expand All
Select to expand all of the items in the Breakpoints view.

Collapse All
Select to collapse all of the current elements in the view.

Font Style
Allows you to change the font style of the selected text.

Font Size
Allows you to change the font size of the selected text.

Bold Font Style
Allows you to bold the selected text.

Italic Font Style
Allows you to change the selected text to italics.

Font Color
Allows you to change the font color of the select text.

Composer Toolbars and Views

Composer Help 169

Fill Color
Allows you to change the fill color of the selected object.

Line Color
Allows you to change the color of the selected line.

Line Style
Allows you to change the style of the selected line.

Apply Appearance Properties
Allows you to apply the applicable appearance properties of the
first application shape to the other selected shapes.

Select All
Selects all objects in the diagram.

Arrange All
Arranges all or only the selected objects in the diagram.

Align
Aligns the selected objects in the callflow diagram: left, right,
center, top, middle, bottom.

Auto Size
Allows you to change the size of the selected object.

All Connector Labels
Shows labels for all connector lines in the diagram.

No Connector Labels
Hides labels for all connector lines in the diagram.

Show/Hide Compartment
Shows or hides composite attributes within an editor, which can
optionally be collapsed or expanded.

Magnification
Allows you to zoom and out of the current view, as well as to
change the magnification from 5% to 400%. You can also fit to
height, width, or selection.

Composer Toolbars and Views

Composer Help 170

View Toolbars
The title bar of a view contains a toolbar. This topic describes the following view toolbars:

Project Explorer

The Project Explorer toolbar is shown below.

Each toolbar button is identified in the table below.

Collapse All
Select to collapse all of the current elements in the view.

Link Open Editors
When you have multiple files open for editing, select to bring an
open file to the foreground (make its editor session the active
editor) every time you select that open file in one of the
navigation views.

View Menu
Select to show additional actions for this view.

• Top Level Elements. Select from Projects or
Working Sets (see below).

• Folder Presentation. Select from Flat or
Hierarchical.

• Working Set. Select from Window Working Sets,
No Working Sets, Selected Working Sets.
Working sets group elements for display in
views or for operations on a set of elements.
The navigation views use working sets to
restrict the set of resources that are displayed.
If a working set is selected in the navigator,
only resources, children of resources, and
parents of resources contained in the working
set are shown.

• Deselect Working Set. Deselects the active
working sets. All elements are shown after

Composer Toolbars and Views

Composer Help 171

invoking this action
• Edit Active Working Set. Opens the Edit Working

Set wizard to edit the currently active working
set.

• Package Presentation. Select from Flat or
Hierarchical.

• Customize View. Allows you to filter the Project
Explorer view to hide projects, folders, or files
that you do not want to see.

• Link Editor. Brings an open file to the foreground
(makes its editor session the active editor)
every time you select that open file in one of
the navigation views.

Bookmarks View

The Bookmarks view is shown below.

Each view button is identified in the table below.

View Menu
Select to show additional actions for this view.

• Sort By: Select from Description, Resource, Path,
Location, Ascending.

• New Bookmarks View.
• Configure Contents. Opens a window where you

can filter the contents of the Bookmarks tab.
• Columns. Opens a dialog box where you can set

the width and move the following columns up
and down: Description, Resource Path, and
Location columns.

• Preferences. Opens a dialog box where you can
hide and show the following columns:
Description, Resource, Path, Location, Creation
Time, ID, Type.

Composer Toolbars and Views

Composer Help 172

Minimize
Minimizes the Bookmarks tab.

Maximize
Maximizes the Bookmarks tab.

Canvas View

The canvas is where you create callflows for your voice applications and workflows for your routing
applications. The Canvas view toolbar is shown below in the upper-right.

Each view button is identified in the table below.

Minimize
Minimizes the Canvas area.

Maximize
Maximizes the Canvas area.

Composer Toolbars and Views

Composer Help 173

Palette View

The Palette contains link tools as well as various types of blocks. To create callflow diagrams, the
block categories are: Basic Blocks, Server Side Blocks, CTI Blocks, Reporting Blocks, External Message
Blocks, Database Blocks, and Context Services Blocks. To create workflow diagrams, the block
categories are: Flow Control Blocks, Routing Blocks, Voice Treatment Blocks, Server Side Blocks,
eService Blocks, and Context Services Blocks. The Palette view toolbar is shown below.

Each toolbar button is identified in the table below.

Select
Use to select a block for a callflow or workflow.

Zoom In
Click left to zoom in, Shift + left click to zoom out, drag to zoom
to selection.

Zoom Out
Click left to zoom out, Shift + left click to zoom in.

Create Note
Click to create a note, text document, or note attachment. When
creating note objects in a diagram there are two ways to create
them. After selecting the note tool, you can either click a single
point or drag a box to indicate initial size. In the former case,
the note will continue to grow horizontally as text is entered.
With the latter case, text will automatically wrap text using the
input width.

Properties View

The Properties view shows the properties for a selected block and allows you to set/modify them. An
example Properties view and toolbar is shown below.

Composer Toolbars and Views

Composer Help 174

Each toolbar button is identified in the table below.

Show Categories
If enabled, method, field and type labels contain the categories
specified in their block properties

Show Advanced Properties
If enabled, the Properties view shows advanced properties.

Restore Default Value
Use after changing a value in the Properties view to revert back
to the default value.

View Menu
Select to show additional actions for this view: Show Categories,
Show Advanced Properties, and Columns.

Minimize
Minimizes the Properties tab.

Maximize
Maximizes the Properties tab.

You can change settings for consoles on the Window Preferences Run/Debug Console page. An
example Query Console view is shown below.

Composer Toolbars and Views

Composer Help 175

Each toolbar button is identified in the table below.

Clear Console
Clears the currently active console.

Scroll Lock
Changes if scroll lock should be enabled or not in the current
console.

Pin Console
Pins the current console to remain on top of all other consoles.

Display Selected Console
Opens a listing of current consoles and allows you to select
which one you would like to see.

Open Console
Opens a new console of the selected type.

Call Trace View

The Call Trace view displays metrics which describe the events occurring in the application, such as
recognition events, audio playback, user input, errors and warnings, and application output. An
example Call Trace view and Toolbar are shown below.

Composer Toolbars and Views

Composer Help 176

Each toolbar button is identified in the table below.

Call Trace History
Lists past calls. Once you select a past call, shows call trace
history for that past call.

Terminate
Terminates the process that is associated with the current
Process Console.

Filter Metrics
Brings up the Filter Metrics dialog box where you can select the
following filters: Platform actions, User input, Application output,
Document flow, Errors and warnings.

Search View

The search dialog lets you perform text string, File, Java, and JavaScript searches. When you first click
the Search tab, there is a link to bring up the Search dialog box. The figure below shows the results of
an example search and the toolbar.

Each toolbar button is identified in the table below.

Composer Toolbars and Views

Composer Help 177

Show Next Match
Shows the next items that meets the search criteria.

Show Previous Match
Shows the previous item that met the search criteria.

Remove Selected Matches
Removes matched items that you have selected from the results
.

Remove All Matches
Removes all matches from the results.

Expand All
Select to expand all of the current elements in the view.

Collapse All
Select to collapse all of the current elements in the view.

Run Current Search Again
Repeats the search with currently-defined parameters.

Cancel Current Search
Cancels the current search.

Show Previous Searches
Displays a list of previous searches.

Pin the Search View
Pins the current search view to remain on top of all other views.

View Menu
Select from the following: Show as List, Show as tree, Filters,
Preferences.

As you work with resources in the workbench, various builders may automatically log problems,
errors, or warnings in the Problems view. For example, when you save a Java source file that contains
syntax errors, those will be logged in the Problems view. When you double-click the icon for a
problem, error, or warning, the associated block is highlighted in the canvas area. Also see topics
Diagram Validation and Validating a Single Flow Diagram.

Problems View

An example Problems view with toolbar is shown below.

Composer Toolbars and Views

Composer Help 178

Each toolbar button is identified in the table below.

View Menu
Select to show additional actions for this view. Show: All Errors,
Warning on Selection, Show All. Group By: Java Problem Type,
Type, JavaScript Problem Type, Severity, None. Sort by:
Description, Resource, Path, Location, Type, Ascending New
Problems View Configure Contents. Opens a window where you
can filter the contents of the Problems tab. Columns. Opens a
dialog box where you can set the width and move the following
columns up and down: Description, Resource Path, and Location.
Preferences. Opens a dialog box where you can hide and show
the following columns: Description, Resource, Path, Location,
Creation Time, ID, Type.

Minimize
Minimizes the Problems tab.

Maximize
Maximizes the Problems tab.

Statistics Manager View

The Statistics Manager view lets you easily create, delete, and organize created statistics into folders.

Composer Toolbars and Views

Composer Help 179

Each toolbar button is identified in the table below.

Add New Folder
You have the option of creating folders to organize statistics that
you create. Click this button to create a new folder.

Add New Statistic
To build a new statistic, select a folder and click this button to
bring up Statistics Builder.

Delete Selected Item
To delete a statistic that you have created, select the statistic
and click this button to delete.

Help View

The Help view shows the following toolbar after selecting Search from the Help menu.

Composer Toolbars and Views

Composer Help 180

Each toolbar button in the Help view is identified in the table below.

Show All Topics
Select to display all available Help topics.

Show Result Categories
Select to display the categories for the Help results.

Show Result Descriptions
Select to display the descriptions of the Help topics.

Back
Move back through topics.

Forward
Move forward to next topic.

Once you select a topic, the toolbar changes as shown below.

Composer Toolbars and Views

Composer Help 181

Each toolbar button is identified in the table below.

Show All Topics
Select to display all available Help topics.

Show in External Window
Select to display the results in an external window.

Show in All Topics
Select to display the results in all topics.

Print
Select to print the results/topic.

Bookmark
Select to bookmark the results/topic

Highlight Search Term
Select to highlight a search term.

Back
Move back through results.

Forward
Move forward to next result.

Composer Toolbars and Views

Composer Help 182

Perspective Switcher Toolbar
Perspectives are task-oriented layouts for organizing the views and windows in your workbench. The
Perspective Switcher Toolbar allows quick access to perspectives that are currently open.

Open Perspective Button

An Open Perspective button (displaying all Eclipse perspectives) may be located at the start
or end of the Perspective Switcher toolbar, depending on your version of Eclipse.

Perspective Switcher Toolbar

The Perspective Switcher Toolbar is normally positioned below the main toolbar (top-left), but you can
also position it vertically on the left-hand side of the workbench.

Shortcut Menu for Perspective Buttons

Right-clicking the button for an active perspective opens a shortcut menu. The first three entries in
the table below do not appear if the perspective is not selected.

Customize Opens the customize perspective dialog box.

Save As
Opens a dialog box for saving a customize
perspective. Once saved, the customize
perspective appears in the list that opens when

Composer Toolbars and Views

Composer Help 183

you click the Open Perspective button.
Reset Resets the changes you made to a perspective.
Close Removes the button for the perspective.

Dock On
Allows you to dock the perspective button: Top
Right, Top Left, or Left (left-hand side of work
bench).

Show Text Toggles between an icon and text on the
perspective button.

Composer Toolbars and Views

Composer Help 184

Trimstack Toolar
Minimizing a view stack will also produce a toolbar in the trim at the outer edge of the workbench
window (a Trim Stack). This bar will contain a button for each of the views in the stack. Clicking on
one of these icons will result in the view being displayed as an overlay onto the existing presentation.
This is an example of a Trim Stack Toolbar containing buttons for Restore, Properties, Problems,
Console, Call Trace, and Prompts Manager views:

The first button is Restore , which restores the normal view.

Composer Toolbars and Views

Composer Help 185

Debugging Toolbars
In GVP and ORS Debugging perspectives, the first pane contains Debug and Navigator views. The
second pane contains views for Variables, Breakpoints, and Expressions. A GVP example is shown
below.

Debug View

The Debug view shows the name of the callflow or workflow diagram being debugged, as well as the
status of the debug progress or result.

Each toolbar button is identified in the table below.

Remove All Terminated Launches
Select to clear the Debug view of all terminated launches.

Resume
Select to resume the execution of the currently suspended
debug target.

Composer Toolbars and Views

Composer Help 186

Suspend
[Not supported in Composer]

Terminate
Select to terminate the launch associated with the selected
debug target. Once a launch is terminated it can be
automatically removed from the Debug view. When using the
ORS Debugger, Terminate means that the session in ORS will
end along with the debugging session.

Disconnect
Not supported for the GVP Debugger. When using the ORS
Debugger, Disconnect means that the debugging session ends,
but ORS will continue executing the SCXML.

Step Into
Disabled for both routing and voice applications.

Step Over
Step Over is the only way to step for both routing and voice
applications. Select to step over the next method call (without
entering it) at the currently executing line of code. Even though
the method is never stepped into, the method will be executed
normally.

Step Return
[Not supported in Composer]

Drop to Frame
[Not supported in Composer]

Use Step Filters
[Not supported in Composer]

View Menu
Select from the following:

• View Management
• Java (then select from: Show Monitors, Show

System Threads, Show Qualified Names, Show
Thread Groups)

Navigator View

The Navigator view shows the same Project folder structure shown in the Project Explorer window of
the Composer perspective.

Composer Toolbars and Views

Composer Help 187

Each toolbar button on the Navigator toolbar is identified in the table below.

Back
Moves back.

Forward
Moves forward.

Up
Navigate up one level in the hierarchy

Collapse All
Select to collapse all of the current elements in the view.

Link Open Editors
When you have multiple files open for editing, select to bring an
open file to the foreground (make its editor session the active
editor) every time you select that open file in one of the
navigation views.

View Menu
Select to show additional actions for this view.

• Select Working Set. Working sets group
elements for display in views or for operations
on a set of elements. The navigation views use
working sets to restrict the set of resources that
are displayed. If a working set is selected in the
navigator, only resources, children of resources,
and parents of resources contained in the
working set are shown.

• Deselect Working Set. Deselects the active
working sets. All elements are shown after
invoking this action.

• Edit Active Working Set. Opens the Edit
Working Set wizard to edit the currently active
working set.

• Sort (by name or type).

Composer Toolbars and Views

Composer Help 188

• Filters (class, JETEmitters, general, or *).
• Link with Editor. Brings an open file to the

foreground (makes its editor session the active
editor) every time you select that open file in
one of the navigation views.

Variables View

The Variables view displays information about the variables associated with the stack frame selected
in the Debug view. When debugging a Java program, variables can be selected to have more detailed
information as displayed below. In addition, Java objects can be expanded to show the fields that a
variable contains.

Each toolbar button in the Variables view is identified in the table below.

Show Type Names
Select to change if type names should be shown in the view or
not. Unavailable when columns are displayed. Hint: Select
Layout from View menu and de-select Show Columns.

Show Logical Structure
Select to change if logical structures should be shown in the
view or not.

Collapse All
Select to collapse all the currently expanded variables.

View Menu
Select from the following:

• Layout: Vertical View Orientation, Horizontal

Composer Toolbars and Views

Composer Help 189

View Orientation, Variables view Only, Show
Columns, Select Columns.

• Java: Show Constants, Show Static Variables,
Show Qualified Names, Show Null Array Entries,
Show References, Java Preferences.

Breakpoints View

The Breakpoints view and toolbar manage breakpoints within a debugging session.

Each toolbar button in the Breakpoints view is identified in the table below.

Remove Selected Breakpoints
Select to clear all selected breakpoints.

Remove All Breakpoints
Select to clear all breakpoints.

Show Breakpoints Supported by Selected
Targets
Select to show all breakpoints supported by the selected
targets.

Go To File For Breakpoint
[Not supported in Composer]

Skip All Breakpoints
Select to skip over all breakpoints.

Create URL Breakpoint
Select to create a breakpoint that uses a URL.

Expand All
Select to expand all the current breakpoints.

Collapse All
Select to collapse all the current breakpoints.

Link With Debug View
[Not supported in Composer]

Add Java Exception Breakpoint

Composer Toolbars and Views

Composer Help 190

Select to open a dialog box where you can:

• Type a string that is contained in the name of
the exception you want to add. You can use
wildcards as needed ("* " for any string and "? "
for any character).

• Select the exception types you want to add.
• Select Caught and Uncaught as needed to

indicate on which exception type you want to
suspend the program.

[This option is not relevant to GVP Debugging in Composer.]

View Menu
Select from the following:

• Group By: Breakpoints, Breakpoint Types,
Breakpoint Working Sets, Files, Projects,
Resource Working Sets, Advanced...

• Default Working Set
• Deselect Default Working Set
• Working Sets
• Show Qualified Names

Expressions View

Use the Expressions view to inspect data from a stack frame of a suspended thread, and other
places.

Each toolbar button in the Expressions view is identified in the table below.

Show Type Names
Select to change if type names should be shown in the view or
not. Unavailable when columns are displayed. Hint: Select
Layout from View menu and de-select Show Columns.

Composer Toolbars and Views

Composer Help 191

Show Logical Structure
Select to change if logical structures should be shown in the
view or not.

Collapse All
Select to collapse all the currently expanded expressions.

Create a New Watch Expression
Select to open the Create New Expression dialog box, which
allows you to create a new watch expression based on the
selected variable and add it to the Expressions View.

Remove Selected Expressions
Select to remove the selected expressions.

Remove All Expressions
Select to remove all expressions.

View Menu
Select from the following:

• Layout: Vertical View Orientation, Horizontal
View Orientation, Expressions View Only.

• Java: Show Constants, Show Static Variables,
Show Qualified Names, Show Null Array Entries,
Show References, Java Preferences.

Composer Toolbars and Views

Composer Help 192

Minimizing and Restoring Views
Panes in the Composer window contain various views. Each view has its own tab. To minimize a pane
containing views:

• Click the button to minimize the pane. This causes the views to appear in a toolbar (trim stack
toolbar). The toolbar appears in close proximity to where the pane was located.

The toolbar could be on the side or at the bottom of the Composer window depending on the selected
perspective. For example, assume you are editing a file in Composer Design perspective and
minimize the pane below, which contains Properties, Prompts Manager, Problems, Console, Call Trace,
and Bookmark views. In this case, the minimization causes a toolbar to appear at the bottom of the
Composer window. Depending on your screen, you may have to maximize the entire Composer
window in order to see this toolbar.

To restore a minimized view:

• Click the button to restore all minimize views.
• Click a single view button to restore an individual view.

Restore All Views

Select Window > Reset Perspective. If the desire view does not appear, select Window > Show
View.

Show Advanced Properties

When creating a diagram in Composer perspective, this button appears on the right side of the
Composer GUI, between the palette of blocks and the Properties view.

Composer Toolbars and Views

Composer Help 193

Certain block properties are hidden by default from the Palette. If you have permission you can use
the Show Advanced Properties button to display/hide these properties.

Moving the Location of a View

To move a view to another location, hold down the cursor next to the view name until you see a red
circle with a slash in the middle. Keep holding down the cursor, move the view to the desired
location, and release the cursor.

Composer Toolbars and Views

Composer Help 194

Strategy Manager View
The Strategy Manager view lists all Routing Points from the connected Configuration Server. This view
provides options to directly deploy Composer generated strategies to routing points in Configraution
Server.

To access the Strategy Manager view, select the Strategy Manager icon from the toolbar. The
Strategy Manager view is displayed.

Important
This view is available from version 8.1.450.33.

To deploy a script to a routing point,

Composer Toolbars and Views

Composer Help 195

• Select the required routing point and right-click Deploy Script. The Please select script for
<specified routing point> dialog is displayed.

• Select the required script and click OK. The script is deployed.

To undeploy a script from a routing point,

• Select the required routing point and right-click UnDeploy Script. A confirmation prompt is displayed.

• Click Yes. The script is undeployed.

Composer Toolbars and Views

Composer Help 196

Voice Applications and Callflows
This section contains the following:

• Callflow Post Installation
• What is GVP and How Do Voice Applications Work?
• CallflowBlocks
• VariablesinCallflows
• HelloWorldSample
• Creating Voice Applications for GVP
• CreatingCCXMLApplications
• CreatingVXMLApplications
• Working with Java Composer Projects
• Working with .NET Composer Projects
• VXMLProperties

Voice Applications and Callflows

Composer Help 197

Getting Started with Voice Applications
This section contains the following topics:

• Callflow Post Installation Configuration
• Working with Java Composer Projects
• Working with .NET Composer Projects
• Accessing the Editors and Templates

Also see Upgrading Projects/Diagrams.

Voice Applications and Callflows

Composer Help 198

Callflow Post Installation

After installation of Composer, you need to perform some post-installation configuration tasks. Note:
If you plan to use IIS as your web server for testing and deployment, you will also need to configure
IIS preferences in Composer so that your applications can be auto-deployed to IIS from within the
workbench. Composer can work only with IIS installed on the local machine. You can work with both
Tomcat and IIS from the same installation of Composer. Also see: Context Services Preferences.

Tomcat

Important
Starting with Composer 8.1.561.35, only Tomcat 10.1.x are supported. Provide the
Tomcat installed location and Composer installed location in Preferences. Use the
button, Update tomcat configuration to switch between Tomcat versions and ports.

1. Select Window > Preferences, then expand Composer and select Tomcat. Starting with 8.1.420.14,
Composer supports Tomcat 7. Composer installation adds the role for manager-gui to Tomcat
configuration for callflows and workflows. The default username and password for the bundled Tomcat
is admin. The username and password for manager-gui is tomcat.

2. Provide the same port number that you specified during installation. The default user name and
password for the bundled Tomcat is admin.

3. To start Tomcat, click the button on the main toolbar.

If you already have Java Composer Projects in the workspace and did not perform the Tomcat
configuration earlier, perform the following steps to deploy the project on Tomcat:

4. From the Project Explorer, right-click on the Java Composer Project and select Properties.
5. Select Tomcat Deployment and click the Deploy button.

Note: This also needs to be done if a Java Composer Project is imported.

Internet_Information_Services

1. Select Window > Preferences, then expand Composer and select IIS/.NET.
2. Provide the IIS website port number where you want to deploy your .NET Composer Project. The IIS

Default Website Site port number is 80.

Voice Applications and Callflows

Composer Help 199

3. If you plan to use .NET Composer Project builder to compile the server-side files (.aspx) in your .NET
Composer Project, you will need to configure the location of the aspnet_compiler.exe file in the
Microsoft .NET Installed Path field.

Note: The typical location of the ASP.NET compiler is:C:\WINDOWS\Microsoft.NET\Framework\
v2.0.50727\aspnet_compiler.exe.

4. Specify the Web Services Enhancement (WSE) path. This must be specified before Composer .NET
Projects can work.

If you already have .NET Composer Projects in the workspace and did not perform the IIS
configuration earlier, perform the following steps to deploy the project on IIS:

5. From the Project Explorer, right-click on the .NET Composer Project and select Properties.
6. Select IIS Deployment and click the Deploy button.

Note: This also needs to be done if a .NET Composer Project is imported or renamed as well.

GVP_Debugger

1. Select Window > Preferences, then expand Composer and select Debugging.
2. Specify the following settings:

• Network Interface. Composer debugging uses this setting to make the socket connection
for the Debugger control channel. Select the interface that is applicable to your scenario.
The debugging server (GVP or ORS) must be able to access the Tomcat server, bundled as

part of Composer, for fetching the Voice or Routing application pages. If you have multiple
NIC cards of multiple networks (such as Wireless and LAN) select the interface on which GVP
or ORS will communicate to your desktop. In case you are connected over VPN, select the
VPN interface (such as PPP if connected via a Windows VPN connection).

• Client Port Range. Enter a port range to be used for connection to ORS for SCXML
debugging sessions.

3. Select GVP Debugger and specify:

• SIP Phone User Name. This is the user name or phone number of your SIP Phone.
• SIP Phone Hostname/IP . This is the IP address on which your SIP phone is running. It is

possible to send the call to a SIP Phone located on some other machine, but it is generally
advisable to have the SIP Phone locally for ease of access. If you have multiple NIC cards or
interfaces, make sure you specify the same IP address as corresponds to the Network
Interface selected above.

• SIP Phone Port. This is the port on which your SIP phone is running.
• Platform IP. This is the IP address of your GVP Server. Note: Composer 8.1 is compatible

with GVP 8.1. Operation with GVP 8.0 is not supported.
• Platform Port. Typically, this will be the default port 5060 or the port that you configured

for the Resource Manager (RM) or Media Control Platform (MCP) on your GVP Server. You can
make direct calls to MCP from the debugger. However, if using pre-provisioned DNIS, then

Voice Applications and Callflows

Composer Help 200

you will need to make test calls to the RM.
• Use Secure Connection. See Debugging TLS Support.

Composer may display a prompt asking if you wish to propagate these settings to an existing launch
configurations.

MIME_Types

MIME (Multipurpose Internet Mail Extensions) refers to a common method for transmitting non-text
files via Internet e-mail. By default the SCXML MIME type is already configured in the Tomcat server
bundled with Composer. If you are using the Internet Information Services (IIS) Application Server to
deploy ASP.NET projects, add the following MIME type extensions through the IIS Manager of your
webserver:

.json text/json

.vxml text/plain

.scxml text/plain

.xml text/xml

Prompt_Resource_Validation

This preference enables diagram validation warnings where prompt audio resources no longer exist in
the given file path. If the audio file is no longer present, the diagram block will show a warning icon.

1. Select Window > Preferences.
2. Select Composer > Composer Diagram.
3. Select the option Enable Validation for Prompt Resources. By default the preference is not enabled.

Media_Control_Platform

GVP 8.1 provides a debugger interface to allow Composer to make direct calls. By default it is turned
off and you will have to enable it to allow GVP to accept calls from the debugger interface.

1. Outside of Composer, locate your Media Control Platform (MCP) Application. For example, you can open
your MCP Application object in Configuration Manager or in Genesys Administrator for the Configuration
environment that is serving the MCP platform.

2. Under the vxmli section of the MCP, look for a setting called debug.enabled. By default, it is set to
false. Change the value to true and restart your MCP.

Voice Applications and Callflows

Composer Help 201

Firewall

If you have a local firewall on your machine, open up the following ports:

• Tomcat port (generally, this is set to port 8080). If you installed Tomcat on a different port, open its
corresponding port in the firewall.

• IIS port (generally, this is set to port 80). If you installed IIS on a different port, open its corresponding
port in the firewall.

• The UDP port on which your SIP phone is running (by default, this will be either 5060 or 5070). Check
your SIP phone settings for the exact port number.

• RTP ports on which your SIP phone will get the audio stream. Check your SIP phone Help file for details
on this. Some SIP phones will autoconfigure this during installation.

If you continue to run into problems with the firewall and calls are not coming through successfully,
consult your network administrator.

Voice Applications and Callflows

Composer Help 202

Working with Java Composer Projects
A Java Composer Project contains voice application files, callflows, and related server side .jsp / Java
files for building an IVR application. A Java Composer Project can also contain routing workflows. It
has an associated Java Composer Project builder that will compile source files in the project.
Composer ships with a bundled Tomcat and it is used as the web/application server for Java
Composer Projects during the development and testing phase. For information on supported
operating systems for Java Composer Projects, see the Composer 8.1 Deployment Guide.

Getting Started

To start using Java Composer Projects:

1. Create a new Java Composer Project.
2. Use the Project Properties tab to deploy the Java Composer Project to Tomcat within Composer. (Right-

click the project > Properties > Tomcat Deployment.)
3. Create callflows and use Run or Debug mode to launch the call with Next Generation Interpreter.

Note: Run as / Debug as will automatically pick the port number from the preferences and form the
corresponding Application URL. For example: http://machineIP:portno/JavaVoiceProjectName/src-gen/
CallflowName.vxml

Voice Applications and Callflows

Composer Help 203

Working with .NET Composer Projects
A .NET Composer Project contains voice application files and related server side .aspx / C# / files for
building an IVR program. It has an associated .NET Composer Project builder based on Microsoft .NET
Framework that can incrementally compile .aspx source files as they are changed.

Prerequisites

This step is not a mandatory prerequisite. Starting with 8.1.420.14, Composer allows creating .NET
Composer Projects without the WSE dll files. Microsoft Web Services Enhancements (WSE) is also
required for creating .NET projects in Composer. However, the WSE installer may not install on
Windows 2008. These steps give a workaround:

1. Download the Microsoft WSE 3 "msi" installer bundle.
2. Use 7Zip to extract the contents to a folder.
3. In Composer, select Window > Preferences > Composer > IIS/.NET.
4. Set the Microsoft WSE 3.0 Installed Path field the $Folder\Microsoft.Web.Services3.dll file.
5. Create your Composer .NET Projects.

Getting Started

To prepare for using .NET Composer Projects:

1. Install Microsoft IIS.
2. Install Microsoft .NET and .NET Framework.

Note: Microsoft .NET is required for Composer Server Side blocks.

1. Enable ASP.NET in your IIS.
2. Configure the following MIME settings in your IIS:

• .ccxml - application/ccxml+xml
• .vxml - text/xml
• .grxml - application/srgs+xml
• .vox - audio/basic
• .scxml - application/xml

3. Configure the IIS Website Port number in Composer IIS Preferences (Window > Preferences > .NET)

Voice Applications and Callflows

Composer Help 204

By default, IIS comes with the DefaultWebSite which runs on port 80. If you want to deploy the .NET
Composer Project in your custom website, configure the corresponding port number in the IIS Website
Port field.

1. Create a .NET Composer Project.
2. Use the Project Properties tab to deploy the .NET Composer Project to IIS within Composer. (Right-click

Properties > IIS Deployment.)
3. Create the diagram callflows and perform Run as / Debug as to launch the call with NGI.

Note: Run as / Debug as will automatically pick the port number from the preferences and form the
corresponding application URL. For example: http://machineIP:portno/NETProjectName/src-gen/
CallflowName.vxml Also see: Request.Form Error Message for .NET Projects

Voice Applications and Callflows

Composer Help 205

Preferences for Voice Applications
Composer Preferences are applicable at a workspace level. They apply to all projects within the
workspace. To open the Preferences dialog box for Composer, select Window > Preferences and
expand Composer.

Note: You can also set options in the Project Properties dialog box by right-clicking a Project and
selecting Properties.

• CCXMLFile Preferences
• Diagram Preferences
• GAX Server Preferences
• GRXML File Preferences
• VXML File Preferences
• GVP Debugger Preferences
• .NET Preferences
• Time Zone Preferences
• Tomcat Preferences
• XML Preferences
• Context Services Preferences

There are also Refresh automatically and Time zone preferences.

Tip
You can also set options in the Project Properties dialog box. Right-click a Project and
select Properties

Preferences for Voice Applications

Composer Help 206

CCXML File Preferences
Select Window > Preferences > Composer > CCXML Files. The following preferences for CCXML
files can be set in the Preferences dialog box:

Creating Files

1. Under Creating Files, select the Suffix to use for CCXML files from the drop-down list: * ccxml
2. Select the Encoding type from the drop-down list. The encoding attribute in a CCXML document

specifies the encoding scheme. The encoding scheme is the standard character set of a language. The
CCXML processor uses this encoding information to know how to work with the data contained in the
CCXML document. UTF-8 is the standard character set used to create pages written in English. Select
from the following:

• ISO 10646/Unicode(UTF-8)
• ISO 10646/Unicode(UTF-16) Big Endian
• ISO 10646/Unicode(UTF-16BE) Big Endian
• ISO 10646/Unicode(UTF-16LE) Little Endian
• US ASCII
• ISO Latin-1
• Central/East European (Slavic)
• Southern European
• Arabic, Logical
• Arabic
• Chinese, National Standard
• Traditional Chinese, Big5
• Cyrillic, ISO-8859-4
• Cyrillic, ISO-8859-5
• Greek
• Hebrew, Visual
• Hebrew
• Japanese, EUC-JP
• Japanese, ISO 2022
• Japanese, Shift-JIS
• Japanese, Windows-31J

Preferences for Voice Applications

Composer Help 207

• Korean, EUC-KR
• Korean, ISO 2022
• Thai, TISI
• Turkish

Validating Files

• Select or clear the Warn when no grammar is specified check box (not selected by default).

Source and Syntax Coloring

Source and Syntax Coloring preferences for CCXML files are set under the XML preferences provided
by Eclipse.

• Use Window > Preferences, expand the Web and XML entry, then expand the XML Files subentry.

Templates

In addition to previewing templates, you can create, edit, and remove selected templates. There are
also buttons to:

• Restore a removed template.
• Revert back to a default template
• Import a template.
• Export a template.

Preferences for Voice Applications

Composer Help 208

Diagram Preferences
Select Window> Preferences > Composer > Composer Diagram. The following preferences for
diagrams can be set in the Preferences dialog box:

Global Settings

1. Select or clear the check box for each of the following diagram global settings:

• Show Connection Ports. If enabled, connection ports (both exception ports and out ports)
are always displayed on blocks. This makes it convenient to draw links between blocks and
to get immediate feedback on how many ports each block provides. However, in this case,
the ability to reposition connections on a block is not available. If switched off, connection
ports are not displayed by default, but repositioning or finer control over connection link
placement becomes available. Note: This preference applies to all projects and is not
available for individual projects.)

• Show popup bars. If enabled, this setting displays basic blocks from the blocks palette in a
pop-up bar if you hover your mouse on the diagram for one or two seconds without clicking.
Note: blocks are shown in icon view only.)

• Enable animated layout. If enabled, causes diagrams to gradually animate to their
location when the Diagram \> Arrange \> Arrange All menu option is clicked.

• Enable animated zoom. If enabled, while using the zoom tools, shows a gradual transition
between the initial and final state of the diagram on the canvas. If off, the zoom is
instantaneous. Similar behavior for animated layout when the Diagram \>\> Arrange \>\>
Arrange All menu option is clicked.

• Enable anti-aliasing. If enabled, improves the appearance of curved shapes in the
diagram. You can see its effect on the circles in the Entry and Exit blocks.

• Show CodeGen success message. If unchecked, then the confirmation dialog at the
completion of code generation will not be shown.)

• Prompt to Save Before Generating Code. If checked, when you generate code for an
unsaved diagram, a prompt appears indicating the diagram has been modified and asking if
you want to save the changes before generating code. The dialog box also contains a
checkbox: Automatically save when generating code and do not show this message again.

• Show Validation success message. If unchecked, then the confirmation dialog at the time
of Validation will not be shown.)

• Enable Validation for Prompt Resources. This preference is used for voice applications.
If unchecked, then a validation check for missing prompts is not performed at the time of
Validation.

• Interaction Process Diagram. If unchecked, Composer will save Interaction Process
Diagrams before publishing.

• Prompt to delete Published objects when Interaction Process Diagram is deleted. If
unchecked, Composer will attempt to delete any Published objects when an Interaction
Process Diagram is deleted. If Composer is not connected to Configuration Server, object

Preferences for Voice Applications

Composer Help 209

deletion will not work.
• Parameters auto synchronization (available starting with 8.1.410.14). This option

reduces developer coding time by enabling Composer to automatically declare variables in a
Main diagram to match input/output variable names in Subdialog block/Subroutine diagrams
and to automatically perform the mapping. This feature is available for both user and
system variables. For example, if a Subroutine diagram returns a variable called “xyz” and if
Composer automatically declares “xyz” in the Main diagram to hold the output, then you do
not have to manually do the mapping. If enabled, you are prompted for auto-
synchronization whenever there is a need to change parameters names or add new
variables in the dialogs.
Scenarios:
1. Subdialog or Subroutine Diagram: Entry Block—The auto-synchronization process will

synchronize any newly added/updated variables and existing variables in the
Subdiagram. If you add a new Input type variable, a prompt appears asking whether to
add a corresponding Input parameter. You are also prompted to select or add the Input
source variable in all the called Subroutine diagrams. New parameter naming in the
calling Subdialog block is the same as the Input variable added in the Entry Block. If the
Subroutine diagram is called from many diagrams, Composer provides a variable
selection option for the called diagrams.

2. Main callflow Diagram: Entry Block—If you add a new Input type variable, a prompt
appears asking whether to add the corresponding input parameter. You are also
prompted to select or add an Input source variable in all the called Play Application
blocks. New Parameter naming in the calling Play Application block is the same as the
Input variable added in the Entry Block. If the Main diagram was called from multiple
Play Application blocks, a variable selection option for all the called blocks is provided.

3. Subdialog or Subroutine diagram: Exit Block—If you change or delete a return parameter,
a prompt appears on whether to delete the Output parameter and/or the missing ones in
case of a change in all the called Subroutine or Subcallflow diagrams.

4. The auto-synchronization parameter option also applies when there is a change in a
configured Subroutine diagram. The auto-synchronization dialog confirmation appears as
soon as a Subroutine diagram is added/updated. If the confirmation dialog is selected, it
automatically synchronizes the Subroutine parameters to the Main diagram. This auto-
synchronization prompt always appear even though the same diagram is updated again.
When Output parameters are added in the Exit block, parameter synchronization also
occurs.

5. Application URL for Publish and Debugging. Select Use IP Address or Use Host
Name.

Notes:

Composer creates unique names for auto-sync variables, such as <SubBlockName>_<VariableName>.
SubBlockName is the name of the Subroutine/ Subdialog / Play Application blocks where the Subroutine diagram is
being invoked. VariableName is the input variable name created in a Subroutine diagram.

2. Click Apply.

Colors and Fonts

1. Select Appearance under Composer Diagram.

Preferences for Voice Applications

Composer Help 210

2. Click Change and make selections to change the default font if you wish.
3. Click the appropriate color icon beside any of the following and make selections to change color:

• Font color
• Fill color
• Line color
• Note fill color
• Note line color

4. Click Apply.

Connections

1. Select Connections under Composer Diagram.
2. Select a line style from the drop-down list:

• Oblique
• Rectilinear

3. Click Apply.

Pathmaps

1. Select Pathmaps under Composer Diagram.
2. Click New to add a path variable to use in modeling artifacts, or If the list is populated, select the check

box of a path variable in the list.
3. Click Apply.

Printing

1. Select Printing under Composer Diagram.
2. Select Portrait or Landscape orientation.
3. Select units of Inches or Millimetres.
4. Select a paper size (default is Letter).
5. Select a width and height (for inches, defaults are 8.5 and 11; formillimeters, defaults are 215.9 and

279.4).
6. Select top, left, bottom, and right margin settings (for inches, defaults are 0.5; for millimeters, defaults

Preferences for Voice Applications

Composer Help 211

are 12.7).
7. Click Apply

Rulers and Grid

You can make use of rulers and grids when creating diagrams. Rulers and grids can provide a
backdrop to assist you in aligning and organizing the elements of your callflow diagrams.

1. Select Rulers and Grid under Studio Diagram.
2. Select or clear the Show rulers for new diagram check box (not selected by default).
3. Select ruler units from the drop-down list:

• Inches
• Centimeters
• Pixels

4. Select or clear the Show grid for new diagrams check box (not selected by default).
5. Select or clear the Snap to grid for new diagrams check box (selected by default).
6. Type a value for grid spacing (for inches, the default is 0.125; for centimeters, the default is 0.318; for

pixels, the default is 12.019).
7. Click Apply.

Preferences for Voice Applications

Composer Help 212

GAX Server Preferences
Select Window > Preferences > Composer > GAX Server.

If using the OPM Block for a voice or routing application, you must set GAX Server Preferences.

Tip
GAX refers to a Genesys Administrator Extension (GAX) plug-in application used by
Genesys EZPulse, which is accessible from a web browser. EZPulse enables at-a-
glance views of contact center real-time statistics in the GAX user interface.
Composer diagrams connect to GAX using the preference login credentials for fetching
the Audio Resource Management (ARM) parameters or IDs list configured for the
tenant as described in the Configuration options appendix of the Genesys
Administrator Extension Deployment Guide.

The following preferences can be set in the GAX Server Preferences dialog box:

• Server Host Name/IP. Enter the hostname or address of the Application server hosting the GAX
Server.

• Port Number. Enter the port number for the GAX Server used in your environment.
• Username. Enter the username defined in the Configuration Database for logging into the GAX

server.
• Password. Enter the password defined in the Configuration Database for logging into the GAX

server.

Preferences for Voice Applications

Composer Help 213

GRXML File Preferences
Select Window > Preferences > Composer > GRXML Files. The following preferences for GRXML
files can be set in the Preferences dialog box:

Creating Files

1. Under Creating Files, select the Suffix to use for GRXML files from the drop-down list:* grxml
2. Select the Encoding type from the drop-down list. The encoding attribute in a GRXML document

specifies the encoding scheme. The encoding scheme is the standard character set of a language. The
GRXML processor uses this encoding information to know how to work with the data contained in the
GRXML document. UTF-8 is the standard character set used to create pages written in English. Select
from the following:

• ISO 10646/Unicode(UTF-8)
• ISO 10646/Unicode(UTF-16) Big Endian
• ISO 10646/Unicode(UTF-16BE) Big Endian
• ISO 10646/Unicode(UTF-16LE) Little Endian
• US ASCII
• ISO Latin-1
• Central/East European (Slavic)
• Southern European
• Arabic, Logical
• Arabic
• Chinese, National Standard
• Traditional Chinese, Big5
• Cyrillic, ISO-8859-4
• Cyrillic, ISO-8859-5
• Greek
• Hebrew, Visual
• Hebrew
• Japanese, EUC-JP
• Japanese, ISO 2022
• Japanese, Shift-JIS
• Japanese, Windows-31J

Preferences for Voice Applications

Composer Help 214

• Korean, EUC-KR
• Korean, ISO 2022
• Thai, TISI
• Turkish

Validating Files

• Select or clear the Warn when no grammar is specified check box (not selected by default).

Source and Syntax Coloring

Source, Syntax Coloring, and Template preferences for GRXML files are set under the XML
preferences provided by Eclipse.

• Use Window > Preferences, expand the Web and XML entry, then expand the XML Files subentry.

Templates

In addition to previewing templates, you can create, edit, and remove selected templates. There are
also buttons to:

• Restore a removed template.
• Revert back to a default template
• Import a template.
• Export a template.

Preferences for Voice Applications

Composer Help 215

VXML File Preferences

Tip
Composer natively supports VXML 2.1.

Select Window > Preferences > Composer > VXML Files.The following preferences for VXML
files can be set in the Preferences dialog box:

Creating Files

1. Under Creating Files, select the Suffix to use for VXML files from the drop-down list: *.vxml
2. Select the Encoding type from the drop-down list. The encoding attribute in a VXML document specifies

the encoding scheme. The encoding scheme is the standard character set of a language. The VXML
processor uses this encoding information to know how to work with the data contained in the VXML
document. UTF-8 is the standard character set used to create pages written in English. Select from the
following:

• ISO 10646/Unicode(UTF-8)
• ISO 10646/Unicode(UTF-16) Big Endian
• ISO 10646/Unicode(UTF-16BE) Big Endian
• ISO 10646/Unicode(UTF-16LE) Little Endian
• US ASCII
• ISO Latin-1
• Central/East European (Slavic)
• Southern European
• Arabic, Logical
• Arabic
• Chinese, National Standard
• Traditional Chinese, Big5
• Cyrillic, ISO-8859-4
• Cyrillic, ISO-8859-5
• Greek
• Hebrew, Visual
• Hebrew

Preferences for Voice Applications

Composer Help 216

• Japanese, EUC-JP
• Japanese, ISO 2022
• Japanese, Shift-JIS
• Japanese, Windows-31J
• Korean, EUC-KR
• Korean, ISO 2022
• Thai, TISI
• Turkish

Validating Files

• Select or clear the Warn when no grammar is specified check box (not selected by default).

Source, Syntax Coloring, and Templates

Source, Syntax Coloring, and Template preferences for VXML files are set under the XML preferences
provided by Eclipse.

• Use Window > Preferences, expand the Web and XML entry, then expand the XML Files subentry.

This preference allows you to add custom VXML schemas into Composer to be used in namespaces
for new VXML files created through the VXML editor.

Preferences for Voice Applications

Composer Help 217

GVP Debugger Preferences
Select Window > Preferences > Composer > Debugging > GVP Debugger. GVP Debugger
preferences are usually set during callflow post-installation configuration, when you first run
Composer. Detailed post-installation configuration instructions are also provided in the Configure
Tomcat and Debugger Settings Cheat Sheet (Help > Cheat Sheets > Composer > Voice
Applications).

Preferences for Voice Applications

Composer Help 218

IIS.NET Preferences
Select Window > Preferences > Composer > IIS/.NET.

IIS/.NET preferences are usually set during post-installation configuration, when you first run
Composer. Detailed post-installation configuration instructions are provided in the Setting IIS
Preferences Cheat Sheet (Help > Cheat Sheets > Composer > Building Voice Applications),
and also in Post-Installation Configuration.

Preferences for Voice Applications

Composer Help 219

Setting Context Services Preferences
Go to Window > Preferences > Composer > Context Services to open the Context Services
dialog box. If using a Composer version prior to 8.1.440.18, the dialog box will not contain a Service
management section.

Preferences for Voice Applications

Composer Help 220

Preferences for Voice Applications

Composer Help 221

Guidelines for Context Services Preferences
[+] Guidelines for Context Services Preferences
The table below supplies some guidelines for defining Context Services Preferences.

Installation Type Customer Profile
Management Service Management

Context Services 8.1 or earlier -
Profile and Service APIs served
by UCS

Set UCS parameters according to
UCS options.

Do not check the Use Genesys
Mobile Service checkbox. Set
the UCS parameters according to
UCS options.

Context Services 8.5 or later - No
Load Balancer

Set UCS parameters according to
UCS options.

Check the Use Genesys Mobile
Service checkbox. Set GMS
parameters according to GMS
options.

Context Services 8.5 or later -
Load Balancer (LB)

Set UCS parameters to match the
LB options.

Check the Use Genesys Mobile
Service checkbox. Set GMS
parameters to match the LB
options.

Customer Profile Management Section

1. Use the Guidelines for Context Services Preferences section above for selecting/unselecting the
Connect to Universal Contact Server when designing diagrams box.

2. Under Server Host Name, enter the server host IP address in your Configuration Database, which
identifies the Universal Contact Server. See Tip below.

3. Enter the Server Port number for Universal Contact Server. For the port number, open the Universal
Contact Server Application object in your Configuration Database, go to Options tab, select the
cview section, and the port option.

4. Enter the Base URL for the Context Services server. This should only be configured if you use UCS 8.1.
Do not set if you use UCS 8.5.

5. Under Security Settings, Use secure connection, select Never or TLS if Transport Layer Security is
implemented as described in the Genesys 8.1 Security Deployment Guide.

6. Select Use Authentication to require a user name and password when connecting to Universal
Contact Server. If selected, enter the User and Password fields.

7. Click the Test Connection button (enabled if the Connect to Universal Contact Server when
design diagrams box is checked). Clicking should cause connection successful to appear. If not, check
that Universal Contact Server is running and that the entered host/port values are correct. Other
sources of error could be that the base URL parameter value is incorrect or the UCS version is not 8.1 or
higher.

8. Under Context Services object Validation, select one of the following: No validation, Validate if
connected, or Validate. This setting is used and shared by the Profile/Service blocks.

Preferences for Voice Applications

Composer Help 222

https://docs.genesys.com/Documentation/System/latest/SDG/Welcome

Tip
Host/port/URL/tenant are used at design time by Composer (when the Connect to
Universal Contact Server when designing diagrams box is selected). They are
also used by Composer when publishing an interaction process diagram. Composer
stores these parameters in the EnhancedRoutingScript objects. SCXML applications
can then read those settings at runtime to connect to UCS/GMS accordingly.

Service Management Section

1. Select either Use Genesys Mobile Services or Connect to the Universal Contact Server when
designing diagrams. See Guidelines for Context Services Preferences section above for more
information. Steps 2, 3, and 4 below relate to UCS or GMS, depending on the Use Genesys Mobile
Services box.

2. Under Server Host Name, enter the host IP address. See above note (Tip).
3. Enter the server port number.
4. Enter the Base URL for the host. When using GMS, the base URL is normally /genesys/1/cs.
5. Enter the Tenant. GMS Context Services (optionally) supports multi-tenancy. The tenant to use is

passed as a header (ContactCenterId=x) of the request. This field is disabled when Connect to the
Universal Contact Server when designing diagrams is selected.

6. Under Security Settings, Use secure connection, select Never or TLS if Transport Layer
Security is implemented as described in the Genesys 8.1 Security Deployment Guide.

7. Select Use authentication to require a user name and password. If selected, enter the User and
Password fields.

8. Click the Test Connection button. Clicking should cause connection successful to appear. When using
GMS, no connection is made from Composer to GMS. Connections to GMS are initiated only at runtime
by ORS/MCP.

9. Under Context Services object Validation, select one of the following: No validation, Validate if
connected, or Validate. This setting and the setting below is used and shared by the Profile/Service
blocks.

10. Under Local Settings, select the time zone.

Tip
Composer can successfully communicate with UCS at design stage whatever the UCS
mode is (production or maintenance). However, UCS needs to be in production mode
at runtime stage (when running Context Services SCXML or VXML applications, even
when using GVP Debugger).

Preferences for Voice Applications

Composer Help 223

https://docs.genesys.com/Documentation/System/latest/SDG/Welcome

Time Zone Preferences
Composer displays all date/time elements in the user-preferred time zone with the time zone
identifier. You can change the preferred time zone in Window > Preferences > Composer >
Context Services.

Preferences for Voice Applications

Composer Help 224

Tomcat Preferences
Select Window > Preferences > Composer > Tomcat Tomcat preferences are usually set during
post-installation configuration, when you first run Composer. Detailed post-installation configuration
instructions are provided in the Configure Tomcat and Debugger Settings Cheat Sheet (Help > Cheat
Sheets > Composer > Building Voice Applications), and also in Callflow Post-Installation
Configuration or Workflow Post Installation Configuration.

Preferences for Voice Applications

Composer Help 225

XML Preferences
You can also set XML File Preferences for both routing and voice applications: Window >
Preferences > XML > XML Files. When specifying Encoding formats in the XML Preference page:
encoding formats are applicable only for new File creation using the Template option: (File > New >
XML > XML File > Create XML File from an XML Template > Select XML Template). This
applies only to new XML, VXML, CCXML and SCXML files. Existing files within the Project will not get
impacted.

Preferences for Voice Applications

Composer Help 226

Creating Voice Apps for GVP
This section provides key information about using Composer to build VoiceXML-based callflow
applications after callflow post installation configuration. You should be well-versed in VoiceXML, XML,
and HTML before attempting to use Composer. You should also have reviewed Getting Started with
Voice Applications. To help you get started:

• From within Composer, select Help > Cheat Sheets > Composer to see how some basic voice
applications can be created.

• Your First Application
• Sample Applications & Templates.

To start immediately, see:

• Creating VXML Applications or
• Creating CCXML Applications

Creating Voice Apps for GVP

Composer Help 227

What is GVP and How Do Voice Apps Work
The Genesys Voice Platform (GVP) is a VoiceXML-based media server for network service providers
and enterprise customers.

What is GVP?

At the most basic level, Genesys Voice Platform (GVP) is Interactive Voice Response software (soft
IVR). At a more complex level, GVP is a software suite that integrates a combination of call
processing, reporting, management, and application servers with Voice over IP (VoIP) networks, to
deliver web-driven dialog and call control services to callers.

Using features such as Automatic Speech Recognition (ASR) and Text-to-Speech (TTS), GVP provides a
cost-effective way to implement automated voice interactions from customers calling your contact
center. At the technology level, GVP is a collection of software components that complement and
work with other Genesys products in order to provide a complete voice self-service solution.

Notes:

Whereas GVP is commonly used in enterprise self-service environments, many other applications of
GVP —including those outside of the contact center—are possible.

A machine on which GVP components are installed is also referred to as a GVP Server in other places
in this Help system.

Use Case

An example flow for a GVP voice self-service application is presented below:

• A customer calling into an IVR would get Prompts / Announcements with a Welcome message. These
prompts could be specific to a region based on incoming DNIS number or customized based on user
options, such as a prompt to select a language.

• The applications could have business control logic allowing Business users to define open and close
hours, set emergency announcements and flags, define special days, and so on. These options could be
defined within Genesys Administrator or Genesys Rules System.

• The application can have the capability to collect user input with multiple options and repeatability to
handle no input / no match capabilities.

• Once the application gets the user input, such as account numnber, this information can be verified
against back office applications or can have the capability to pull data from a Conversation Manager
Solution

• Customer information retrieved can be attached to the interaction as user data and could be used for
Customer Segmentation and thereby determine how a particular customer would be managed within
the self-service

Creating Voice Apps for GVP

Composer Help 228

• The application can provide self-service with Voice Recognition options and DTMF options in menus.
• The application can be configured to allow users to opt out of the self-service by default or within the

predefined flow of the application.
• When users opt out of the IVR, they could be routed to an external source or to an Agent based on the

environment as defined above. For example, customers could make a choice to get routed to “Last
Called Agent” or be routed to any Agent by pressing repetitive “0”.

• Customers can have defined activities across the flow of the self-service and also be able to set
milestones to define success/failure criteria within each segment of the flow.

How Do Voice Applications Work?

Just as one uses HTML to create visual applications, VoiceXML is a mark-up language one uses to
create voice applications. With a traditional web page, a web browser will make a request to a web
server, which in turn will send an HTML document to the browser to be displayed visually to the user.
With a voice application, it's the VoiceXML interpreter that sends the request to the web server, which
will return a VoiceXML document to be presented as a voice application via a telephone. What makes
VoiceXML so powerful is that all of the most popular tools for making web pages are available for
making voice applications. Developers can use technologies they are already familiar with such as
JavaScript, JSP and ASP.NET/C# to generate exciting new voice applications.

The "Big Picture"

Creating Voice Apps for GVP

Composer Help 229

Composer is a fully featured VXML application development tool. Users can develop, debug and test
their applications in its Integrated Development Environment (IDE) that provides developer-friendly
features to test and debug VXML applications and server side web pages. Once the application is
ready, it can be exported or manually deployed using an exported package onto an application
server/web server like Tomcat or Microsoft IIS. Once deployed, GVP can access the voice application’s
VXML pages and any server side pages (JSP/ASP.NET) using HTTP.

When a call comes in to GVP, GVP determines the location of the VXML application through its
provisioning data. It then fetches VXML page(s) and uses its VXML engine to execute them. The
results are played back to the caller on his/her phone. Any server side pages that access databases
or web services or other server side pages are executed on the application server/ web server
through server side constructs implemented by Composer.

During development, Composer can use its bundled Tomcat or a local installation of Microsoft IIS as
the web server and make test calls to the application right through GVP from within the IDE. This
feature provides a quick way to test applications by removing the need to of deploy applications to
another server and then point GVP to that location.

Once the application is deployed in production, Composer is no longer in the picture. The application
is usually deployed on its own dedicated web server and application server from where it is accessed
by GVP. The web/application server provides access to all pages and scripts that make up the
application and executes any server side pages of the application.

Creating Voice Apps for GVP

Composer Help 230

Creating CCXML Applications
CCXML (Call Control XML) is a specification developed by the Call Control subgroup of the Voice
Browser Working Group of the W3C. CCXML provides mechanisms for implementing advanced call
control functionality in a standards-based way. It provides the advanced call control features not
supported by VoiceXML. You develop CCXML a little differently than VXML or SCXML applications.
Rather than creating flow diagrams, you invoke a CCXML text editor and enter the code while
Composer performs syntax checking. To create a new CCXML file in Composer perspective:

1. From the menu, select File > New > Other > CallControlXML File.
2. In the wizard, select the Project folder, name the file, and click Finish or Next to use a template.
3. If you click Next, select a template and click Finish. Composer opens the the CCXML editor view.

Creating Voice Apps for GVP

Composer Help 231

Creating VXML Applications
When building any application in Composer, you first need to create a Project. A Project contains all
the callflows, audio and grammar files, and server side logic for your application. By associating a
routing strategy with a Project, you enable Composer to manage all the associated files and
resources in the Project Explorer.

Cheat Sheet

Composer provides a cheat sheet to walk you through the steps for building a voice application.

• In the Welcome Screen (Help > Welcome), click the icon for Tutorials and select the Create a Voice
Application tutorial. It will also describe the steps for how to make test calls and debug your
application.

• If you are already inside the Workbench and Perspectives, access the same cheat sheet from the Menu
bar at the top by selecting Help > Cheat Sheets, then Create Voice Application from the Building Voice
Applications category.

Creating a New Project

You can follow the steps below to create a new Project:

1. For a Java Composer Project to be deployed on Tomcat, click the toolbar button to create a Java
Composer Project. For a .NET Composer Project to be deployed on IIS, click the toolbar icon to create
a .NET Composer Project.

2. In the Project dialog box, type a name for your Project.
3. If you want to save the Composer Project in your default workspace, select the Use default location

check box. If not, clear the check box, click Browse, and navigate to the location where you wish to
store the Composer Project.

4. Select the Project type:

• Integrated Voice and Route. Select to create a Project that contains both callflows and
workflows that interact with each other; for example a routing strategy that invokes a GVP
voice application. For more information on both voice and routing applications, see What is
GVP and How Do Voice Apps Work? and What Is a Routing Strategy, respectively.

• Voice: Select to create a Project associated with the GVP 8.x. This type of Project may
include callflows, and related server-side files. For more information on this type of Project,
see topic, How Do Voice Applications Work.

• Route: Select to create a Project associated with the Orchestration SCXML Engine/
Interpreter and Universal Routing Server. For more information on this type of Project, see
topic, What Is a Routing Strategy.

Creating Voice Apps for GVP

Composer Help 232

5. Click Next.
6. If you want to use templates, expand the appropriate Project type category and select a template for

your application. Templates are sample applications for different purposes. If you want to start from
scratch, choose the Blank Project template and click Next.

7. Select the default locale and click Next.
8. Optional. If using the in a VoiceXML application, select the Enable ICM checkbox to enable integration.

When checked, ICM variables will be visible in the Entry block. See the ICM Interaction Data block for
more information.

9. Click Finish. Composer now creates your new Project. Your new Project folder and its subfolders appear
in the Project Explorer.

10. To view/change settings not included under Preferences, right-click the Project and select Properties.

If you have never created a Composer Project, we recommend starting with Your First Application.

Creating Voice Apps for GVP

Composer Help 233

Creating a New Callflow
To add a new callflow diagram to an existing Composer Project:

1. Click the button on the main toolbar to create a new callflow. Or use the keyboard shortcut:
Ctrl+Alt+O.

2. In the wizard, select the tab for the type of the callflow. There are two main types of callflows in
Composer represented by wizard tabs:

• Main Callflow: Used for the main application where the call will land or be transferred to from
another application.

• Subcallflow: Used for modularizing your applications. It is useful for structuring large
applications into manageable components.

Additionally you will benefit from the automated transaction reports associated with Subcallflows.
Action Start and Action End VAR events are auto-generated for Entry and Exit blocks.

3. Select either Main Callflow or Subcallflow.
4. Select the type of diagram.
5. Click Next.
6. Select the Project.
7. Click Finish.
8. Create the callflow.

Creating Voice Apps for GVP

Composer Help 234

Validation
Composer can validate your diagram files and other source files for completeness and accuracy. For
more information, see Validation.

Creating Voice Apps for GVP

Composer Help 235

Code Generation
The process of generating code creates a properly-formatted VoiceXML file from a callflow diagram
built with Composer or a SCXML file from a workflow diagram. Static pages (pure VXML or SCXML
code) are generated in the src-gen folder of the Composer Project. You can generate code in a couple
of ways:

• Select Diagram > Generate Code.

• Click the Generate Code icon on the upper-right of the Composer main window when the callflow/
workflow canvas is selected.

Note: If your project uses the Query Builder or Stored Procedure Helper-generated queries in DB Data
blocks, the process of code generation will create one SQL file in the db folder for each such DB Data
block. These SQL files will be used at runtime and should not be deleted.

Code Generation for Multiple Callflows

When using the Run as Callflow function, Composer automatically generates the VXML files from the
diagram file that you want to run. When generating code, with the generate code function for a Java
Composer Project that has multiple callflows, Composer attempts to generate the VXML for all the
callflows before running (because the application might move between multiple callflows for
subdialogs). However, if one of the callflows has an error, Composer provides the option to continue
running the application anyway, because the erroneous callflow may be a callflow that’s not used by
the one being run (if there are two or more main callflows, for example). When this happens, the
VXML files are basically out of sync with the diagram files and this may affect execution. Genesys
recommends that you fix all errors before running the application.

Creating Voice Apps for GVP

Composer Help 236

Deploying/Testing Your Application
After you have saved your files and generated code for your application, test the application as
follows:

1. Deploy the project for testing.

• If deploying a Java Composer Project, Composer bundles Tomcat for running test
applications, such as routing applications. If you configured the Tomcat settings prior to
creating your Project, it will be auto-deployed on the Tomcat Server. You can double check
this by clicking on the name of the project in the Project Explorer, then right-click and select
Project Properties. Select the Tomcat deployment category and verify that the project is
deployed. If not, click Deploy.

• If deploying a .NET Composer Project, deploy your project on an IIS Server. Be sure you have
configured the IIS settings. Click on the name of the project in the Project Explorer, then
right-click and select Project Properties. Select the IIS deployment category and verify that
the project is deployed. If not, click Deploy.

2. For Voice Projects, use Run mode to run the application by selecting Run > Run As > Run Callflow, or by
right-clicking on the callflow file name in the Project Explorer and selecting Run As > Run Callflow. The
code is generated in the src-gen folder and the debugger sends the call to your SIP Phone.

3. Accept the call and you will be connected to the application on GVP. The call traces will become visible
in the Call Trace window, and you should hear the voice application run.

Creating Voice Apps for GVP

Composer Help 237

Hello World Sample
Here is a simple voice application to help you get started with Composer. This application says Hello
World when the call is answered.

Simple Text-to-Speech Application

To build a simple text-to-speech (TTS) application that says Hello World to the caller:

1. Create a new Composer Project called Hello World.
2. Add the following blocks from the Basic Blocks Palette to the canvas area: Entry, Prompt, and Exit, then

connect them with Output Links.
3. Select the Entry block, or right-click the Entry block and select Show Properties View from the

shortcut menu, if you want to set any properties (optional).
4. Select the Prompt block, or right-click the Prompt block and select Show Properties View from the

shortcut menu.
5. Select the Name property and type a name in the Value field.

6. Select the Prompts property and click the button.
7. Click the Add button and type a name in the Name field (optional).
8. Select Value in the Type drop-down list (default).
9. Select Text in the Interpret-As drop-down list (default).

10. Type HelloWorld (one word) in the Value field.
11. Click OK.
12. Save the file by selecting File > Save. You will not be able to generate code if you do not save the file.

13. Generate the code by selecting Diagram > Generate Code, or by clicking the Generate Code icon
on the upper-right of the Composer main window when the callflow canvas is selected.

14. If you get any errors, double-click on the error to get the details and fix the problem. For the Hello World
application, typical problems would be forgetting to add the Hello World prompt or forgetting to link the
blocks together.

15. If code generation succeeds, click OK at the confirmation dialog box.
16. Make sure the project is deployed for testing. Composer bundles Tomcat for running test applications. If

you configured the Tomcat settings prior to creating your Composer Project, it will be auto-deployed on
the Tomcat Server. You can double check this by clicking on the name of the project in the Project
Explorer, then right-click and select Project Properties. Select the Tomcat deployment category and
verify that the project is deployed. If not, click Deploy.

17. Select the callflow in the Project callflows folder.
18. Run the application by selecting Run > Run As > Run Callflow, or by right-clicking on the callflow file

Creating Voice Apps for GVP

Composer Help 238

name in the Project Explorer and selecting Run As > Run Callflow.

The code is generated in the src-gen folder and the GVP debugger sends the call to your SIP Phone.

19. Accept the call and you will be connected to the application on GVP. The call traces will become visible
in the Call Trace view, and you should hear Hello World played through the phone.

Adding Blocks

There are a few ways to add blocks from the Palette to the canvas. The most common methods are
as follows:

• Click on the block icon on the palette, release the mouse and click on the target location on the canvas
area.

• Double-click a block icon on the palette.
• Click on the block icon on the palette, and while holding down the mouse button, drag and drop the

block to the canvas.

Any of these methods will add the new block and you can then type the name of the block on the
canvas itself. Click here to read about block naming restrictions.

Connecting Blocks

Blocks are connected to each other using connection links. There are two types of connection links:

• Output Links used to connect one block's output port to another block's input port, and
• Exception Links used to indicate error or exception conditions by connecting from a block's exception

port to another block's input port.

To add a new Output Link (or Exception Link):

1. Click the Output Link (or Exception Link) icon in the palette.
2. Move the mouse over to the source block. The cursor will change to an upward arrow.
3. Click once on the source block and keep the mouse button pressed. Then drag the mouse onto the

target block and release the mouse button.

This will add the connection link between the two blocks. To use an Exception Link, the source block
must have an exception port defined. This is done by selecting at least one supported exception
within the block's Exceptions property.

Another method for adding an Output Link or Exception Link between two blocks is as follows:

1. Click once on the source block to select it.
2. Hold the Ctrl key and click once on the target block to select it as well.

Creating Voice Apps for GVP

Composer Help 239

3. Double-click the Output Link (or Exception Link) icon in the palette to create a connection between the
two blocks.

Again, to use an Exception Link, the source block must have an exception port defined.

The preference Show Connection Ports (in Composer DiagramPreferences) affects how connection
links can be drawn to connect blocks. If it is switched on, links may be drawn directly by dragging
from an outport of a block and dropped onto a block or its inport. This method will work in addition to
using the Output link and Exception link tools. If the setting is switched off, connection ports are not
displayed and therefore the method of drawing links mentioned above is not available.

Creating Voice Apps for GVP

Composer Help 240

Callflow Blocks
A block is the fundamental element of a callflow. Each block defines specific properties and how to
handle specific events. You use the Link tools to connect these blocks in the order that the application
should follow. A single VXML application is generated per callflow. Each block in a callflow becomes a
form in the generated VXML document.

VXML Properties

Each block has custom VoiceXML properties. These properties appear within a Properties view at the
bottom of the Composer window when you right-click the block and then select Show Properties View
from the shortcut menu. For each block, specific properties determine how events are handled. There
are several categories of properties depending on the specific block. The blocks build a callflow or
subcallflow. Generate code either from the Toolbar or from the Diagram menu. Static VXML pages
(pure VXML code) are generated in the src-gen folder.

Main Versus Subcallflow

There are two types of callflows:

• Main Callflow: This is the starting callflow for any application.
• Subcallflow: This is a component callflow that can be called from the main callflow or another

subcallflow.

Each main callflow or subcallflow application should have at least three blocks:

• The Entry block to start the application. This block also specifies the relative file locations of the audio
files for the generated application code and default exception handling.

• At least one other block to perform specific functions such as passing a call to an agent, creating a log
of an activity, requesting caller input, playing a prompt, and so on.

• The Exit block to end the application, or, for example, the GoTo block to direct the application to another
application.

Subcallflows

Subcallflows are used for modularizing applications and for writing components that can be reused by
multiple applications (such as a credit card validation subcallflow). The usage of subcallflows within a
main callflow is very similar to a function call in a programming language. One or more input
parameters can be passed to a subcallflow. Similarly, the subcallflow can return one or more output
parameters. Therefore, a subcallflow can be designed to behave differently depending on the input
parameter(s) passed.

Creating Voice Apps for GVP

Composer Help 241

Variables in Callflows
You can define voice application (session) variables using the Entry block Variables property.

Note: For information on user data and GVPSessionID, see the Project Properties dialog box,
Composer Callflow Option.

Types of Variables

Composer supports the following types of variables for callflow diagrams:

• Application Root--Automatically filled from either session.com.genesyslab.userdata or
session.connection.protocol.sip.requesturi based on the Nnn-CTIC or CTIC flow. Also see the

Entry Application Root Property.

• System --Pre-defined application variables (Entry block Variables property) hold Project and application-
related values. While you cannot delete System variables, you can have your application modify the
values.

Creating Voice Apps for GVP

Composer Help 242

• User--User-defined (Input) custom variables that you create by clicking the Add button in the Set
Application Variables dialog box above and selecting User. Your application can delete and modify
these variables supplied as input to the called diagram. During runtime, these input variables get auto-
filled from the calling context. Typically these variables are created on the SubCallflow side to notify the
MainCallflow about the Parameter-passing details while designing the application flow. Composer does
auto-synchronization of the input variables in the Subdialog block. Input variables are also used on the
MainCallflow while invoking the VoiceXML application from workflows in case of Voice Treatment
execution - computer telephony integration (CTI) scenario (Play Application).

Creating Voice Apps for GVP

Composer Help 243

• SubCallflow--Automatically filled from the VXML subdialog-invoking methodology.

Variable Versus Static Data

Many blocks enable the use of variables rather than static data. For example, the Prompt block can
play the value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks
must be declared here so that they appear in the list of available variables in other blocks. The value
collected by an Input block or a Menu block is saved as a session variable whose name is the same as
the block Name. Also see information on the AppState variable used by the DB Data block.

Entry Block Variables

Entry block variables can access User Data (attached data from a routing workflow) from
session.com.genesyslab.userdata and SIP Request-URI parameters from
session.connection.protocol.sip.requesturi session variables.

Request URi parameters created in IVR Profiles during the VoiceXML application provisioning are
passed to the Composer generated VoiceXML application as request-uri parameters in the
session.connection.protocol.sip.requesturi session array. An Entry block variable can use
these parameters by setting the following expressions to the variable values: typeof
session.connection.protocol.sip.requesturi['var1'] == 'undefined' ?
"LocalDefaultValue" : session.connection.protocol.sip.requesturi['var1'].

If parameters are set as part of IVR Profiles provisioning in the Genesys VoiceXML provisioning
system, and if these parameters have the same names as variables set in the Entry block's
Variables property with the above mentioned sip.requesturi expression, then the SIP-Request-
URI parameters will take precedence over the user variable values set in the Entry block.

Important
For more information on valid values and syntax for the the gvp.services-parameter
section, refer to page number 121 in the GVP 8.5 User's Guide.

IVR profiles for GVP can be created using the Genesys Administrator. For more information, refer to
the Voice Platform Solution Guide and the gvp.services-parameter section in the GVP 8.5 User's
Guide.

Attaching Results to User Data

While you can assign Classify object results to a variable, Genesys does not recommend this. The
recommended way of dealing with the classification results is to attach them to the interaction. Then
User Data will have the keys listed in the table below with the corresponding values returned by
Classification Server. As an example, User Data would have the following pairs after the attachment:

Creating Voice Apps for GVP

Composer Help 244

Parameter Value
CtgId 00001a05F5U900QW
CtgRelevancy 95
CtgName Cooking
CtgId_00001a05F5U900QW 95
CtgId_00001a05F5U900QX 85
CtgId_00001a05F5U900QY 75
CtgId_00001a05F5U900QZ 65

Creating Voice Apps for GVP

Composer Help 245

VXML Properties
This page provides details about the properties used to manage platform behavior: Note: Properties
apply to their parent tag and all the descendants of the parent. A property at a lower level overrides
a property at a higher level. If you already have GVP, note that the properties in defaults-ng.vxml will
be (re)set as documented below only when a system is newly installed. If you simply upgrade from a
previous release, the old values will be preserved. This means that any manual configuration of
defaults-ng.vxml will be saved when you upgrade. It also means that when moving to newer versions
in which GVP uses different default values, the defaults will not be reset unless you newly install
(rather than upgrade).

Receive External Message
Property Description Default Value

com.genesyslab.
(GVP extension)

This property specifies whether
an external message will be
received asynchronously. The
valid values are:

• True--If the value equals true,
external messages will be
received asynchronously.

• False--If the value equals
false, external messages will
be received synchronously.

false

com.genesyslab.
(GVP extension)

This property specifies whether
an external message will be
queued or discarded. The valid
values are:

• True--If the value equals true,
external messages will be
queued. The external
message is reflected to the
application in the
application.lastmessage$
variable (an ECMAScript
object).

• False--If the value equals
false, external messages will
not be delivered as a
VoiceXML event (they will be
discarded).

Note:If no external messages have been
received, application.lastmessage$ is
ECMAScript undefined. Only the last

false

Creating Voice Apps for GVP

Composer Help 246

received message is available. To
preserve a message for future reference
during the lifetime of the application,
copy the data to an application-scoped
variable.

Speech Recognizer
Property Description Default Value

confidencelevel

Specifies the speech recognition
confidence level. Values range
from 0.0 (minimum confidence)
to 1.0 (maximum confidence).
Recognition results are rejected
(a nomatch event is thrown) if
the confidence level of the
results is below this threshold.

0.5

sensitivity
Specifies the level of sensitivity
to speech. Values range from 0.0
(least sensitive to noise) to 1.0
(highly sensitive to quiet input).

0.5

speedvsaccuracy

A hint specifying the desired
balance between speed versus
accuracy when processing a
given utterance. Values range
from 0.0 (fastest recognition) to
1.0 (best accuracy).
Note: The Nuance MRCP engine uses the
value of the speedvsaccuracy property to
set its proprietary rec.Pruning parameter,
using the following algorithm: If x is the
speedvsaccuracy value, and x <= 0.5
then rec.Pruning = (x * 400) + 600 else

rec.Pruning = (x * 800) + 400

0.5

completetimeout

The length of silence required
following user speech before the
speech recognizer finalizes a
result (either accepting it or
throwing a nomatch event). The
completetimeout is used when
the speech is a complete match
of an active grammar and no
further words can be spoken.

1s

incompletetimeout

The length of silence required
following user speech before the
speech recognizer finalizes a
result (by either accepting it or
throwing a nomatch event). In
contrast to completetimeout, the
incompletetimeout is used when
the speech is an incomplete

1s

Creating Voice Apps for GVP

Composer Help 247

match to an active grammar, or
when the speech is a match but
it is possible to speak further.

maxspeechtimeout

The maximum duration of user
speech. If this time elapses
before the user stops speaking,
the maxspeechtimeout event is
thrown. Note: Refer to your ASR
engine documentation for
support details.

60s

Maximum number of results
returned by the recognizer. Also
represents the maximum size of
the application.lastresult$ array.

1

DTMF Recognizer
Property Description Default Value

interdigittimeout
The timeout period allowed
between each digit when
recognizing DTMF input.

3s

termtimeout The terminating timeout to use
when recognizing DTMF input. 0s

termchar The terminating DTMF character
for DTMF input recognition. #

com.genesyslab.dtmf.offboard_recognition
(GVP extension)

This property makes it possible
to use the DTMF Recognizer that
comes with your ASR Engine
instead of using the one provided
by Genesys. The valid values are:

• True--If the value equals true,
offboard DTMF recognition is
enabled for the call.

• False--If the value equals
false, offboard DTMF
recognition is disabled for the
call.

Notes:

• If the value is invalid, an
error.semantic will be
thrown.

• The recognizer will use the
engine specified by the ASR
engine property.

• If you switch between

False

Creating Voice Apps for GVP

Composer Help 248

external engines in mid call,
any buffered digits will be
lost.

Important
Changes to this setting after the
first input in an application session
will not have any effect.

Prompt and Collect
Property Description Default Value

inputmodes

Determines which input methods
to use. Value is a space
separated list of input methods:

• dtmf--allows DTMF sequences
as input

• voice--allows voice as input

dtmf voice

timeout

Once the prompt has finished
playing, the length of time to
wait, if no speech or dtmf input
occurs, before throwing a noinput
event.

10s

universals

Specifies universal command
grammars to activate. Value is a
space-separated list of all or
fewer of the following command
grammars:

• cancel--If this grammar is
activated, and the caller says
"cancel" (or equivalent
phrase configured for another
language), the cancel event
is thrown.

• exit--If this grammar is
activated, and the caller says
"exit" (or equivalent phrase
configured for another
language), the exit event is
thrown.

• help--If this grammar is
activated, and the caller says
"help" (or equivalent phrase
configured for another
language), the help event is

none

Creating Voice Apps for GVP

Composer Help 249

thrown.
A setting of none disables universal
commands. A setting of all can be used
as a short form for activating all 3
command grammars.

com.genesyslab.asrengine
(GVP extension)

Specifies the name of the ASR
(Automatic Speech Recognition)
engine to use. For details about
available names, consult with
your platform administrator.
Note: If this property is not specified, the
per call configuration value specified in
the vxmli.asr.defaultengine property (see
the Genesys Voice Platform 8.1
Configuration Options Reference) will be
used. The default is empty string ("").
Note: It is valid to specify a particular
engine only if that engine is installed for
the platform running the application.
Otherwise, an error.asr.unknownengine
event will be thrown. Note: The
configured name for SpeechWorks OSR
must be speechworks, otherwise a
recognition error will occur.

platform-specific

com.genesyslab.ttsengine
(GVP extension)

Specifies the name of the TTS
(Text-to-Speech) engine to use
(that is, the voice). For details
about available names, consult
with your platform administrator.
Note: If this property is not specified, the
per call configuration value specified in
the vxmli.asr.defaultengine property (see
the Genesys Voice Platform 8.1
Configuration Options Reference) will be
used. Note: It is valid to specify a
particular engine only if that engine is
installed for the platform running the
application. Otherwise, an
error.tts.unknownengine event will be
thrown.

platform-specific

com.genesyslab.endbeep
(GVP extension)

Specifies whether a beep should
be played at the end of prompts
in fields, when bargein is
disabled. When bargein is
enabled, this attribute has no
effect (there is never a beep).
Platform owners can access the
audio file (endofprompt.vox) in
the configured audio path.

false

com.genesyslab.utterancedest
(GVP extension)

Specifies the path of the
directory to use for saved
utterance audio files. The value
will be resolved to the configured
audio path. This property can be
used with the recordutterance

files are written to the tmp
directory (may or may not be
saved, depending on whether the
savetmpfiles property is enabled)

Creating Voice Apps for GVP

Composer Help 250

property. Note: If you specify the
utterancedest and enable the
savetmpfiles property, the
utterance will only be saved
under the utterancedest path. It
will not also be saved with the
other tmp files.

recordutterance
(VoiceXML 2.1 feature)

This property tells the platform to
enable recording while
simultaneously gathering input
from the user. Set to true to
enable user utterance to be
recorded. Set to false otherwise.
Upon completion of user input,
the recording shadow variable
will be set. Note: The <vxml>
version attribute must be
specified as 2.1 (or higher) to use
this property. Note: If the
recordutterance property has
been specified in a VoiceXML 2.0
page, it will behave as if it is a
VoiceXML 2.1 page.

false

recordutterancetype
(VoiceXML 2.1 feature)

This property specifies the audio
format to use for recording
utterances. Only used with the
recordutterance property. GVP
currently supports the following
types:

• audio/basic--Raw (headerless)
8kHz 8-bit mono mu-law
[PCM] single channel. (G.711)

• audio/x-alaw-basic--Raw
(headerless) 8kHz 8-bit mono
A-law [PCM] single channel.
(G.711)

• audio/x-wav--WAV (RIFF
header) 8kHz 8-bit mono mu-
law [PCM] single channel.

• audio/x-wav--WAV (RIFF
header) 8kHz 8-bit mono A-
law [PCM] single channel.

audio/basic

com.genesyslab.asr.get_swi_literaltimings
(GVP extension)

Set to true to allow the special
OSR variable, SWI_literalTimings,
to be accessed through the
application.lastresult$ variable.
Requires
com.genesyslab.fieldobject to be
set to true. Available with
SpeechWorks ASR only.

false

com.genesyslab.tts.<Your vendor Users will be able to define TTS

Creating Voice Apps for GVP

Composer Help 251

specific name>
(GVP extension)

vendor-specific global properties
in the Entry block. The exact set
of property names is not known
to Composer and therefore no
validations will be performed on
the names. The general format of
these properties will follow this
pattern:
com.genesyslab.tts.<property_name>

com.genesyslab.asr.<Your
vendor specific name>
(GVP extension)

When using GVP's MRCP direct
integration with an ASR engine,
the VoiceXML application can use
this property format to specify
arbitrary vendor-specific
parameters to be sent to the ASR
engine.
In the property name, <Your vendor
specific name> is replaced with the
actual vendor-specific parameter name;
and the value of the property must be a
valid value for that vendor-specific
parameter. For example, to set Nuance's
rec.GrammarWeight parameter to 10:
<property
name="com.genesyslab.asr.rec.GrammarWeight"
value="10"/> Notes:

• Vendor parameter names and
values could be case-
sensitive. Refer to the vendor
documentation to ensure you
are using valid names and
values.

• You can only set a vendor
parameter using <property>
if the parameter can be set
by the ASR engine at runtime.
Refer to the vendor
documentation to confirm
which parameters are
runtime-settable.

• Once a vendor parameter is
set using <property>, the
setting will stay in effect for
the remainder of the call,
unless it is set again later in
the VoiceXML application.

parameter-specific

swiep_*/swirec_*
(GVP extension)

Many of OSR's swiep_*/swirec_*
configuration parameters can
also be set as VoiceXML
properties.
To find out whether a particular
parameter can be set as a property, look
it up in the OSR Reference Manual. If the
line under the parameter name includes

parameter-specific

Creating Voice Apps for GVP

Composer Help 252

"API" (and if the description mentions
SWIepSetParameter() or
SWIrecRecognizerSetParameter()), then it
can be set as a property. Some of the
parameters that are commonly used are:

• swirec_suppress_event_logging
• swirec_suppress_waveform_logging
• swirec_audio_environment

(OSR 2.0+ only)
• swirec_backward_compatible_confidence_scores

(OSR 2.0+ only)
See the OSR Reference Manual for details
about the values/usage for each
parameter. These properties are specific
to Nuance OSR, and are only supported in
GVP's MRCP native integration with OSR.
(They are not supported in GVP's MRCP

direct integration with OSR, using SWMS.)

com.genesyslab.logtoasr
(GVP extension)

If set to true, this will enable GVP
to log data directly to the ASR
engine's log. Note: If this
property is true, then the <log>
tag's level attribute is ignored.

true

Prompt and Collect--Barge-in

GVP supports Recognition Based Barge-in.

Property Description Default Value

bargein

Controls whether user input can
be collected before prompts have
finished playing:

• true--Any user input can
barge in during prompts.

• false--No user input can barge
in during prompts.

true

bargeinype

Specifies the bargein type:

• speech--Any user utterance
can barge in the prompt.

• hotword (equivalent to
recognition)--Only user input
that matches a grammar can
barge in on the prompt.

speech

Creating Voice Apps for GVP

Composer Help 253

Note: Not all bargeintypes are supported
with all ASR engines.

MARK Tag

Composer and GVP support the use of the MARK tag from the VXML Specs to detect whether or not a
barge-in was detected. The Mark tag in VXML is used to set the place in a sequence of prompts and
can be used to detect the barge-in position during the playback of prompts.

As described in the GVP 8.1 Legacy Genesys VoiceXML 2.1 Reference Manual, the variable
application.lastresult$ is a read-only session variable that holds information about the last
recognition to occur within this application. Additionally, application.lastresult$[i] provides the
ability to use an array of tags when using N-best recognition.

• The GVP 8.1 Legacy Genesys VoiceXML 2.1 Reference Manual provides a good reference for the
differences between VXML 2.0 and 2.1 tags.

• The GVP 8.1 Application Migration Guide provides a reference for the delta between the GVP
interpreters and mentions the GVP-specific platform extensions.

• Lastly, the GVP Voice XML Help describes the VoiceXML 2.1 standards and tags supported by GVP
version 8.0 and later.

Prompt and Collect--Wakeup Word Spotting Recognition Mode

In GVP's MRCP native integration with Nuance OSR, OSR's "magic word" feature is exposed through
the following properties.

Property Description Default Value

com.genesyslab.wakeupword
(GVP extension)

Specifies whether Wakeup Word
Spotting should be used for input
in fields, menus, and initials. If
set to true, recognition is only
performed if input length is
between a minimum and
maximum length, and (only with
Nuance OSR 2.0+) if input
matches a grammar.

false

com.genesyslab.wakeupwordminimum
(GVP extension)

If com.genesyslab.wakeupword is
set to true, this specifies the
minimum length that input must
be in order for recognition to be
performed.

com.genesyslab.wakeupwordmaximum
(GVP extension)

If com.genesyslab.wakeupword is
set to true, this specifies the
maximum length that input may
be in order for recognition to be

Creating Voice Apps for GVP

Composer Help 254

performed.

Prompt and Collect--Magic Word / Selective Barge-in Recognition
Modes

With Nuance SWMS 3.1.4+, OSR's "magic word" and "selective barge-in" features are exposed
through the following properties. GVP does not have default values for the following properties. If the
application specifies them, GVP passes the specified values through to SWMS. Otherwise, GVP does
not pass anything to SWMS - in which case, SWMS would use its own default settings (see the SWMS
documentation for these details).

Property Description Default Value

com.genesyslab.ASR.Recognition-
Mode
(GVP extension)

Set to hotword to enable the OSR
selective barge-in or magic word
recognition mode:

• Selective Barge-in--Only user
input that matches a
grammar can barge in on the
prompt. (This mode is
enabled if
com.genesyslab.ASR.Hotword-
Max-Duration is set to 0.)

• Magic Word--Only user input
that matches a grammar, and
whose duration is between a
minimum and maximum
length, can barge in on the
prompt. (The minimum and
maximum utterance lengths
are specified by
com.genesyslab.asr.Hotword-
Min-Duration and
com.genesyslab.asr.Hotword-
Max-Duration.)

For example: <property
name="com.genesyslab.asr.Recognition-
Mode" value=""hotword""/> Note: After
setting this property, the specified mode
will remain in effect for all subsequent
recognitions (even if the property is not
set in subsequent input fields), unless a
new mode is explicitly set. So, to switch
back to normal recognition mode after
using one of the above hotword modes,
the application must explicitly set this
property back to normal (and not set any
of the three related properties listed
below). For example: <property
name="com.genesyslab.asr.Recognition-
Mode" value=""normal""/> (Available
with Nuance SWMS 3.1.4+ only.)

Creating Voice Apps for GVP

Composer Help 255

com.genesyslab.asr.Hotword-Min-
Duration
(GVP extension)

If
com.genesyslab.asr.Recognition-
Mode is set to hotword, this
specifies the minimum length (in
ms) that input must be in order
for recognition to be performed.
For example:

<property
name="com.genesyslab.asr.Hotword-Min-
Duration" value=""50""/> If
com.genesyslab.asr.Hotword-Max-
Duration is set to 0, this property will be
ignored.

com.genesyslab.asr.Hotword-
Max-Duration
(GVP extension)

If
com.genesyslab.asr.Recognition-
Mode is set to hotword, this
specifies the maximum length (in
ms) that input may be in order
for recognition to be performed.
For example:

<property
name="com.genesyslab.asr.Hotword-
Max-Duration" value=""2000""/> If this
property is set to 0, the OSR selective
barge-in mode will be enabled (for
example, no minimum and maximum
duration constraints are used, so
com.genesyslab.asr.Hotword-Min-
Duration will be ignored). Otherwise, the
OSR magic word mode will be enabled
(for example, the minimum and
maximum duration constraints specified
by com.genesyslab.asr.Hotword-Min-
Duration and
com.genesyslab.asr.Hotword-Max-
Duration will be used).

com.genesyslab.asr.Hotword-
Confidence-Threshold
(GVP extension)

If
com.genesyslab.asr.Recognition-
Mode is set to hotword, this
specifies the speech recognition
confidence level that should be
used. Values range from 0
(minimum confidence) to 1000
(maximum confidence).
Recognition results are rejected
(a nomatch event is thrown) if
the confidence level of the
results is below this threshold.
For this property to take effect, you must
also set the standard confidencelevel
property to an equivalent decimal
percentage. For example: <property
name="com.genesyslab.asr.Hotword-
Confidence-Threshold" value=""100""/>
<property name="confidencelevel"
value="0.1"/>

Creating Voice Apps for GVP

Composer Help 256

Fetching
Property Description Default Value

audiofetchhint

Defines when audio files can be
fetched:

• prefetch--audio file may be
downloaded when the page is
loaded

• safe--only load the audio file
when needed

Currently, all audio is fetched when
needed.

prefetch

audiomaxage
Defines maximum acceptable
age, in seconds, of cached audio
resources.

undefined

audiomaxstale
Defines maximum staleness, in
seconds, of expired cached audio
resources.

undefined

datafetchhint

Defines when XML data files can
be fetched:

• safe--only load the XML data
file when needed

Currently, all data files are fetched when
needed.

safe

datamaxage
Defines maximum acceptable
age, in seconds, of cached XML
resources.

undefined

datamaxstale
Defines maximum staleness, in
seconds, of expired cached XML
resources.

undefined

documentfetchhint

Defines when next document can
be fetched:

• safe--only load the next
document when needed

Currently, all documents are fetched
when needed.

safe

documentmaxage
Defines maximum acceptable
age, in seconds, of cached
documents.

undefined

documentmaxstale
Defines maximum staleness, in
seconds, of expired cached
documents.

undefined

grammarfetchhint Defines when grammar files can
be fetched: prefetch

Creating Voice Apps for GVP

Composer Help 257

• prefetch--grammar file may
be downloaded when the
page is loaded

• safe--only load the grammar
file when needed

Currently, all grammars are fetched when
needed.

grammarmaxage

Defines maximum acceptable
age, in seconds, of cached
grammar resources.
SpeechWorks OSR 1.x does not support
this.

undefined

grammarmaxstale

Defines maximum staleness, in
seconds, of expired cached
grammar resources.
SpeechWorks OSR 1.x does not support
this.

undefined

objectfetchhint

Defines when objects can be
fetched:

• prefetch--object may be
downloaded when the page is
loaded

• safe--only load the object
when needed

prefetch

objectmaxage
Defines maximum acceptable
age, in seconds, of cached object
resources.

undefined

objectmaxstale
Defines maximum staleness, in
seconds, of expired cached
object resources.

undefined

scriptfetchhint

Defines when scripts can be
fetched:

• prefetch--script may be
downloaded when the page is
loaded

• safe--only load the script
when needed

Currently, all scripts are fetched when
needed.

prefetch

scriptmaxage
Defines maximum acceptable
age, in seconds, of cached script
resources.

undefined

scriptmaxstale Defines maximum staleness, in undefined

Creating Voice Apps for GVP

Composer Help 258

seconds, of expired cached script
resources.

fetchaudio
The URI of audio to play while
waiting for documents to be
fetched.

builtin:background_audio.wav

fetchaudiodelay
The length of time to wait at the
start of a fetch delay before
playing fetchaudio.

1s

fetchaudiominimum
The minimum length of time to
play fetchaudio, once started,
even if the fetch result arrives in
the meantime.

0s

fetchtimeout

Timeout for fetches. This is not
supported when using
Nuance(MRCP). An error.badfetch
is thrown when a fetch duration
exceeds fetchtimeout.

30s

Audio Control

The Audio Control Feature is an extension to VoiceXML. Note: Audio control functions are only applied
to the currently playing prompt, and not across the queued prompt list. Note: These properties may
not work properly for TTS. <tbody></tbody>

Property Description Default Value

com.genesyslab.noaudiocontrol
(GVP extension)

If this property is set (to any
value), the
com.genesyslab.audiocontrol
property is disabled.

undefined

com.genesyslab.audiocontrol
(GVP extension)

(Only used if
com.genesyslab.noaudiocontrol
is undefined.) Set to true to
enable Audio Control during
playing of audio. Set to false to
disable the feature.

true

com.genesyslab.audio.skipduration
(GVP extension)

Sets the duration of audio to be
skipped when using the
skipahead/skipback features.
Note: Time units (s or ms) must
be provided.

6000ms

com.genesyslab.audio.skipahead
(GVP extension)

Sets the DTMF button for
skipping ahead in the audio file/
TTS. The duration skipped
depends on the value of the
com.genesyslab.audio.skipduration
property. If set to "-" or
undefined, this feature is
disabled.

undefined

com.genesyslab.audio.skipback Sets the DTMF button for undefined

Creating Voice Apps for GVP

Composer Help 259

(GVP extension)

rewinding the audio file/TTS. The
duration rewound depends on
the value of the
com.genesyslab.audio.skipduration
property. If set to - or undefined,
this feature is disabled.

com.genesyslab.audio.louder
(GVP extension)

Sets the DTMF button for turning
volume up. If set to - or
undefined, this feature is
disabled. This is not supported
with VoIP.

undefined

com.genesyslab.audio.softer
(GVP extension)

Sets the DTMF button for turning
volume down. If set to - or
undefined, this feature is
disabled. This is not supported
with VoIP.

undefined

com.genesyslab.audio.pause
(GVP extension)

Sets the DTMF button for pausing
playback temporarily, until the
pause button is pressed a second
time. If set to- or undefined, this
feature is disabled.

undefined

com.genesyslab.audio.stop
(GVP extension)

Sets the DTMF button for
stopping all queued audio
playback. If set to - or undefined,
this feature is disabled.

undefined

com.genesyslab.audio.next
(GVP extension)

Sets the DTMF button for
interrupting the current audio
playback, and starting the next
audio playback in the queue. If
set to - or undefined, this feature
is disabled.

undefined

com.genesyslab.audio.faster
(GVP extension)

Sets the DTMF button for
increasing the rate of audio
playback. If set to - or undefined,
this feature is disabled.
This is not supported with VoIP.

undefined

com.genesyslab.audio.slower
(GVP extension)

Sets the DTMF button for
decreasing the rate of audio
playback. If set to - or undefined,
this feature is disabled.
This is not supported with VoIP.

undefined

Miscellaneous
Property Description Default Value

com.genesyslab.loglevel The loglevel limits execution of
<log> tags to the ones whose 1

Creating Voice Apps for GVP

Composer Help 260

(GVP extension) level attribute have a value up to
(including) the loglevel value.

com.genesyslab.private

This property enables data
masking. This means that private
data like credit card numbers,
social insurance numbers, and so
on are converted to asterisks (for
example, 123 would be
converted to ***). The valid
values are:

• True--If com.genesyslab.
equals true, data masking is
enabled. The data that is
masked includes: - asr_trace
(result) - dtmf (digit) -
input_end (phrase) - prompt
_play (all) - subdialog_start
(param_value and URL query
string) - eval_cond - eval_expr
(expression and value) -
eval_var (expression and
value) - submit (namelist and
URL query string) - link (URL
query string) - parse_error
(URL query string) -
wf_arrived (URL query string)
- wf_lookup (URL query string)
- event_handler_enter (URL
query string) - filling (value) -
filled_enter (namelist)

• False--If com.genesyslab.
equals false, data masking is
not enabled.

Note: The default value is false. Note:
This attribute is overridden by the
gvp:private attribute (in the <block>,
<field>, <transfer>, <record>,
<subdialog>, and <initial> tags).

Platform

The following properties are specific to GVP. The first three are useful for debugging purposes.

Property Description Default Value

com.genesyslab.maintainer.sendwhen
This property indicates if the
maintainer email message
should be sent. Valid values are:
always, never, on_message.

on_message

com.genesyslab.savetmpfiles The value is interpreted as a none

Creating Voice Apps for GVP

Composer Help 261

string with a list of words. The
words may be: all, none,
prompts, inputs, pages,
recordings. When a list of
keywords is specified, the
superset of all the keywords are
saved. In particular, this means
if someone specifies <property
name=
"com.genesyslab.savetmpfiles"
value="none inputs" /> it is

equivalent to specifying
<property name=
"com.genesyslab.savetmpfiles"
value="inputs"/>.

com.genesyslab.savetmpfilesmode

This property two valid
values:immediate or delayed.
This property only takes effect
when
com.genesyslab.savetmpfiles is
enabled. If set to immediate the
files are written to disk
immediately. If set to delayed the
files are stored in memory.

immediate

com.genesyslab.onexit.keeptmpfiles

This property specifies whether
or not keep temp files around
after the VoiceXML session has
ended. This property will only
have meaning if at least one
temp files has been saved. If this
value is false, all temp files on
the disk will be erased, and any
files in memory will be discarded.
If this value is true, all temp files
on disk will be kept, and files in
memory will be flushed to disk.

true

com.genesyslab.maxrecordtime
Defines the default (also the
upper limit) for the maxtime
attribute of the <record> tag.

10 minutes

Order of Precedence

To find the property value that will take effect at a particular point in an application, the current form
item is checked first (to see if the property is defined there), and enclosing scopes are checked as
necessary. Here is the full order of precedence for properties:

1. First, look for a property in the current form item (for example, in <field>, <record>, <transfer>, and so
on.). If found, use its value.

2. If not found, check the current form (for example, lookdirectly under <form> or <menu>). If the
property is found, use its value.

3. If not found, check the current document (for example, look directly under <vxml>). If the property is

Creating Voice Apps for GVP

Composer Help 262

found, use its value.
4. If not found, check the current document's application root document (if specified by <vxml

application="..."> in the current document). If the property is found, use its value.
5. Finally, if not found in any of the above, use the setting from the interpreter context for the current call,

which includes the settings in the defaults file (for example, defaults.vxml) and hard-coded default
values that are used if no value is configured anywhere else.

Creating Voice Apps for GVP

Composer Help 263

Voice Block Palette Reference
Composer's palette contains the diagram building blocks. The block categories that appear depend
on what tab is selected above the design area or what workflow or callflow is selected in the Project
Explorer. For example, to see blocks for creating GVP voice applications, click a *.callflow tab or a
callflow in the Project Explorer.

The palette for GVP voice application blocks accesses the following types of blocks:

• Basic Blocks
• Database Blocks
• Computer Telephony Integration (CTI) Blocks
• External Message Blocks
• GVP Blocks
• Reporting Blocks
• Server-Side Blocks
• Outbound Blocks

Also see Single Session Treatments.

Voice Block Palette Reference

Composer Help 264

Tip
Should you accidentally cause the palette to disappear, click the Hide/Show Palette
triangle

Voice Block Palette Reference

Composer Help 265

Voice Blocks Basic
The Basic Blocks provide the GVP VoiceXML element functionalities used to perform IVR activities and
GVP platform extensible object elements:

Basic Blocks
Block Name Usage

Assign Block Assign a computed value/expression or an entered
value to a variable

Branching Block Specify multiple application routes based on a
branching condition

Disconnect Block Explicitly hang-up a phone call
End FCR Block Indicate the end of a recording segment

Entry Block

Begin an application. Only one Entry block can be
present in each application.Sets global error
(exception) handlers. Defines all global application-
level properties, global variables (which appear in
the list of available variables for other blocks in the
diagram), and global commands. Sets default
application scripts and parameters.

Exit Block End the application
Go To Block Direct the application to a specific URL

Grammar Menu Block Uses Grammar Builder files to determine the input
options

Input Block Accepts DTMF or speech input from callers
Log Block Record information about an application
Looping Block Iterate over a sequence of blocks multiple times
Menu Block Collects DTMF and/or speech input from the caller
Prompt Block Play specific data to the caller
Raise Event Block Throw custom events
Record Block Record voice input from the caller

Release ASR Engine Control when the ASR engine(s) being used in the
current session will be released

Set Language Block Changes the current active language from that set
in the Entry block or a previous Set Language block

SNMP Block Send SNMP traps from the application using the
NGI ‘dest’ extension attribute of the <log> tag

Start FCR Block Indicate the start of a recorded audio file

Subdialog Block
Invoke VoiceXML subdialogs, which are a
mechanism for reusing common dialogs and
building libraries of reusable applications.

Transfer Block Transfer the call to another destination

Voice Blocks Basic

Composer Help 266

Block Name Usage

VXML Form Block Embed VXML code directly into a callflow diagram
with using <subdialog>

Use the Link tools to connect the blocks.

Voice Blocks Basic

Composer Help 267

Assign Common Block
Use the Assign common block to assign a computed value/expression or an entered value to a
variable.

See the Query Services block Service Data property for an example of using the Assign block and
Expression Builder to parse a JSON string and assign the service data to a variable.

Function getSIPHeaderValue(headername) returns the SIP header value associated with the given SIP
headername. You may wish to use this function with the Assign block. By default, this option is
disabled for backward compatibility. To set this preference, right-click the Project, select Properties,
Default Logging and check Log Assign block Variable assignments. Applicable for both Java
and .NET Projects.

Starting with 8.1.440.18, Composer Assign blocks are enhanced to generate logging statements as
part of code generation. With this enhancement ORS and MCP logs will show the Assign variables and
expressions.

A new Project-level property, Default Logging, is added to control this logging capability. By default,
this option is disabled for backward compatibility. Applicable for both Java and .NET Projects.

Voice Blocks Basic

Composer Help 268

The Assign block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Assign Data Property

This property assigns a value (expression) to a variable. You select the variable and then enter an
expression, either a literal or one created in Expression Builder.

To select a variable and assign a value:

Voice Blocks Basic

Composer Help 269

1. Click the Assign Data row in the block's property table.

2. Click the button to open the Assign Data to Variables dialog box.
3. Click in the Variable field to display a down arrow.
4. Click the down arrow and select a variable whose value will be evaluated to determine the branching

condition. Default application variables are described in the Entry block for voice applications and the
Entry block for routing applications. You can also use a custom variable.

5. Click under Expression to display the button.

6. Click the button to open Expression Builder. For examples of how to use Expression Builder, see the
Expression Builder topic.

7. Select an operator for the branching condition.Your variable's value will be equal to (==), less than (<),
greater than (>). less than or equal to (<=), greater than or equal to (>=) or not equal to (!=) to value
you enter in the Expression field.

8. In the Expression field, create a value to compare to the variable's value. Enclose the value in single
quotes (' ').

9. Click the button to validate the expression. Syntax messages appear under the Expression Builder
title.

10. Click OK to close Expression Builder and return to the Assign Data to Variables dialog box.
11. You can make multiple variable/value assignments. Click the Add button if you wish to add more

assignments and repeat the steps above.

Editing Expressions

To edit an expression:

1. Click its row under Expression in the Assign Data to Variables dialog box. This causes the button to
appear.

2. Click the button to re-open Expression Builder where you can edit the expression.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

• For callflows, invalid ECMAScript expressions may raise the following exception event: error.semantic.
• For workflows, invalid ECMAScript expressions may raise the following exception events:

error.script.SyntaxError, and error.script.ReferenceError.

You can use custom events to define the ECMAScript exception event handling.

Voice Blocks Basic

Composer Help 270

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under CommonProperties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice Blocks Basic

Composer Help 271

Branching Common Block
The Branching block is used for both routing and voice applications. Use the Branching block as a
decision point in a callflow or workflow. It enables you to specify multiple application routes based on
a branching condition. Depending on which condition is satisfied, the call follows the corresponding
application route. A default path is automatically created once the conditions have been defined. If
the application cannot find a matching condition, it routes the call to the default flow.

Date/Time Functions

You can open Expression Builder from the Condition property and access the following date/time URS
functions (Data Category=URS Functions > Data Subcategory=genesys):

• _genesys.session.timeInZone(tzone)

• _genesys.session.dayInZone(tzone)

• _genesys.session.dateInZone(tzone)

• _genesys.session.day.Wednesday

• _genesys.session.day.Tuesday

• _genesys.session.day.Thursday

• _genesys.session.day.Sunday

• _genesys.session.day.Saturday

• _genesys.session.day.Monday

• _genesys.session.day.Friday

The Branching block has the following properties:

Exceptions Property

The Branching block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 272

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks. You can also define custom
events.

Conditions Property

This property allows you to define scripts for branching conditions and post-processing.

1. Click under Value to open the Branch Node setting dialog box.

Voice Blocks Basic

Composer Help 273

2. Click Add.
3. Change the default Name to a more descriptive name.
4. Under Expression, click under Value to open Expression Builder where you can define a script for a

branching expression.
5. Composer 8.1.410.14 adds a new Post Action column. Click opposite Post Action to open Expression

Builder where you can define a script for post-processing. The post-processing script get executed if the
configured option/condition was selected.

6. Click OK when done.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 274

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ExpressionBuilder

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 275

Disconnect Block
Use the Disconnect block to explicitly hang-up a phone call. It differs from the Exit block as follows:

• When an Exit block is used, if the application was called from a CCXML or CTI application, control is sent
back to the calling application.

• In the case of the Disconnect block, the entire call is terminated.

Notes

• The Disconnect block returns values (a list of variables) back to the calling context, such as a CCXML
application.

• The Disconnect block has no page exceptions.
• There is also a Disconnect Block for use in routing workflows as described below.
• Use the routing Disconnect block and not this Disconnect block when invoking a callflow as part of a

Play Application treatment. GVP 8.x Integration Guide states the following: For a URS-centric
application, the incoming call arrives at a Routing Point DN configured in the SIP Server switch. A
routing strategy loading on the Routing Point executes a Play Application treatment to collect customer
input. SIP Server sends an INVITE specifying the URI for the voice application. Media Control Platform
executes the application. Customer data is collected, then returned to SIP Server in the BYE message.
The routing strategy receives the attached data and determines the next action for the call. The call
will return to URS where the call can be disconnected in the strategy.

The Disconnect block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments. Use this Property to specify a
reason for the disconnect. The content can be either an ECMAScript expression created in Expression
Builder or free-form text. The string should conform to the standard specified in RFC 3326
(http://www.ietf.org/rfc/rfc3326.txt), Reason Header Field for the Session Initiation Protocol (SIP). To
use Expression Builder to create the reason:

1. Click under Value to display the button.

2. Click the button to open Expression Builder. For examples of how to use Expression Builder, see the

Voice Blocks Basic

Composer Help 276

Expression Builder topic.

Return Values Property

Use this property to specify the variable(s) whose value(s) will be returned once the Disconnect block
is executed. To select return variables:

1. Click the Return Values row in the block's property table.

2. Click the button to open the Return Values dialog box.
3. Select individual variables, or click Select all or Deselect all as needed.
4. Click OK to close the Return Values dialog box.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Blocks Basic

Composer Help 277

End FCR Block
Use the End FCR block to indicate the end of a recording segment. There must be a matching End
FCR block for each Start FCR block used.

Note: Starting and stopping at tapped points (as marked by the Start FCR block and either EndFCR
block or the end of call) depends on the Prompt Queuing feature. For this reason, all Prompts
between Start FCR and End FCR should have their Immediate Playback property set to true.

The End FCR block has the following properties:

The End FCR block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 278

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/StartFCRBlock

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 279

Entry Block and Variables
Use an Entry block to begin an application. Only one Entry block can be present in each application.
The Entry block:

• Sets global error (exception) handlers.
• Defines all global application-level properties, global variables (which appear in the list of available

variables for other blocks in the diagram), and global commands. See topic Variables in Callflows.
• Sets default application scripts and parameters.
• Accesses Expression Builder.

The Entry block is used as the entry point for a main callflow or a sub-callflow. It contains the list of all
the variables associated with the callflow (referred to as global variables). Note: Outlinks starting
from the Entry block cannot be renamed or assigned a name through the Properties view. The Entry
block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Entry block has all global exception
events, with the defaults of all, connection.disconnect.hangup, and error. Also see Exception Events.

Note on No Input and No Match Events
When selecting exceptions for the Entry block, use both
com.genesyslab.composer.toomanynoinputs / com.genesyslab.composer.toomanynomatches and
noinput/nomatch to catch all the possible no input and no match events. The selection of
com.genesyslab.composer.toomanynoinputs / com.genesyslab.composer.toomanynomatches is
required when noinput / nomatch exceeds the maximum retries in the lower block. The selection of
noinput / nomatch is required when the lower block does not retry at all.

• com.genesyslab.composer.toomanynoinputs occurs when the number of no inputs exceeds the
maximum retries in the Menu, Input, DBInput, and Record blocks, and the blocks do not have local

Voice Blocks Basic

Composer Help 280

noinput exception ports.
• com.genesyslab.composer.toomanynomatches occurs when the number of no matches exceeds the

maximum retries in the Menu, Input, DBInput, and Record blocks, and the blocks do not have a local
nomatch exception port.

Note on error.badfetch.badxmlpage
NGI no longer supports this event. If upgrading an application from an earlier version of Composer
that supported this event in its Entry object, you will need to modify that object via the Exceptions
property dialog box.

Application Root Property

• Starting with 8.1.410.14, Composer Projects have a default root VXML file (ComposerRoot.vxml)
bundled inside the src folder. This file, which you can edit to create Project-level defaults such as Input
and Menu block variables and values, is present in newly created Projects and upgraded Projects. New
Callflow diagrams have this default root VXML document automatically configured in the Application
Root property of the Entry block.

You have the option to specify a VXML file to be used as an application root document allowing
multiple callflows to share variables. Background: Starting with 8.1.1, each Composer Project can
have (at most) one root document (VXML file). If a Project has no root document, each callflow is its
own stand-alone application. If a Project contains a root document, the set of callflows with Entry
blocks that reference that root document make up the application.

• If a callflow or sub-callflow references an application root document, the variables specified in the
application root become available for selection in all dialogs in that diagram.

• Variables defined in the application root directly under the <vxml> tag become available as global
variables to callflows and sub-callflows that access them.

To select an application root document:

1. Click the Application Root row in the block property table.

2. Click the button to open the Select Resource dialog box.
3. Select the VXML file in the Project src folder and click OK.

Global Commands Property

The Global Commands property sets rootmap elements for the entire application. A rootmap element
is a phrase (user-defined phrase or external grammar) and/or tone the application reacts to at any
time the application is running. Use the Global Commands property to set rootmap elements for the
entire application. The application uses these rootmap elements as global grammars (subsets of a
spoken language that callers are expected to use) in each Input block. Composer creates one outport
for each rootmap element; the outport specifies the application path in the event to which the
rootmap element is matched. Use the Entry block Global Commands property to set rootmap

Voice Blocks Basic

Composer Help 281

elements for a subcallflow as well. Note: The RootMap elements defined in the Entry block do not
apply to blocks inside a subcallflow. To add, delete, or arrange global phrases, DTMF keys, and
grammars:

1. Click the Global Commands row in the block's property table.

2. Click the button to open the Set Rootmap Commands dialog box.

Fields in Set Rootmap Commands Dialog Box

• Name-- Displays the name of the command.
• DTMF Option--Displays the DTMF key to recognize.
• Phrase-- Displays the phrase to recognize.
• Grammar--Displays the built-in or custom grammar used.

Genesys recommends that you use only the GRXML grammar. Otherwise, GSL support--which is not a
part of the VoiceXML 2.1 specification--deprecates over time. Note: Built-in grammar support for
languages other than U.S. English is dependent on the ASR vendor. Before using this feature, make
sure that your ASR Engine supports built-in grammars for your language.

Add Button
Use the Add button to enter global phrases, DTMF keys, and grammars.

1. Click Add to enable Command Details fields.
2. In the Name* box, accept the default name or change it.
3. From the DTMF Option drop-down list, select the global DTMF key.
4. In the Phrase box, type the phrase.
5. In the Grammar drop-down list, select a grammar. The grammar source is the custom or built-in

grammar for recognition.

Up/Down Buttons
Use the Up and Down buttons to reorder your rootmap elements. Select the element you want to
reposition, and then click Up or Down, as necessary.

Delete Button
To delete a phrase, DTMF key, or grammar entry:

1. Select an entry from the list.
2. Click Delete.

Voice Blocks Basic

Composer Help 282

Global Properties Property

This property allows suppression of data within the Nuance 9 platform ASR logs. For more information
on this property, see the Properties topic on the Genesys Voice Platform wiki. Use Global Properties to
select global settings for VXML properties, Automatic Speech Recognition vendor-specific properties
or Text-to-Speech vendor-specific properties. To enter properties and values:

1. Click the Global Properties row in the block's property table.

2. Click the button to open the Global Property Settings dialog box.
3. Click Add to enable the Property Name and Property Value fields.
4. Enter or select a Property Name by doing one of the following:

• Select the Property Name from the drop-down list, or
• Type the Property Name in the Property Name field.

5. Enter or select a Property Value by doing one of the following:

• Select the Property Value from the drop-down list, or
• Type the Property Value in the Property Value field.

6. Click OK.

Scripts Property

Use the Scripts property for including custom JavaScript includes into the application. The JavaScript
functions in the specified .js file can then be used in the Assign or Branching blocks in the expression.

1. For this property, enter the filename of your file (for example: script.js). If there are multiple files to be
loaded, you can delimit by using the | character; for example: script1.js|script2.js.

2. Then place the custom ECMAScript file in the Scripts subfolder of your project.

There is also a Global Variable SCRIPTSDIR, which specifies the default folder for the scripts files (and
works very similar to VOXFILESDIR for audio files).

Variables Property

Variables can be predefined system variables (provided by Composer, which you cannot delete) or
user-defined variables. See the Variables in Callflows topic for more information. Many Composer
blocks have properties that require you to select a variable. Examples:

• The following callflow blocks contain a mandatory Output Result property: Menu, Record, DB Input,
Grammar Menu, Input, Get Access Number, Transfer, and Statistics. After defining variables in the Entry
block, you supply this property by selecting the variable to contain the output result.

Voice Blocks Basic

Composer Help 283

• When creating a new voice project, a Project-level flag, Enable_ICM, controls whether ICM variables are
available for selection and assignment to variables within Composer's Entry block.

• For information on user data and GVPSessionID, see the Project Properties dialog box, Composer
Callflow Option.

To declare for the application or subcallflow:

1. In the Properties tab, click opposite Variables under Value to display the button.
2. Select Project, System, or User Variables.
3. Click the arrow to display the selected type. An example System Variables dialog box is shown below.

The above figure shows the dialog box after clicking the Add button. The Value field for the new
variable (Var0) contains a button to access Expression Builder.

Voice Blocks Basic

Composer Help 284

GVPSessionID System Variable
Composer Projects have a callflow options property page to control how the GVPSessionID system
variable is initialized. It can be used to control if it is initialized from the X-Genesys-GVP-Session-ID
SIP header or the session.com.genesyslab.userdata object.

Restoring System Variable Default Values
Projects created in earlier versions of Composer may throw runtime errors due to incorrectly
initialized system variables after upgrading to Composer 8.1.3. This was due to changes in how
system variables were stored and handled in 8.1.3. To resolve this, the Entry block Variables dialog
adds a button to restore system variables to default values, which can be used to reset variables and
fix initialization. Note that this also removes any custom values set in system variables. As system
variables cannot be updated, after clicking the Restore System Variables Default Values button,
you cannot update the customized system variables.

Starting with 8.1.410.14, you can:

• Invoke the Entry Block variables dialog when a property is selected in the Properties view using ALT+V.
• Enable Composer to automatically declare variables in a Main callflow to match input/output variable

names in Sub-callflows and perform the mapping. For more information, see the auto
synchronization option in Diagram Preferences.

Defining Variables
Important! When defining a variable name, the name:

• Cannot start with APP_ (callflow diagrams).
• Must not start with a number or underscore.
• May consist of letters, numbers, or underscores.

When you define and initialize a variable that is expected to be played as a date later on in the
callflow, define the value using the following format: yyyyymmdd. Example: MyDate=20090618. You
must use this format; Composer does not perform any conversions in this case. When you define and
initialize a variable that is expected to be played as a time later on in the callflow, define a 12 hour-
based value using the following format: hhmmssa or hhmmssp. Example: MyTime=115900a or
MyTime=063700p. Define a 24 hour-based value using the following format: hhmmssh Example:
MyTime=192000h. You must use this format; Composer does not perform any conversions in this
case. If variables are set as part of provisioning by the Genesys VoiceXML provisioning system, and if
these variables have the same names as variables set in the Variables property dialog box, the
VoiceXML provisioning system values take precedence over the global variables set here. Many
blocks enable the use of variables rather than static data. For example, the Prompt block can play the
value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks must be
declared here so that they appear in the list of available variables in other blocks. The value collected
by an Input block or a Menu block is saved as a session variable whose name is the same as the
block Name.

Voice Blocks Basic

Composer Help 285

System Variables

These variables apply only to the Entry block, unless otherwise indicated.

• APP_LANGUAGE--Holds the application language setting. The value should be the RFC 3066 language
tag of an installed language pack. Examples of valid RFC 3066 language tags include en-US and fr-FR.
This setting also acts as a default language for the application. This variable may be set using the Set
Language block for a multilingual application.

• APP ASR LANGUAGE--Holds the language locale for ASR resources. You must define this variable if the
application needs to use a different language locale for ASR from TTS resources.

• GRAMMARFILEDIR--Gives the relative path from the application to the directory that contains the
grammar files. By default, it is set to ../Resources/Grammars. If a voice application supports multiple
languages, you can enable the application to switch between them, by changing the value of this
variable. In the Subcallflow_Start block, the GRAMMARFILEDIR global variables are not defined by
default. This allows the subcallflows to inherit the value of this variable from the main callflow. If the
subcallflow overrides this value, the variable can be defined in the Subcallflow_Start block. (Note:
Composer uses the getGrammarURI() function (from common.js) to build the grammar URL. If you
include http, https, file, rtsp, or rtsps, then it will just use the provided URL (that is, the URL is encoded
and the resultant grammarURI is generated). If not, it will build a URL based on
AppState.GRAMMARFILEDIR).

• VOXFILEDIR--Gives the relative path in the application to the directory that contains the audio files
(.vox/.wav). By default, it is set to ../Resources/Prompts. If a voice application supports multiple
languages, you can enable the application to switch between them, by changing the value of this
variable.

• SCRIPTSDIR--Default location for JavaScript files
• EnableReports--Enables VAR reporting. (Reporting blocks)
• EnableSNMP--Enables the SNMP block, if present in the application
• CallUUID--Session connection Universal ID
• GVPSessionID--The Genesys Userdata Session ID
• LAST_EVENT_NAME--Stores the name of the last event or error that was handled in the Entry block.
• LAST_EVENT_MSG--Stores the message of the last event or error that was handled in the Entry block
• LAST_EVENT_URL--Stores the URL of the last event or error that was handled in the Entry block.
• LAST_EVENT_ELEMENT--Stores the element name of the last event or error that was handled in the

Entry block
• LAST_EVENT_LINE--Stores the line number of the last event or error that was handled in the Entry

block
• EnableFCR--A flag for enabling Full Call Recording
• COMPOSER WSSTUBBING
• App_OPM--Used for fetching OPM parameters. Stores JSON content passed by GVP in session variables.

Available throughout the callflow diagram. The OPM block works with this variable by extracting values
from it into application variables. Available for main callflows only.

• OCS_RecordURI--Used by Outbound blocks. Its default value will be set from userdata passed into the
application. For workflows (SCXML):
_genesys.ixn.interactions[InteractionID].udata.GSW_RECORD_URI.For callflows: (VXML)
session.com.genesyslab.userdata.GSW_RECORD_URI.

Voice Blocks Basic

Composer Help 286

• OCS_URI--Used by Outbound blocks. Holds the OCS resource path ([http|https]://<host>:<port>). Its
default value will be deduced from OCS_Record_URI. You may change this variable value in order to use
a different OCS application for all Outbound blocks in the workflow.

• OCS_Record--Used by Outbound blocks. Holds the Record Handle value deduced from
OCS_Record_URI.

Note: Request URi parameters created in IVR Profiles during the VoiceXML application provisioning
are passed to the Composer generated VoiceXML application as request-uri parameters in the
session.connection.protocol.sip.requesturi session array. An Entry block variable can use
these parameters by setting the following expressions to the variable values: typeof
session.connection.protocol.sip.requesturi['var1'] == 'undefined' ?
"LocalDefaultValue" : session.connection.protocol.sip.requesturi['var1']. If parameters
are set as part of IVR Profiles provisioning in the Genesys VoiceXML provisioning system, and if these
parameters have the same names as variables set in the Entry block's Variables property with the
above mentioned sip.requesturi expression, then the SIP-Request-URI parameters will take
precedence over the user variable values set in the Entry block.

Many blocks enable the use of variables rather than static data. For example, the Prompt block can
play the value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks
must be declared here so that they appear in the list of available variables in other blocks. The value
collected by an Input block or a Menu block is saved as a session variable whose name is the same as
the block name.

Variable Name
You can use the Variable name field for either of the following purposes:

• To enter the name of a new variable.
• To change the name of an existing variable. To do this, select an existing variable from the list of

variables. The variable's name appears in the Variable box, and you can the change its value in the
Value box.

Excluded Characters
The Variable name field will not accept the following special characters:

• less-than sign (<)
• greater-than sign (>)
• double quotation mark ()
• apostrophe (‘)
• asterisk (*)
• ampersand (&)
• pound (#)
• percentage (%)
• semi colon (;)
• question mark (?)

Voice Blocks Basic

Composer Help 287

• period (.)

The variable Value field will not accept the following special characters:

• less-than sign (<)
• greater-than sign (>)
• double quotation mark ()
• apostrophe (‘)
• ampersand (&)
• plus sign (+)
• minus sign (-)
• asterisk (*)
• percentage (%)

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice Blocks Basic

Composer Help 288

Exit Block
Use the Exit block to end the application. There will usually be an Exit block in every main callflow,
unless you use a GoTo block, blind transfer, or other mechanism to end a callflow. Return Mode
should be set to false in the main callflow's Exit block. The Exit block is typically connected to the
connection.disconnect.hangup exception handler. It is also connected to the last block in the
application (for example, when the application wants to play an error message and terminate the
call). You can have multiple Exit blocks inside a callflow. The Exit block has no page exceptions.

Using an Exit Block Inside a Subcallflow

The Subdialog block is used to create subcallflows, which are VoiceXML subdialogs. An Exit block
terminates the subcallflow application. If the control has to be returned to the main application, then
the Return Mode property should be set to true and the user can send a list of parameters to the
main call flow as the output parameters. Name

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Reason Property

This property is visible only for subcallflows. Enter a reason for the implicit ActionEnd to be used for
VAR reporting.

Return Mode Property

This property is visible only for subcallflows. Click the down arrow under Value and select one of the
following:

• true to return control back to the calling callflow.
• false to exit the application.

Voice Blocks Basic

Composer Help 289

Return Values Property

Use this property to specify the variable(s) whose value(s) will be returned once the Exit block is
executed. To select return variables:

1. Click the Return Values row in the block's property table.

2. Click the button to open the Return Values dialog box.
3. Select individual variables (including ICM variables if applicable), or click Select all or Deselect all as

needed.
4. Click OK to close the Return Values dialog box.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Result Property

This property is visible only for subcallflows. Click the down arrow and select one of the following to
be used for VAR reporting:

• UNKNOWN
• SUCCESS
• FAILED

Voice Blocks Basic

Composer Help 290

GoTo Block
Use this block to direct the application to a specific URL. This block enables you to pass parameters in
the current application to the URL by selecting them from the User Parameters list. This block is
normally used to transfer to another voice application. Genesys recommends that you use
subcallflows for modularizing the application and the GoTo block for calling an external application.
Note: If an application enables Voice Application Reporting, Genesys recommends that you use
subcallflows instead of a GoTo block. The GoTo block has no page exceptions. The GoTo block has the
following properties:

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Exceptions Property

Beginning with release 8.1.510.12, the Exceptions property is available in the GoTo block and allows
you to define exception events that can be handled within the block.

Find this property's details under Common Properties for Callflow Blocks.

• The error and error.badfetch standard exceptions are supported.
• You can also define custom events.

Voice Blocks Basic

Composer Help 291

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Parameters

Use to select variables/parameters to pass to the target application. Note: If the Type property is set
to ProjectFile, the Parameters property does not apply. To select parameters (Type property is set to
URL):

1. Click the Parameters row in the block's property table.

2. Click the button to open the Parameters dialog box.
3. Select individual parameters, or click Select all or Deselect all as needed.
4. Click OK to close the Parameters dialog box.

Type

Sets the type of the destination application. There are two options:

• URL--The destination application can be found at the location specified in the Uri property.
• ProjectFile--The destination can be another location inside the same Composer Project.

To select a value for the Type property:

1. Select the Type row in the block's property table.
2. In the Value field, select URL or ProjectFile from the drop-down list.

Voice Blocks Basic

Composer Help 292

URI

Specifies the destination (URL or Composer Project) depending on the value of the Type property. To
set a URL destination for the Uri property (Type property is set to URL):

1. Select the Uri row in the block's property table.
2. In the Value field:

• Type a valid URL, which can be specified as a relative path if the file is in the same project (for
example, .../src/WSJNews.vxml).

• Or select a variable from the drop-down list.

To set a Composer Project destination for the Uri property (Type property is set to ProjectFile):

1. Click the Uri row in the block's property table.

2. Click the button to open the Uri dialog box.
3. Select a Voice Project file in the list.
4. Click OK to close the Uri dialog box.

Fetch Audio Property

Enter the fetchaudio file to play when executing a long-running tasks, such as a server side web
query. By default, Next Generation Interpreter NGI) supplies a built-in fetchaudio file. For information
on GVP support of fetchaudio, see:

• Fetching Properties in GVP Voice XML Help.
• The VoiceXML Properties section of the GVP 8.1 Legacy Genesys VoiceXML 2.1 Reference Manual.
• The Prompt block, VXML Behavior and Queueing of Prompts.

Fetch Audio Delay Property

Enter the length of time to wait at the start of a fetch delay before playing fetchaudio. For more
information, see Fetching Properties in GVP Voice XML Help

Fetch Audio Minimum Property

Enter the minimum length of time to play fetchaudio, once started, even if the fetch result arrives in
the meantime. For more information, see Fetching Properties in GVP Voice XML Help

Voice Blocks Basic

Composer Help 293

Fetch Hint Property

Select prefetch or safe to define when XML data files can be fetched. Selecting safe indicates to only
load the XML data file when needed. For more information, see Fetching Properties in GVP Voice XML
Help.

Fetch Timeout Property

Enter the timeout for fetches. This is not supported when using Nuance (MRCP). An error.badfetch is
thrown when a fetch duration exceeds fetchtimeout. For more information, see Fetching Properties in
GVP Voice XML Help.

Max Age Property

Enter the maximum acceptable age, in seconds, of cached audio resources. For more information,
see Fetching Properties in GVP Voice XML Help.

Max Stale Property

Enter the maximum staleness, in seconds, of expired cached audio resources.For more information,
see Fetching Properties in GVP Voice XML Help.

Voice Blocks Basic

Composer Help 294

Grammar Menu Block

Creating a Simple Grammar Video
Below is a video tutorial on building a simple grammar with the Grammar Menu block.

Important
While the interface for Composer in this video is from release 8.0.1, the steps are the
basically the same for subsequent releases.

Link to video

The Grammar Menu block uses Grammar Builder files to determine the input options.

Menu Block Exception Events

The Menu block has eight local exception events.

• error
• error.noresource
• maxspeechtimeout
• noinput
• nomatch
• error.badfetch.grammar.uri
• error.badfetch.grammar.syntax
• error.badfetch.grammar.load

The Grammar Menu block has the following properties:

Name Property

Find this property's details under Common Properties.

Voice Blocks Basic

Composer Help 295

https://player.vimeo.com/video/79128534?title=0&byline=0&portrait=0

Block Notes

Can be used for both callflow and workflow blocks to add comments.

Exceptions

Find this property's details under Common Properties.

Gbuilder File Property

A Gbuilder file is created using Grammar Builder and may contain grammar-related information for
multiple locales in a proprietary format. The Grammar Menu block can work with the Gbuilder file
directly. The Gbuilder File property is used to select a Gbuilder file in the project. This step also
selects the particular rule Rule ID to use for the Grammar Menu block. Once specified, the Grammar
Menu block creates menu options based on the information contained in the specified Rule ID in the
selected Gbuilder file. To select a grammar builder file and rule:

1. Select the Gbuilder File row in the block's property view.

2. Click the button to open the GBuilder File dialog box.

Grammar builder files that are defined for this Composer Project are shown in the GBuilder Files pane
on the left. These files are usually located in the project folder path: [VoiceProject] > Resources
> Grammars > [locale] > [gbuilderfile].gbuilder . Note: Gbuilder files also contain DTMF
information.

1. Select a grammar builder file in the left pane.
2. Rules defined for the selected grammar builder file are displayed in the Rules in selected file pane to the

right. Select the rule you want to use in this Grammar Menu block, then click OK.

Your selection automatically populates the information for the following three properties: Rule IdRule
TagsMenu Options Note: The Grammar Menu block does not pick up changes automatically if you
change your Gbuilder file. To synchronize the block with the latest changes, click on the Gbuilder File
property. In the popup make sure that the correct Gbuilder file and RuleID are selected. Click OK to
close the dialog box. Your diagram will now reflect any menu options changes made in the Gbuilder
file.

Rule ID Property

The Rule ID property is automatically populated with the rule you selected from the Rules in selected
file pane in the GBuilder File dialog box. (Refer to the Gbuilder File property.) This is a read-only
property in the properties view.

Voice Blocks Basic

Composer Help 296

Rule Tags

The Rule Tags property is automatically populated with the specific rule tags that have been defined
for the rule you selected from the Rules in selected file pane in the GBuilder File dialog box. (Refer to
the Gbuilder File Property and Rule Id property.) This is a read-only property in the properties view.

Language

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Grammar Menu block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Menu Mode

To assign a value to the Menu Mode property:

Voice Blocks Basic

Composer Help 297

1. Select the Menu Mode row in the block's property table.
2. In the Value field, select DTMF, Voice, or Hybrid from the drop-down list.

The DTMF format indicates the menu option mode of input will be via the telephone keypad. Note:
Grammar Builder treats DTMF as another locale. The Voice format indicates the menu option mode of
input will be a voice phrase. The Hybrid menu mode will handle both DTMF and Voice inputs, that is
via telephone keypad and voice phrase. Note: If you select the Hybrid menu mode, you will have to
provide both voice and DTMF values for all menu options.

Menu Options

The Menu Options property is automatically populated with generated menu items (options) that
apply to the selected rule tags in the grammar builder file. You do not modify this property. (Refer to
the Gbuilder File property, Rule ID property, and Rule Tags property.) This is a read-only property in
the properties view.

Clear Buffer

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications with multiple menus, enabling the caller to key ahead the DTMF digits corresponding to
the menu choices. To assign a value to the Clear Buffer property:

1. Select the Clear Buffer row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Interruptible

The Interruptible property does not apply to the Record block. This property specifies whether the
caller can interrupt the prompt before it has finished playing. To assign a value to the Interruptible
property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL. Starting with
8.1.410.14, validation displays a warning message if a resource file does not exist.

Voice Blocks Basic

Composer Help 298

Timeout

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Security

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data entered by the caller for this block as sensitive and will suppress it in platform logs and
metrics. To assign a value to the Security property:

1. Select the Security row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Output Result

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Get Shadow Variables

Shadow variables provide a way to retrieve further information regarding the value of an input item.
By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show GrammarMenu1$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: GrammarMenu1$.duration. To
assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 299

Number of Retries Allowed

This property determines how many opportunities the user will be provided to re-enter the value. If
Use Last Prompt Indefinitely is set to true, this property has no effect; otherwise, the
error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.
2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts

Find this property's details under Common Properties. A selection can only be made if the Number Of
Retries Allowed Property is greater than 0. Starting with 8.1.410.14, validation displays a warning
message if a resource file does not exist.

Use Last Reprompt Indefinitely

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last re-
prompt as the prompt for all further retries. Therefore, the exception handlers that come out for
nomatch and noinput are redundant--even if you set the default exceptions that come out as red dots
on the left-side of the block. To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Use Original Prompts

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Use Single Counter For Nomatch And Noinput

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block

Voice Blocks Basic

Composer Help 300

has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user
gets up to six retry attempts while not exceeding three of each type -- noinput or nomatch. Note: This
property not available on the Record block. To assign a value to the Use Single Counter For Nomatch
And Noinput property:

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 301

Input Block

The Input block accepts DTMF or speech input from callers. It differs from the Menu block in that it
enables taking input that might not belong to a simple choice list (as for the Menu block). It can be
used to collect numerical data; for example, phone numbers, account numbers, amounts, or speech
data, such as a Stock name. It uses speech or DTMF grammars to define the allowable input values
for the user responses. Built-in system grammars are available for data, such as dates and amount.

Important
Built-in grammars may not be available for all languages. If you specify a language
other than U.S. English and refer to an unsupported built-in grammar, a parse error
error.unsupported.builtin will be thrown.

In case of user input blocks (Menu, Input, Record, Transfer), Composer adds a global variable of type
"Block" to the variables list. You can conveniently use this variable for accessing the user input
value. Also see Menu Block, Number of Allowed Attempts Exceeded. The Input block has the following
properties:

Input Block Exception Events

The Input block has eight exception events:

• error
• error.noresource
• maxspeechtimeout
• noinput
• nomatch
• error.badfetch.grammar.uri
• error.badfetch.grammar.syntax
• error.badfetch.grammar.load

Name Property

Please find this property's details under Common Properties.

Voice Blocks Basic

Composer Help 302

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Input block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 303

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing.

Important
This property is mandatory. You must select a variable for the output result even if you
do not plan on using the variable. If this is not done, a validation error will be
generated in the Problems view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications with multiple menus, enabling the caller to key ahead the DTMF digits corresponding to
the menu choices. To assign a value to the Clear Buffer property:

1. Select the Clear Buffer row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts Property

Find this property's details under Common Properties.

Voice Blocks Basic

Composer Help 304

Important
When Type is set to Value and Interpret-As is set to Audio, you can specify an HTTP or
RTSP URL. When Type is set to Variable and Interpret-As is set to Audio, you can
specify a variable that contains an HTTP or RTSP URL. Starting with 8.1.410.14,
validation displays a warning message if a resource file or URL does not exist.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics.
Composer uses the com.genesyslab.private property for the Security property of callflow blocks.
For more information see the GVP 8.1 Voice XML Help.

To assign a value to the Security property:

1. Select the Security row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Grammar Type Property

To assign a value to the Grammar Type property:

1. Select the Grammar Type row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

• builtinBoolean
• builtinCurrency
• builtinDate
• builtinDigits
• builtinNumber

Voice Blocks Basic

Composer Help 305

• builtinPhone
• builtinTime
• externalGrammar

Important
All the builtinXXX selections are grammars that are provide by the platform or the
ASR Engine. Built-in grammar support for locales other than U.S. English is dependent
on the ASR vendor. Before using this feature, make sure that your ASR Engine
supports built-in grammars for your locale. This feature has the following critical
prerequisites: The ASR Engine must support built-in grammars for that language.
Contact your ASR Vendor for details. If the ASR Engine supports the language you
want to use, then you must install the Language Pack for that language on the GVP
Server.

builtinBoolean
Valid inputs include affirmative and negative phrases appropriate to the current locale. DTMF 1
represents " yes," and 2 represents "no." The result is ECMAScript true for yes or false for no. The
value is submitted as the string true or the string false.

builtinCurrency
Valid spoken inputs include phrases that specify a currency amount. For DTMF input, the asterisk (*)
character acts as the decimal point. The result is either a string with the format UUUmm.nn, where
UUU is the three-character currency indicator according to ISO standard 4217:1995, or null if not
spoken by the caller.

builtinDate
Valid spoken inputs include phrases that specify a date, including a month, day, and year. DTMF
inputs are: four digits for the year, followed by two digits for the month, and then two digits for the
day. The result is a fixed-length date string with format yyyymmdd--for example, 20000704. If the
year is not specified, yyyy is returned as ????; if the month is not specified mm is returned as ??; and
if the day is not specified dd is returned as ??.

builtinDigits
Valid spoken or DTMF inputs include one or more digits, 0--9. The result is a string of digits.

builtinNumber
Valid spoken inputs include phrases that specify numbers--for example, one hundred twenty-three, or
five point three. Valid DTMF input includes positive numbers entered using digits and the star (*)
character (to represent a decimal point). The result is a string of digits from 0-9 and that can
optionally include a decimal point (.), and/or a plus sign (+) or minus sign (-).

Voice Blocks Basic

Composer Help 306

builtinPhone
Valid spoken inputs include phrases that specify a phone number. DTMF star (*) represents x. The
result is a string that contains a telephone number consisting of a string of digits and optionally, the
character x to indicate a phone number with an extension--for example, 8005551234x789."

builtinTime
Valid spoken inputs include phrases that specify a time, including hours and minutes. The result is a
five-character string in the format hhmmx, where x is either a for AM, p for PM, h to indicate a time
specified according to the 24-hour clock, or ? to indicate an ambiguous time. Because there is no
DTMF convention for specifying AM/PM, in the case of DTMF input, the result is always end with h
or ?. If the field value is subsequently used in a prompt, the value is spoken as a time appropriate to
the current locale.

externalGrammar
The application can also define an external grammar. The grammars can be written using the GRXML
Editor, or GRXML files can be imported into the Composer Project. Look at the User Input Project voice
application template in Composer for an example of the use of an external grammar file. Note for
Voice Application Developers When developing a VoiceXML application, you must set the web
server connection timeout so that it is appropriate to the task that the application performs. It should
be greater than one or all of the following callflow applications:

• Maximum talk time
• Maximum recording time
• Maximum wait time for a user input

Input Grammar Dtmf Property

Important
Multiple grammars by using “|” is supported only when literal values are used and not
for expressions and variables. Also, the grammar file URI must be specified within
single quotes.

Use the Input Grammar Dtmf (Dual Tone Multi-Frequency as described below) property to specify the
DTMF Grammar for the Input Block. The DTMF Grammar is processed and handled by GVP. In the case
of external grammars, this specifies the actual path of the grammar file / resource for DTMF
Grammars. This is only valid when the Grammar Type is externalGrammar and Input Mode is dtmf or
hybrid. To assign a value to the Input Grammar Dtmf property:

1. Select the Input Grammar Dtmf row in the block's property table.
2. In the Value field, select a value from the drop-down list. >br>

Voice Blocks Basic

Composer Help 307

Values are the Voice Application Variables described under the Variables property. You can specify
multiple grammars by separating the grammars with the "|" character.

Multiple Inputs:

Single Input:

About Dual Tone Multi Frequency (DTMF) Signaling
DTMF signaling is used for telecommunication signaling over analog telephone lines in the voice-
frequency band between telephone handsets and other communications devices and the switching
center. The version of DTMF used for telephone tone dialing is known by the trademarked term,
Touch-Tone. There are some situations where the interpreter (NGI) cannot accept DTMF keypresses
immediately as input. In these situations, the keypresses are stored in the DTMF input buffer, for
possible later use as input. Throughout the execution of the application, the interpreter must decide
whether to save the current contents of the DTMF input buffer (and use them at the next input state),

Voice Blocks Basic

Composer Help 308

or to discard them. Buffering DTMF input can be useful in allowing typeahead, where users input
DTMF for multiple fields rapidly, separated by the termchar. Whatever input is left after the first
termchar, may be used in subsequent fields, meaning that the user does not have to wait to hear
each prompt.

Input Grammar Voice Property

Important
Multiple grammars by using “|” is supported only when literal values are used and not
for expressions and variables. Also, the grammar file URI must be specified within
single quotes.

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block. If you are
writing hybrid applications that allow both DTMF and Speech input, specify both the DTMF and Voice
grammars. The Voice Grammar is sent to the ASR Engine for processing, whereas the DTMF grammar
is processed by GVP. As a result, you need two separate grammars for Voice and DTMF in the case of
hybrid applications that allow both Voice and DTMF inputs. In the case of external grammars, this
specifies the actual path of the grammar file / resource for ASR Grammars.. This is only valid when
Grammar Type is externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input
Grammar Voice property:

1. Select the Input Grammar Voice row in the block's property table.
2. In the Value field, select a value from the drop-down list. You can specify multiple grammars by

separating the grammars with the "|" character.

Values are the Voice Application Variables described under the Variables Property.

Multiple Inputs:

Voice Blocks Basic

Composer Help 309

Single Input:

Input Mode Property

To assign a value to the Input Mode property:

1. Select the Input Mode row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

• dtmf
• voice
• hybrid

DTMF
The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice
The Voice format indicates the menu option mode of input will be a voice phrase.

Hybrid
The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase.

Voice Blocks Basic

Composer Help 310

Slot Property

The Slot property enables you to specify the slot name of the return value from the grammar. If the
slot name is not specified, it is assumed that the grammar will return the value of a slot having the
same name as the INPUT block itself. To provide a slot name:

1. Select the Slot row in the block's property table.
2. In the Value field, type a slot name that conforms to the restrictions above.

Input Termination Character Property

The Input Termination Character property defines any character that callers can input in order to
indicate that they have finished entering data. For example, the prompt given to the caller may say
"Enter your account number, and then press the pound key." The pound key is the input-ending
character. To provide a value for the input termination character:

1. Select the Input Termination Character row in the block's property table.
2. In the Value field, type a value for a character to represent the end of the input string.

A typical value that is often used, as indicated above, is: # Example:

• To use # or * then type the value as # or *

Warning
Only 1 character can be used as the termination character.

Inter Digit Timeout Property

The Inter Digit Timeout property defines the longest wait time between input characters before a
timeout is generated. This is mandatory if dtmf is selected as the Input Mode. Note: Inter Digit
Timeout property is applicable only for DTMF input. To provide an Inter Digit timeout value:

1. Select the Inter Digit Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Voice Blocks Basic

Composer Help 311

Maximum Input Digits Property

Tip
This property only applies if the builtinDigits grammar is selected.

The Maximum Input Digits property defines the maximum number of characters that the caller may
input. If the input is variable, an input character such as pound sign (#) should be used to terminate
the input. This is mandatory if dtmf is selected as the Input Mode. To provide a value for the
maximum number of input digits:

1. Select the Maximum Input Digits row in the block's property table.
2. In the Value field, type a value for the maximum number of input digits.

Minimum Input Digits Property

Tip
This property only applies if the builtinDigits grammar is selected.

The Minimum Input Digits property defines the minimum number of characters that the caller must
input. This is mandatory if dtmf is selected as the Input Mode. To provide a value for the minimum
number of input digits:

1. Select the Minimum Input Digits row in the block's property table.
2. In the Value field, type a value for the minimum number of input digits.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. By setting this property to true, it will expose the block’s shadow variable within the
callflow. When enabled, the shadow variable will be included in the list of available variables. (For
example, the Log block’s Logging Details will show Input1$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: Input1$.duration. Shadow
variables can provide platform-related information about the interaction/input. For example, for
speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. To assign a value
to the Get Shadow Variables property:

Voice Blocks Basic

Composer Help 312

1. Select the Get Shadow Variables row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Number Of Retries Allowed Property

The Number Of Retries Allowed property determines how many opportunities the user will be
provided to re-enter the value. If Use Last Prompt Indefinitely is set to true, this property has no
effect; otherwise, the error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.
2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts Property

Find this property's details under Common Properties.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt
as the prompt for all further retries. In this case the NoMatch and NoInput exception handlers will
never get executed, as the retry loop keeps executing forever. To assign a value to the Use Last
Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 313

Use Single Counter For Nomatch And Noinput Property

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block
has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user
gets up to six retry attempts while not exceeding three of each type -- noinput or nomatch.

Tip
This property not available on the Record block.

To assign a value to the Use Single Counter For Nomatch And Noinput property:

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 314

Log Common Block
Use a Log block to record information about an application. For example, you can log caller-recorded
input collected while an application is running or error messages. You can use the Log block for any of
the following purposes:

1. Informational – To log the application specific data
2. Error – for logging error details
3. Warning – to flag any warnings
4. Debug – for debugging

The categories in the Log Level property correspond to the above.

When used for a callflow, the Log block writes the log to the Genesys Voice Platform logs (Media
Control Platform) using the VoiceXML <log> tag.

The Log block has the following properties:

The Log block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

For callflows, invalid ECMAScript expressions may raise the following exception events:
error.semantic. For workflows, invalid ECMAScript expressions may raise the following exception
events:

• error.log.ReferenceError

Voice Blocks Basic

Composer Help 315

• error.illegalcond.SyntaxError

• error.illegalcond.ReferenceError

You can use custom events to define the ECMAScript exception event handling.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Label Property

This property applies to workflows only. It provides meta-data for the logging details.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Blocks Basic

Composer Help 316

Looping Common Block

Use this block to iterate over a sequence of blocks multiple times in the following scenarios:

1. Iterate over a sequence of blocks based on a self-incrementing counter (FOR).
2. Iterate indefinitely until an exit condition is met (WHILE).
3. Iterate over records/data returned by the DB Data block (CURSOR/FOREACH). Also, populate variables if

variables mapping is defined.
4. Iterate over data returned by Context Services blocks (FOREACH). Also, populate variables if Variables

Mapping is defined.
5. Iterate over JSON Array defined in the application.

For scenarios 1 and 2 above, use the Looping block with a reference to the block retrieving the data.
Scenarios 3 and/or 4 can be used in conjunction with 1 or 2, in which case the loop will exit when
either of the exit conditions is met.

Prerequisite

You must perform the following steps in order for the Looping block to be used to iterate over data
returned by the DB Data block:

1. Create a folder named Scripts in the Project folder.
2. In the Entry block, specify a value for the Scripts property such as ../include/DBRecordSetAccess.js

The Looping block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice Blocks Basic

Composer Help 317

Counter Initial Value Property

A Counter variable controls the number of loops. Specify the initial value by entering a positive
integer (including zero) or selecting the variable that contains the initial value. Composer will
increment the Counter variable after each iteration. The value of the Counter variable is available
after the looping has exited. This is a mandatory property if the Counter Variable property is
specified.

Counter Variable Property

Enter a name for the variable used to store the Counter value or select the variable that contains the
name. This is a mandatory property if the Counter Initial Value property is specified.

Current Record Variable Property

Select a variable to be used to store the current record when iterating over records. Composer will
assign the current record after each iteration. This property is ignored if the Data Source Property is
not set

Data Source Property

Specify a block reference to the DB Data or a Context Services block (with Variables Mapping
support) that provides the data to be iterated or select the variable that contains a JSON Array. This is
a mandatory property if Counter Initial Value and Counter Variable are not specified.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Counter Max Value Property

Specify the maximum value by entering a positive integer greater than the initial value or selecting
the variable that contains the maximum value. When the Counter variable reaches the maximum
value, then the block connected to the Exit port is executed. This is a mandatory property if the
Counter Variable property is specified or if the Data Source property is not specified.

Voice Blocks Basic

Composer Help 318

Exit Expression Property

This property is optional. If specified, prior to each iteration the exit expression is evaluated. If true,
the flow goes out via the Exit port of the block. This condition is used in conjunction with max records
(if Data Source is specified) or Counter Max Value (if Counter Variable is specified). To enter an exit
expression

1. Opposite the Exit Expression property, click under Value to display the button.

2. Click the button to open Expression Builder. For examples of how to use Expression Builder, see the
Expression Builder topic.

3. Create the exit expression and click OK.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Blocks Basic

Composer Help 319

Using the Looping Block (Counter-based without a Data Source)

1. Add a Looping block and connect the previous block outport to the Looping block.
2. Connect the Next outport to the sequence of connected blocks.
3. Connect the outport of the last block in the sequence in step 2 back to the looping block to form a loop.
4. Connect the Exit outport of the looping block to the block(s) to continue processing after the loop has

exited. The diagram when a looping block is used should appear as follows:

FOR loop: To iterate over the PromptCounter block 10 times, the following properties are set:

1. Counter Initial Value is 1.
2. Counter Variable Name is Variable(MyCounterVariable).
3. Counter Max Value is 10.

WHILE loop: To iterate over the PromptCounter block until a condition is satisfied, the following
property is set: Exit expression is loginSuccessful != true.

Voice Blocks Basic

Composer Help 320

Using the Looping Block with a DB Data/Context Services Block

1. Add a Looping block and connect the DB Data/Context Services block outport to the Looping block.
2. Connect the Next outport to the sequence of connected blocks.
3. Connect the outport of the last block in the sequence in step 2 back to the looping block to form a loop.
4. Connect the Exit outport of the looping block to the block(s) to continue processing after the loop has

exited. The diagram when a looping block is used should appear as follows:

CURSOR/FOREACH loop: To iterate over the PromptColumn1 block for each record returned by the
DBData1 block, the following property is set: Data Source = Block Reference (DBData1) This example
assumes variables were mapped for Column1 in DB Data1. If variables were not mapped, then
another Assign block would be needed to store the value into a variable and the variable is then
specified in the PromptColumn1 block.

Voice Blocks Basic

Composer Help 321

Menu Block
The Menu block collects DTMF and/or speech input from the caller. Typically, you use it for directed
input choices (such as selecting to pay bills, get account balances, and so on) so that users are
directed to the correct place in the application to perform their transactions, talk to an operator, or
other options. In case of speech applications, tones can be associated with phrases to allow either
speech or DTMF input from the caller. The phrases and tones are defined in the Menu tab. In case of
user input blocks (Menu, Input, Record, Transfer), Composer adds a global variable of type "Block" to
the variables list. You can conveniently use this variable for accessing the user input value. The
Menu block has the following properties:

Menu Block Exception Events

The Menu block has four local exception events as described in Exception Events.

• error
• error.noresource
• noinput
• nomatch

Number of Allowed Retries Exceeded
Assume you need to configure the following use case:

1. User is allowed one invalid entry attempt and one no input attempt. User will then be re-prompted and
given a chance to repeat the attempt.

2. When all allowed attempts are exceeded, the user hears a prompt (something like You have exceeded
the number of possible retries; please call us later when you have correct information. Good bye).

3. At this point, the call should be terminated (or transferred to an agent or some other action taken.

To handle step 2 during application design: In Menu/Input blocks, move exceptions (nomatch,
noinput) to supported events. You can then define the flow path(s) for the case when number of
attempts is exceeded. The callflow below illustrates this configuration:

Voice Blocks Basic

Composer Help 322

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Menu block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

Voice Blocks Basic

Composer Help 323

language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Menu Mode Property

To assign a value to the Menu Mode property:

1. Select the Menu Mode row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

DTMF
The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice
The Voice format indicates the menu option mode of input will be a voice phrase.

Hybrid
The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase. Note: If you select the Hybrid menu mode, you will have to provide both voice and

Voice Blocks Basic

Composer Help 324

DTMF values for all menu options.

Menu Options Property

Use the Menu Options property to add phrases and/or tones to the VoiceMap. To add, delete, or
arrange menu options:

1. Click the Menu Options row in the block's property table.

2. Click the button to open the Menu Options dialog box.Available Menu Details fields depend on the
option selected in the Menu Mode property.

For DTMF mode:

• Name*-- Displays the name of the menu option.
• DTMF-Option*--Indicates where the option appears on the menu (1 for first option, 2 for second option,

and so on).
• Return Value*--Displays the menu option's return value.
• Post Action*--Specify a script (optional).

For Voice mode:

• Name*-- Displays the name of the menu option.
• Voice-Option*--Allows input of a voice phrase that will be played for the menu option.
• Return Value*--Displays the menu option's return value.
• Post Action*--Specify a script (optional).

For Hybrid mode:

• Name*-- Displays the name of the menu option.
• DTMF-Option*--Indicates where the option appears on the menu (1 for first option, 2 for second option,

and so on).
• Voice-Option*--Allows input of a voice phrase that will be played for the menu option.
• Return Value--Displays the menu option's return value.
• Post Action*--Specify a script (optional).

Menu Options Table
In a new Menu block, four menu options populate the Menu Options table by default. To set or change
one of the existing menu options:

1. Select a menu option in the Menu Options table to enable Menu Options fields.

Voice Blocks Basic

Composer Help 325

2. In the Name* box, change the default name to a more descriptive name.
3. From the DTMF-Option* drop-down list, select a numeric value to indicate the order that this option will

appear in the menu.
4. In the Return Value box, type a return value for this menu option.
5. Composer 8.1.410.14 adds a new POST ACTION column. Click to open Expression Builder where you

can define a script for post-processing. The Post processing script get executed if the configured option/
condition was selected.

Add Button

Use the Add button to add a new menu option.

1. In the Name* box, change the default name to a more descriptive name.
2. From the DTMF-Option* drop-down list, select a numeric value to indicate the order that this option will

appear in the menu.
3. In the Return Value box, type a return value for this menu option.

Up/Down Buttons

Use the Up and Down buttons to reorder your menu option elements. Select the element you want to
reposition, and then click Up or Down, as necessary.

Delete Button

To delete a menu option:

1. Select an entry from the list.
2. Click Delete.

Repeat Menu Option Property

Use for specifying a Repeat DTMF key that will cause the menu to be replayed to the caller, from the
beginning. The generated VXML will use a <reprompt/> when this DTMF is entered by the caller.
Composer's variable support and application root document support allows specifying the same key

across blocks. To enable the re-prompting functionality for both DTMF and ASR, you can connect a
Menu block outport back to the Menu block itself. To specify:

1. Click the Repeat Menu Options row in the block's property table.

2. Click the button to open the Repeat Menu Options dialog box.
3. Click Add.
4. Name the option.
5. Click the down arrow and select a number to indicate where the option appears on the menu (1 for first

option, 2 for second option, and so on).

Voice Blocks Basic

Composer Help 326

6. Specify the menu option's return value.
7. Click OK.

Use Utterance to Segment Property

Select true or false. You can use this property for Menu block segmentation based on input
utterance (the raw string of words that were recognized by the platform). If set to false, Menu block
segmentation is based on menu options or return values.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics. To
assign a value to the Security property:

1. Select the Security row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications the caller is familiar with. For example, the caller hears a welcome prompt but knows the
next prompt will solicit the caller's input or menu selection. The caller may start inputting with dtmf
while the welcome prompt plays and expect the input to carry forward. To assign a value to the Clear
Buffer property:

1. Select the Clear Buffer row in the block's property table.

Voice Blocks Basic

Composer Help 327

2. In the Value field, select true or false from the drop-down list.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL. Starting with
8.1.410.14, validation displays a warning message if a resource file does not exist.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. By setting this property to true, it will expose the block’s shadow variable within the
callflow. When enabled, the shadow variable will be included in the list of available variables. (For
example, the Log block’s Logging Details will show Menu1$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: Menu1$.duration. Shadow
variables can provide platform-related information about the interaction/input. For example, for
speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. To assign a value
to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 328

Number of Allowed Attempts Exceeded Property

Determines how many opportunities the user will be provided to re-enter the value. If Use Last
Prompt Indefinitely is set to true, this property has no effect; otherwise, the
error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.
2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts Property

Find this property's details under Common Properties.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt
as the prompt for all further retries. Therefore, the exception handlers that come out for nomatch and
noinput are redundant--even if you set the default exceptions that come out as red dots on the left-
side of the block. To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Use Single Counter For Nomatch And Noinput Property

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block
has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user

Voice Blocks Basic

Composer Help 329

gets up to six retry attempts while not exceeding three of each type -- noinput or nomatch. Note: This
property not available on the Record block. To assign a value to the Use Single Counter For Nomatch
And Noinput property:

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 330

Prompt Block
Use the Prompt block to play specific data to the caller. The Prompt block has no page exceptions.
The Prompt block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Prompt block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 331

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications the caller is familiar with. For example, the caller hears a welcome prompt but knows the
next prompt will solicit the caller's input or menu selection. The caller may start inputting with dtmf
while the welcome prompt plays and expect the input to carry forward. To assign a value to the Clear
Buffer property:

1. Select the Clear Buffer row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Immediate Playback Property

Important! See Note in Timeout section below.

• When Immediate Playback is set to true, prompts are played immediately on the execution of the
prompt without queuing them.

• When Immediate Playback is set to false (default), the interpreter goes to the transitioning state and
queues the TTS Prompt until the interpreter waits for an input (such as the Menu, Input, Record,and
Transfer blocks.

To assign a value to the Immediate Playback property:

1. Select the Immediate Playback row in the block's property table.
2. In the Value field, select true or false from the drop-down list. Selecting false will causes prompts only

to be played when waiting for input. Set to false if you want prompts to be played consistent with the
VXML default behavior as described below. Otherwise select true to have Composer force immediate
playback.

Voice Blocks Basic

Composer Help 332

VXML Behavior and Queueing of Prompts

A prompt gets played only when the platform is waiting for input. As described in Voice Extensible
Markup Language (VoiceXML) Version 2.0, section 4.1.8, a VoiceXML interpreter is at all times in one
of two states:

• waiting for input in an input item (such as <field>, <record>, or <transfer>), or
• transitioning between input items in response to an input (including spoken utterances, dtmf key

presses, and input-related events such as a noinput or nomatch event) received while in the waiting
state. While in the transitioning state no speech input is collected, accepted or interpreted...

The waiting and transitioning states are related to the phases of the Form Interpretation Algorithm as
follows:

• the waiting state is eventually entered in the collect phase of an input item (at the point at which the
interpreter waits for input), and

• the transitioning state encompasses the process and select phases, the collect phase for control items
(such as <block>s), and the collect phase for input items up until the point at which the interpreter
waits for input.

An important consequence of this model is that the VoiceXML application designer can rely on all
executable content (such as the content of <filled> and <block> elements) being run to completion,
because it is executed while in the transitioning state, which may not be interrupted by input. While
in the transitioning state, various prompts are queued, either by the <prompt> element in
executable content or by the <prompt> element in form items. In addition, audio may be queued by
the fetchaudio attribute. The queued prompts and audio are played either

• when the interpreter reaches the waiting state, at which point the prompts are played and the
interpreter listens for input that matches one of the active grammars, or

• when the interpreter begins fetching a resource (such as a document) for which fetchaudio was
specified. In this case the prompts queued before the fetchaudio are played to completion, and then, if
the resource actually needs to be fetched (i.e. it is not unexpired in the cache), the fetchaudio is played
until the fetch completes. The interpreter remains in the transitioning state and no input is accepted
during the fetch.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Note: For Prompts to be interruptible, there must be a an Input block (Menu, Input, etc.) in the
execution path. If there are no such blocks further down in the execution path, the Interruptible
property has no effect. If a Backend or Subdialog block has to be used after the Prompt block, insert
an Input block before the Backend or Subdialog block for the prompt to be uninterruptible.

Voice Blocks Basic

Composer Help 333

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL. Starting with
8.1.410.14, validation displays a warning message if a resource file does not exist.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Note: Composer does not honor the Timeout setting if you keep the Immediate Playback default
setting (=false); for example, where sequential prompts are used. In order for Composer to honor the
timeout, you must set Immediate Playback to true.

Voice Blocks Basic

Composer Help 334

Raise Event Block
Use the Raise Event block for Composer to throw custom events. You specify the event name and a
message, which is selection of a dynamic variable. It is a terminating block (can end an application
instead of an Exit block). Orchestration Server 8.1.2+ versions are required for Raise and Cancel
Event blocks.

Also see CustomEvents.

The Raise Event block has the following properties:

• The Raise Event block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Delay Property

Enter the timeout or select a variable. Maps to <send delay>.

Unit Property

Select seconds or milliseconds for the delay. Maps to <send delay>.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice Blocks Basic

Composer Help 335

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Event Property

Select the variable or enter a value. Maps to <send event>.

Parameters Property

Add a list of key-values. Maps to <param>.

Enable Status

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Blocks Basic

Composer Help 336

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Record Block
The Record block records voice input from the caller. Also see Number of Allowed Attempts Exceeded
Property. In case of user input blocks (Menu, Input, Record, Transfer), Composer adds a global
variable of type "Block" to the variables list. You can conveniently use this variable for accessing the
user input value. The Record block has the following properties: Record Block Exception Events The
Record block has four exception events as described in Exception Event Descriptions:

• error
• error.badfetch
• noinput]] (supported by default)
• error.com.genesyslab.composer.recordCapture.failure

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Record block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Voice Blocks Basic

Composer Help 337

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Web Server Record File Name Property

User-defined variable (to be assigned) containing the file name of the recorded file located in the
folder as specified in the Capture Location property.

1. Select the Web Server Record File Name row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

Voice Blocks Basic

Composer Help 338

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL. Starting with
8.1.410.14, validation displays a warning message if a resource file does not exist.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Audio Format Property

This property specifies the audio format for the recording.

1. Select the Audio Format row in the block's property table.
2. In the Value field, select a format value from the drop-down list.

You can modify this value in order to specify enhanced format information such as the codec and the
rate as in the following: audio/x-wav;codec=g726;rate=<rate>

Note: You can specify a bit rate as shown in the above example only for the g726 codec.

Beep Before Recording Property

The Beep Before Recording property indicates whether a beep sound will be played for the caller just
before recording begins. When set to true, a beep sound will be played; when set to false, no beep
will be played. To assign a value to the Beep Before Recording property:

1. Select the Beep Before Recording row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Dtmf Term Character Property

The Dtmf Term Character property defines any character that callers can input in order to indicate
that they have finished entering data. For example, the prompt given to the caller may say "Enter

Voice Blocks Basic

Composer Help 339

your account number, and then press the pound key." The pound key is the Dtmf-ending character. To
provide a value for the Dtmf Term Character:

1. Select the Dtmf Term Character row in the block's property table.
2. In the Value field, type a value for a character to represent the end of the Dtmf string.

A typical value that is often used, as indicated above, is: # If several different DTMF tones could be
used to indicate the end of data entry, type all values for the supported tones. No separation signs or
characters are required. Examples:

• To use # or * then type the value as #*
• If any numeric key could be used for termination, type the value as 1234567890*#

Final Silence Property

The value supplied for the Final Silence property indicates the amount of silence (in seconds) that is
allowed to elapse before recording will be stopped. The default value is 3 seconds. To provide a value
for the Final Silence property:

1. Select the Final Silence row in the block's property table.
2. In the Value field, type a value for the allowable final silence before recording is stopped.

Max Duration Property

In the context of a Record block, the Max Duration property specifies the maximum recording
duration. The default is 60 seconds.

To provide a value for the maximum recording duration:

1. Select the Max Duration row in the block's property table.
2. In the Value field, type a value for the maximum recording duration.

For more information on this property, refer to the Record VXML tag topic in GVP 8.1 Voice XML Help.

Min Duration Property

In the context of a Record block, the Min Duration property specifies the minimum allowed recording
duration. The default is 1 second. To provide a value for the minimum recording duration:

1. Select the Min Duration row in the block's property table.
2. In the Value field, type a value for the minimum recording duration.

Voice Blocks Basic

Composer Help 340

Capture Filename Property

A value for the Capture Filename property is required when the Capture Filename Type property is set
to the value useSpecified. To provide a filename for the captured recording:

1. Select the Capture Filename row in the block's property table.
2. In the Value field, you can:

• Type a name for the recording file.
• Click the down arrow and select a variable.

Capture Filename Prefix Property

A value for the Capture Filename Prefix property is required when the Capture Filename Type property
is set to the value usePrefix. To provide a prefix for the captured recording filename:

1. Select the Capture Filename Prefix row in the block's property table.
2. In the Value field, you can:

• Type a value for the recording file prefix.
• Click the down arrow and select a variable.

Capture Filename Type Property

The Capture Filename Type property indicates the type of the filename for saving the recording. To
assign a value to the Capture Filename Type property:

1. Select the Capture Filename Type row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

• auto-generate a recording filename.
• usePrefix' to add the prefix value specified in the Capture Filename Prefix property to the default name

that is generated for the recording.
• useSpecified to use the value specified in the Capture Filename property as the filename for the

recording. In this case, the file will be overwritten for each call.

Capture Location Property

The Capture Location property specifies the destination path on the Web Application server where the
recording is to be saved.

Voice Blocks Basic

Composer Help 341

If no location is specified, the recordings are saved in the working directory the web application
server process. This location may change depending on the web server environment, and therefore,
it is recommended that a fixed location is always specified in the Capture Location property. To
specify a capture (recording) location:

1. Click the Capture Location row in the block's property table.
2. Type a file path where the recording is to be saved that is located on the web server hosting the

application. If the web server is running on Linux, a UNIX-style path can be entered. Composer will not
validate the path.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics. To
assign a value to the Security property:

1. Select the Security row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt
as the prompt for all further retries. Therefore, the exception handlers that come out for nomatch and
noinput are redundant--even if you set the default exceptions that come out as red dots on the left-
side of the block. To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. They can provide platform-related information about the interaction/input. For example,
for speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. By setting this
property to true, it will expose the block’s shadow variable within the callflow. When enabled, the
shadow variable will be included in the list of available variables. (For example, the Log block’s
Logging Details will show Record1$.) A shadow variable is referenced as blockname$.shadowVariable,
where blockname is the value of the input item's name attribute, and shadowVariable is the name of
a specific shadow variable, for example: Record1$.duration. To assign a value to the Get Shadow
Variables property:

1. Select the Get Shadow Variables row in the block's property table.

Voice Blocks Basic

Composer Help 342

2. In the Value field, select true or false from the drop-down list.

Number of Retries Allowed Property

The Number Of Retries Allowed property determines how many opportunities the user will be
provided to re-enter the value. If Use Last Prompt Indefinitely is set to true, this property has no
effect; otherwise, the error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.
2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts Property

Find this property's details under Common Properties. Starting with 8.1.410.14, validation displays a
warning message if a resource file does not exist.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 343

Release ASR Engine Block
Use the Release ASR Engine block to control when the ASR engine(s) being used in the current
session will be released. The Release ASR Engine block has the following properties: The Release ASR
Engine block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Engine Name Property

The optional Engine Name property specifies the name(s) of the ASR engine(s) to release. If no
engine is specified, all open ASR engines will be released. To specify an ASR engine to release:

1. Select the Engine Name row in the block's property table.
2. In the Value field, type the name of the ASR engine to release.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 344

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 345

Script Block
Script block is used to write custom ECMAScript code and VoiceXML code. The Script block has the
following properties:

Name Property

Click under Value and enter the block name. Composer will use the name to identify the block in the
diagram and as the state name in the code.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Use to configure the exception nodes, with each port being hooked up to an event configured by you
and selectable using Add Custom Event. Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Voice Blocks Basic

Composer Help 346

Enable Status Property

Find this property's details under Common Properties.

Script Property

Click under Value to open ExpressionBuilder where you can enter the code.

Voice Blocks Basic

Composer Help 347

Set Language Block
The Set Language block changes the current active language from that set in the Entry block or a
previous Set Language block. The language specified will be used for all subsequent prompts and
grammars. This updates the APP LANGUAGE and APP ASR LANGUAGE global variables to the
specified values. All audio and grammar resources will get picked from the specified language folder
under the Resource folder of the Composer Project. Set Language is only applicable for audio and
grammar files in Composer. Note: Locales that are not defined in Composer must be manually set in
the diagram’s Assign block. Example: ASR LANGUAGE=’te-IN’ Also see topic Developing Multi-Lingual
Applications. The Set Language block has the following properties: The Set Language block has no
page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Language

To set the active language for prompts and grammars:

1. Select the Language row in the block's property table.
2. In the Value field, select one of the following:

• A language from the list of locales defined in the Project settings.
• A variable that contains the active language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 348

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 349

SNMP Block
Use the SNMP block to send SNMP traps from the application. This uses the NGI ‘dest’ extension
attribute of the <log> tag. All application-generated SNMP traps are mapped to a single TrapID as
defined by the MCP. The EnableSNMP voice application variable is a flag to turn SNMP traps on or off
from the SNMP block. The SNMP block has the following properties: The SNMP block has no page
exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 350

Message Property

The Message property uses a dynamic variable as the message for the SNMP trap. To assign a
variable as an SNMP trap:

1. Select the Message row in the block's property table.
2. In the Value field, enter the name of the variable containing the message for the SNMP trap.

The SNMP block will append the following information to the log message:

• session-id
• block name

The format will be : <session-id>::<block-name>::<log message>

Voice Blocks Basic

Composer Help 351

Start FCR Block
Use the Start FCR (Start Full Call Recording) block to indicate the start of a recorded audio file. You
specify the audio format of the recorded file, which is saved in the MCP folder specified in the Capture
Location property. Once recording has started, all interactions will be recorded the End FCR block is
reached or the call is terminated Notes:

• Starting and stopping at tapped points (as marked by the Start FCR block and either EndFCR block or
the end of call) depends on the Prompt Queuing feature. For this reason, all Prompts between Start FCR
and End FCR should have their Immediate Playback property set to true.

• The enableFCR system variable in the Entry block must be set to true in order to use this block.

The Start FCR block has the following properties: The Start FCR block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Audio Format Property

This property specifies the audio format for the recording.

1. Select the Audio Format row in the block's property table.
2. In the Value field, select an audio format value from the drop-down list.

The following audio formats are currently supported:

• audio/vox
• audio/basic
• audio/x-alaw-basic
• audio/x-g726-24
• audio/x-g726
• audio/x-adpcm

Voice Blocks Basic

Composer Help 352

• audio/adpcm
• audio/x-adpcm8
• audio/x-g726-40
• audio/L8
• audio/L16
• audio/x-wav
• audio/wav
• audio/x-wav;codec=ulaw
• audio/wav;codec=ulaw
• audio/x-wav;codec=alaw
• audio/wav;codec=alaw
• audio/x-vox
• audio/x-wav;codec=pcm
• audio/wav;codec=pcm
• audio/x-wav;codec=pcm16
• audio/wav;codec=pcm16
• audio/x-wav;codec=g726
• audio/wav;codec=g726
• audio/x-gsm
• audio/x-g729

You can modify this value in order to specify enhanced format information such as the codec and the
rate as in the following: audio/x-wav;codec=g729;rate=<rate>

Capture Location Property

The Capture Location property specifies the location for the FCR files on MCP. The default value is
..\callrec, but this value can be changed. To specify a capture (recording) location for the FCR files:

1. Click the Capture Location row in the block's property table.
2. Select the Value field and type a directory path, or keep the default ..\callrec path.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 353

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice Blocks Basic

Composer Help 354

Subdialog Block
Use the Subdialog block for invoking VoiceXML subdialogs, which are a mechanism for reusing
common dialogs and building libraries of reusable applications. Subcallflows called from a main
callflow encapsulate VXML subdialogs and provide modularization for large VXML applications. An
application can specify the URI of the subdialog to be invoked, pass parameters, and receive output
results. Parameters of type In, Out and InOut are supported. You have the option to select how the
parameters are to be passed to the invoked subdialog. In the case of Dynamic pages (like JSPs) you
can specify the method for sending Get / Post and Use Namelist to indicate the parameters are to be
passed as Query String values.

These two choices do not apply in the case of static subdialogs (such as those generated by
Composer Voice). The Subdialog block also has the ability to invoke subcallflows created by
Composer Voice. In this case, auto-synchronization of input and output parameters is provided. A
developer will be able to select a subcallflow to invoke from the current Composer Project.

Also see Using Composer Shared Subroutines.

Important
Starting with Composer 8.1.3 versions, the callflow diagram Subdialog block and the
workflow diagram Subroutine block use absolute paths with the Project name to refer
to the location of the selected resource in the Workspace, e.g., workspace:///WFM/
Workflows/subroutine.workflow. Renaming or copying Projects requires a manual
update to change the Project name in the Subroutine and Subdialog blocks.

The Subdialog block has the following properties:

The Subdialog block has no page exceptions.

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Voice Blocks Basic

Composer Help 355

Exceptions Property

Find this property's details under Common Properties.

Method Property

This property Indicates the method for invoking the subdialog:

• get--Invoked using HTTP Get
• post--Invoked using HTTP Post. This option is valid only when the parameters are passed as a namelist

(Use Namelist property is set to true). This is generally used when a large amount of data needs to be
sent as an input value for a subdialog.

To select a value for the Method property:

1. Select the Method row in the block's property table.
2. In the Value field, select get or post from the drop-down list.

Type Property

The Type property sets the type of the invoked subdialog. There are two options:

• URL--The invoked subdialog can be found at the location specified in the Uri property.
• ProjectFile--The invoked subdialog is a subcallflow in the Composer Project.

To select a value for the Type property:

1. Select the Type row in the block's property table.
2. In the Value field, select URL or ProjectFile from the drop-down list.

Uri Property

The Uri property specifies the destination (URL or Composer Project) depending on the value of the
Type property. To set a URL destination for the Uri property (Type property is set to URL):

1. Select the Uri row in the block's property table.
2. In the Value field, type a valid URL, or select a variable from the drop-down list.

To set a Composer Project destination for the Uri property (Type property is set to ProjectFile):

1. Click the Uri row in the block's property table.

Voice Blocks Basic

Composer Help 356

2. Click the button to open the Uri dialog box.
3. Select a callflow in the list.
4. Click OK to close the dialog box.

Composer automatically synchronizes the Input and return variables of the selected sub-callflow with
the main callflow by adding them as Input/Output parameters in the corresponding Subdialog Block.
Open the Parameters Property of the Subdialog Block to assign the desired value. Note: For a
selected studio diagram file, right-click the block's context menu and select the Open Sub Callflow
Diagram option to open the chosen Subcallflow diagram file in the Workbench window.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Security Property

When the Security property is set to true, data for this block is treated as private (for example, credit
card account numbers, Social Security numbers, date of birth information, and so on). GVP will
consider the data associated with this block as sensitive and will suppress it in platform logs and
metrics. To assign a value to the Security property:

1. Select the Security row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Blocks Basic

Composer Help 357

Parameters Property

Use the Parameters property to specify parameters to pass to the invoked subdialog. To specify
parameters:

1. Click the Parameters row in the block's property table.

2. Click the button to open the Parameter Setting dialog box.

If the Type Property is ProjectFile,all the Input/Output parameters are automatically synchronized
between the sub-callflow and the main callflow. The Input/Output parameters are automatically
added based on the sub-callflow Input/Output parameters. In this case, there are no Add and Delete
buttons in the Parameter Setting dialog box as described below. You must fill in the Variables column.

Add Button
Use the Add button to enter parameter details.

1. Click Add to add an entry to SubDialog Parameters.
2. In the Parameter Name field, accept the default name or change it.
3. From the Parameter Type drop-down list, select In, Out, or InOut:

In Input parameters are variables submitted to the
subdialog.

Out
Output parameters are variables that the subdialog
returns and will be reassigned back to the current
callflow.

InOut InOut parameters are parameters that act as both
input and output.

1. In the Expression drop-down list, select from among the variables shown, type your own expression, or
click the button to use Expression Builder.

2. In the Definition field, type a description for this parameter.
3. Click Add again to enter another parameter, or click OK to finish.

Delete Button
To delete a parameter:

1. Select an entry from the list.
2. Click Delete.

Voice Blocks Basic

Composer Help 358

Use Namelist

Indicates whether the subdialog parameters need to submitted as a namelist (if set to true) to the
called subdialog. To select a value for the Use Namelist property:

1. Select the Use Namelist row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Fetch Audio Property

Enter the fetchaudio file to play when executing a long-running tasks, such as a server side web
query. By default, Next Generation Interpreter NGI)supplies a built-in fetchaudio file. For information
on GVP support of fetchaudio, see:

• Fetching Properties in GVP Voice XML Help.
• The VoiceXML Properties section of the GVP 8.1 Legacy Genesys VoiceXML 2.1 Reference Manual.
• The Prompt block,VXML Behavior and Queueing of Prompts.

Fetch Audio Delay Property

Enter the length of time to wait at the start of a fetch delay before playing fetchaudio. For more
information, see Fetching Properties in GVP Voice XML Help

Fetch Audio Minimum Property

Enter the minimum length of time to play fetchaudio, once started, even if the fetch result arrives in
the meantime. For more information, see Fetching Properties in GVP Voice XML Help

Fetch Hint Property

Select prefetch or safe to define when XML data files can be fetched. Selecting safe indicates to only
load the XML data file when needed. For more information, see Fetching Properties in GVP Voice XML
Help.

Fetch Timeout Property

Enter the timeout for fetches. This is not supported when using Nuance (MRCP). An error.badfetch is

Voice Blocks Basic

Composer Help 359

thrown when a fetch duration exceeds fetchtimeout. For more information, see Fetching Properties in
GVP Voice XML Help.

Max Age Property

Enter the maximum acceptable age, in seconds, of cached audio resources. For more information,
see Fetching Properties in GVP Voice XML Help.

Max Stale Property

Enter the maximum staleness, in seconds, of expired cached audio resources.For more information,
see Fetching Properties in GVP Voice XML Help.

Voice Blocks Basic

Composer Help 360

Transfer Block
Use the Transfer block to transfer the call to another destination. By default, blind transfer is enabled,
and it has no outports. However, if you enable bridging, the block will have one or more outports. In
case of user input blocks (Menu, Input, Record, Transfer), Composer adds a global variable of type
"Block" to the variables list. You can conveniently use this variable for accessing the user input value.

Use the Transfer block for non-CTI VXML transfers and Route Request block for CTI transfers.

The Transfer block has the following properties:

Transfer Block Exception Events

The Transfer block has the following exception events as described in Exception Event Descriptions:

• connection.disconect.hangup
• connection.disconnect.transfer (supported by default)
• error (supported by default)
• error.connection.baddestination (supported by default)
• error.connection.noauthorization
• error.connection.noresource
• error.connection.noroute
• error.connection
• error.unsupported.transfer.blind
• error.unsupported.transfer.consultation
• error.unsupported.uri

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Voice Blocks Basic

Composer Help 361

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Transfer block, this property affects the language of grammars used for ASR input:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note: This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in

Voice Blocks Basic

Composer Help 362

the Problems view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Transfer Audio Property

The optional Transfer Audio property plays a prompt to the end user while the number is being dialed
out. You provide the URI of the audio source to play while the transfer attempt is in progress (before
the other end answers). If the callee answers, the interpreter terminates playback of the recorded
audio immediately. If the end of the audio file is reached and the callee has not yet answered, the
interpreter plays the audio tones from the far end of the call (ringing, busy). If the resource cannot be
fetched, the error is ignored and the transfer continues. To provide a Transfer Audio value:

1. Select the Transfer Audio row in the block's property table.
2. In the Value field, type a Transfer Audio value URI (HTTP or RTSP) specifying the location of the audio

file to play.

Aai Property

Use the optional Application-to-Application Information (the Aai property) for the data that is to be
transferred from the current application to another application. Use this option to transfer the call to
a number that initiates another voice application. To assign a value to the Aai property:

1. Select the Aai row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Authorization Code Property

GVP supports dialing of an authorization code as part of an outbound call on a two-leg transfer. Use
free form text to specify the authorization code in the application.

Connect Timeout Property

Use the Connect Timeout property for the connection timeout value. The default is 15 seconds. For
information on what happens if a timeout occurs, select Help > Contents and see the GVP 8.1Voice
XML 2.1 Reference Help''. Specifically see Standard VoiceXML > Variables > Transfer, attribute

Voice Blocks Basic

Composer Help 363

connecttimeout. To provide a timeout value:

1. Select the Connect Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Connect When Property

This property controls when the call is connected to the end point. To assign a value:

1. Select the Connect When row in the block's property table.
2. In the Value field, select answered or immediate from the drop-down list.

Destination Property

The Destination property contains the destination phone number. The destination number can be one
of the following:

• A Virtual Route point number on which the IRD Strategy is loaded
• Extension number of an Agent
• External number

The value must be specified in one of the formats below:

• sip:[user@]host[:port]
• tel:phonenumber e.g., tel:+358-555-1234567

For information on this property, select Help > Contents and see the GVP 8.1 Voice XML 2.1
Reference Help. Specifically see Standard VoiceXML > Variables > Transfer, attribute dest. To
assign a value to the Destination property:

1. Select the Destination row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Max Call Duration Property

Use the Max Call Duration property for the maximum call duration. The default is 3600 seconds. (This
is not supported for Consultation Transfer Type.) Note: If this is set to 0 (zero), an infinite value is
supplied, and there is no upper limit to the call duration. To provide a value for the maximum call
duration:

Voice Blocks Basic

Composer Help 364

1. Select the Max Call Duration row in the block's property table.
2. In the Value field, type a value for the maximum call duration.

Transfer Type Property

Specifies the type of the Transfer, which determines whether or not the caller’s session with the
VoiceXML interpeter resumes after the call initiated by the transfer ends. Note: Composer also
supports AT&T blind transfers with the following options: Out of Band Courtesy, Out of Band Consult,
and Out of Band Conference. For more information on these options, start with the GVP 8.1 Voice XML
Reference Help (Help > Contents). Search for ATTOOBCOURTESY, ATTOOBCONSULT, and
ATTOOBCONFERENCE (Transfer topic). Also see the Genesys Voice Platform 8.1 Deployment Guide.

To assign a value to the Transfer Type property:

1. Select the Transfer Type row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

Blind is the default setting. The platform redirects the caller to the agent without remaining in the
connection, and it does not monitor the outcome. Once the caller is handed off to the network, the
caller's session with the VoiceXML application cannot be resumed. The VoiceXML interpeter throws a
connection.disconnect.transfer immediately, regardless of whether the transfer was successful or not.

Bridge causes the platform add the agent to the connection. Document interpretation suspends until
the transferred call terminates. The platform remains in the connection for the duration of the
transferred call; listening during transfer is controlled by any included <grammar>s.If the caller
disconnects by going onhook or if the network disconnects the caller, the platform throws a
connection.disconnect.hangup event. If the agent disconnects, then transfer outcome is set to
near_end_disconnect and the original caller resumes her session with the VoiceXML application.

Consultation causes the consultation transfer to be similar to a blind transfer except that the
outcome of the transfer call setup is known and the caller is not dropped as a result of an
unsuccessful transfer attempt. When performing a consultation transfer, the platform monitors the
progress of the transfer until the connection is established between caller and agent. If the
connection cannot be established (e.g. no answer, line busy, etc.), the session remains active and
returns control to the application. As in the case of a blind transfer, if the connection is established,
the interpreter disconnects from the session, connection.disconnect.transfer is thrown, and document
interpretation continues normally. Any connection between the caller and the agent remains in place
regardless of document execution. Note: The selected transfer type will work only if the platform is
provisioned to support that type of transfer.

Variables Property

Important
The Transfer block Variables property is for Transfer signaling (gvp:signalvar)

Voice Blocks Basic

Composer Help 365

variable configuration and not for user data. To send user data in the transfer
<gvp:transfer> request use the Route Request block.

This is the list of variables that can be optionally sent by the application as part of the Transfer
Request to the far end. It corresponds to the signalvars extension attribute of the NGI VXML
Interpreter. Check the Genesys Voice VXML 2.1 Reference Manual for more details.

All variables that are selected (checked) will be sent as part of the signalvars . The name of the
variable will be used as the key name and the actual value will be the corresponding value. Refer to
the GVP Documentation for details on the signalvars attribute. The variable name must match the
name of the key that will be sent as signalvars.

To declare session variables for the application or subcallflow:

1. Click the Variables row in the block's property table.
2. Click the ... button to open a Variables dialog box.
3. Click Add and enter key-value pairs.
4. Click Value is an integer if application.
5. You can also click Remove or Removal All.

Important
The steps below are valid up to 8.1.430.01. After that, the Variables dialog box
supports the key-value pairs.

To declare session variables for the application or subcallflow:

1. Click the Variables row in the block's property table.
2. Click the ... button to open a Variables dialog box,
3. Select individual variables.
4. You can also click Select All or Deselect All.
5. Click OK.

Method Property

The Method property specifies the type of SIP transfer method that the Media Control Platform (MCP)
uses. To assign a value to the Method property:

1. Select the Method row in the block's property table.
2. In the Value field, select one of the following from the drop-down list (descriptions below):

Voice Blocks Basic

Composer Help 366

Bridge
A Bridge method indicates that the Media Control Platform (MCP) bridges the media path.

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The transfer fails if a non-2xx final response is received for the INVITE request.

This is a two-leg transfer (in other words, it occupies two channels on the platform). The platform
stays in the signaling path and is responsible for bridging the two call legs.

Hkf (Hookflash)
A Hookflash method indicates a transfer using DTMF digits (RFC 2833).

1. The Media Control Platform (MCP) sends DTMF digits on the media channel. The platform leaves it to the
media gateway or switch to perform the transfer on the network.

2. Configurable options enable you to specify whether the call will be disconnected by the platform or by
the remote end. Otherwise, the call is disconnected after a configured timeout.

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Refer
A Refer method indicates that the transfer is based on a SIP REFER message (RFC 3515).

1. The platform sends a REFER request to the caller, with the callee (as specified in the VoiceXML
application) in the Refer-To: header.

2. The transfer fails if a non-2xx final response is received for the REFER.

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Referjoin
A Referjoin method indicates a consultative REFER transfer (RFC 3891).

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The platform also sends a REFER request to the caller, with the callee’s information in the Replaces
header.

3. The platform considers the transfer to be successful if it receives a BYE from the caller after a 2xx
response for the REFER.

4. The transfer fails if a non-2xx final response is received for the INVITE request or for the REFER request.

This is a two-leg, or join-style, transfer (in other words, it occupies two channels on the platform).

Voice Blocks Basic

Composer Help 367

Mediaredirect
A Mediaredirect method indicates a media redirection transfer. The Media Control Platform (MCP)
uses SIP to handle call control between the caller and the callee, and the RTP media channel is
connected directly between the caller and callee.

1. The platform sends an INVITE request to the callee without SDP.
2. If the transfer is proceeding, the callee responds with a 200 OK that includes an SDP offer.
3. The platform forwards the SDP offer in a re-INVITE request to the caller.
4. The caller responds with a 200 OK that includes the SDP answer.
5. The platform forwards the SDP answer to the callee in an ACK response.
6. The transfer fails if a non-2xx final response is received for the initial INVITE request.

This is a two-leg transfer (in other words, it occupies two channels on the platform). attcourtesy
attconsult attconference attoobcourtesy attoobconsult attoobconference For information on these
methods, consult the section on how the Media Control Platform works in the Genesys Voice Platform
8.1 Deployment Guide.

Disconnect on Answering Machine Property

This property indicates whether or not the FAX / Answering machine has to be detected. To assign a
value:

1. Select the Disconnect on Answering Machine row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Do CPA Analysis Property

This property indicates whether or not the platform is enabled to detect who/what answered the call.
To assign a value:

1. Select the Do CPA Analysis row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. They can provide platform-related information about the interaction/input. For example,
for speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. By setting this
property to true, it will expose the block’s shadow variable within the callflow. When enabled, the

Voice Blocks Basic

Composer Help 368

shadow variable will be included in the list of available variables. (For example, the Log block’s
Logging Details will show Transfer1$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: Transfer1$.duration. To assign
a value:

1. Select the Get Shadow Variables row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Transfer Results Property

There are several types of transfer results supported for applications. When you select a transfer
result, a corresponding outport node is added to the block to allow specific actions to be taken for
that condition. Please note that a default outport is always present. The default path is executed if
none of the selected transfer results are set. The available transfer results are:

• far_end_disconnect (selected by default)
• noanswer (selected by default)
• busy (selected by default)
• near_end_disconnect

Note: Consultation Transfer supports only noanswer, busy, and near_end_disconnect transfer results.
To select transfer results:

1. Click the Transfer Results row in the block's property table.
2. Click the ... button to open the Transfer Results dialog box.
3. Select items from the list of available CPA results, or click Select all or Deselect all as needed.

Input Grammar Dtmf Property

Use the Input Grammar Dtmf (Dual Tone Multi-Frequency) property to specify the DTMF Grammar for
the Transfer block, which accepts DTMF signals or speech input from callers. The DTMF Grammar is
processed and handled by GVP. In the case of external grammars, this specifies the actual path of the
grammar file / resource for DTMF Grammars. This is only valid when the Grammar Type is
externalGrammar and Input Mode is dtmf or hybrid. To assign a value to the Input Grammar Dtmf
property:

1. Select the Input Grammar Dtmf row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property. Section 2.3.7.2.1,
of the Voice Extensible Markup Language (VoiceXML) Version 2.0 specification (http://www.w3.org/TR/
voicexml20/#dml2.3.7.2.1), contains the following information on listening for user input during a
transfer (interrupting a transfer): Platforms may optionally support listening for caller commands to

Voice Blocks Basic

Composer Help 369

terminate the transfer by specifying one or more grammars inside the <transfer> element. The
<transfer> element is modal in that no grammar defined outside its scope is active. The platform will
monitor during playing of prompts and during the entire length of the transfer connecting and talking
phases:

• DTMF input from the caller matching an included DTMF grammar
• an utterance from the caller matching an included speech grammar

A successful match will terminate the transfer (the connection to the callee); document interpretation
continues normally. An unsuccessful match is ignored. If no grammars are specified, the platform will
not listen to input from the caller. The platform does not monitor in-band signals or voice input from
the callee.

Input Grammar Voice Property

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block, which
accepts DTMF or speech input from callers. If you are writing hybrid applications that allow both
DTMF and Speech input, specify both the DTMF and Voice grammars. The Voice grammar is sent to
the ASR Engine for processing, whereas the DTMF grammar is processed by GVP. As a result, you
need two separate grammars for Voice and DTMF in the case of hybrid applications that allow both
Voice and DTMF inputs. In the case of external grammars, this specifies the actual path of the
grammar file / resource for ASR Grammars.. This is only valid when Grammar Type is
externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input Grammar Voice
property:

1. Select the Input Grammar Voice row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Mode Property

To assign a value to the Input Mode property:

1. Select the Input Mode row in the block's property table.
2. In the Value field, select one of the following from the drop-down list (descriptions below):

DTMF
The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice
The Voice format indicates the menu option mode of input will be a voice phrase.

Voice Blocks Basic

Composer Help 370

Hybrid
The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase.

Voice Blocks Basic

Composer Help 371

VXML Form Block
Use this block to embed VXML code directly into a callflow diagram.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Body Property

This property contains all the executable content of the <form> element before directing to a block
or external application.

1. Click opposite Body under Value. This brings up the button.

2. Click the button to bring up the Configure Body dialog box.

3. Enter the executable content of the <form> element. .
4. When through, click OK. Note: The editor does not validate against the VXML schema.

Voice Blocks Basic

Composer Help 372

Gotostatements Property

This property allows the you to configure the output nodes of the blocks. An output port is created for
every GOTOStatement item with target enabled.

1. Click opposite Gotostatements under Value. This brings up the button.

2. Click the button to bring up the Gotostatements dialog box.
3. Click Add.

4. When Target is disabled, select ProjectFile or URL to indicate the destination application type. When
ProjectFile is selected, you can click the button to enter the URI. When URL is selected, you can click
the URI button and specify a literal or a variable.

5. When URL is selected, you can also click the Parameters button to select a system variable.
6. For each goto statement, specify at least one event, condition, or target (you are not required to

complete all three fields). An output port is created for every goto statement.

• Name--Composer uses the name of the goto statement to label the outport.
• Event--Use to select the event that will trigger the goto statement.
• Condition--The guard condition for this goto statement. The goto statement is selected only

if the condition evaluates to true.
• Target--If a target is set, an outport for that goto statement will appear and you can connect

it to other blocks. If a target is not set, an outport for that goto statement does not appear;
in this case, you can add some VXML code to handle the event.

Voice Blocks Basic

Composer Help 373

Voice Database Blocks
The Database palette provides blocks that enable VXML applications to use databases.

Types of Blocks

There are three Database blocks:

• DB Data Block for connecting to a database and retrieving/manipulating information from/in a database.
• DB Prompt Block for speaking out prompts generated using TTS based on the data returned by an

associated DB Data block.
• DB Input Block for accepting a DB Data block as its data source and acting as an input field that accepts

input based on a grammar created from the results returned from the database.

Also see:

• Working with Database Blocks for an overview of database support in Composer including a high level
description of how it works as well as level of support for various databases.

• Supported SQL Datatypes.

Video Tutorial
Below is a video tutorial on using the Database Blocks.

Important Note: While the interface for Composer in this video is from release 8.0.1,
the steps are the basically the same for subsequent releases.

Voice Database Blocks

Composer Help 374

Using the Database Blocks

Using these blocks, VXML applications can connect to databases and query data from them. It also
provides blocks that consume this retrieved data and perform high level operations on it like
speaking out the returned data or accepting user input against a grammar generated from the
returned data.

Voice Database Blocks

Composer Help 375

DB Data Block
The DB Data block is used for both routing and voice applications. See the DB Data Block topic in the
Common Blocks book. Also see Working with Database Blocks.

Voice Database Blocks

Composer Help 376

Database Input Block
The DB Input block accepts a DB Data block as its data source and acts as an input field that accepts
input based on a grammar created from the results returned from the database.

It accepts DTMF or speech input. This block differs from the Menu block in that it enables taking input
that might not belong to a simple choice list (as for the Menu block). The DB Input block can be used
to collect numerical data; for example, phone numbers, account numbers, amounts, or speech data,
such as a Stock name. It uses speech or DTMF grammars to define the allowable input values for the
user responses. Built-in system grammars are available for data, such as dates and amount.

The user input result will be stored in a block name variable in the VXML application.

Note: If the DB Input block uses a DB Data block as its data source, it uses only the first column from
returned results to generate the grammar.

The DB Input block can also use a variable as a data source instead of a DB Data block. In this case,
grammar for the input is generated based on data in the array. The variable should represent a JSON
array similar to the sample below:

myVariable=”[[""Google""],[""Apple""],[""Motorola""],[""Samsung""],[""Nokia""]]”

The DB Input block has the following properties:

DB Input Block Exception Events

The DB Input block has four exception events as described in Exception_Event_Descriptions:

• error
• error.noresource
• noinput
• nomatch

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Voice Database Blocks

Composer Help 377

Data Source Property

The Data Source property allows you to select the DB Data block that contains a previously-defined
database query. This is used when DBDataBlock is selected as the Data Source Type property value.
The results of this database query will be used to create the input field.

To select the data source (a DB Data block):

1. Select the Data Source row in the block's property table.
2. In the Value field, select the appropriate DB Data block from the drop-down list.

Data Source Type Property

The Data Source Type property allows you to select whether your data source is the contents of a DB
Data block or a variable.

To select the data source type:

1. Select the Data Source Type row in the block's property table.
2. In the Value field, select DBDataBlock or Variable from the drop-down list.

Data Source Variables Property

The Data Source Variables property allows you to select the contents of a variable as your data
source. This is used when Variable is selected as the Data Source Type property value.

To select the variable that serves as your data source:

1. Select the Data Source Variable row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list. This can also be a

custom variable you assigned in the Entry block.

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this

Voice Database Blocks

Composer Help 378

block, and the language setting reverts back to its previous state after the block is done. In the case
of the DB Input block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications that the caller is familiar with. For example, the caller hears a welcome prompt but
knows the next prompt will solicit the caller's input or menu selection. The caller may start inputting
with DTMF while the welcome prompt plays and expect the input to carry forward.

To assign a value to the Clear Buffer property:

1. Select the Clear Buffer row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing.

To assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts Property

Find this property's details under Common Properties.

Note: When Type is set to Value and Interpret-As is set to Audio, you can specify an HTTP or RTSP
URL. When Type is set to Variable and Interpret-As is set to Audio, you can specify a variable that
contains an HTTP or RTSP URL.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block.

Voice Database Blocks

Composer Help 379

To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics.

To assign a value to the Security property:

1. Select the Security row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing.

• Note! This property is mandatory. You must select a variable for the output result even if you do not
plan on using the variable. If this is not done, a validation error will be generated in the Problems view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Get Shadow Variables Property

Shadow variables provide a way to retrieve further information regarding the value of an input item.

By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show DBInput1$.)

A shadow variable is referenced as blockname$.shadowVariable, where blockname is the value of the
input item's name attribute, and shadowVariable is the name of a specific shadow variable, for
example: DBInput1$.duration.

To assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.

Voice Database Blocks

Composer Help 380

2. In the Value field, select true or false from the drop-down list.

Number of Retries Allowed Property

The Number Of Retries Allowed property determines how many opportunities the user will be
provided to re-enter the value. If Use Last Prompt Indefinitely is set to true, this property has no
effect; otherwise, the error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit.

To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.
2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts Property

Find this property's details under Common Properties.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt
as the prompt for all further retries. In this case the NoMatch and NoInput exception handlers will
never get executed, as the retry loop keeps executing forever.

To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property).

To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice Database Blocks

Composer Help 381

Use Single Counter for Nomatch And Noinput Property

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block
has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user
gets up to six retry attempts while not exceeding three of each type – noinput or nomatch.

Note: This property not available on the Record block.

To assign a value to the Use Single Counter For Nomatch And Noinput property:

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Voice Database Blocks

Composer Help 382

DB Prompt Block
The DB Prompt block speaks out prompts generated using TTS based on the data returned by an
associated DB Data block. The DB Prompt block will speak each row of the data result set as a
sentence. To speak data returned by a DB Data block in a specific format, Genesys recommends
using the Prompt block along with ECMA script. A template application (Database Query Result
Access Project) is provided which demonstrates the use of ECMA script to allow Prompting of currency
and data formats as an example.

Tip
The DB Prompt block speaks out all columns for each record returned by the database
as the result of a query. The ordering of columns and of the records is controlled by
the query itself and DB Prompt plays them all in the same order without any breaks.
To introduce breaks or to add prefix or suffix text to individual columns, you can use a
custom query and introduce these features in that query. For example: SELECT ‘name
‘ + employee.firstname + employee.lastname + ‘. . .‘ FROM employee WHERE

employee.emp_id < 10. This query will speak out the text name with a small gap
before speaking out each name of each employee returned from the database. After
each record, it will pause for a small period due to the ‘. . .’ literal in the query.

The DB Prompt block has no page exceptions.

The DB Prompt block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Data Source Property

The Data Source property allows you to select the DB Data block that contains a previously-defined
database query. The results of this database query will be used to create the voice prompt. To select
the data source (a DB Data block):

Voice Database Blocks

Composer Help 383

1. Select the Data Source row in the block's property table.
2. In the Value field, select the appropriate DB Data block from the drop-down list.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only fr the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the DB Prompt block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications the caller is familiar with. For example, the caller hears a welcome prompt but knows the
next prompt will solicit the caller's input or menu selection. The caller may start inputting with DTMF
while the welcome prompt plays and expect the input to carry forward. To assign a value to the Clear
Buffer property:

1. Select the Clear Buffer row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Immediate Playback Property

When Immediate Playback is set to true, prompts are played immediately on the execution of the
prompt without queuing them. When Immediate Playback is set to false, the interpreter goes to the
transitioning state and queues the TTS Prompt until the interpreter waits for an input (such as the
Menu, Input, Record,and Transfer blocks). To assign a value to the Immediate Playback property:

1. Select the Immediate Playback row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

Voice Database Blocks

Composer Help 384

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Voice Database Blocks

Composer Help 385

Working with Database Blocks
This page contains general information on working with the Database blocks.

Database Connection Profiles

Before you can connect to a database in your application, you need to define a database connection
profile that will maintain all information necessary to connect to a particular instance of a database.

The DB Data block requires that you specify the name of a connection profile in its properties so that
it can use that information to connect to the database at runtime. Multiple connections profiles can
be defined in one Project and these profiles can be shared by multiple DB Data blocks even if they
are in different callflows. A connection profile consists of the basic information required to connect to
a database. The information provided in a connection profile includes the following:

Voice Database Blocks

Composer Help 386

• Profile Name. The internal name that Composer uses to identify connections uniquely.
• Connection Pooling. Select to enable connection pooling, which maintains a set of database

connections that can be reused for requests to databases. You can use this feature to enhance
performance by avoiding time-consuming re-establishment of connections to databases.

• Connection Pool Name. Specify a Java Naming and Directory Interface (JNDI) name for the pooled
data source. Composer applications can use any JNDI data source exposed by the web server. The .war
files exported by Composer contain configuration files to support connection pooling with JBoss and
WebSphere; other configuration changes to the web application may be required for other web servers.

• JNDI Namespace. Starting with 8.1.410.14, Composer introduces the JNDI Namespace option for Java
Composer Projects. The default value is java:comp/env. You can edit this value to match your web
server/database requirements. Fore example, you can use JBoss Connection Pooling with MSSQL and
Oracle databases for both callflows and workflows.

• Database Type. The type of database from the list of supported databases
• Hostname. The host on which the database server is running. In case of Database Cluster, Virtual IP/

Cluster Alias/SCAN Name is specified here.
• Port. The TCP port on which the database server is listening for connections. The most commonly used

defaults for supported database types are pre-populated by Composer. If your database server uses
custom ports, you will need to specify them here.

• Instance Name. The MSSQL Instance that need to connect in SQL Server. Port will take precedence if
specified. This field is disabled when Database Type is selected as ORACLE.

• Database Name. The name of the database/catalog for SQLServer and the SID in case of Oracle.
• SID. The check box to specify if value provided in "Database Name" is SID. This check box is disabled

when "Database Type" is MSSQL
• Username. The username that should be used to access the database
• Password. The password that should be used to access the database
• Encrypt. Select the encrypt the password.
• Show. Select to show the password
• Custom Parameters. The supported custom parameters can be included in connection string along

with other parameters. To define custom parameters click the "Custom Parameters" button. In the
dialog opened add the parameter name and value, in the order that need to be appended to
connection string.

Note: Starting with 8.1.410.14, you can use the DB Data block Connection String property to
dynamically access the database at runtime and override the Connection Profile settings in the block.

Important
The Database block does not support database requests using Windows
authentication.

Configuration for Database Cluster:

• For MSSQL Cluster, Virtual IP/Cluster Alias is specified in Hostname field of Connection Profile. To

Voice Database Blocks

Composer Help 387

connect to particular named instance in cluster, Instance parameter is configured.
• For ORACLE Cluster, Cluster Alias/SCAN Name is specified in Hostname field of Connection Profile.

Additionally, to enable TAF functionality in ORACLE clusters, connection pool is created similar to
pooling capability in other application servers. Connection pool can be created as the example below
(This need to be added in Tomcat server.xml present in Composer installed path) <Resource
name="jdbc/oraclePooled" auth="Container"

type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming.factory.BeanFactory"
driverClass="oracle.jdbc.driver.OracleDriver"
user="scott"
password="tiger" jdbcUrl="jdbc:oracle:oci:@(DESCRIPTION=(LOAD_BALANCE=on)(FAILOVER=on)
(ADDRESS=(PROTOCOL=tcp)(HOST=172.21.184.70)(PORT=1521))(ADDRESS=(PROTOCOL=tcp)
(HOST=172.21.184.71)(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=rac.genesyslab.com)
(FAILOVER_MODE=(TYPE=session)(METHOD=basic))))" />

Encryption:
Parameters under "Encryption" tab allows you to configure SSL encryption and server authentication
for Database connections made during Design time (Query Builder, Stored Procedure) and Runtime.
When security is enabled, SSL encryption is used for all data sent between composer and SQLServer,
if the SQL server has a certificate installed.

To establish a Secure Database connection from Composer, following parameters are to be configured
under encryption tab:

Voice Database Blocks

Composer Help 388

• Secure Connection. Enabling this check box will make all connections from Composer to Database
Server encrypted with a choice of server authentication

• Trust Certificate. Enabling "Secure Connection" and "Trust Certificate" will be sufficient to establish
SSL Connection. When "Trust Certificate" is disabled, other optional attributes are enabled to validate
server certificate,

• Match Certificate Subject. This is enabled in order to force the matching of the certificate subject
available in Server Certificate and client's trusted copy.

• Certificate Hostname. This parameter is specified in case the client certificate carries a different
subject name than the server certificate and user wishes to ignore the difference by providing the
subject name expected in the server certificate explicitly.

• Trust Store Location. Location where the Trust Store file is present. The trust store file contains all the
certificates trusted by the client, including the certificate that the server uses to autheticate itself.

• Trust Store Type. JKS truststore is supported when Database Type is ORACLE. This parameter is not
editable. This is not applicable when Database Type is MSSQL

• Trust Store Password. Password to access the trust store.

Certificate configuration for Secure Connection:

• For Java Composer Projects, when "Secure Connection" is enabled and "Trust Certificate" is disabled,
certificates are placed in "TrustStore Location" specified in connection profile.

• For .NET Composer Projects Design time (i.e. for Query Builder and Stored Procedure Builder),
certificates are placed in "TrustStore Location" specified in connection profile.

• For .NET Composer Projects Runtime and MSSQL database, certificates are installed in "Certificate
Windows Snap-In" accessed from MMC console in Windows.

• For .NET Composer Projects Runtime and ORACLE database, certificates are installed in Oracle wallet
both in client and server. tnsnames.ora configuration will have service name with TCPS protocol.
Example is given below.

SSLTEST =

(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCPS)(HOST = dev-rose.us.int.genesyslab.com)(PORT = 2484))
)
(CONNECT_DATA =

(SERVER = DEDICATED)
(SERVICE_NAME = SSLTEST)

)
)

Notes:
To establish a connection profile, you must be working with a Project file that was upgraded to
Composer 8.0.2 or higher from an earlier Composer release. Connection profiles are not available in
Projects created using Composer 8.0. They become available after the Project is upgraded. The
method for specifying additional pooling parameters varies based on the database being used and
the Project type. Java Composer Projects use the c3p0 library for both SQLServer and Oracle
databases. Otherwise, in the case of Oracle databases, Composer uses the c3p0 library and the
library exposes its own configuration parameters for pooling via an XML file. In case of SQLServer,

Voice Database Blocks

Composer Help 389

additional pooling parameters can be specified in the connection string.

Creating/Editing a Connection Profile

To create (or edit) a connection profile:

1. Select the Project for which you are creating a connection profile in the Project Explorer, and expand
your project folder set.

2. Expand the db folder.
3. Double-click the connection.properties file. The Connection Profiles view opens.

4. To create a new profile, click the Add Profile icon in the Profiles pane. (If you wish to edit an
existing profile, you can select an existing profile in the Profiles pane.)

5. In the Details pane, enter (or update) the appropriate information in each field (fields containing the *
character are required).

6. Click the Save Profile icon in the upper-right of the Connection Profiles window. You must save the
profile in order for it to be available for selection in the Select Connection Profile dialog box.

7. Test the connection profile by clicking the Test Connection button to connect to the database.

• The message Database connection was successful indicates your connection profile
successfully connected to the intended database.

• The message Database connection failed followed by additional details indicates a
problem with your connection profile. Update the profile, save it, and test it again.

Note: For information on creating the configuration for the connection pool on the application server
side, see Connection Pooling.

Preview Connection Strings

The connection to the database with the specified parameters in the connection profile can be
previewed and tested in the Connection profile editor. In case of Java project as the design and
runtime connections use JDBC connection , JDBC connection string is available to preview and test. In
case of Dotnet projects as the design time uses JDBC connection and runtime uses OLEDB
connection, both strings are available to preview and test. Note: The Dotnet project must be
deployed correctly in IIS to preview the OLEDB connection string. The parameters apart from ones
explicitly collected in the editor can be added using the custom parameters dialog which takes the
parameters as a name value pair.

Using the Query Builder

The Composer Query Builder provides a visual method of building a database query without the need

Voice Database Blocks

Composer Help 390

to type SQL code. The Query Builder is accessed through the Query Type property in the DB Data
block. It can be used for both voice callflows and routing workflows. Note: The Query Builder can
only be accessed when a valid connection profile has been created and selected in the Connection
Profile property of the DB Data block. The Query Builder with an example query is shown below.

Building a Database Query
The Query Builder opens when Composer is successfully able to connect to the database specified in
your connection profile. Any schemas, tables (and table synonyms) and columns of the database
accessible from the specified user account are shown in hierarchical format in the Database Structure
pane of the Query Builder. In the example below, EMPLOYEESSYNONYM is a table synonym.

Voice Database Blocks

Composer Help 391

TableSyn.gif

Note: MSSQLServer table synonyms are read from the system table sys.synonyms. Oracle table
synonyms are read from the system table user_synonyms. To build a query:

1. Specify which table columns are returned as query results.

• Select the tables and columns to include in your query by checking appropriate items in the
Database Structure pane. Expand table entries to see the columns. To select all columns
in a table, select the appropriate (All columns) check box under the appropriate table.

• Selected columns and tables appear in the Selected Columns pane. To alter the order in
which selected columns are returned in query results, use the Up and Down buttons to
reorder columns within the list.

• To specify the order in which query results should be sorted, click the Sort Order field for a
column and select a Sort option (ascending or descending). This will automatically fill in
the Sort Order, which indicates the sequence in which multiple sort criteria will be applied. It
is possible to sort by multiple columns and you can change the sorting sequence by clicking
on the Sort Priority column. For example, you might sort a query of names by last name
and then sort by first name for those people with the same last name. In that case, last
name has Sort Order 1, and first name has Sort Order 2.

Note: The order in which columns appear in the Selected Columns list does not affect the sort order.

• To specify the variables into which the column values need to be copied, click the Variable
Mapping field for a column and select a variable. If a variable is specified for a column, DB
Data block execution will result in the column values of the first record being copied into the
specified variable. If more than one record is returned by the query, then use the Looping

Voice Database Blocks

Composer Help 392

Common Block along with the DB Data block to iterate over records and populate the
variables specified for the columns.

2. Specify filter criteria. In the Conditions pane, you build the search or filter criteria to identify the data
you want to retrieve from the database. You can can specify multiple conditions.

• Click Add to create a new condition. A new row will be added to the Conditions list. Click the
Condition column, and then click the to open the Condition Builder.

• Select a column from the Select Column drop-down list which the search condition will
operate on.

• Select the operator (=, <>, <, >, and so on) from the Operator drop-down list. This
operator will be used to compare the specified column with the value specified in the next
step.

• In the Value field, type or select your value for the condition depending on the value type
option:

• Column Reference: a table column that you can select from a drop-down list.
This option will compare the two selected columns based on the specified
operator.

• Application Variable: a variable defined in your application that can be
selected from a drop-down list. At runtime the current value of the selected
variable will be used for comparing the column’s value based on the specified
operator.

• Custom Value: a value that is not validated by the query builder and is added
directly to the query. It can be used to specify SQL functions or more complex
expression.

• Literal: a value that is interpreted as a string or a number. Type in the literal
value. The value will be enclosed in quotes automatically if it is a string. If the
literal value represents a number, you will need to enclose it in quotes
depending on the data type of the selected column. This option will compare
the selected column’s value to the specified literal using the specified operator.

• Click OK to complete the condition.
• Using the above steps, you can define multiple conditions. These conditions can be

combined using logical operators to further refine your search criteria. You can select AND
or OR in the Boolean field to specify the logical operator.

3. Test your query.

• To test the query, you can click the Preview Data button. This executes the query against
the appropriate database. If the database tables contain data and if any records match the
specified conditions, they will be displayed in the Query Results Preview pane. A message
will also show the number of records returned as a result of the query.

• If you expect that the number of matching records will be large and want to preview a subset
of returned data, click the Limit Rows check box and enter a numeric value to limit the
number of returned results.

Note: The message will now show the number of records displayed rather than the actual number of
matching records. The query results preview is shown in the Query Result pane.

Voice Database Blocks

Composer Help 393

4. Click OK to save your query and update the DB Data block with the new query. If you click Cancel, all
changes are discarded and no changes are made to the DB Data block.

Specifying Custom Queries

The DB Data block can use queries specified in a SQL (.sql) file in your Project instead of a query
created using the Query Builder. To use a custom query:

• Create a .sql file in your db folder and specify the filename in the Query File property of the DB Data
block. Make sure that the operation type is SQLScriptFile. Composer will read this file at runtime and
use it to query the specified database.

The ability to use custom queries is useful in cases where the SQL query is already created using
other tools, or if the query uses features not supported by the Visual Query Builder. The next topic
describes limitations of the query builder.

Important
If you are specifying a custom query, Composer currently supports executing only a
single SQL statement at run-time though multiple statements might work for certain
DB engines.

Application Variables
You can use Application variables in custom query files as part of the SQL statement. To use a
variable, include its name within curly braces without the AppState. prefix. For example, the following
statement uses varname1 and varname2. Their values will be substituted at the time the DB Data
block queries the database. SELECT name_of_function({varname1}, {varname2}) from dual
Results of the query are stored in a variable as a two-dimensional JSON array. This data can then be
accessed via a Looping Common Block or via scripting in the Assign or ECMAScript block. For
example, if the database result set looks like this in tabular form:

Vegetables Animals
lettuce chicken
broccoli lion

The JSON for the result will look like this: {"db_result":[["lettuce", "chicken"], ["broccoli",
"lion"]],"db_result_columns":["vegetables", "animals"]} Note: An example of custom
queries is in the Database Stocks Template application.

Voice Database Blocks

Composer Help 394

Stored Procedure Helper

If you select StoredProcedure for the Query Type property in the DB Data Block, you can click the
button on the property row to open the Stored Procedure Helper dialog box. Here you can

select a stored procedure, execute it, and get query results. A completed example is shown below.

Setting up a Stored Procedure Call

The Stored Procedure Helper opens when Composer is successfully able to connect to the database
specified in your connection profile. Any stored procedures in the database accessible from the
specified user account are shown in hierarchical format in the Database Structure pane of the Stored
Procedure Helper. To set up a stored procedure call:

Voice Database Blocks

Composer Help 395

1. Specify which stored procedure should be executed.
2. Select the stored procedure to execute by checking appropriate item in the Database Structure pane.
3. Parameters and Return Value appear in the Parameters pane. Specify the value (application variable) for

each of the parameter into which the output value is stored after the stored procedure has executed.
4. To test the stored procedure, click the Execute button. This executes the stored procedure in the

appropriate database. If the stored procedure returns any records, they are displayed in the Query
Results Preview pane. Any output values are displayed in the Query Result Parameters pane. A
message shows the number of records returned as a result of the query.

5. Click OK to save your query and update the DB Data block with the new query. If you click Cancel, all
changes are discarded and no changes are made to the DB Data block.

Note: Composer does not support the REF CURSOR return type in a stored procedure.

Password Encryption

Composer can now encrypt the database connection profile passwords so that they are not written in
the clear to the connection.properties file.

Encryption Key
In order to enable encryption, you must first create an encryption key. Composer requires a 128-bit
(16 bytes) key, in hex-encoded format. This can be randomly generated by the OpenSSL tool, using
the following command line:

$ openssl rand -hex 16 75b8ec9a3ce60a21c4f94236a1b55fb2

Any random source will do. Another example is http://www.random.org/cgi-bin/
randbyte?nbytes=16&format=h (With this example, you will have to remove the spaces in the
output.)

Save the encryption key to a text file. Note that this file should be securely stored, so that it can only
be read by the Composer process and the backend Tomcat/IIS processes.

Configuring Composer Preferences
In the Composer > Security preference page, set the Encryption Key Location preference to point
to the encryption key file created in the previous step.

Encrypting the Database Connection Profile Password
In the Connection Profile Editor, next to the Password field, enable the Encrypt checkbox. Now, when
you save the Connection Profile, the password will be scrambled in the connection.properties file.

Enabling Decryption in the Backend
When the application runs, the application server will need to be able to decrypt the password so that
it can connect to the database. For this, the application needs to be configured with the location of

Voice Database Blocks

Composer Help 396

the encryption key file.

Java Composer Projects
If it doesn't already exist, create the file WEB-INF/composer.properties inside the project. Inside the
file, enter the following line:

composerEncryptionKey=C:\\secrets\\encryption-key.txt

(Note that the backslashes here must be escaped.)

.NET Composer Projects
Edit the web.config file's appSettings entry:

<appSettings>

<add key="composerEncryptionKey" value="C:\secrets\encryption-key.txt" />
...

</appSettings>

(Backslashes here are fine.)

Limitations and Workarounds

The Query Builder supports creating SELECT statements. The following is a list of limitations along
with suggested workarounds:

• INSERT, UPDATE, and DELETE statements cannot be created using the Query Builder. Advanced SQL
features, such as outer joins, subqueries, and unions are also not supported. A custom query can be
used to overcome these limitations.

• if you rename a DB Data block, its corresponding SQL statement file in the db folder will not be updated
and will not be valid until you generate code again.

• For details on SQL datatypes supported by Composer, see Supported SQL Datatypes.

Oracle Client Setup for IIS

To set up an Oracle client for Internet Information Services:

1. Install the Oracle client components on the application server.
2. Create a tnsnames.ora file in the C:\oracle\ora81\network\ADMIN folder where C:\oracle is the

installation folder of Oracle client components.
3. Add the following lines to tnsnames.ora where COMPDB1 is any alias of choice, XYZ is the Oracle

server, COMPOSER is the Service Name as configured on the Oracle listener (server). After doing this,

Voice Database Blocks

Composer Help 397

you should be able to connect to Oracle using sqlplus user/pwd@COMPDB1 as the command at the
command prompt.

COMPDB1 = (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST =
XYZ.us.int.genesyslab.com)(PORT = 1521))) (CONNECT_DATA = (SERVICE_NAME =
COMPOSER)))

4. Create a System DSN using the Data Sources (ODBC) under Administrative Tools.
5. Make sure that Data Source Name specified above is exactly same as the Database Name specified

in the Composer database connection profile and TNS Service Name is the same as the alias in step
3.

6. Click Test Connection in the database connection profile. The connection should be successful and
the Composer VXML application should be able to connect to the database.

Steps 4, 5 and 6 can be avoided if the alias used in the tnsnames.ora file is same as the database
name specified in Composer.

Working with Oracle 12c R2 from Composer .NET projects

Starting with release 8.1.450.20, Composer supports Oracle 12c R2. Perform the following steps to
work with Oracle 12c R2 from Composer .NET projects:

1. Download and install the Oracle 12c client. An Oracle 12c client is required to connect to an Oracle 12c
database (the Oracle 12c client can be either 32-bit or 64-bit).

2. Register the ORAOLEDB.ORACLE DLL file on the client machine as follows:
1. Open the Command Prompt in administrator mode on the client machine.
2. Browse to the Oracle Client installed path and identify the OraOLEDB12.dll file.
3. Execute the command, C:\Windows\System32\regsvr32.exe OraOLEDB12.dll, to register the

OraOLEDB12.dll file.

3. Oracle 12c client bitness and IIS bitness configuration must match. Both must be either 32-bit or 64-bit.
1. Navigate to IIS Manager > Application Pools.
2. Click the advanced settings of the pool used by the project (usually DefaultAppPool).
3. Use the Enable 32-bit Application option to adjust IIS bitness as required.

Voice Database Blocks

Composer Help 398

Supported SQL Datatypes
Composer's DB Data Block can access many common types of data stored in supported databases.
The following tables summarize the level of support that Composer provides. The tables are
organized by the Composer project type (Java or .NET), and by whether you're doing a standard SQL
query or executing a stored procedure. The levels of support that Composer claims:

The levels of support that Composer claims:

? Datatype is fully supported.

?*
Datatype is supported, but in the Composer UIs
(Query Builder and Stored Procedure Helper), it
may appear as "Unknown" or "Other." The queries
themselves will work

? Datatype is not currently supported.

Supported SQL Server Datatypes

Datatype Java Project
SQL query

Java Project
Stored

Procedure
.NET Project
SQL query

.NET Project
Stored

Procedure
bigint ? ? ? ?
int ? ? ? ?
decimal ? ? ? ?
int ? ? ? ?
numeric ? ? ? ?
smallint ? ? ? ?
tinyint ? ? ? ?
float ? ? ? ?
real ? ? ? ?
date ? ? ? ?
datetime ? ? ? ?
datetimeoffset ?* ?* ?* ?*
char ? ? ? ?
text ? ? ? ?
varchar ? ? ? ?
nchar ? ? ? ?
ntext ? ? ? ?
nvarchar ? ? ? ?

Voice Database Blocks

Composer Help 399

Datatype Java Project
SQL query

Java Project
Stored

Procedure
.NET Project
SQL query

.NET Project
Stored

Procedure
binary ? ? ? ?
sql_variant ? ? ?* ?
timestamp ? ? ? ?

Supported Oracle Datatypes

Datatype Java Project
SQL query

Java Project
Stored

Procedure
.NET Project
SQL query

.NET Project
Stored

Procedure
number ? ? ? ?
binary_float ?* ?* ?* ?*
binary_double ?* ? ?* ?*
date ? ? ? ?
char ? ? ? ?
varchar ? ? ? ?
varchar2 ?* ?* ?* ?*
nchar ?* ? ?* ?
nvarchar2 ?* ? ?* ?*

Voice Database Blocks

Composer Help 400

Voice CTI Blocks
CTI (which stands for Computer Telephony Integration) blocks provide interfaces between Genesys
Voice Platform (GVP) and Genesys Framework components and SIP Server. There are six CTI blocks:

• Get Access Number Block for using Get access number to retrieve the access code (number) of a
remote site from an IVR Server.

• Interaction Data Block for sending attached data. Get and Put operations are supported.
• Route Request Block for sending route requests. It uses the Userdata extension attribute for sending

back data attached to an interaction (attached data).
• Statistics Block to retrieve statistics from Stat Server via IServer.
• ICM Interaction Data Block to work with a Cisco product called Intelligent Contact Management

(ICM), which provides intelligent routing and Computer Telephony Integration. You can use the GVP ICM
Adapter in VoiceXML applications when invoking services, responding to requests, and sharing data.

• ICM Route Request Block to transfer a call to Intelligent Contact Management.

Also see Working with CTI Applications.

CTI Scenarios: SIPS versus CTIC

Composer will generate code for both SIP Server and CTI Connection scenarios simultaneously. The
code to be executed at runtime depends on which scenario is active when the voice application runs.
No decision is required at design time. For more information, see the topic CTI Scenarios. Also see the
VoiceXML Reference on the Genesys Voice Platform Wiki.

Voice CTI Blocks

Composer Help 401

CTI Scenarios
There are feature differences between the SIPS and CTIC scenarios. The following table gives a
summary of the CTI blocks, and for each CTI block it lists the differences in behavior for the two CTI
scenarios.

CTI Block Name Supports CTIC Case? Supports SIPS Case? Comments

Interaction Data Yes Yes

Supported operations in
each scenario:
CTIC:

• PUT
• GET
• DELETE
• DELETEALL
• REPLACE

SIPS:

• PUT
• GET

Types of interaction data
supported: CTIC:

• USERDATA
SIPS:

• USERDATA

Get access number Yes No

Get access number
block can only be used
in the CTIC scenario.
Types of interaction data
supported: CTIC:

• USERDATA
• EXTENSIONDATA

Statistics Yes No
Statistics block can only
be used in the CTIC
scenario.

Route Request Yes Yes
Types of interaction
data supported:
CTIC:

Voice CTI Blocks

Composer Help 402

• USERDATA
• EXTENSIONDATA

SIPS:

• USERDATA
Types of transfers supported:
CTIC:

• Blind
• Bridge

SIPS:

• Consultation
• Blind
• bridge

In case a CTI block or feature is used in a CTI scenario in which it is not supported, appropriate
exceptions will be thrown at runtime indicating that the feature is not supported. The table below
gives a list of all exceptions that can be thrown by CTI blocks and other possible CTI-related
exceptions that can be thrown if errors are encountered at runtime.

Block(s) Exception Error Message Description
Interaction Data
Get access number Statistics error.com.genesyslab.composer.invalidkeyMissing <block name>

key <key name>
This is the event error
for handling an invalid
key name.

Interaction Data
Get access number Statistics
Route Request

error.com.genesyslab.composer.operationtimedoutOperation timed out.

This exception will be
thrown when a
<receive> operation,
executed in the context
of a CTIC specific
operation, times out.

Interaction Data
Get access number Statistics
Route Request

error.com.genesyslab.composer.receiveerror<Error string returned
by CTIC>

If the <receive> fails
and an error is reported
by CTIC, this exception
will be thrown.

Interaction Data error.com.genesyslab.composer.unsupported
Delete operation not
supported in case of CTI
using SIPServer.

If the user wants to do a
userdata DELETE in the
CTI using SIPS scenario.

Interaction Data error.com.genesyslab.composer.unsupported
DeleteAll operation not
supported in case of CTI
using SIPServer.

If the user wants to do a
userdata DELETEALL in
the CTI using SIPS
scenario.

Interaction Data error.com.genesyslab.composer.unsupported
Replace operation not
supported in case of CTI
using SIPServer.

If the user wants to do a
userdata REPLACE in
the CTI using SIPS
scenario.

Voice CTI Blocks

Composer Help 403

Get access number error.com.genesyslab.composer.unsupported
AccessNumGet
operation not supported
in case of CTI using
SIPServer.

If the user wants to do a
AccessNumGet in the
CTI using SIPS scenario.

Statistics error.com.genesyslab.composer.unsupported
Statistics block not
supported in case of CTI
using SIPServer.

If the user wants to do a
PeekStatReq or
GetStatReq in the CTI
using SIPS scenario.

Route Request error.com.genesyslab.composer.unsupported
Consultation transfer is
not supported in case of
CTI using CTIConnector.

If user sets Transfer
type to consultation in
case of CTI using SIPS.

Voice CTI Blocks

Composer Help 404

Get Access Number
The Get access number block uses Get access number to retrieve the access code (number) of a
remote site from an IVR Server. It can be used to get the agent number when the application
transfers a call to an agent at a remote site (remote switch transfers).

Notes:

• This block can be used in CTIC scenario only. It will not work when CTI functionality is accessed using SIP
Server.

• This block is not supported when GVP is configured in Network mode.

Get Access Number Block Exception Events

The Get access number block has four exception events as described in
Exception_Event_Descriptions:

error.com.genesyslab.composer.invalidkey error.com.genesyslab.composer.receiveerror
error.com.genesyslab.composer.operationtimeout error.com.genesyslab.composer.unsupported
(preselected into the Supported column as a default exception)

The Get access number block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The exception error.com.genesyslab.composer.
unsupported is preselected into the Supported column of the Exceptions dialog box as a default
exception.

Voice CTI Blocks

Composer Help 405

Variables Property

To declare session variables for the application or subcallflow:

1. Select the Variables row in the block's property table.

2. Click the button to open the Variable Settings dialog box.

These variables apply only to the Entry block, unless otherwise indicated.

Note: Request URi parameters created in IVR Profiles during the VoiceXML application provisioning
are passed to the Composer generated VoiceXML application as request-uri parameters in the
session.connection.protocol.sip.requesturi session array. An Entry block variable can use
these parameters by setting the following expressions to the variable values: typeof
session.connection.protocol.sip.requesturi['var1'] == 'undefined' ?
"LocalDefaultValue" : session.connection.protocol.sip.requesturi['var1']. If parameters
are set as part of IVR Profiles provisioning in the Genesys VoiceXML provisioning system, and if these
parameters have the same names as variables set in the Entry block's Variables property with the
above mentioned sip.requesturi expression, then the SIP-Request-URI parameters will take
precedence over the user variable values set in the Entry block.

Many blocks enable the use of variables rather than static data. For example, the Prompt block can
play the value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks
must be declared here so that they appear in the list of available variables in other blocks.

The value collected by an Input block or a Menu block is saved as a session variable whose name is
the same as the block name.

Destination Dn Property

To enter a Destination Dn:

1. Select the Destination Dn row in the block's property table.
2. In the Value field, type a Destination Dn.

Remote Switch Location Property

To enter a remote switch location:

1. Select the Remote Switch Location row in the block's property table.
2. In the Value field, type a value specifying the remote switch location.

Remote switch transfers use the AccessNumGet message, which is sent by the IVR to the IVR Server
to request that the call be routed to a remote site. For information on AccessNumGet and the
Location parameter, refer to the IVR SDK XML Developer’s Guide, which is available on the Genesys
Technical Support website or on the Developer Documentation Library DVD. Refer to the Location

Voice CTI Blocks

Composer Help 406

parameter. The value of the Location parameter will be the name of the switch defined in the
Configuration Database.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing.

Note! This property is mandatory. You must select a variable for the output result even if you do not
plan on using the variable. If this is not done, a validation error will be generated in the Problems
view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects and Diagrams.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice CTI Blocks

Composer Help 407

Interaction Data Block
Use the Interaction Data block for sending attached data. Get and Put operations are supported.
Background: Attached data can be attached to calls by different T-Server clients. For example, an IVR
might attach data to a call by collecting the numbers that callers press on their telephone keypads in
response to a prompt. An agent might also attach data to a call using a desktop application. Once T-
Server attaches the data, it becomes interaction data, which can be used in expressions and for
reporting. T-Server stores attached data in AttributeUserData of event messages.

• Get values are extracted from the User Data received at the start of the call as part of the INVITE to the
GVP.

• For Put , the NGI extension <send> tag will be used to send data immediately to the SIP Server. The
data will be sent in the SIP INFO Body.

This block supports working with both SIPServer and CTIConnector CTI scenarios. There are feature
differences as listed in CTI scenarios. Also see the standard VoiceXML session variables documented
in the GVP 8.1 VoiceXML 2.1 Reference Help (Help > Contents). The Interaction Data block has the
following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Interaction Data block has the following
Exception Events:

• error.com.genesyslab.composer.receiveerror
• error.com.genesyslab.composer.operationtimeout
• error.com.genesyslab.composer.unsupported (pre-selected as a default exception)
• error.com.genesyslab.composer.invalidkey

Voice CTI Blocks

Composer Help 408

Operation Property

This property indicates the type of operation to perform:

• get--to fetch the user data (CTIC and SIPS)
• put--to send updated user data (CTIC and SIPS)
• delete--to delete selected user data (CTIC only)
• deleteall--to delete all user data (CTIC only)
• replace--to replace existing user data with alternate user data (CTIC only)

To select a value for the Operation property:

1. Select the Operation row in the block's property table.
2. In the Value field, select get, put, delete, deleteall, or replace from the drop-down list.

Note: delete, deleteall, and replace are not supported for CTI using SIP Server.

Values Property

The Values property holds the list of variables to be fetched or sent. The name of the variable must
match the UserData key name. Note: All key names for attached data passed from an IRD Strategy
must be in all lower case. To select values:

1. Click the Values row in the block's property table.

2. Click the button to open the Values dialog box.
3. Select individual global variables, or click Select all or Deselect all.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice CTI Blocks

Composer Help 409

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

1. Click OK.

Voice CTI Blocks

Composer Help 410

Route Request Block
Use the Route Request block for sending route requests. It uses the Userdata extension attribute for
sending back data attached to an interaction (User Data). Attached data can be attached to calls by
different T-Server clients. For example, an IVR might attach data to a call by collecting the numbers
that callers press on their telephone keypads in response to a prompt. An agent might also attach
data to a call using a desktop application. Once T-Server attaches the data, it becomes interaction
data, which can be used in expressions and for reporting. T-Server stores attached data in
AttributeUserData of event messages. You can select any application variables to pass as
interaction data. The name of the variable will be used as the Key of the interaction data. The
Destination number represents the target to which the call will be routed. It can be one of following:

• Virtual Route Point Destination Number
• Direct extension of an Agent
• External Number to dial out

This block supports working with both SIPServer and CTIConnector CTI scenarios. There are feature
differences as listed in CTI scenarios. The Route Request block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Route Request block supports the following
Exception Event Descriptions:

• connection.disconect.hangup
• connection.disconnect.transfer
• error
• error.com.genesyslab.composer.unsupported
• error.connection.baddestination (supported by default)
• error.connection.noauthorization

Voice CTI Blocks

Composer Help 411

• error.connection.noresource
• error.connection.noroute
• error.connection
• error.unsupported.transfer.blind
• error.unsupported.transfer.consultation
• error.unsupported.uri

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Route Request block, this property affects the language of grammars used for ASR input:

1. Click under Value to display a down arrow.
2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice CTI Blocks

Composer Help 412

Interaction Data Property

To select session variables:

1. Click the Interaction Data row in the block's property table.

2. Click the button to open the Interaction Data dialog box.
3. Select individual global variables, or click Select all or Deselect all.
4. Click OK.

Transfer Audio Property

The optional Transfer Audio property plays a prompt to the end user while the number is being dialed
out. You provide the URI of the audio source to play while the transfer attempt is in progress (before
the other end answers). If the callee answers, the interpreter terminates playback of the recorded
audio immediately. If the end of the audio file is reached and the callee has not yet answered, the
interpreter plays the audio tones from the far end of the call (ringing, busy). If the resource cannot be
fetched, the error is ignored and the transfer continues. To provide a Transfer Audio value:

1. Select the Transfer Audio row in the block's property table.
2. In the Value field, type a Transfer Audio value URI (HTTP or RTSP) specifying the location of the audio file

to play.

Aai Property

Use the optional Application-to-Application Information (the Aai property) for the data that is to be
transferred from the current application to another application. Use this option to transfer the call to
a number that initiates another voice application. To assign a value to the Aai property:

1. Select the Aai row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Connect Timeout Property

Use the Connect Timeout property for the connection timeout value. The default is 30 seconds. To
provide a timeout value:

1. Select the Connect Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Voice CTI Blocks

Composer Help 413

Destination Property

The Destination property contains the destination phone number. The destination number can be one
of the following:

• A Virtual Route point number on which the IRD Strategy is loaded
• Extension number of an Agent
• External number

The value must be specified in one of the formats below:

• sip:[user@]host[:port]
• tel:phonenumber e.g., tel:+358-555-1234567

For information on this property, select Help > Contents and see the Genesys Voice Platform
document VoiceXML Reference Help. Specifically see Standard VoiceXML > Variables > Transfer,
attribute dest. To assign a value to the Destination property:

1. Select the Destination row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described in the Entry block.

Max Call Duration Property

Use the Max Call Duration property for the maximum call duration. The default is 3600 seconds. (This
is not supported for Consultation Transfer Type.) Note: If this is set to 0 (zero), an infinite value is
supplied, and there is no upper limit to the call duration. To provide a value for the maximum call
duration:

1. Select the Max Call Duration row in the block's property table.
2. In the Value field, type a value for the maximum call duration.

Transfer Type Property

The Transfer Type property specifies the type of transfer required. To assign a value to the Transfer
Type property:

1. Select the Transfer Type row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

Note: The selected transfer type will work only if the platform is provisioned to support that type of
transfer.

Voice CTI Blocks

Composer Help 414

Blind
This is the default setting. The platform redirects the caller to the agent without remaining in the
connection, and it does not monitor the outcome. The platform generates a
connection.disconnect.transfer event immediately, regardless of the transfer outcome.

Bridge
The platform adds the agent to the connection, and it remains in the connection for the duration of
the transferred call. Any included grammars control the listening during the transfer. Control of the
call always returns to the application when the transfer ends, regardless of the transfer result. If the
caller or network disconnects the call, the platform generates connection.disconnect.hangup event. If
the agent disconnects the call, the transfer outcome is set to far_end_disconnect. Note: Use this
option if the application needs to continue in self-service after the agent and caller communication is
over; for example, to present a survey to the end user.

Method Property

The Method property specifies the type of route request required. To assign a value to the Method
property:

1. Select the Method row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

Bridge
A Bridge method indicates that the Media Control Platform (MCP) bridges the media path.

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The route request fails if a non-2xx final response is received for the INVITE request.

This is a two-leg route request (in other words, it occupies two channels on the platform). The
platform stays in the signaling path and is responsible for bridging the two call legs.

Hkf (Hookflash)
A Hookflash method indicates a route request using DTMF digits (RFC 2833).

1. The Media Control Platform (MCP) sends DTMF digits on the media channel. The platform leaves it to the
media gateway or switch to perform the route request on the network.

2. Configurable options enable you to specify whether the call will be disconnected by the platform or by
the remote end. Otherwise, the call is disconnected after a configured timeout.

This is a one-leg route request (in other words, it occupies only one channel on the platform).

Voice CTI Blocks

Composer Help 415

Refer
A Refer method indicates that the route request is based on a SIP REFER message (RFC 3515).

1. The platform sends a REFER request to the caller, with the callee (as specified in the VoiceXML
application) in the Refer-To: header.

2. The route request fails if a non-2xx final response is received for the REFER.

This is a one-leg route request (in other words, it occupies only one channel on the platform).

Referjoin
A Referjoin method indicates a consultative REFER route request (RFC 3891).

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The platform also sends a REFER request to the caller, with the callee’s information in the Replaces
header.

3. The platform considers the route request to be successful if it receives a BYE from the caller after a 2xx
response for the REFER.

4. The route request fails if a non-2xx final response is received for the INVITE request or for the REFER
request.

This is a two-leg, or join-style, route request (in other words, it occupies two channels on the
platform).

Mediaredirect
A Mediaredirect method indicates a media redirection route request. The Media Control Platform
(MCP) uses SIP to handle call control between the caller and the callee, and the RTP media channel is
connected directly between the caller and callee.

1. The platform sends an INVITE request to the callee without SDP.
2. If the route request is proceeding, the callee responds with a 200 OK that includes an SDP offer.
3. The platform forwards the SDP offer in a re-INVITE request to the caller.
4. The caller responds with a 200 OK that includes the SDP answer.
5. The platform forwards the SDP answer to the callee in an ACK response.
6. The route request fails if a non-2xx final response is received for the initial INVITE request.

This is a two-leg route request (in other words, it occupies two channels on the platform).

Get Shadow Variables Property

Shadow variables provide a way to retrieve further information regarding the value of an input item.

Voice CTI Blocks

Composer Help 416

By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show RouteRequest1$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: RouteRequest1$.duration. To
assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Transfer Results Property

To select transfer results:

1. Click the Transfer Results row in the block's property table.

2. Click the button to open the Transfer Results dialog box.
3. Select items from the list of available CPA results, or click Select all or Deselect all as needed, then click

OK.

For each item selected, an outport node is added to allow specific actions to be taken for that
condition.

Input Grammar Dtmf Property

Use the Input Grammar Dtmf property to specify the DTMF Grammar for the Input Block. The DTMF
Grammar is processed and handled by GVP. In the case of external grammars, this specifies the
actual path of the grammar file / resource for DTMF Grammars. This is only valid when the Grammar
Type is externalGrammar and Input Mode is dtmf or hybrid. To assign a value to the Input Grammar
Dtmf property:

1. Select the Input Grammar Dtmf row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Grammar Voice Property

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block. If you are
writing hybrid applications that allow both DTMF and Speech input, specify both the DTMF and Voice
grammars. The Voice Grammar is sent to the ASR Engine for processing, whereas the DTMF grammar
is processed by GVP. As a result, you need two separate grammars for Voice and DTMF in the case of
hybrid applications that allow both Voice and DTMF inputs. In the case of external grammars, this
specifies the actual path of the grammar file / resource for ASR Grammars.. This is only valid when

Voice CTI Blocks

Composer Help 417

Grammar Type is externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input
Grammar Voice property:

1. Select the Input Grammar Voice row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Mode Property

To assign a value to the Input Mode property:

1. Select the Input Mode row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

DTMF
The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice
The Voice format indicates the menu option mode of input will be a voice phrase. The Hybrid menu
mode will handle both DTMF and Voice inputs, that is via telephone keypad and voice phrase.

Voice CTI Blocks

Composer Help 418

Statistics Block
Use the Statistics block to retrieve statistics from Stat Server via IServer. The Statistics block enables
you to receive data on statistics such as CurrNumberWaitingCalls and ExpectedWaitTime.
Additionally, you can get a full report on the requested statistics for a specified object in the
Configuration Layer. The object may be a queue, route point, or group of queues.

This block supports the following actions (operations):

• GetStatReq
• PeakStatReq

The Statistics block also uses the <send> tag.

Note: This block can be used in CTIC scenario only. It will not work when CTI functionality is accessed
using SIPServer.

The Statistics block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Statistics block has four page exceptions:

• error.com.genesyslab.composer.invalidkey
• error.com.genesyslab.composer.receiveerror
• error.com.genesyslab.composer.operationtimeout
• error.com.genesyslab.composer.unsupported (pre-selected by default)

Voice CTI Blocks

Composer Help 419

Operation Property

The Operation property indicates the type of operation to perform:

• get—to execute a GetStatReq to return the current value of the requested statistics for the specified
object (queue, routepoint, or group of queues)

• peek—to execute a PeekStatReq to return the value of CurrNumberWaitingCalls or ExpectedWaitTime. It
cannot return any other value.

To select a value for the Operation property:

1. Select the Operation row in the block's property table.
2. In the Value field, select get or peek from the drop-down list.

The following properties apply and must be set if you choose get:

• Object Id
• Object Type
• Server Name
• Statistic Type

The following property applies and must be set if you choose peek:

• Peek Return Value

Note: Statistics can be requested at any time during the call. They must be preconfigured in Genesys
Administrator before they can be used. For more information on configuring statistics, see the
Framework Stat Server User's Guide.

Object Id Property

The Object Id property is used for a GetStatReq (get) operation.

This property works with the Object Type property.

• For RoutePoint, the value is the Alias of the corresponding DN in the Configuration Database.
• For Queue and GroupQueues, the value is the name of the corresponding object in the Configuration

Database.

To provide a value for the Object Id:

1. Select the Object Id row in the block's property table.
2. In the Value field, type a value for the Object Id.

Voice CTI Blocks

Composer Help 420

Object Type Property

The Object Type property is used for a GetStatReq (get) operation. As described in the Stat Server
Object Types chapter in the Framework Stat Server User's Guide, valid Object types are:

• Queue
• RoutePoint
• GroupQueues

To provide a value for the Object Type:

1. Select the Object Type row in the block's property table.
2. In the Value field, type a value for the Object Type.

Server Name Property

The Server Name property is used for a GetStatReq (get) operation. This can be the IP address/
hostname or the fully qualified domain name of the Stat Server.

To provide a value for the Server Name:

1. Select the Server Name row in the block's property table.
2. In the Value field, type a value for the Server Name.

Statistic Type Property

The Statistic Type property is used for a GetStatReq (get) operation. Refer to the Framework Stat
Server User's Guide for details on what the values of these objects can be.

To provide a value for the Statistic Type:

1. Select the Statistic Type row in the block's property table.
2. In the Value field, type a value for the Statistic Type.

Peek Return Value Property

The Peek Return Value property is used for a PeekStatReq (peek) operation. This specifies the
application variable to hold the result–the current number of calls in the queue.

To select a value for the Peek Return Value property:

Voice CTI Blocks

Composer Help 421

1. Select the Peek Return Value row in the block's property table.
2. In the Value field, select CurrNumberWaitingCalls or ExpectedWaitTime from the drop-down list.

Configuring GetStatReq/PeakStatReq Requests
To get GetStatReq/PeakStatReq requests to work

Configure I-Server as follows:

1. In the I-Server Options tab, create the following section: Stat:ExpectedWaitTime
2. Under that section, create the following options/values:

• obj_id = dn@switch (DN is the DNIS/Routing Point being called. The switch used is that to
which SIP Server is associated in case of behind the switch and the Virtual switch in case of
in front of the switch. Example: 9020@CTI_Switch

• obj_type = SObjectQueue
• server_name = stat_server_name (The name of the Stat Server object in the Configuration

Database).
• stat_type = ExpectedWaitTime
• update_frequency = 5

Configure Stat Server as follows:

1. In the Stat Server options tab, create the following section: ExpectedWaitTime
2. Under that section, create the following options/values:

• Category = ExpectedWaitTime
• MainMask = CallWait
• Objects = Queue
• Subject = DNAction

3. Connect applications as follows:

• T-Server IVR – Message Server
• Ixn-Server – T-Server_IVR, Stat Server
• URS – T-Server_IVR, Stat Server, Message Server
• Stat Server – T-Server_IVR, Message Server

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing.

Voice CTI Blocks

Composer Help 422

Note! This property is mandatory. You must select a variable for the output result even if you do not
plan on using the variable. If this is not done, a validation error will be generated in the Problems
view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks .

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Voice CTI Blocks

Composer Help 423

ICM Interaction Data Block
ICM refers to a Cisco product called Intelligent Contact Management, which provides intelligent
routing and Computer Telephony Integration. You can use the GVP ICM Adapter in VoiceXML
applications when invoking services, responding to requests, and sharing data. Use this block to send
interaction data to ICM. It functions the same way as the existing Interaction Data block. Composer
uses the VXML <gvp:send> tag to implement the ICM Interaction Data functionality.

ICM Variables

Voice Projects have a Project-level flag (Enable ICM) which controls whether ICM variables are
available for selection and assignment to variables within Composer's Entry block. The Exit block’s
Return Values property dialog allows you to select the ICM variables to be returned. You can also set
the Enable ICM flag by right-clicking the Project in the Project Explorer, selecting Properties, and
ICM Support. The types of variables supported by ICM are:

• CED--This is a single variable with the name ICM_CED. It is automatically added to the variables list in
the Entry block.

• Call variables--There are 10 CallVars, with names ICM_CallVar1 through ICM_CallVar10. They are
automatically added to the variables list in the Entry block.

• ECC variables--These are user-named variables, which are identified by having a prefix of
ICM_ECC_user; for example, ICM_ECC_userMyVariable. In the Application Variables dialog, you can
enter the names of the variables with or without the prefix. Composer provides a mechanism to
automatically add the prefix.

Note: In all cases, the Enable ICM flag must be set for ICM variables to be selectable in the Entry
block. The ICM Interaction Data block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The ICM Interaction Data block has the

Voice CTI Blocks

Composer Help 424

following exception events:

• error.com.genesyslab.composer.receiveerror
• error.com.genesyslab.composer.operationtimeout
• error.com.genesyslab.composer.unsupported (pre-selected as a default exception)
• error.com.genesyslab.composer.invalidkey

Values Property

The Values property holds the list of variables to be fetched or sent. The name of the variable must
match the UserData key name. To select values:

1. Click the Values row in the block's property table.

2. Click the button to open the Values dialog box.
3. Select individual global variables, or click Select all or Deselect all.
4. Click OK.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice CTI Blocks

Composer Help 425

ICM Route Request Block
ICM refers to a Cisco product called Intelligent Contact Management, which provides intelligent
routing and Computer Telephony Integration (CTI). You can use the GVP ICM Adapter in VoiceXML
applications when invoking services, responding to requests, and sharing data. Use the ICM Route
Request block to transfer a call to ICM. Note:This block functions in the same way as the existing
Route Request block. Composer uses the VXML <transfer> tag to implement the ICM Route Request
functionality.

• For information on ICM Support and variables, see the figure in topic Project Properties dialog box.

The ICM Route Request block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The following events are supported:

• connection.disconnect.hangup
• connection.disconnect.transfer
• error
• error.connection.noauthorization
• error.connection.baddestination
• error.connection.noresource
• error.connection.noroute
• error.connection
• error.unsupported.transfer.blind
• error.unsupported.transfer.consultation
• error.unsupported.uri

Voice CTI Blocks

Composer Help 426

• error.com.genesyslab.composer.unsupported

Custom events are also supported.

Interaction Data Property

To select session variables:

1. Click the Interaction Data row in the block's property table.

2. Click the button to open the Interaction Data dialog box.
3. Select individual global variables, or click Select all or Deselect all.
4. Click OK.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

Aai Property

Use the optional Application-to-Application Information (the Aai property) for the data that is to be
transferred from the current application to another application. Use this option to transfer the call to
a number that initiates another voice application. To assign a value to the Aai property:

1. Select the Aai row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Transfer Audio Property

The optional Transfer Audio property plays a prompt to the end user while the number is being dialed
out. You provide the URI of the audio source to play while the transfer attempt is in progress (before
the other end answers). If the callee answers, the interpreter terminates playback of the recorded

Voice CTI Blocks

Composer Help 427

audio immediately. If the end of the audio file is reached and the callee has not yet answered, the
interpreter plays the audio tones from the far end of the call (ringing, busy). If the resource cannot be
fetched, the error is ignored and the transfer continues. To provide a Transfer Audio value:

1. Select the Transfer Audio row in the block's property table.
2. In the Value field, type a Transfer Audio value URI (HTTP or RTSP) specifying the location of the audio file

to play.

Connect Timeout Property

Use the Connect Timeout property for the connection timeout value. The default is 30 seconds. To
provide a timeout value:

1. Select the Connect Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

Connect When Property

This property controls whether the connection is made after the call is picked up, or immediately.
Select one of the following:

• Immediate
• Answered

Destination Property

The Destination property contains the destination phone number. The destination number can be one
of the following:

• A Virtual Route point number on which the IRD Strategy is loaded
• Extension number of an Agent
• External number

The value must be specified in one of the formats below:

• sip:[user@]host[:port]
• tel:phonenumber e.g., tel:+358-555-1234567

For information on this property, select Help > Contents and see the GVP 8.1Voice XML 2.1 Reference
Help. Specifically see Standard VoiceXML > Variables > Transfer, attribute dest. To assign a value
to the Destination property:

Voice CTI Blocks

Composer Help 428

1. Select the Destination row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described in the Entry block.

Max Call Duration Property

Use the Max Call Duration property for the maximum call duration. Default value is 0. This property is
not supported for Consultation and Blind transfer types. Note: If this is set to 0 (zero), an infinite
value is supplied, and there is no upper limit to the call duration. To provide a value for the maximum
call duration:

1. Select the Max Call Duration row in the block's property table.
2. In the Value field, type a value for the maximum call duration.

Transfer Type Property

The Transfer Type property specifies the type of transfer required. To assign a value to the Transfer
Type property:

1. Select the Transfer Type row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

Blind
This is the default setting. The platform redirects the caller to the agent without remaining in the
connection, and it does not monitor the outcome. Once the caller is handed off to the network, the
caller's session with the VoiceXML application cannot be resumed. The VoiceXML interpreter throws a
connection.disconnect.transfer immediately, regardless of whether the transfer was successful or not.

Bridge
The platform adds the agent to the connection. Document interpretation suspends until the
transferred call terminates. The platform remains in the connection for the duration of the transferred
call; listening during transfer is controlled by any included <grammar>s. If the caller disconnects by
going onhook or if the network disconnects the caller, the platform throws a
connection.disconnect.hangup event. If the agent disconnects, then transfer outcome is set to
near_end_disconnect and the original caller resumes her session with the VoiceXML application.

Consultation
The consultation transfer is similar to a blind transfer except that the outcome of the transfer call
setup is known and the caller is not dropped as a result of an unsuccessful transfer attempt. When
performing a consultation transfer, the platform monitors the progress of the transfer until the

Voice CTI Blocks

Composer Help 429

connection is established between caller and agent. If the connection cannot be established (e.g. no
answer, line busy, etc.), the session remains active and returns control to the application. As in the
case of a blind transfer, if the connection is established, the interpreter disconnects from the session,
connection.disconnect.transfer is thrown, and document interpretation continues normally. Any
connection between the caller and the agent remains in place regardless of document execution.
Note: The selected transfer type will work only if the platform is provisioned to support that type of
transfer.

Method Property

The Method property specifies the type of route request required. To assign a value to the Method
property:

1. Select the Method row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

Bridge
A Bridge method indicates that the Media Control Platform (MCP) bridges the media path.

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The transfer fails if a non-2xx final response is received for the INVITE request.

This is a two-leg transfer (in other words, it occupies two channels on the platform). The platform
stays in the signaling path and is responsible for bridging the two call legs.

Hkf (Hookflash)
A Hookflash method indicates a transfer using DTMF digits (RFC 2833).

1. The Media Control Platform (MCP) sends DTMF digits on the media channel. The platform leaves it to the
media gateway or switch to perform the transfer on the network.

2. Configurable options enable you to specify whether the call will be disconnected by the platform or by
the remote end. Otherwise, the call is disconnected after a configured timeout.

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Refer
A Refer method indicates that the transfer is based on a SIP REFER message (RFC 3515).

1. The platform sends a REFER request to the caller, with the callee (as specified in the VoiceXML
application) in the Refer-To: header.

2. The transfer fails if a non-2xx final response is received for the REFER.

Voice CTI Blocks

Composer Help 430

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Referjoin
A Referjoin method indicates a consultative REFER transfer (RFC 3891).

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The platform also sends a REFER request to the caller, with the callee’s information in the Replaces
header.

3. The platform considers the transfer to be successful if it receives a BYE from the caller after a 2xx
response for the REFER.

4. The transfer fails if a non-2xx final response is received for the INVITE request or for the REFER request.

This is a two-leg, or join-style, transfer (in other words, it occupies two channels on the platform).

Mediaredirect
A Mediaredirect method indicates a media redirection transfer. The Media Control Platform (MCP)
uses SIP to handle call control between the caller and the callee, and the RTP media channel is
connected directly between the caller and callee.

1. The platform sends an INVITE request to the callee without SDP.
2. If the transfer is proceeding, the callee responds with a 200 OK that includes an SDP offer.
3. The platform forwards the SDP offer in a re-INVITE request to the caller.
4. The caller responds with a 200 OK that includes the SDP answer.
5. The platform forwards the SDP answer to the callee in an ACK response.
6. The transfer fails if a non-2xx final response is received for the initial INVITE request.

This is a two-leg transfer (in other words, it occupies two channels on the platform). attcourtesy
attconsult attconference attoobcourtesy attoobconsult attoobconference For information on these
methods, consult the section on how the Media Control Platform works in the Genesys Voice Platform
8.1 Deployment Guide.

Do CPA Analysis Property

Triggers whether the platform will detect who or what answered the call. Select one of the following:

• True
• False (default, no detection)

Voice CTI Blocks

Composer Help 431

Get Shadow Variables Property

Shadow variables provide a way to retrieve further information regarding the value of an input item.
By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show RouteRequest1$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: RouteRequest1$.duration. To
assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Transfer Result Property

To select transfer results:

1. Click the Transfer Results row in the block's property table.

2. Click the button to open the Transfer Results dialog box.
3. Select items from the list of available CPA results, or click Select all or Deselect all as needed, then click

OK.

For each item selected, an outport node is added to allow specific actions to be taken for that
condition.

Input Grammar Dtmf Property

Use the Input Grammar Dtmf property to specify the DTMF Grammar for the Input Block. The DTMF
Grammar is processed and handled by GVP. In the case of external grammars, this specifies the
actual path of the grammar file / resource for DTMF Grammars. This is only valid when the Grammar
Type is externalGrammar and Input Mode is dtmf or hybrid. To assign a value to the Input Grammar
Dtmf property:

1. Select the Input Grammar Dtmf row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Grammar Voice Property

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block. If you are
writing hybrid applications that allow both DTMF and Speech input, specify both the DTMF and Voice

Voice CTI Blocks

Composer Help 432

grammars. The Voice Grammar is sent to the ASR Engine for processing, whereas the DTMF grammar
is processed by GVP. As a result, you need two separate grammars for Voice and DTMF in the case of
hybrid applications that allow both Voice and DTMF inputs. In the case of external grammars, this
specifies the actual path of the grammar file / resource for ASR Grammars.. This is only valid when
Grammar Type is externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input
Grammar Voice property:

1. Select the Input Grammar Voice row in the block's property table.
2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Mode Property

To assign a value to the Input Mode property:

1. Select the Input Mode row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

DTMF
The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice
The Voice format indicates the menu option mode of input will be a voice phrase.

Hybrid
The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice CTI Blocks

Composer Help 433

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Voice CTI Blocks

Composer Help 434

Working with CTI Applications
Composer provides CTI blocks for two CTI scenarios supported by GVP:

• SIP Server (SIPS) scenario, which uses the Genesys SIP Server component to gain access to CTI
functionality.

• CTI Connector (CTIC) scenario, which uses GVP’s CTI Connector component to access CTI functionality
provided by Genesys Framework.

These two scenarios do not provide identical capabilities and key differences are highlighted later in
these topics. Composer provides four CTI blocks for accessing CTI functions. It generates VXML for
each of these blocks that can work in either CTI scenario (SIPS or CTIC), and does not ask the user to
choose between the SIPS or CTIC scenarios at design time. The decision to use CTIC or SIPS is made
at runtime based on the X-Genesys headers received from GVP’s Resource Manager. Therefore, the
Composer user interface does not need to expose a Project-level preference for specifying the CTI
scenario. Note: The CTI Connector provides different capabilities depending on the configuration in
which other Genesys components like the IServer are deployed. For more details, please refer to the
GVP documentation. Also see GVP Debugging Limitations.

Design Paradigms for CTI Applications

There are two design paradigms for building CTI applications with GVP in which Composer can be
used:

• Standard VXML Applications
• URS-Centric Applications

These paradigms differ in the extent to which the VXML application is involved in performing call
control. Standard VXML Applications In this paradigm, the VXML application gets invoked first and
can go through VXML interactions with the caller before using the <transfer> tag to transfer the call
to another party such as queuing for an agent. At this point, the control of the call is passed to the
SIP Server or CTI Connector while waiting for an agent. During this time, SIP Server or CTI Connector
may invoke additional call treatments on GVP like playing music or invoking other applications. URS-
Centric Applications In this paradigm, the VXML application is always invoked as a treatment by
Genesys URS. The incoming call is controlled by Genesys URS and a strategy retains full control of
the call. The strategy invokes specific treatments on GVP IVR as a media server to play prompts, play
music, collect user input or execute a VXML application. In this paradigm, the VXML application does
not use tags like <transfer> nor does any other kind of call control. Those decisions are left to the
strategy. The VXML application returns user input collected during the call back to the strategy and
lets the strategy make all call control decisions. Composer can be used to write VXML applications
following either of the above paradigms.

Voice CTI Blocks

Composer Help 435

Typical CTI Callflow

Before you start building a typical CTI application, the following information is required:

• The Genesys Virtual Route Point destination address. This is the address/location where the Genesys
strategy is present (an integer number--for example, 5001).

• Strategy application on the Framework side (IRD) to find and transfers the call to an agent.

The following describes the interaction flow of this callflow:

1. GVP starts executing the generated VoiceXML application script.
2. The caller hears the Welcome prompt.
3. The caller is requested to enter the account details.
4. If the caller does not enter the required details within the maximum time frame provided, the caller is

asked to retry.
5. The application issues a route request to the route DN configured in the Route Request block. (This

occurs via the <transfer> tag, supported in both CTIC and SIP Server scenarios.)
6. The caller-entered data is sent as UserData to the routed DN, and the called strategy does the

knowledge based transfer to the available agent based on the User Data .

Voice CTI Blocks

Composer Help 436

7. This application ends after the Route Request has been issued.
8. The called strategy can play Voice treatments to the caller until the next available agent is available.
9. Finally, the caller will be transferred to the Agent.

Note: The Route Request block can be configured in various Transfer modes (Bridge / Consultation) to
gain back the control of the callflow after the called strategy returns back the execution. Please check
the Route Request topic block for more details.

CTI Scenarios

There are feature differences between the SIPS and CTIC scenarios. The following table gives a
summary of the CTI blocks, and for each CTI block it lists the differences in behavior for the two CTI
scenarios.

CTI Block Name Supports CTIC Case? Supports SIPS Case? Comments

Interaction Data Block Yes Yes

Supported operations in
each scenario:
CTIC:

• PUT
• GET
• DELETE
• DELETEALL
• REPLACE

SIPS:

• PUT
• GET

Types of interaction data
supported: CTIC:

• USERDATA
SIPS:

• USERDATA

Get Access Number
Block Yes No

Get access number
block can only be used
in the CTIC scenario.
Types of interaction data
supported: CTIC:

• USERDATA
• EXTENSIONDATA

Voice CTI Blocks

Composer Help 437

Statistics Block Yes No
Statistics block can only
be used in the CTIC
scenario.

Route Request Block Yes Yes

Types of interaction
data supported:
CTIC:

• USERDATA
• EXTENSIONDATA

SIPS:

• USERDATA
Types of transfers supported:
CTIC:

• Blind
• Bridge

SIPS:

• Consultation
• Blind
• bridge

In case a CTI block or feature is used in a CTI scenario in which it is not supported, appropriate
exceptions will be thrown at runtime indicating that the feature is not supported. The table below
gives a list of all exceptions that can be thrown by CTI blocks and other possible CTI-related
exceptions that can be thrown if errors are encountered at runtime.

Block(s) Exception Error Message Description
Interaction Data Block
Get Access Number Block,
Statistics Block

error.com.genesyslab.composer.invalidkeyMissing <block name>
key <key name>

This is the event error
for handling an invalid
key name.

Interaction Data Block
Get Access Number Block
Statistics Block, Route
Request Block

error.com.genesyslab.composer.operationtimedoutOperation timed out.

This exception will be
thrown when a
<receive> operation,
executed in the context
of a CTIC specific
operation, times out.

Interaction Data Block
Get Access Number Block
Statistics Block Route Request
Block

error.com.genesyslab.composer.receiveerror<Error string returned
by CTIC>

If the <receive> fails
and an error is reported
by CTIC, this exception
will be thrown.

Interaction Data Block error.com.genesyslab.composer.unsupported
Delete operation not
supported in case of CTI
using SIPServer.

If the user wants to do a
userdata DELETE in the
CTI using SIPS scenario.

Interaction Data Block error.com.genesyslab.composer.unsupportedDeleteAll operation not If the user wants to do a

Voice CTI Blocks

Composer Help 438

supported in case of CTI
using SIPServer.

userdata DELETEALL in
the CTI using SIPS
scenario.

Interaction Data Block error.com.genesyslab.composer.unsupported
Replace operation not
supported in case of CTI
using SIPServer.

If the user wants to do a
userdata REPLACE in
the CTI using SIPS
scenario.

Get Access Number
Block error.com.genesyslab.composer.unsupported

AccessNumGet
operation not supported
in case of CTI using
SIPServer.

If the user wants to do a
AccessNumGet in the
CTI using SIPS scenario.

Statistics Block error.com.genesyslab.composer.unsupported
Statistics block not
supported in case of CTI
using SIPServer.

If the user wants to do a
PeekStatReq or
GetStatReq in the CTI
using SIPS scenario.

Route Request Block error.com.genesyslab.composer.unsupported
Consultation transfer is
not supported in case of
CTI using CTIConnector.

If user sets Transfer
type to consultation in
case of CTI using SIPS.

Script ID Usage in the GVP 8 Environment

In Genesys VoiceXML 2.1, ScriptId refers to the script identifier, as generated by the CTI Connector, to
handle call treatments. The use of ScriptId is specific to GVP 7.x and was mandatory for treatments.
Since the GVP 7.x design is "IVR-centric," the treatment would be invoked on the same VXML session.
Things are a bit different with GVP 8.x and the Next Generation Interpreter (NGI) where APP_URI is
used instead of ScriptId and the treatments are executed on different VXML sessions. GVP 8 and
NGI In GVP 8.x, request for treatment execution comes in as a NETANN request with the APP_URI
being passed in as a VoiceXML parameter. GVP executes the requested page to kick off the
treatment. Unlike the GVP 7.x environment, treatments get invoked as separate VXML sessions and
terminated at the end of the treatment execution. Hence, ScriptId switching is no longer needed
here, unless an application wants to do branching based on ScriptId.

• Note: Composer provides support for both SIPS and CTIC scenarios for achieving the CTI functionality.
However, SIPS may not support passing additional request-uri parameters like ScriptId, therefore, this
option is limited only to CTIC scenarios.

Please refer to GVP 8.x VXML Help under Sample Voice XML Applications > CTI Interactions >
Treatments for more details on this topic.

Accessing ScriptId in Composer

Use if you want your application to do ScriptId-based switching like GVP 7.x. CTIC Scenario (IRD
strategy + Composer Callflow)

1. Use the APP_ID property in IRD's Play Application block.
2. Define a new Input type variable named ScriptId in the Entry block of your callflow to collect the

ScriptId.

Voice CTI Blocks

Composer Help 439

Composer Workflow + Composer Callflow)

1. On the VXML callflow side, define a new Input type variable named ScriptId in the Entry block to collect
the APP_ID (i.e., ScriptId) passed from the workflow.

2. On the SCXML workflow side, use the Play Application block to invoke the callflow created using step#1.
Then do an auto-synchronize for the parameters, and specify the ScriptId value.

3. The ScriptId (i.e., APP_ID) passed from the workflow will be automatically collected on the VXML side
from the session.connection.protocol.sip.requesturi array.

SIPS Scenario

1. SIPS may not support passing additional request-uri parameters. Pass ScriptId as attached data on the
strategy side (If using IRD) or on the SCXML side (If using Composer workflows).

2. Define a new Input type variable named ScriptId in the Entry block to collect the ScriptId.
3. The ScriptId (i.e., APP_ID) passed from the strategy will be automatically collected on the VXML side

from the session.com.genesyslab.userdata array.

Voice CTI Blocks

Composer Help 440

Voice External Message Blocks
The External Messaging palette provides blocks for NGI extensions to send and receive external
messages to/from external entities such as CCXML applications. There are four External Message
blocks:

• Receive Block for receiving synchronous and asynchronous SIP INFO messages. This is can be used to
receive messages from CCXML applications.

• Send Data Block, which is a wrapper around the <send namelist> tag) for sending a list of variables
as SIP INFO to the other end point. The data is sent in the form-url-encoded format, in the BODY of the
SIP INFO.

• Send Info Block generates the NGI VXML <send body> tag for sending any content in the Body of the
SIP INFO. By default, content-type is set to text/plain. Typically, this can be used in conjunction will
CCXML applications.

• Send Event Block generates the NGI VXML <send event> tag to send SIP INFO events or custom
events between the VXML dialog and the CCXML application.

For all the Send [xxx] blocks, you have the option to specify the Wait for response property as true in
those blocks to send the message synchronously.

Voice External Message Blocks

Composer Help 441

Receive Block
Use the Receive block for receiving synchronous and asynchronous SIP INFO messages. This is can be
used to receive messages from CCXML applications.

A typical use case is for a CCXML application to interrupt the VXML dialog in order to take some
action.

Depending upon how the data is sent, the content, content-type or event properties will be filled.

The Receive block has the following properties:

The Receive block has no page exceptions.

Name Property

Find this property's details under Name_Property.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Content Property

The Content property is the variable used to collect the content of the received event.

To select a variable:

1. Select the Content row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Content Type Property

The Content Type property is the variable used to collect the content type of the received event.

To select a variable:

1. Select the Content Type row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Voice External Message Blocks

Composer Help 442

By default, Content Type is set to text/plain.

Event Name Property

The Event Name property is the variable used to collect the name of the received event.

To select a variable:

1. Select the Event Name row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Voice External Message Blocks

Composer Help 443

Send Data Block
Use the Send Data block (a wrapper around the <send namelist> tag) for sending a list of variables
as SIP INFO to the other end point. The data is sent in the form-url-encoded format, in the BODY of
the SIP INFO.

Typically, Send Data can be used by VXML applications to send data to a CCXML application or to CTI
applications.

For example, CCXML use cases that use Composer External Messaging Blocks (such as Send Data,
Send Info, and Send Event), see the Genesys Voice Platform 8.1 CCXML Reference Manual. See the
Features chapter, Dialogs section.

When using either the Send Data or Send Info block, the result on the CCXML side is to create a
dialog.user. * event. The name of the event is set to dialog.<event name>.

Dialog User Event Example

The VoiceXML dialog may send a user event to the CCXML application by using the <send
namelist="name type uri"/> tag. Here is an example of the VoiceXML <send> block:

<var name="name" expr="'transfer'"/>

<var name="type" expr="'bridge'"/>

<var name="uri" expr="'1111@205.150.90.19'"/>

<gvp:send namelist="name type uri"/>

The CCXML session receives the following:

15:02:04.416 Int 51030 F9187A00-E558-44C6-61AE-FFA9A066180C-FF326086-ECB5 dlg_event

7|dialog.user.transfer|DD92E8B2-51AD-4F3F-8C8D-

40AFA169EA9B|values.name="transfer";values.type="bridge";values.uri="1111@205.150.90

.19

This raises a dialog.user.transfer event to the CCXML application that owns the dialog. The event
itself contains the following properties:

event$.values.name=transfer

event$.values.type=bridge

event$.values.uri=1111@205.150.90.19

Note: The event$ is a generic name for CCXML events, and in the preceding example, it is

Voice External Message Blocks

Composer Help 444

dialog.user.transfer. The contenttype attribute is not supported by the <send> tag if the namelist is
used.

The Send Data block has the following properties:

The Send Data block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Values Property

The Values property holds the list of variables to be sent.

To select values:

1. Click the Values row in the block's property table.

2. Click the button to open the Values dialog box.
3. Select individual variables, or click Select all or Deselect all.
4. Click OK.

Wait For Response Property

The Wait For Response property allows a message to be sent synchronously (when set to true). By
default, data is sent asynchronously for all the Send [xxx] blocks (when this property is set to false).

To assign a value to the Wait For Response property:

1. Select the Wait For Response row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice External Message Blocks

Composer Help 445

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Voice External Message Blocks

Composer Help 446

Send Event Block
Use the Send Event block, which generates the NGI VXML <send event> tag, to send SIP INFO events
or custom events between the VXML dialog and the CCXML application. Examples: logging events or
any event specific to the dialog and the CCXML application. For more information, see the Genesys
Voice Platform 8.1 CCXML Reference Manual, Event/IO Processor, Sending Events.

The Send Event block has the following properties:

The Send Event block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Event Name Property

The Event Name property is the variable used to collect the name of the sent event.

To select a variable:

1. Select the Event Name row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Wait For Response Property

The Wait For Response property allows a message to be sent synchronously (when set to true). By
default, data is sent asynchronously for all the Send [xxx] blocks (when this property is set to false).

To assign a value to the Wait For Response property:

1. Select the Wait For Response row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Voice External Message Blocks

Composer Help 447

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Voice External Message Blocks

Composer Help 448

Send Info Block
Use the Send Info block, which generates the NGI VXML <send body> tag, for sending any content in
the Body of the SIP INFO. By default, content-type is set to text/plain.

Typically, this can be used in conjunction will CCXML applications.

For example, CCXML use cases that use Composer External Messaging Blocks (such as Send Data,
Send Info, and Send Event), see the Genesys Voice Platform 8.1 CCXML Reference Manual. See the
Features chapter, Dialogs section.

When using either the Send Data or Send Info block, the result on the CCXML side is to create a
dialog.user. * event. The name of the event is set to dialog.<event name>.

For an example, see the Dialog User Event Example in the Send Data block description.

The Send Info block has the following properties:

The Send Info block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Content Property

The Content property is the variable used to collect the content of the sent event.

To select a variable:

1. Select the Content row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Voice External Message Blocks

Composer Help 449

Content Type Property

The Content Type property is the variable used to collect the content type of the sent event.

To select a variable:

1. Select the Content Type row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

By default, Content Type is set to text/plain.

Wait For Response Property

The Wait For Response property allows a message to be sent synchronously (when set to true). By
default, data is sent asynchronously for all the Send [xxx] blocks (when this property is set to false).

To assign a value to the Wait For Response property:

1. Select the Wait For Response row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks.

Voice External Message Blocks

Composer Help 450

Reporting Blocks
Reporting Blocks provide interfaces for GVP and Reporting Server whenever the application needs to
perform Voice Application Reporting for IVR actions. There are four Reporting blocks:

• Action Start Block indicates the start of a Voice Application Report (VAR) transaction.
• Action End Block allows the application to indicate the end of a Voice Application Report (VAR)

transaction.
• Set Call Data Block allows the application to report custom data for the call.
• Set Call Result Block allows the application to indicate the end of a call.

Reporting Blocks

Composer Help 451

Action Start Block
The Action Start block indicates the start of a Voice Application Report (VAR) transaction. You can
specify the Action Id and Parent Action for the action. Composer generates Subcallflow start and End
events whenever a <SubDialog> (Subcallflow) got executed in the call. Composer-generated VXML
code automatically generates the events. With this feature all the events (Main and Sub callflow
events) generated for a call can be found with in a single umbrella in the Reporting server.

The Action Start block has no page exceptions.

The Action Start block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Action Id Property

Note: The GVP 8 platform provides an extension to the <log> tag that allows application developers
to indicate the start of an IVR Action The Action Id and Parent Action Id properties are used for this
purpose. The syntax is as follows:

<log label="com.genesyslab.var.ActionStart">actionID[|parentID=<PID>]</log>

The Action Id property specifies a variable containing the name of the IVR action to report as being

Reporting Blocks

Composer Help 452

started. The actionID is any valid UTF8 string that does not contain spaces or pipes, and is restricted
to a maximum of 64 characters.

1. Select the Action Id row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Parent Action Property

See Note in Action Id property description.

If an IVR action is to be nested inside some other active action, then the parent action’s ID must also
be included (PID). The Parent Action property specifies the variable used for the name of the parent
action in which the new Action has to be contained.

1. Select the Parent Action row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list that contains the

identifier for the Parent Action.

Important! If the Parent Action ID specified does not refer to an action that was already started, the
Genesys Voice Platform Reporting Server will ignore the entire Action Start request.

Note: If the Parent Action ID specified does not refer to an action that was already started, the GVP
Reporting Server will ignore the entire Action Start request.

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Reporting Blocks

Composer Help 453

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Reporting Blocks

Composer Help 454

Action End Block
The Action End block allows the application to indicate the end of a Voice Application Report (VAR)
transaction. You can specify the reason, results and notes corresponding to the action. Composer
generates Subcallflow start and End events whenever a <SubDialog> (Subcallflow) got executed in
the call. Composer-generated VXML code automatically generates the events. With this feature all
the events (Main and Sub callflow events) generated for a call can be found with in a single umbrella
in the Reporting server.

You are responsible for making sure to provide a valid Action Id name, for an action that was
previously started in the application using the Action Start block.

By default an action end event will be sent by each terminating block of a callflow. This includes the
Exit and Disconnect blocks.

The Action End block has no page exceptions.

The Action End block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Action Id Property

The Action Id property is the variable used in the Action Start block for the action to report as ended.
It must be the same Action Id variable used in the Action Start block.

To select a variable:

1. Select the Action Id row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Reporting Blocks

Composer Help 455

Notes Property

The Notes property allows you to enter text (up to 4 KB of data) associated with the Action End event.
Since Composer generates <log> labels for the Reporting blocks, text entered here can appear on
voice application reports as described in the Genesys Voice Platform 8.1 User's Guide. See
Provisioning GVP.

To enter notes:

1. Click the Notes row in the block's property table.

2. Click the button to open the Notes dialog box.
3. Type text notes as needed and click OK.

Reason Property

The Reason property allows you to enter text for a reason for ending the action. The Reason field
allows up to 4 KB of data. Note text appears on voice application reports.

To enter reason text:

1. Click the Reason row in the block's property table.
2. Click the dropdown arrow and select the variable that contains the reason text.

Result Property

The Result property contains the result of the action that was just ended.

To assign a value to the Result property:

1. Select the Result row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

UNKNOWN
The action had an unknown result.

SUCCESS
The action completed successfully.

Reporting Blocks

Composer Help 456

FAILED
The action did not complete successfully (failed).

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Reporting Blocks

Composer Help 457

Set Call Data Block
The Set Call Data block allows the application to report custom data for the call. You can select the
list of variables to be reported. The name of the variable is used as the CustomData key. If eight keys
are provided, the Reporting server will reject the data for any new keys received after that.

The Set Call Data block has no page exceptions.

The Set Call Data block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Variables Property

Use the Variables property to create custom variables. Variable content appears on GVP Voice
Application reports (the VAR CDR Details Report). For more information, refer to the Per-Call IVR
Actions Report section on page 367 in the GVP 8.1 User Guide. To create custom variables:

1. Click the Variables row in the block's property table.
2. Click under Value to add an entry to define application variables.
3. In the Application Variables dialog box, click Add.
4. In the Variable Name field, accept the default name or change it.
5. In the Value field, select a variable from the drop-down list.
6. In the Description field, type a description for this variable.
7. Click Add again to enter another parameter, or click OK to finish.

Delete Button
To delete a custom variable:

1. Select an entry from the list.

Reporting Blocks

Composer Help 458

2. Click Delete.

Note: In version 8.1.300.xx, ignore the Restore System Variables Default Values button.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Reporting Blocks

Composer Help 459

Set Call Result Block
The Set Call Result block allows the application to indicate the end of a call. You can specify the
reason, results and notes corresponding to the call result. In addition to tagging calls for Voice
Application Reporting (VAR), you can also use this block for Service Quality Analysis (SQA) call status
(success, failure) reporting. For information on SQA, see Genesys Voice Platform 8.1 Deployment
Guide and Genesys Voice Platform 8.1 User's Guide.

The Set Call Result block has the following properties:

The Set Call Result block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Notes Property

The Notes property allows you to enter text (up to 4 KB of data) associated with the end of a call.
Since Composer generates <log> labels for the Reporting blocks, text entered here can appear on
voice application reports as described in the Genesys Voice Platform 8.1 User's Guide. See
Provisioning GVP.

To enter notes:

1. Click the Notes row in the block's property table.

2. Click the button to open the Notes dialog box.
3. Type text notes as needed and click OK.

Reason Property

The Reason property allows you to enter text for a reason for ending the call (maximum length of 256
characters).

Reporting Blocks

Composer Help 460

To enter reason text:

1. Click the Reason row in the block's property table.
2. Click the dropdown arrow and select the variable that contains the reason text.

Result Property

The Result property contains the result of the call that was just ended.

To assign a value to the Result property:

1. Select the Result row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

UNKNOWN

SUCCESS

FAILED

UNKNOWN
The call had an unknown result.

SUCCESS
The call completed successfully.

FAILED
The call did not complete successfully (failed).

This property can be used for reporting both VAR metrics and SQA services as described above. Refer
to Genesys Voice Portal documentation for information usage of this field for VAR (<log> label
com.genesyslab.var.CallResult) and SQA (<log>label com.genesyslab.quality.failure).

Notes:

• Composer will not log SUCCESS and UNKNOWN call results, already available for VAR, to SQA.

• MCP will still log a call as a failure if it fails to meet one of the thresholds, even if the application never
explicitly calls the <log> tag to indicate SQA failure.

Reporting Blocks

Composer Help 461

Condition Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Logging Details Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Log Level Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Enable Status Property

Find this property's details under CommonPropertiesforCallflowBlocks or
CommonPropertiesforWorkflowBlocks.

Reporting Blocks

Composer Help 462

Genesys Voice Platform (GVP) Blocks
Starting with Composer 8.1.430.03, Composer supplies the following GVP block:

• IVR Recording Block

Genesys Voice Platform (GVP) Blocks

Composer Help 463

IVR Recording Block
Starting with 8.1.430.03 Composer supplies an IVR Recording block that allows you to control and
record an IVR application from a Composer IVR self-service application. You can use this block to both
record calls and to control the recording process by using additional blocks with START/STOP/PAUSE/
RESUME operations for recording. Once the application executes, recording becomes available via
Geneys Interaction Recording (GIR).

Important
The IVR Recording block works only with GIR and is not applicable to environments
where third party recording solutions are integrated with GVP.

Prerequisites

The IVR Recording block requires the following Genesys components:

• SIP Server version 8.1.102.39
• GVP Resource Manager version 8.5.170.38
• GVP Media Control Platform version 8.5.170.71

This block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks,

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks.

Action Property

Record action to perform. Select one of the following: start, stop, pause, resume, or a variable.

Genesys Voice Platform (GVP) Blocks

Composer Help 464

Additional Commands Property

Use for additional commands for GIR. Click the open the Additional Commands dialog box. Select Add
to open a dialog box where you can enter one or more key-value pairs using a literal or variable. If
applicable, check the Value is numeric check box. For information on these commands, refer to the
Genesys Interaction Recording documentation.

Exceptions Property

Find general information about this property under Common Properties for Callflow Blocks. For more
specific information on these events, see the GVP 8.1 Legacy Genesys VoiceXML 2.1 Reference
Manual.

The IVR Recording block has the following exception events:

• error

• error.semantic

• error.noresource.recording

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Partitions Property

Note: This property requires Media Control Platform version 8.5.170.71+.

Use to set different partitions for each IVR Recording segment. Select the variable that contains the
list of partitions.

Genesys Voice Platform (GVP) Blocks

Composer Help 465

GIR provides access control for recording files to allow any recording files be only accessible for
certain users in GIR. To enforce access control, each recording file is provided with a set of partitions.
You can individually apply a partition for the IVR recording segments using the Partitions property. For
example, Partitions = sales,support can be set to a recording segment using the IVR Recording
block, Once this is applied, users from sales and support will only be able to access these particular
recordings in GIR.

For more information, see the Genesys Interaction Recording Solution Guide, Recording Methods.

Since GVP as an IVR does not support dynamic recording, to set the partition for an IVR segment, use
GRECORD_PARTITIONS attached data and use full time recording for the IVR. Use dynamic recording
for recording the agent segments.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Note: The IVR Recording block does not support Debugger calls.

Genesys Voice Platform (GVP) Blocks

Composer Help 466

https://docs.genesys.com/Documentation/CR/latest/Solution/Fulltimerecording

Using Voice Blocks
This section describes:

• Common Properties for Callflow Blocks
• Working with Grammar Builder
• Working with CTI Applications
• Working with Prompts
• Working with Database Blocks
• User Data
• Connection Pooling
• Single Session Treatments

Using Voice Blocks

Composer Help 467

Working with Grammar Builder
Grammar Builder provides a solution for supplying simple grammars, without requiring GRXML
expertise. This editor provides a hierarchical view of certain grammar concepts in a simple, abstract
way. Each level of this tree contains properties which affect all child members. Following is a brief
description of the key concepts of the Grammar Builder model as well their relationship with GRXML.

Note: A Grammar built with the Grammar Builder is not a GRXML file.

Grammar

The grammar is the root object of the tree. It serves to provide an implicit description of the intended
use of a grammar. For example, a grammar which would be used for a bank customer could be
called bankmenuinput. The selection of a grammar name is determined by the file name or the
related gbuilder file, and its setting influences the file name(s) of any exported GRXML data.

Within the grammar object are properties for the setting of languages. These languages, or locales,
indicate support for a particular language. For each locale that is added to a grammar, a distinct
GRXML file will be created specifically to support that language. DTMF, or touch-tone input, is
considered a language even though it is not spoken.

Rule

Every grammar must contain at least one rule, but may contain many. Rules provide a grouping for a
spoken (or DTMF) items. Continuing the bank customer scenario, we could have rules for yes/no
responses, another for menu options and perhaps another for branch cities. Rules are the product
that is referenced in a voice application.

At a point in an application where we wish to retrieve the branch city, we must refer to that
grammar’s rule. If an application designer does not specify a rule and instead only specifies the
grammar file, the default rule is used. Additionally, a rule may be hidden from outside applications by
declaring it as private. Usually this is for more sophisticated grammar cross-referencing, which is not
currently supported in the more elementary Grammar Builder.

Keywords

Within a rule are specific keywords that will be used to add intelligence to an end application.
Keywords become the value which can be identified within the application for use in branching or
other application constructs. However, this keyword is independent of what may actually be spoken
and is instead an internal identifier.

To bridge the gap between what a caller says or presses on their keypad, locale-specific synonyms
are defined. Remember that the languages supported are defined at the grammar level. It is at this

Using Voice Blocks

Composer Help 468

point that those defined languages come into play. Each keyword will have a list of words (synonyms)
which relate to the keyword for a given language.

For example, assuming as part of our yes/no rule, we have a keyword for yes. This keyword could
contain the word yes for English, 1 for DTMF and oui for French. Regardless of which locale ends up
being used in the running application, yes (the keyword identifier) will be returned.

Working with Grammars will guide you through the process of creating a simple grammar, using a
user color selection problem as the example to model.

Using the Grammar Builder

Let's create a simple grammar for use with a project and the Grammar Menu block. Our example will
be a user color selection problem. You will perform the following steps:

1. Create a new grammar builder file with initial settings.
2. Add keywords and synonyms for a rule.
3. Save the grammar builder file.
4. Export the grammar builder file to standard GRXML format.

Composer provides a cheat sheet for building a simple grammar file:

• Select Help > Cheat Sheets > Composer > Building Voice Applications > Creating a
simple grammar.

Creating a New Grammar Builder File With Initial Settings

The first step is to create a new grammar builder file and provide its initial settings. Follow these
steps:

1. Select File > New > Other.
2. From the New dialog box, expand the Composer folder, then expand the Grammars folder.
3. Select Grammar builder file and click Next to continue.
4. In the Container field of the wizard dialog box, click Browse to select a project-specific folder to contain

the new .gbuilder file. Genesys recommends <voiceprojectname>/Resources/Grammars for the
location.

5. Set the file name to use for this grammar. File names should give an indication of the context this
grammar will be used in. For example, type colors.gbuilder in the File name field.

Note: The Grammar Menu block does not pick up changes automatically if you change your Gbuilder
file. To synchronize the block with the latest changes, click on the Gbuilder File property of the
Grammar Menu block. In the popup make sure that the correct Gbuilder file and RuleID are
selected. Click OK to close the dialog. Your diagram will now reflect any menu options changes made
in the Gbuilder file.

Using Voice Blocks

Composer Help 469

6. Next, set the initial default rule. Rules contain items which form a category. All grammar builder files
must have at least one rule. Since our example grammar only deals with one such categorization, type
Colors in the Initial Default Rule field.

7. Locales are languages that this grammar will support. By default, English and digit input (DTMF) are
selected in the Initial locale(s) field. If you knew you would need to support additional languages for the
grammar, you would select the appropriate check box(es). For our example, the default selections are
adequate.

Note: Grammar Builder treats DTMF as a separate language (locale), even though technically it is
not categorized as such.

8. After making the selections described above, click Finish.

The file is added to the selected project (as you can see in the Project Explorer), and the Grammar
Builder opens as shown in the image below.

Adding Keywords and Synonyms for a Rule

Grammar builder files are created with a default rule. The next step is to define keywords for this
rule. Each rule can have any number of input-agnostic keywords. These keywords will be returned

Using Voice Blocks

Composer Help 470

from either the speech or digit processor for use in your callflow.

By default, a keyword is not usable in an application. This is because multiple languages may use
different words/sounds for your keyword. In our example, red may be an appropriate English
pronunciation, but in Spanish this would not be true. Because of this, each configured locale must
provide accepted input for the keyword. These inputs are called synonyms. Therefore, keywords
consist of a logical identifier and a list of locale-specific synonyms.

Once you have defined keywords and synonyms for the default rule, you can then create additional
rules and define keywords and synonyms for those rules as well.

To add a new keyword:

1. Select the Colors (default) rule in the Overall Structure tree.

• The Rule Properties area shows the Public Visibility and Default Rule settings for the selected
Rule ID.

• Default Rule. This is selected only for the rule that has been set as the default (as is the
Colors rule in this example).

• Note: Not all aspects of Composer allow for specific rule targeting within grammar files
(grxml). As such, it is highly recommended that you specify a default rule. This rule will be
used by default when a reference to the grammar exists that does not target a specific rule.
Considering that a default rule (e.g., root) is not mandatory in GRXML, no warning is given

when one is not specified
• Public Visibility. If selected, this indicates that this rule can be referenced by an external

grammar (in a ruleref element in the grammar making the reference). A public rule can
always be activated for recognition. If not selected, the rule is private, which indicates that
the rule is visible only within its containing grammar. A private rule can be referenced by an
external grammar if the rule is declared as the root rule of its containing grammar.

2. Click the (Add) button.
3. In the Add new keyword dialog box, type a name for this keyword, which is normally an instance of the

category that the rule defines. In our example, type Red in the Keyword ID field and click OK.
4. You can repeat the steps above to add more keywords to this rule.

To add a new synonym:

1. Select a keyword from the Overall Structure tree. In our example, select Red.

The Synonyms area allows you to add synonyms for each of the locales you have defined (each
locale is a tab at the bottom of the synonyms table). Note in our example that the window has both
English - United States and DTMF as bottom tabs. This allows you to switch the synonym context for
the selected keyword.

1. With the English - United States tab selected, click Add ID as Synonym. This button allows you to add
a synonym that is identical to the keyword, thus allowing red to be spoken in English and associated
with the keyword Red.

2. You may at this time add other values, such as Crimson for example, which will also be accepted as
Red.

Using Voice Blocks

Composer Help 471

3. Select the DTMF tab. To associate the digit 1 with the keyword Red, type 1 in the Digits field and click
the Add button.

4. You can repeat the steps above to add more synonyms to this keyword.

Note: If you are using locales representing other languages, the synonyms you create for each locale
would represent acceptable values for the keyword in that language. In our example, if you also
defined Spanish and French locales, you could create a synonym rojo for the Red keyword in the
Spanish locale, and a synonym rouge for the Red keyword in the French locale.

Saving the Grammar Builder File

When you have finished building your grammar builder file, or periodically during the course of
building the file, be sure to save the changes you make to the file.

5. To save the file, click (Save), or to save the file under a different name, click (Save As) and
provide a new file name and location.

Exporting the Grammar to GRXML Format

Because the Grammar Builder saves your grammar to a non-standard GRXML format (denoted with a
.gbuilder extension on the file name), you will want to export the grammar to the standard GXML
format as follows:

1. Click (Export) , located at the top-right corner of the Grammar Builder editor.
2. If prompted to save, click Yes.

You will see a message indicating the file has been successfully exported. The exported GRXML file
names are displayed in the success window, and the .grxml file will display in the appropriate locale
folder(s) in the Project Explorer under <voiceprojectname>/Resources/Grammars. It's important to
note that DTMF is considered a locale for the purpose of exportation. As such, an export result for a
GBuilder resource with English and DTMF would be placed in <voiceprojectname>/Resources/
Grammars/en-US and <voiceprojectname>/Resources/Grammars/DTMF directories, respectively.
These files can now be edited in the GRXML Editor.

Locales and Grammar Builder

When using the Grammar Builder, you specify locales, which are the languages that a grammar file
will support. The Grammar builder wizard uses the active locales for the Composer Project.

See Locales in CommonBlocks & Functionality.

Using Voice Blocks

Composer Help 472

Dynamic Grammars

Dynamic grammars are used for automated speech recognition (ASR). They are generated "on-the-
fly" based on information dynamically pulled out from data sources such as databases, web services,
or the file system. Contrast this to using a static grammar file whose content is fixed. The ASR engine
matches the user utterance with the grammar. Returned values are then passed back to the
application based on any matches in the grammar.

There are several ways to include dynamic grammars in voice dialogs:

• Use a dynamic VXML page template that creates the dynamic grammar and insert it in-line into the
VXML page. Using a dynamic VXML page will provide flexibility in terms of the data source used to
generate the grammar.

• If data is being retrieved from a database, using the DB Input block may be another alternative. It
generates a grammar based on data retrieved from a database using the DB Data block. It can also
generate a grammar based on contents of a JSON array that may have been retrieved from alternate
data sources e.g., a Web Service.

Using Voice Blocks

Composer Help 473

Working with CTI Applications
Composer provides CTI blocks for two CTI scenarios supported by GVP:

• SIP Server (SIPS) scenario, which uses the Genesys SIP Server component to gain access to CTI
functionality.

• CTI Connector (CTIC) scenario, which uses GVP’s CTI Connector component to access CTI functionality
provided by Genesys Framework.

These two scenarios do not provide identical capabilities and key differences are highlighted later in
these topics. Composer provides four CTI blocks for accessing CTI functions. It generates VXML for
each of these blocks that can work in either CTI scenario (SIPS or CTIC), and does not ask the user to
choose between the SIPS or CTIC scenarios at design time. The decision to use CTIC or SIPS is made
at runtime based on the X-Genesys headers received from GVP’s Resource Manager. Therefore, the
Composer user interface does not need to expose a Project-level preference for specifying the CTI
scenario. Note: The CTI Connector provides different capabilities depending on the configuration in
which other Genesys components like the IServer are deployed. For more details, please refer to the
GVP documentation. Also see GVP Debugging Limitations.

Design Paradigms for CTI Applications

There are two design paradigms for building CTI applications with GVP in which Composer can be
used:

• Standard VXML Applications
• URS-Centric Applications

These paradigms differ in the extent to which the VXML application is involved in performing call
control. Standard VXML Applications In this paradigm, the VXML application gets invoked first and
can go through VXML interactions with the caller before using the <transfer> tag to transfer the call
to another party such as queuing for an agent. At this point, the control of the call is passed to the
SIP Server or CTI Connector while waiting for an agent. During this time, SIP Server or CTI Connector
may invoke additional call treatments on GVP like playing music or invoking other applications. URS-
Centric Applications In this paradigm, the VXML application is always invoked as a treatment by
Genesys URS. The incoming call is controlled by Genesys URS and a strategy retains full control of
the call. The strategy invokes specific treatments on GVP IVR as a media server to play prompts, play
music, collect user input or execute a VXML application. In this paradigm, the VXML application does
not use tags like <transfer> nor does any other kind of call control. Those decisions are left to the
strategy. The VXML application returns user input collected during the call back to the strategy and
lets the strategy make all call control decisions. Composer can be used to write VXML applications
following either of the above paradigms.

Using Voice Blocks

Composer Help 474

Typical CTI Callflow

Before you start building a typical CTI application, the following information is required:

• The Genesys Virtual Route Point destination address. This is the address/location where the Genesys
strategy is present (an integer number--for example, 5001).

• Strategy application on the Framework side (IRD) to find and transfers the call to an agent.

The following describes the interaction flow of this callflow:

1. GVP starts executing the generated VoiceXML application script.
2. The caller hears the Welcome prompt.
3. The caller is requested to enter the account details.
4. If the caller does not enter the required details within the maximum time frame provided, the caller is

asked to retry.
5. The application issues a route request to the route DN configured in the Route Request block. (This

occurs via the <transfer> tag, supported in both CTIC and SIP Server scenarios.)
6. The caller-entered data is sent as UserData to the routed DN, and the called strategy does the

knowledge based transfer to the available agent based on the User Data .

Using Voice Blocks

Composer Help 475

7. This application ends after the Route Request has been issued.
8. The called strategy can play Voice treatments to the caller until the next available agent is available.
9. Finally, the caller will be transferred to the Agent.

Note: The Route Request block can be configured in various Transfer modes (Bridge / Consultation) to
gain back the control of the callflow after the called strategy returns back the execution. Please check
the Route Request topic block for more details.

CTI Scenarios

There are feature differences between the SIPS and CTIC scenarios. The following table gives a
summary of the CTI blocks, and for each CTI block it lists the differences in behavior for the two CTI
scenarios.

CTI Block Name Supports CTIC Case? Supports SIPS Case? Comments

Interaction Data Block Yes Yes

Supported operations in
each scenario:
CTIC:

• PUT
• GET
• DELETE
• DELETEALL
• REPLACE

SIPS:

• PUT
• GET

Types of interaction data
supported: CTIC:

• USERDATA
SIPS:

• USERDATA

Get Access Number
Block Yes No

Get access number
block can only be used
in the CTIC scenario.
Types of interaction data
supported: CTIC:

• USERDATA
• EXTENSIONDATA

Using Voice Blocks

Composer Help 476

Statistics Block Yes No
Statistics block can only
be used in the CTIC
scenario.

Route Request Block Yes Yes

Types of interaction
data supported:
CTIC:

• USERDATA
• EXTENSIONDATA

SIPS:

• USERDATA
Types of transfers supported:
CTIC:

• Blind
• Bridge

SIPS:

• Consultation
• Blind
• bridge

In case a CTI block or feature is used in a CTI scenario in which it is not supported, appropriate
exceptions will be thrown at runtime indicating that the feature is not supported. The table below
gives a list of all exceptions that can be thrown by CTI blocks and other possible CTI-related
exceptions that can be thrown if errors are encountered at runtime.

Block(s) Exception Error Message Description
Interaction Data Block
Get Access Number Block,
Statistics Block

error.com.genesyslab.composer.invalidkeyMissing <block name>
key <key name>

This is the event error
for handling an invalid
key name.

Interaction Data Block
Get Access Number Block
Statistics Block, Route
Request Block

error.com.genesyslab.composer.operationtimedoutOperation timed out.

This exception will be
thrown when a
<receive> operation,
executed in the context
of a CTIC specific
operation, times out.

Interaction Data Block
Get Access Number Block
Statistics Block Route Request
Block

error.com.genesyslab.composer.receiveerror<Error string returned
by CTIC>

If the <receive> fails
and an error is reported
by CTIC, this exception
will be thrown.

Interaction Data Block error.com.genesyslab.composer.unsupported
Delete operation not
supported in case of CTI
using SIPServer.

If the user wants to do a
userdata DELETE in the
CTI using SIPS scenario.

Interaction Data Block error.com.genesyslab.composer.unsupportedDeleteAll operation not If the user wants to do a

Using Voice Blocks

Composer Help 477

supported in case of CTI
using SIPServer.

userdata DELETEALL in
the CTI using SIPS
scenario.

Interaction Data Block error.com.genesyslab.composer.unsupported
Replace operation not
supported in case of CTI
using SIPServer.

If the user wants to do a
userdata REPLACE in
the CTI using SIPS
scenario.

Get Access Number
Block error.com.genesyslab.composer.unsupported

AccessNumGet
operation not supported
in case of CTI using
SIPServer.

If the user wants to do a
AccessNumGet in the
CTI using SIPS scenario.

Statistics Block error.com.genesyslab.composer.unsupported
Statistics block not
supported in case of CTI
using SIPServer.

If the user wants to do a
PeekStatReq or
GetStatReq in the CTI
using SIPS scenario.

Route Request Block error.com.genesyslab.composer.unsupported
Consultation transfer is
not supported in case of
CTI using CTIConnector.

If user sets Transfer
type to consultation in
case of CTI using SIPS.

Script ID Usage in the GVP 8 Environment

In Genesys VoiceXML 2.1, ScriptId refers to the script identifier, as generated by the CTI Connector, to
handle call treatments. The use of ScriptId is specific to GVP 7.x and was mandatory for treatments.
Since the GVP 7.x design is "IVR-centric," the treatment would be invoked on the same VXML session.
Things are a bit different with GVP 8.x and the Next Generation Interpreter (NGI) where APP_URI is
used instead of ScriptId and the treatments are executed on different VXML sessions. GVP 8 and
NGI In GVP 8.x, request for treatment execution comes in as a NETANN request with the APP_URI
being passed in as a VoiceXML parameter. GVP executes the requested page to kick off the
treatment. Unlike the GVP 7.x environment, treatments get invoked as separate VXML sessions and
terminated at the end of the treatment execution. Hence, ScriptId switching is no longer needed
here, unless an application wants to do branching based on ScriptId.

• Note: Composer provides support for both SIPS and CTIC scenarios for achieving the CTI functionality.
However, SIPS may not support passing additional request-uri parameters like ScriptId, therefore, this
option is limited only to CTIC scenarios.

Please refer to GVP 8.x VXML Help under Sample Voice XML Applications > CTI Interactions >
Treatments for more details on this topic.

Accessing ScriptId in Composer

Use if you want your application to do ScriptId-based switching like GVP 7.x. CTIC Scenario (IRD
strategy + Composer Callflow)

1. Use the APP_ID property in IRD's Play Application block.
2. Define a new Input type variable named ScriptId in the Entry block of your callflow to collect the

ScriptId.

Using Voice Blocks

Composer Help 478

Composer Workflow + Composer Callflow)

1. On the VXML callflow side, define a new Input type variable named ScriptId in the Entry block to collect
the APP_ID (i.e., ScriptId) passed from the workflow.

2. On the SCXML workflow side, use the Play Application block to invoke the callflow created using step#1.
Then do an auto-synchronize for the parameters, and specify the ScriptId value.

3. The ScriptId (i.e., APP_ID) passed from the workflow will be automatically collected on the VXML side
from the session.connection.protocol.sip.requesturi array.

SIPS Scenario

1. SIPS may not support passing additional request-uri parameters. Pass ScriptId as attached data on the
strategy side (If using IRD) or on the SCXML side (If using Composer workflows).

2. Define a new Input type variable named ScriptId in the Entry block to collect the ScriptId.
3. The ScriptId (i.e., APP_ID) passed from the strategy will be automatically collected on the VXML side

from the session.com.genesyslab.userdata array.

Using Voice Blocks

Composer Help 479

Working with Prompts
There is both a Prompts Manager perspective and a Prompts Manager perspective. The Prompts
Manager provides the ability to quickly review all prompts in a Composer Project from a central place.
It displays the relevant information about all prompts in all callflows present in your workspace, one
project at a time. It displays prompt item text, associated audio file(s) and allows you to play prompt
resource files directly from the Prompts Manager view. The Prompts Manager also enables you to
tweak your prompts by rearranging prompt items, changing prompt item text, and recording new
audio files using microphone input and associating them with prompts in your Projects. It provides the
ability to quickly jump to a specific prompt block in the callflow diagram with a simple right-click so
that other changes can be made to the prompt. Prompt Manager works in conjunction with the
prompts properties popup dialog.

Opening the Prompts Manager

To open the Prompts Manager perspective:

• Select Window > Open Perspective > Other > Prompts Manager.

• Or select the Prompts Manager Perspective toolbar button.

To open the Prompts Manager view:

• Select Window > Show View > Prompts Manager.

• For an additional Prompts Manager setting, see the figure in topic Project Properties dialog box. Expand
Prompts Manager.

Using Voice Blocks

Composer Help 480

Selecting a Composer Project

To select a Composer Project for which to manage prompts, the Prompts Manager view:

• Select a project from the Composer Project drop-down list.

Selecting a Language Resource

• Select a Language Resource. If not using en-US, see the special note on Non-US Locales.

The Prompts Manager displays all the prompt-related blocks for all the callflows in the selected
Project.

Notes

• The Prompts Manager will not work with non-Composer projects (such as hand-coded applications).
• Note the Language Resource dropdown selection box. The prompt audio resource is located in the

appropriate language resource folder location (for example:/Resources/
Prompts/<locale>/audioResourceFile.vox.

• Starting with 8.0.2, a Composer Project upgrade sets the default Project locale to en-US. If other than
en-US, right-click the Composer Project in the Project Explorer, and select Properties > Locales to set
the default and active locales.

• Use only a 32-bit Eclipse environment to play audio files from the Prompts Manager view. If you are
using a 64-bit version Eclipse environment, playing audio throws the following error:
java.lang.UnsatisfiedLinkError: .\configuration\org.eclipse.osgi\bundles\470\1\.cp\

Using Voice Blocks

Composer Help 481

AFUtil.dll: Can't load IA 32-bit .dll on a 64-bit platform.

Columns in the Prompts Manager View

A prompt item row in the Prompts Manager view displays the following column details:

• Prompts -- A tree hierarchy consisting of the following elements; Root elements, studio diagram
callflow/sub-callflow file name. Studio diagram elements may have diagram block elements. These
diagram block elements may have prompt/retry prompt item elements.

• Type -- The type of prompt item (audio resource/value/variable)
• Prompt Item Text -- Any associated text with the prompt item.
• Audio File -- The relative path of the audio file associated with this prompt item.
• Time Stamp -- The Date/Time stamp when the audio file was created or recorded. This helps in

identifying the newer/older prompts.
• Instructions -- If additional item specific information needs to be given, such as a certain word needs

to be emphasized when recording at the recording studio.
• Notes -- Any notes that you would like to associate with the prompt item for later reference.

Non-US Locales

By default, Composer provides prompts audio resources for the en-US locale. The supplied
PlayBuiltinType.js under Resources/Prompts in the Project Explorer defines a global variable
called promptBaseUrl with the value en-US. When using a different locale in a callflow (other than
en-US in the Language Resource field in Prompts Manager), you must provide the associated audio
files and PlayBuiltinType.js. Adjust the path with the associated prompt resource locale folder
path.

Reviewing and Managing Prompts

Once you have laid out your diagram and wish to review the flow of the application, you can use the
Prompts Manager to do the review. It is useful to have the callflow and Prompts Manager view open
together so that the flow of the application can be traced using the callflow while reviewing prompts
using the Prompts Manager. Select the Composer Project(s) containing prompts you wish to manage.
You can review and manage your prompts as follows:

1. Expand a Prompt block in the Prompts column of the Prompts Manager view to display all prompts
associated with that block.

2. Select a prompt row. The Prompts Manager view displays detailed information about the prompt.
3. You can view prompt item text in the Prompts Manager.

• For prompts that have an associated audio file, click the Play icon in the Prompts

Using Voice Blocks

Composer Help 482

Manager view to hear the audio file.

• Click the Stop icon to stop playing the audio file.

Note: To play back VOX audio files in their correct encoding (U-Law/A-Law), you may need to set the
encoding properties in the Composer Project settings. To change the settings, go to the Project
Explorer, right-click the Composer Project folder, and select Properties. Select the Prompts
Management section and set the Encoding property accordingly.

4. To modify the sequential order of the prompt items within a block, select a prompt item element row
and click the Up or Down icon.

in the Prompts Manager view.
5. To locate the diagram block in the studio diagram callflow that is associated with a selected row, right-

click a prompt row and select Display in callflow from the context menu. If the callflow (or studio
diagram) is not currently open, it will be opened in the editor and the selected block will be highlighted
with a blue outline.

6. To modify a value (for example, the prompt item name, the prompt item text, and so on) from within the
Prompts Manager view, double-click the table cell, type a new value, and press Enter. Certain table cell
values may not be modified.(for example, callflow diagram name, prompt type, and so on).

Supported Audio File Formats Audio files are encoded and outputted in various audio file formats.
The following audio file formats are recommended and supported for playback and recording within

Prompts Manager:

File
Extension Sample Rate Sample Size Bit rate

(Bandwidth) File Format Encoding

.vox 8000 Hz 8-bit 64 bits/sec Raw audio
(mono) u-law

.vox 8000 Hz 8-bit 64 bits/sec Raw audio
(mono) a-law

.wav 8000 Hz 8-bit 64 bits/sec
Audio with
.wav header
(mono)

PCM

Refer to the VoiceXML 2.1 Reference Help on the Genesys Voice Platform Wiki for additional formats
that GVP supports. Those additional formats can be played back and recorded using third party tools
outside of Composer.

Recording Prompts

The Prompts Manager view provides a button to launch a recorder/player that can record and play
back a single prompt item’s audio file. The newly-recorded file will replace any existing audio file
associated with the highlighted prompt item. Notes:

• Related prompt audio settings are located in the Composer Project Settings. In the Project Explorer,

Using Voice Blocks

Composer Help 483

right-click the Composer Project folder, and select Properties. Select the Prompts Management
section for prompt audio settings.

• To record a prompt item using Prompts Manager, the prompt item must be of type Resource in the
Prompts Manager view. If you do not want to specify an audio resource at this time or wish to record
your own resource prompt using the Prompts Manager, you may instead define a value in the
Alternate Text field shown below.

Important
Please note for recording prompts that are of type Value to interpret-as "Text," you
will need to change the prompt type to Resource. Supply the prompt text value in
the Alternate Text field for the Resource prompt type.

To record a prompt from within the Prompts Manager view:

1. Select a callflow within a Project.
2. Open the Prompts Manager (Window > Show View > Prompts Manager).
3. Select an existing prompt row of type Resource.

4. Click the Record icon to open the Prompts Manager - Recorder dialog box as shown below:

Using Voice Blocks

Composer Help 484

The Prompts Manager - Recorder dialog box assists in the recording, playback, and storing of the
audio file.

1. Type any notes for this prompt in the Notes field.
2. Type an alternate text string in the Alternate Text field. This text is used to generate audio using

#Text-to-Speech in place of the audio file should the audio file not be available at runtime.
3. Select the default recording Location, or click Browse to navigate to an alternate location. Note:

Genesys recommends that you keep your language specific audio files in the/Resources/
Prompts/<language-code> folder.

4. Type a recording file name or keep the current name.
5. If the audio recording format displayed in the Recorder is not the format you wish to use, click Audio

Recording Format to open the Properties dialog box for this Composer Project, from which you can
change the audio format to WAV or VOX. You can also specify the encoding as ALAW or MULAW.

6. Click OK in the Properties dialog box to accept the new audio format setting for this Composer Project.
7. Click Clear if you want to clear the current resource file and create a new one.

Using Voice Blocks

Composer Help 485

8. Click the Record icon to record your audio prompt. A microphone should be connected and volume
levels should already be set properly.

9. Click the Stop icon to stop the recording.

10. Click the Play icon to play back the new audio prompt. You can re-record if necessary.
11. Click OK when you are finished to close the Prompts Manager - Recorder dialog box. At this point,

Prompt Manager will save any changes you have made. If you click Cancel, no changes are saved to
the project.

Exporting a Prompt Listing

The Composer Prompts Manager provides the ability to export a prompt listing of all prompts in a
Composer Project along with the attributes shown in Prompts Manager, such as instructions and
notes. This facility is useful if you need to send your prompts out for professional recording and want
to include instructions and text to be recorded along with prompt names. To export a prompt listing
from within the Prompts Manager view:

1. Click the Export Composer Project Prompts icon in the Prompts Manager view, or
2. From the File menu, select Export. Expand Composer and select Export Prompt Listing, or
3. Right-click with any prompt or Prompt block selected, and select Export Composer Project Prompts

from the context menu, to open the Export dialog box.
4. Select the Composer Project whose prompts you wish to export from the drop-down list.
5. Select the file format for your exported data from the drop-down list. You may select either xml or csv

format.
6. Click Browse to navigate to a destination location to hold your prompt export file. The exported file will

have the name: <voiceprojectname>.xml or <voiceprojectname>.csv.
7. Click Finish to complete the export request.

XML Format Description Below is an example snippet from a prompt listing export in XML format:
<prompts project="JavaComposerProject_Voice_Business"> <prompt callflow="Main"
block="WelcomePrompt" name="WelcomePrompt_Prompt1" type="Resource" interpret-
as="Audio" value="Resources/Prompts/en-US/Brand_A.vox" format="" alternateText=""
instructions="" notes="" /> … </prompts>

XML Tag Attribute Name Description

<prompt> project The Composer project that is
being exported.

<prompt> callflow The name of the callflow diagram
where the prompt resides.

<prompt> block The name of the diagram block
where the prompt resides.

<prompt> name The name of the prompt item.
<prompt> type The type of prompt, such as

Using Voice Blocks

Composer Help 486

Value, Resource, or Variable.

<prompt> interpret-as The interpretation of the prompt
value.

<prompt> value The value of the prompt item.

<prompt> format
If applicable, the format of the
value. Used for interpret-as, Date
or Time. For example, 24 Hour or
12 Hour.

<prompt> alternatetext

The alternate text for the prompt.
Used for an invalid value. For
example, if an audio resource
does not exist or the variable
data is invalid.

<prompt> instructions

Text for additional or specific
information instructions. For
example, if a certain word needs
to be emphasized when
recording at the recording studio.

<prompt> notes

Any further notes from the user.
For example, identify if an
associated audio file was
recorded by the Prompts
Manager or if the audio file was
from a recording studio. Shows
the source, which will be set by
the user (Recorded/Imported/
Unknown).

CSV Format Description The CSV format separates each prompt-related value by commas. The
ordered values represents the following:

1. Callflow
2. Block Name
3. Prompt Type
4. Interpret-As
5. Prompt Name
6. Value
7. Format
8. Alternate Text
9. Instructions

10. Notes

The following is a snippet from the prompt listing Export in CSV format:
Main,WelcomePrompt,Resource,Audio,WelcomePrompt_Prompt1,"Resources/Prompts/en-US/
Brand_A.vox","",,"",""

Using Voice Blocks

Composer Help 487

Prompt Listing Usage For a Recording Studio

A recording studio may use the details in the sample exported prompt listing below when preparing
an audio recording for a prompt item. This transcript-like format is intended to assist with producing
professional sounding recordings. The five prompt items are in sequenced order to provide a sense of
tone in relation to where the recorded message is at the beginning/middle/end of the overall
message. The recorder:

• Uses the block name attribute to determine which set of prompt items belong together.. For example,
the last five prompt items are from the same Menu1 prompt block.

• Is typically interested in prompts where type="Resource" and interpret-as="Audio", as these are the
audio resources that are to be professionally replaced.

• Uses the value from the alternateText attribute to determine what should be said for the recording.
• Uses the instructions attribute for additional details from the developer, such as instructions to

emphasize a certain word in the prompt message.

Sample Exported Prompt Listing
<prompts project="JavaComposerProject_Voice_Business"> <prompt callflow="CompanyABC"
block="Prompt1" name="Prompt1_PromptMsg1" type="Resource" interpret-as="Audio"
value="Resources/Prompts/en-US/Welcome.vox " format="" alternateText="Welcome to A B
C bank." instructions="" notes="Prompts Manager recorded file." /> <prompt
callflow="CompanyABC" block="Menu1" name="Menu1_PromptMsg1" type="Resource"
interpret-as="Audio" value="Resources/Prompts/en-US/MainMenu_A.vox" format=""
alternateText="Main menu." instructions="" notes="Default Composer audio file." />
<prompt callflow="CompanyABC" block="Menu1" name="Menu1_PromptMsg2" type="Resource"
interpret-as="Audio" value="" format="" alternateText="To check your balance press
one or say check balance." instructions="Place emphasis on 'check balance'" notes=""
/> <prompt callflow="CompanyABC" block="Menu1" name="Menu1_PromptMsg3"
type="Resource" interpret-as="Audio" value="" format="" alternateText="To make a bank
to bank transfer press two or say transfer." instructions="Place emphasis on the word
'transfer'" notes="" /> <prompt callflow="CompanyABC" block="Menu1"
name="Menu1_PromptMsg4" type="Resource" interpret-as="Audio" value="" format=""
alternateText="To repeat these options press five or say repeat." instructions="Place
emphasis on the word 'repeat'" notes="" /> <prompt callflow="CompanyABC"
block="Menu1" name="Menu1_PromptMsg5" Naming For ease of importing the new audio recordings
into Composer, Genesys recommends making the name the same as the attribute value of the
respective prompt entry. For example, MainMenu_A.vox in the below snippet. This avoids having to
rename the files when they are imported into Composer as described in the Importing Prompt
Resources topic. <prompt callflow="CompanyABC" block="Menu1" name="Menu1_PromptMsg1"
type="Resource" interpret-as="Audio" value="Resources/Prompts/en-US/MainMenu_A.vox"
format="" alternateText="Main menu." instructions="" notes="Default Composer audio
file." />

Using Voice Blocks

Composer Help 488

Importing Prompt Resources

See the Sample Exported Prompt Listing, which should be used as a transcript by the recording
studio. After receiving the prompt audio resources from the professional audio recording studio, be
sure to place the audio files in the correct Composer Project resource path. This ensures that the
resources will work properly with the existing callflows that will use them. The Composer prompt
resources are stored under the Composer Project folder ../Resources/Prompts. Example: ../Resources/
Prompts/en-US/Brand_A.vox For a prompt item with audio resource Resources/Prompts/en-US/
Brand_A.vox, the new professionally recorded audio file must be identically located and named
Resources/Prompts/en-US/Brand_A.vox. If you do not do this, you must go to the callflow diagram
block properties to set the new prompt resource path, or rename the file to match existing prompt
settings. Note: When importing multilingual prompts, be sure to place the audio resource files in
their corresponding prompt resource locale folder. For example,

• English -- United States ../Resources/Prompts/en-US
• Spanish -- Spain ../Resources/Prompts/es-ES

To import file resources to the target Composer Project, use the Project Explorer. Or simply copy and
paste the files to the target prompts resource folder location of the Project Explorer. As an alternative,
importing may be achieved by using File > Import… Expand and select General > File System. In
the Import dialog, set the From directory field and Into folder fields, select the desired files, and click
Finish. A sample is shown below.

Using Voice Blocks

Composer Help 489

Using Voice Blocks

Composer Help 490

Connection Pooling
When defining a database connection profile, you can use connection pooling, which maintains a set
of database connections that can be reused for requests to databases. This feature can enhance
performance by avoiding time-consuming re-establishment of connections to databases. While
Composer does not support specific application servers, this topic presents information on
configuring Tomcat, JBoss, and Websphere application servers to expose a pooled data source as a
JNDI resource. This topic also contains information on creating a JDBC provider for an Oracle
database.

Important
When upgrading projects to a 8.1.5 branch (starting with version 8.1.500.03 to
8.1.541.07), please perform the following steps to avoid issues with DB connection
pooling:

1. Stop the Tomcat service (if it happens to be a service) or manually shut down the server.
2. Download the mchange-commons-java-0.2.15.jar file from the Maven repository

(https://mvnrepository.com/artifact/com.mchange/mchange-commons-java/0.2.15).
3. Copy the downloaded JAR to the <tomcat_installed_directory>\lib location in the

physical directory.
4. Restart Tomcat.

Note: You do not have to perform the above steps if you are upgrading to a 8.1.5 branch that was
released after version 8.1.541.07.

Connection Pooling for Tomcat Application Servers

For Tomcat, a JNDI resource is defined in a Context configuration. Do this in the global scope, at
$TOMCAT_HOME/conf/context.xml. Here is a sample:

<Context> ...

<Resource name="jdbc/pooledDS" auth="Container"
type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming.factory.BeanFactory"
driverClass="com.microsoft.sqlserver.jdbc.SQLServerDriver"
user="john" password="doe123"
jdbcUrl="jdbc:sqlserver://dbserver1:1433;databaseName=composer1" />

Using Voice Blocks

Composer Help 491

https://docs.genesys.com/Documentation/Composer/8.1.5/Deployment/Preinstallation#Application_Server_Requirements

<Resource name="jdbc/oraclePooled" auth="Container"
type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming.factory.BeanFactory"
driverClass="oracle.jdbc.driver.OracleDriver"user="jane"password="doe456"
jdbcUrl="jdbc:oracle:thin:@dbserver2:1521:composer2" />... </Context>

Important Items

• name--should match the Connection Pool Name parameter given in the Connection Profile in Composer.
• user, password--these are the login credentials to the database.
• jdbcUrl--specifies the host, port and database name. Can be copied from the Connection Profile editor

in Composer. The JDBC URL can also use advanced options that might not be otherwise exposed by
Composer. For example, to enable Transparent Application Failover for a connection to an Oracle
database, the URL can be given as:

jdbcUrl="jdbc:oracle:oci:@(DESCRIPTION=(LOAD_BALANCE=on)(FAILOVER=on)(ADDRESS=(PROTOCOL=tcp)(HOST=host1)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp)(HOST=host2)(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=dbcluster)
(FAILOVER_MODE=(TYPE=session)(METHOD=basic))))"

Additional Pooling Parameters
Additional pooling parameters can be customized here as well, for example:

<Resource name="jdbc/pooledDS" auth="Container"
type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming.factory.BeanFactory"
driverClass="com.microsoft.sqlserver.jdbc.SQLServerDriver"
user="john"
password="doe123"
jdbcUrl="jdbc:sqlserver://dbserver1:1433;
databaseName=composer1"
maxPoolSize="20" acquireRetryAttempts="0" /

For a full list of available settings, refer to the c3p0 documentation, which is the third-party
connection pooling library used by Composer

http://www.mchange.com/projects/c3p0/index.html
http://www.mchange.com/projects/c3p0/index.html.

Connection Pooling for JBoss Application Servers

To define connection pooling for JBoss:

1. Add the c3p0 and JDBC driver JARs to JBoss's global lib directory ($JBOSS_HOME/
server/<instance>/lib). This is because JBoss will initialize the connection pool upon startup
regardless of what applications are deployed. This is in contrast to Tomcat, which creates the
connections on demand.

Using Voice Blocks

Composer Help 492

2. Next, define the JNDI resources in a file called c3p0-service.xml. Copy the file into $JBOSS_HOME/
server/<instance>/deploy.

Sample:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE server> <server> <mbean

code="com.mchange.v2.c3p0.jboss.C3P0PooledDataSource"
name="jboss:server=SQLServerDS"> <attribute name="JndiName">java:jdbc/
pooledDS</attribute> <attribute
name="JdbcUrl">jdbc:sqlserver://dbserver1:1433;databaseName=composer1</attribute>

<attribute
name="DriverClass">com.microsoft.sqlserver.jdbc.SQLServerDriver</attribute>

<attribute name="User">john</attribute> <attribute
name="Password">doe123</attribute> </mbean> <mbean
code="com.mchange.v2.c3p0.jboss.C3P0PooledDataSource" name="jboss:server=OracleDS">

<attribute name="JndiName">java:jdbc/oraclePooled</attribute> <attribute
name="JdbcUrl">jdbc:oracle:thin:@dbserver2:1521:Composer2</attribute> <attribute
name="DriverClass">oracle.jdbc.driver.OracleDriver</attribute> <attribute
name="User">jane</attribute> <attribute name="Password">doe456</attribute>
</mbean> </server>

Pooling Parameters
Specify pooling parameters are specified by adding more <attribute> elements, e.g.,

<mbean code="com.mchange.v2.c3p0.jboss.C3P0PooledDataSource"
name="jboss:server=OracleDS"> <attribute name="JndiName">java:jdbc/
oraclePooled</attribute> <attribute name="JdbcUrl">jdbc:oracle:thin:@dev
dbserver2:1521:Composer2</attribute> <attribute
name="DriverClass">oracle.jdbc.driver.OracleDriver</attribute> <attribute
name="User">jane</attribute> <attribute name="Password">doe456</attribute>

<!-- note that the attribute names must be capitalized --> <attribute
name="MaxPoolSize">20</attribute> <attribute
name="AcquireRetryAttempts">0</attribute> </mbean> For a full list of available settings, refer to
the c3p0 documentation, which is the third-party connection pooling library used by Composer
([http://www.mchange.com/projects/c3p0/index.html http://www.mchange.com/projects/c3p0/
index.html]).

Configuration Files
The following configuration files are automatically generated by Composer's WAR export functionality
and do not require any user action: web.xml and jboss-web.xml

web.xml In the web application itself, the deployment descriptor (WEB-INF/web.xml) needs to
specify a resource reference: <resource-ref> <res-ref-name>jdbc/pooledDS</res-ref-
name><res-type>javax.sql.DataSource</res-type><res-auth>Container</res-
auth></resource-ref> jboss-web.xml

This special JBoss-specific configuration file (WEB-INF/jboss-web.xml) is required to map the resource-
ref to the globally defined resource.

Using Voice Blocks

Composer Help 493

<?xml version="1.0" encoding="UTF-8"?> <jboss-web> <resource-ref> <res-ref-name>jdbc/
pooledDS</res-ref-name><res-type>javax.sql.DataSource</res-type><jndi-name>java:jdbc/
pooledDS</jndi-name></resource-ref> </jboss-web>

Connection Pooling for WebLogic Application Servers

When the application Server is WebLogic, there must be an extra configuration file in WEB-INF called
weblogic.xml. First, though, confirm that the following is present in web.xml in the exported .war
file:

<resource-ref> res-ref-name>jdbc/poolDS</res-ref-name> </res-type>
<res-auth>Container</res-auth> </resource-ref>
res-ref-name should match the pool name in the connection.properties file, and it should be
prefixed by jdbc/

weblogic.xml File The weblogic.xml can be added to the Composer Project in WEB-INF.
Afterwards, you will have to export the .war file from Composer again and redeploy. The
weblogic.xml should contain:

<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-
app" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/ejb-jar_3_0.xsd http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.2/weblogic-web-app.xsd">
<wls:weblogic-version>12.2.1.3.0</wls:weblogic-version>
<wls:context-root>JavaComposerProject</wls:context-root>
<wls:resource-description>
<wls:res-ref-name>jdbc/poolDS</wls:res-ref-name>
</wls:resource-description>
</wls:weblogic-web-app>

Note the following:

The wls:res-ref-name should match res-ref-name in web.xml. wls:jndi-name should be the JNDI
Name in the WebLogic configuration.

Using Voice Blocks

Composer Help 494

.

Connection Pooling for WebSphere Application Servers

WebSphere has its own connection pooling capabilities, so you won't be using c3p0. The data
sources are defined in the WebSphere management console.

Configuration Files
The following configuration files are automatically generated by Composer's WAR export functionality
and do not require any user action: web.xml and ibm-web-bnd.xmi

Creating a JDBC Provider for an Oracle Database

SQL Server driver is built-in for WebSphere. however, the Oracle driver must be configured as a
JDBC provider.

1. From the left-hand side panel, open Resources > JDBC > JDBC Providers.
2. Click New.
3. In Step 1, choose the following:

Using Voice Blocks

Composer Help 495

JDBBProvider.gif

4. In Step 2, specify the location of the ojdbc14.jar file. The JAR can be copied from Composer's tomcat/
lib directory to a location local to the WebSphere server.

Creating Data Sources

1. On the left-hand side panel, open Resources >JDBC > Data sources.
2. Click New.
3. Enter anything you like under Data source name.
4. Under JNDI name, enter the name that matches the one given in the Connection Profile Editor. Hit

Next.
5. For the Select JDBC provider step, choose WebSphere embedded ConnectJDBC driver for MS SQL

Server for SQL Server, or Oracle JDBC driver for Oracle. Hit Next.
6. Enter the database name, host name and port of the database server. Click Next. Click Finish on the

summary page.
7. Next , you must specify the username and password for the database connection. Click on the data

source that was just created and then click on the Custom Properties link.
8. Create two new properties, called user and password, and specify the credentials for the database.
9. After saving the data source, use the Test Connection button to test.

Using Voice Blocks

Composer Help 496

10. Use the Connection Pool Properties, link to customize the pooling settings. Refer to the WebSphere
documentation for details.

The following items are generated by Composer's WAR export functionality and require no user
action.

WEB-INF/web.xml is required, similar to JBoss. <resource-ref
id="ResourceRef_1276009394684"> <res-ref-name>jdbc/pooledDS</res-ref-name>

<res-type>javax.sql.DataSource</res-type> <res-auth>Container</res-auth>
</resource-ref> WEB-INF/ibm-web-bnd.xml does the same thing as jboss-web.xml does for

JBoss... <?xml version="1.0" encoding="UTF-8"?> <webappbnd:WebAppBinding
xmi:version="2.0" xmlns:xmi= "[http://www.omg.org/XMI" http://www.omg.org/XMI"];
xmlns:webappbnd="webappbnd.xmi" xmi:id="WebAppBinding_1276009185886"
virtualHostName="default_host"> <webapp href="WEB-INF/web.xml#WebApp_ID"/>

<resRefBindings xmi:id="ResourceRefBinding_1276009394684" jndiName="jdbc/pooledDS">
<bindingResourceRef href="WEB-INF/web.xml#ResourceRef_1276009394684"/>

</resRefBindings> </webappbnd:WebAppBinding>

Using Voice Blocks

Composer Help 497

Common Properties for Callflow Blocks
The following properties are common to multiple blocks. Their descriptions are placed here to
minimize duplication of content:

Name Property

The Name property is present in all blocks in Composer. The Name property is the first property for all
blocks. Use the Value field beside in the Name property row of the block's property table to name
the block.

• Block names should conform to ECMAScript and VoiceXML identifier naming conventions.
• There is no maximum limit to the number of characters allowed.
• Names must consist only of numbers, letters, and underscore characters.
• Names must begin with a letter or underscore.
• Except for the Entry and Exit blocks, you should give all blocks a descriptive name. For example, if an

Input block asks the caller to input an account number, then the name of the block could be
Input_Account_Number.

• The name of the block is used as the Name of the VXML <form> tag that gets generated for that block.

To provide a name for a block:

1. Select the Name row in the block's property table.
2. In the Value field, type a block name that conforms to the restrictions above.

Block Notes Property

Can be used to add comments.

Exceptions Property

Use this property to define which exception events the block is designed to handle. These are
VoiceXML events that are either thrown by the interpreter, or generated in response to a caller
action. Note: A catch handler called all has been added to catch all exception events. To handle
(support) a specific event:

1. Click the Exceptions row in the block's property table.
2. Click the ... button to open the Exceptions dialog box.

Common Properties for Callflow Blocks

Composer Help 498

3. From the list of events on the Not Supported pane, select the event that you want to handle.
4. Click the Add > button to move the event to the Supported pane.

An example is shown below.

To explicitly not handle (not support) a specific event marked as supported:

1. Click the Exceptions row in the block's property table.
2. Click the ... button to open the Exceptions dialog box.
3. From the list of events on the Supported pane, select the event that you do not want to handle.
4. Click the < Remove or < Remove All button to move the event (or all events) to the Not Supported

pane.

To rearrange (reorder) the sequence of events on the Supported pane:

1. Click the Exceptions row in the block's property table.
2. Click the ... button to open the Exceptions dialog box.
3. From the list of events on the Supported pane, select an event that you want to rearrange.
4. Do one of the following:

Common Properties for Callflow Blocks

Composer Help 499

• To move the event higher in the sequence, click the Up button.
• To move the event lower in the sequence, click the Down button.

Notes:

• Each block has its own predefined set of events on the Exceptions property dialog box. Genesys
recommends that you not remove any of the predefined events from the Supported list.

• Before generating code, each supported event must be handled by connecting its red node on the side
of the block to the inport (input node) of another block.

• The events in the Entry block are global in scope.
• Events defined in other blocks are local to that block only. When an event is thrown, if a handler for that

event is declared in the current block, that local event handler is called.
• If there is no local event handler for the event, but there is a global event handler declared in the Entry

block, then the global event handler from the Entry block is called.

Condition Property

The Condition property indicates that the log will be active only if the given condition is true at
runtime. To provide a condition setting for a log:

1. Select the Condition row in the block's property table.
2. Type the condition to evaluate against.

For example, assume in Entry block, there is a variable "MyVar==3. Assume also that you would like
to log the session ID (GVPSessionID variable in Entry block) for all sessions where MyVar=3. In this
case you must set the condition to "AppState.MyVar=3". If this condition is true, then GVPSessionID
will be written to the log, otherwise it will be ignored.

Enable Status Property

This property controls whether or not a block contributes code to the application. Diagrams visually
indicate when a block is disabled. You may wish to use this property if there is a need to temporarily
remove a block during debugging or, for other reasons during development, temporarily disable a
block. This saves the effort of having to remove the block and then add it back later. You can also
right-click a block and select Toggle Enable Status. The GVP Debugger skips over deactivated
blocks.

Logging Details Property

Logging details contains the expression that will be logged at runtime by GVP. If logging details are
specified, then logging is generated for the block; if no logging details are specified, no logging is
generated. To create logging details:

Common Properties for Callflow Blocks

Composer Help 500

1. Click the Logging Details row in the block's property table.
2. Click the ... button to open the Logging Details dialog box.
3. In the Logging Details dialog box, click Add to open Expression Builder.
4. Create an expression to be used for logging details, such as an expression based on the variables whose

content you wish to log.

Log Level Property

To assign a value to the Log Level property:

1. Select the Log Level row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

• Project Default. The block uses the project's default log level, which can be configured through
the Project properties.

• Info. This is an Informational level to log application-specific data.
• Debug. This is a Debug level used for application debugging.
• Error. This is an Error level to log error details.
• Warn. This is a Warning level to flag any application warnings.
• Alarm. This is an Alarm level to send the message as an alarm to the Genesys management

framework.

Prompts Property

Use the Prompts property to specify the audio prompts that are played to the caller. You can specify
pre-recorded prompts, text, video, and several standard data types. SSML tags can be used inline in
TTS prompts. For example:

Common Properties for Callflow Blocks

Composer Help 501

The example below shows the dialog box opening from the Prompts property when Type is
Resource.

Common Properties for Callflow Blocks

Composer Help 502

To add, delete, or arrange prompts:

1. Click the Prompts row in the block's property table.
2. Click the ... button to open the Set Prompts Properties dialog box.

Set Prompt Properties Dialog Box

Prompt Messages Area

• Name--Displays the name of the prompt based on what you enter under the Prompt Details area.
• Value*--Displays the prompt's value based on what you enter in the Prompts Details area.

Common Properties for Callflow Blocks

Composer Help 503

• Interpret-As--Displays the data type of the prompt. The table below details available selections.

Prompt Details Area
Type--Displays whether the prompt is ARM, Resource, Value, or Variable based on what you enter
under the Prompt Details area. Note that when Type is Variable, the runtime values of the
specified variable should be of type string. Numerical values should be quoted, e.g. when assigning a
value using the Assign block, or during a debugging session.

Type/Interpret-As Combinations When Type is set to Value and

• Interpret-As is set to Time, you can select the Time Format in the drop-down list. The time format
is displayed in 12-hour mode (1:00 PM, 2:00 PM, and so on), or 24-hour mode (13:00, 14:00, and so
on).

• Interpret-As is set to Audio, you can specify an HTTP or RTSP URL.
• Starting with 8.1.410.14, a new Phone option is introduced in the Interpret-As input list when

Type is set to Value or Variable is selected. If the phone option is selected, the Value/Variable is
spoken in the following manner: If a 10-digit number, the phone number is spoken out in a group,
like 3 digits – 3 digits – 4 digits - with 350 milliseconds pause between the groups. If there is an
extension number, the number is spoken out separately. For example, a phone with extension:
6507124455x5645. If a 7-digit number, the phone number is spoken out in a group like 3 digits – 4
digits - with 350 milliseconds pause between them. If other than 10 and 7-digit numbers, the
numbers are spoken out as normal alphanumeric prompts.

When Type is set to Variable and Interpret-as is set to Custom, a Custom-Interpret As field is
enabled, which can be used for custom prompt types as detailed in the table below. When Type is set
to Resource and Interpret-As is set to Audio, the Alternate Text field is displayed. This text is
played back to you in the event that the audio file is not available. When Type is set to ARM and
Interpret-As is set to Audio, you can specify a base URL, audio resource ID, and personality ID.
These can be used for managing audio resources in the arm (Audio Resource Management (ARM))
section of the Genesys Administrator Extension Server Application object. When Type is set to
Variable and Interpret-As is set to Audio, you can specify a variable that contains an HTTP or RTSP
URL. This applies to the Prompts, DB Prompt, Input, Menu, and Record blocks. Add Button Use the
Add button to enter prompt details.

1. Click Add to enable the fields.
2. In the Name box, accept the default name or change it.
3. From the Type drop-down list, select ARM, Resource, Value, or Variable.
4. In the Interpret-As drop-down list, select from among the data types shown in the following table:

AUDIO

Plays an audio sound file.
Notes: If you select Audio, an audio file is optional, and you
select the audio file if needed using the Browse button. Use the
Clear button to remove an audio resource file selection. You can
then specify an audio resource URL through Expression Builder,
an audio resource identifier, personality identifier, and audio
format. When you select ARM from the Type dropdown list,
Interpret-As defaults to Audio. The VOXFILEDIR variable in the
Entry block defines the audio file directory. For more
information, see the Entry block help. You can also specify an
alternative text for the audio file. This alternative text is played
back to you in the event that the audio file is not available or is

Common Properties for Callflow Blocks

Composer Help 504

not provided. Typically, you can use this option during
development, when the production audio files are not recorded
yet.

BOOKMARK
An indicator that sets the place in a sequence of
prompts. It can be used to detect the barge-in
position during playback of a prompt. It uses the
TTS engine.

CURRENCY

An optional currency specifier followed by a
number with at most two decimal places. The
currency specifier can be:

• $, British pound sign, yen sign, or Euro sign, OR
• 3-character ISO4217 currency code

In the U.S. English locale, 11234 would be spoken as "eleven
thousand, two hundred and thirty-four dollars."

DTMF
Plays DTMF tones.
Any string of numerical digits, the characters a to d, #, or *

DATE

Speaks the specified date.
yyyyMMdd, e.g. 20080604
Note: If you select the DATE type, click the drop-down arrow to
display a calendar from which you can select the date.
You can select the format as Long Date or Short Date in the
Format drop-down list. If you select Long Date, the month, day,
year, and day of the week will be voiced out from the given
value. For example, if user provides 20200226, Wednesday
February Twenty Six, Two Thousand and Twenty is voiced out by
the system. If you select Short Date, the month and year will be
voiced out from the given value. For example, if user provides
20200226, February Two Thousand and Twenty is voiced out by
the system.

NUMBER
Speaks a number. For example, 1234 would be
spoken as "one thousand, two hundred, thirty-four."
Any integer (no decimals)

ORDINAL
Speaks the number as an ordinal. For example, 1
would be spoken as "first."
Any integer (no decimals)

STRING

Speaks a string of letters or numbers one character
at a time. For example, 1234 would be spoken as
"one, two, three, four."
Note: The STRING type for U.S. English local accepts 0-9, A-Z,
and +<=%->&.#*@. All other locales accept only 0-9 and A-Z.

TEXT Plays the specified text with text-to-speech
software

TIME Speaks the specified time.

Common Properties for Callflow Blocks

Composer Help 505

hhmm[ss][?hap] (seconds is optional, and format specifier is
optional)
The format specifiers mean the following:
? -- neither am or pm, e.g. two o’clock or two fifteen
h -- 24-hour clock, e.g. fourteen hundred hours or fourteen
fifteen
a -- AM, e.g. two AM or two fifteen AM
p -- PM, e.g. two PM or two fifteen PM
If no format specifier is given, it defaults to ?, i.e. am/pm is
unknown.
Note: 12 hour time selection will show the Time value in 24 Hr
format in the Prompt Message Table. (e.g. 1:45:39 PM will be
shown as 134539) whereas it will work as expected in the
generated code to read the value in 12 hour format during
runtime.
You can select the format as 12-Hour or 24-Hour in the
Format drop-down list. If you select the 12-Hour format, the
given time is voiced out in the 12-Hour format. For example,
052254p is voiced out by the system as five twenty two PM and
fifty four seconds. If you select the 24-Hour format, the given
time is voiced out in the 24-Hour format. For example, 172254 is
voiced out by the system as seventeen twenty two and fifty four
seconds.

VIDEO

Use to allow VoiceXML to insert text into an existing
video image/stream.
If Video is selected, you can check the Enable Text Overlay
box.

• Click the Fx button to open the Video Text
Overlay dialog box.

• Click Add to specify: text (required), font name,
font style, font color, background color, font
size, font width, X axis offset, and Y axis offset.

CUSTOM

This Interpret-As option can be used to define
Custom Prompts to customize the Prompt reading
functions. To define a Custom Prompt:

• Open the predefined customprompts.js file
inside each language locale folder applicable
for the Project. (Resource\
Prompts\$Language$).

• Use the customprompts.js file present inside to
define custom prompt methods.

• Refer to the syntax and rules mentioned in the
default customprompts.js file
inside./Resources/Prompts/en-US folder.

• Start each Custom Prompts methods with the
language locale name to achieve Multilangual
support during runtime execution (mandatory).

The Prompts property dialog will only parse methods defined in
the customprompts.js file.
During design time, the default language locale
customprompts.js file is parsed and listed for method
selection.
During the runtime call, the APP_LANGUAGE variable value is

Common Properties for Callflow Blocks

Composer Help 506

used to dynamically select the language local folder.

• Use 'audio' option to play audio files in the
Custom Prompts methods using <audio> tag
and 'value' option to play expressions using
<value> tag.

5. In the Value box, enter data for the selected data type.

Place the audio files in the Resources\Prompts\{APP_LANGUAGE} folder under the Java Composer
Project. Audio files can be added to the project by copying and pasting from the Windows file system
into the Java Composer Project in the Project Explorer. Note: By default, Genesys supplies .vox files
only for mulaw 8Khz. If you are using any other audio format for playback of audio files, replace the
files with the corresponding audio files in the required audio format. Up/Down Buttons Use the
Up and Down buttons to reorder your prompt elements. Select the element you want to re-position,
and then click Up or Down, as necessary. Delete Button To delete a prompt:

1. Select an entry from the list.
2. Click Delete.

This property is used in the following blocks: Prompt Block, Menu Block, Input Block, Record Block

Retry Prompts Property

The Retry Prompts property in a Menu block, Input block, or Record block enables you to set different
retry prompts that are played to the caller when the voice application encounters a nomatch or
noinput condition. You are allowed up to three retries for either a noinput or a nomatch error
condition. You must select the listed items in sequence and add the necessary vox file or text input.
To set retry prompt properties:

1. Click the Retry Prompts row in the block's property table.
2. Click the ... button to open the Retry Prompts dialog box.

Note: You must set the Number Of Retries Allowed property to a value greater than 0 in order to
have access to the Retry Prompts dialog box. Prompts Fields

• Name-- Displays the name of the retry prompt.
• Type--Displays whether the retry prompt is a Resource, Value, or Variable.
• Interpret-As-- Displays the data type of the retry prompt.
• Alternate Text--(Enabled only when Interpret-As is set to Audio.) This alternative text is played back to

you in the event that the audio file is not available.
• Value*--Displays the retry prompt's value (Retry Prompt).

Note: When Interpret-As is set to Time, you can select the Time Format in the drop-down list. The

Common Properties for Callflow Blocks

Composer Help 507

time format is displayed in 12-hour mode (1:00 PM, 2:00 PM, and so on), or 24-hour mode (13:00,
14:00, and so on).

Retry Prompt Messages Property

For Input and Menu Blocks:
After setting a value for the Number Of Retries Allowed property, Retry Prompt Messages will
contain one noinput and one nomatch entry per retry. For example, if Number Of Retries Allowed
is set to 2, the Retry Prompt Messages table contains the following entries: noinput1 nomatch1
noinput2 nomatch2

For Record Blocks:
Retry Prompt Messages will contain one noinput entry by default. To set or change retry prompt
properties:

1. Select a retry prompt in the Retry Prompt Messages table to enable Prompt Details fields.
2. In the Name box, accept the default name or change it.
3. From the Type drop-down list, select Resource, Value, or Variable.
4. In the Interpret-As drop-down list, select from among the data types shown in the following table:

AUDIO

Plays an audio sound file. This is available only
when Resource or Variable is selected as the
Type.
Note: If you select Audio, an audio file is optional, and you
select the audio file if needed using the Browse button. Use the
Clear button to remove an audio resource file selection. The
VOXFILEDIR variable in the Entry block defines the audio file
directory. For more information, see the Entry block help. You
can also specify an alternative text for the audio file. This
alternative text is played back to you in the event that the audio
file is not available or is not provided. Typically, you can use this
option during development, when the production audio files are
not recorded yet.

BOOKMARK
An indicator that sets the place in a sequence of
prompts. It can be used to detect the barge-in
position during playback of a prompt. It uses the
TTS engine.

CURRENCY

An optional currency specifier followed by a
number with at most two decimal places. The
currency specifier can be:

• $, British pound sign, yen sign, or Euro sign, OR
• 3-character ISO4217 currency code

In the U.S. English locale, 11234 would be spoken as "eleven
thousand, two hundred and thirty-four dollars."

Common Properties for Callflow Blocks

Composer Help 508

DATE

Speaks the specified date.
yyyyMMdd, e.g. 20080604 Note: If you select the DATE type,
click the drop-down arrow to display a calendar from which you
can select the date.

DTMF
Plays DTMF tones.
Any string of numerical digits, the characters a to d, #, or *

NUMBER
Speaks a number. For example, 1234 would be
spoken as "one thousand, two hundred, thirty-four."
Any integer (no decimals)

ORDINAL
Speaks the number as an ordinal. For example, 1
would be spoken as "first."
Any integer (no decimals)

STRING

Speaks a string of letters or numbers one character
at a time. For example, 1234 would be spoken as
"one, two, three, four."
Note: The STRING type for U.S. English local accepts 0-9, A-Z,
and +<=%->&.#*@. All other locales accept only 0-9 and A-Z.

TEXT Plays the specified text with text-to-speech
software

TIME

Speaks the specified time.
hhmm[ss][?hap] (seconds is optional, and format specifier is
optional) The format specifiers mean the following: ? -- neither
am or pm, e.g. two o’clock or two fifteen h -- 24-hour clock, e.g.
fourteen hundred hours or fourteen fifteen a -- AM, e.g. two AM
or two fifteen AM p -- PM, e.g. two PM or two fifteen PM If no
format specifier is given, it defaults to ?, i.e. am/pm is unknown.
Note: 12 hour time selection will show the Time value in 24 Hr
format in the Prompt Message table. (e.g. 1:45:39 PM will be
shown as 134539) whereas it will work as expected in the
generated code to read the value in 12 hour format during
runtime.

5. In the Value box, enter data for the selected data type, or keep the default value of Retry Prompt.

See template samples that use the Menu or Input blocks.

Common Properties for Callflow Blocks

Composer Help 509

Routing Applications and Workflows
This section introduces routing applications and workflows and summarizes show to create them.

Introduction to Routing Applications and Workflows

• Workflow Post Installation
• IRD Functionality Included in Composer
• Frequently Asked Questions
• Upgrading Workflows
• Getting Started with Routing Applications
• Creating Routing Applications
• ORSOptions

Routing Applications and Workflows

Composer Help 510

Related Topics

• Composer 8.1.4 Deployment Guide
• Composer 8.1.4 Help

Routing FAQs

Genesys Routing Frequently Asked Questions

This page provides answers to common questions
that IT personnel might have when planning or
considering the addition of Genesys Routing to
their site. The information on this page applies to
8.1.x versions of Composer.

What is Genesys Customer Experience Routing and how is it
unique?

Genesys Customer Experience Routing is computer software that helps organizations better manage
customer journeys. Routing prioritizes and matches the right interaction with the right resource at
the right time. Our approach is unique in the industry because it’s:

• SIMPLE to support the 80% of customer interactions that are routine
• DYNAMIC to automatically adapt to fluctuations within the 80% (so this variability doesn’t consume

100% of resources)
• POWERFUL to drive the 20% of interactions that are not routine but are the most valuable (across time,

channels, multimedia, front and back office)

We help companies create better customer experiences. Our DYNAMIC routing frees you to do more
than just what is SIMPLE. And that gives you bandwidth to apply the full POWER of Genesys to those
moments that truly matter.

What is a routing application? What are the basic elements?

Routing provides instructions about how to handle and where to direct interactions under different
circumstances.

Routing Applications and Workflows

Composer Help 511

Conceptually, a routing application is like a series of prioritized instructions that take into account
various factors to determine the optimal routing target, and what to do next if that action is not
possible within the specified constraints.

Routing applications are made up of a number of different elements, described here at a conceptual
level:

• Data can come from various sources and may include customer, contextual, operational, or analytical
data. Attached Data, which is included in call messaging as Key Value Pairs (KVPs), is what you know
about a specific interaction. Attached data can be added and updated throughout the life of the
interaction (e.g., as a call flows through the IVR, routing, agent desktop, and reporting).

• Skills are what you know about an agent. To identify the best available resource to handle a particular
interaction, routing looks for desired combinations of Skills at the individual level (per agent), at the
team level (per skill group, or queue’), or across a virtual pool of resources (virtual queue’).

Skills should not represent absolutely everything about agents, but simply the minimum needed to
accurately route and report on interactions. Because of the combinatorial power of Skills, it is best
not to get too granular. Modify an agent’s Skills only when the agent acquires new job functions,
training, or capabilities; do not change agents’ skills merely to redirect traffic.

Each Skill can optionally have a Proficiency (Rating in Genesys Administrator), which rates an agent's
expertise for a particular Skill (e.g., Spanish level 5 vs. 10). This allows an organization to route to
the best-skilled available agent, and then if no agents at that proficiency level are available within a
certain amount of time, expand the target to agents with a lower proficiency level and/or an
alternative combination of skills.

Logic provides the overall routing decisioning or instructions. Logic specifies the conditions under
which the routing applies and the method of target selection. The logic can be based on a number of
different considerations, such as skill targeting, service level, load balancing, percentage allocation,
statistics, or workforce. (See below for more details.)

Certain aspects of routing can be configured and saved as Reusable Objects. There are various types
of reusable objects, including subroutines, list objects, interaction data, etc. Reusing these building
blocks within and across routing applications improves the efficiency, quality, and simplicity of the
routing.

A well designed and implemented routing solution should be able to handle most of the ongoing
routing needs in a dynamic and automated fashion. However, there may be some situations where
the business needs or wants to make changes on a frequent or ongoing basis. These select elements
can be exposed to business users either as Operational Parameters or as Genesys Rules to facilitate
greater business agility while maintaining system stability:

• Operational Parameters are simple conditional variables that give business users limited control (e.g.,
After Hour Messages, Hours of Operation, Emergency Status, etc.). Users can make changes to these
parameter settings through the Genesys Administrator Extensions (GAX) interface. (Alternatively, this
can also be done via list objects in Interaction Routing Designer (IRD).) The business user cannot
change the underlying logic (only the pre-specified values of the exposed parameters), and does not
require any specialized technical training.

• Genesys Rules are logical representations of underlying routing that are written in plain language (i.e.,
meta-language, not code). They are useful when the business user (typically a business analyst) wants
greater control over the conditions, logic, and actions associated with the routing (e.g., create
differentiated customer service treatments based on segmentation, marketing campaigns, etc.). Users
can make updates to the business rules, but only for those parts of the routing that have been exposed
through the business user interface within Genesys Conversation Manager. Although the business user

Routing Applications and Workflows

Composer Help 512

isn’t actually viewing or changing the code directly, they still require a clear understanding of the
business logic and potential impact of changes.

What are some of the most common types of routing?

The table below lists the most common types of routing.

TYPE DESCRIPTION

Agent Group
sRouting interactions to a specified group of
agents. This may be based on job type (e.g.,
Tier1Agents), location or site (e.g., MiamiAgents),
etc.

Auto Attendant
Routing implemented to support simple menus
(e.g., audio prompts and touchtone selections),
mimicking the functionality of a basic IVR.

Blended

Routing which allows the same agent or select
resources to handle more than one type of
interaction (e.g., Inbound/Outbound, multimedia).
Blending should be used to make use of

underutilized resources and to prevent service level
fluctuations (e.g., forcing agents to log off a voice
queue due to an influx of Social Media
interactions). Consider how many interactions of
each type an agent can handle at a time and
define capacity rules according. Also, increment
and/or cap priority values based on interaction
types, so voice interactions don’t always take
precedence over non-voice ones, or vice-versa.

Business Case
Routing to provide differentiated customer service

treatments for specific business processes or use
cases (e.g., marketing campaigns, account status,
payment due, collections, regulatory, etc.).

Callbacks/Virtual Hold
Routing that accounts for the prioritization and
targeting when a call back to a customer is
required, requested, or scheduled.

Cascading Routing

Routing that uses multiple tiers of prioritized
routing decisioning, such that if the conditions for
the highest priority routing instructions are not
met, the routing automatically overflows to the
next level of routing instructions. Conditions can
also be checked in parallel, so that time is not
wasted waiting to execute the first tier of
decisioning before considering the next one.

Concierge Routing/Hunt Groups

Routing to a specific agent or a small group of
individuals when specialized or personalized
service is required. Typically the interaction is first
directed to the primary agent assigned to a
particular customer account. However, if that
agent is unavailable, the routing will search for the
next available team member within a small hunt
group.

Routing Applications and Workflows

Composer Help 513

Cross-Channel
Routing based on what a customer was just doing

on another channel (e.g., a customer is on the
company’s website or mobile application and then
calls in).

Default Routing

Routing an interaction to the default destination
that is to be used when none of the conditions for
the previous tiers of routing decisioning have been
met. This typically occurs when traffic volumes
spike for some reason and the timeout thresholds
for the previous tiers have been exceeded, so the
interaction overflows to the final default
destination.

Dynamic Routing

Routing that automatically adjusts based on pre-
specified priorities and conditions. Examples
include: cascading routing, target expansion,
timeout thresholds, data dips, holidays,
emergencies, service outages, etc. Dynamic
routing is an efficient and valuable alternative to
reskilling agents on the fly, an inefficient and costly
practice that is often used in legacy contact center
environments to manually redirect traffic.

Enterprise Workload Management

Routing of work items across the enterprise. The
same Genesys routing capabilities that can be used
to direct customer-facing interactions (calls, emails,
chat, etc.) can also be leveraged to schedule,
assign, distribute and track work activities across
the back-office.

Escalations

Routing of interactions which require the support
or intervention of a more highly skilled agent (e.g.,
’Tier 2’) or manager. This may be handled as a
transfer, or it may involve a conference call or
consultative support with the specialist.

eServices/Multimedia

Routing of various types of non-voice interactions
(e.g., email, chat, text, social, video, open media).
Different media types may require unique skills

(e.g., +Written could be a skill type for email, chat,
and text). Consider how many interactions of each
type an agent can handle at a time and define
capacity rules according (e.g., 1-4 chats per agent).

Interaction Type (a.k.a. Call Type)

Routing based on the type of customer and/or
ccustomer’s intent. This is typically determined
based on the number dialed (DNIS), from the
caller’s menu selection or activity within the IVR, or
from content analysis on an email or chat.

Interactive Voice Response Integration
Routing a call to the appropriate target based on
what the caller did or selected within an IVR.
Based on integration with Genesys Voice Platform

(GVP) or a third-party IVR.

Last Agent Routing
Routing to the last agent the customer interacted
with. Especially useful for routing to a single point
of contact (such as a case owner) or for dropped
calls that call back in within a specified timeframe.

Routing Applications and Workflows

Composer Help 514

Outbound

Routing of interactions that are initiated by the
organization and directed outward to the customer
(e.g., outbound calls, marketing campaigns,
collections, outbound emails, text messaging,
proactive contacts, etc.).

Overflow/Sharing Agents

Routing to an alternative queue or agent group,
when the primary target is unavailable or over-
utilized. Lending and borrowing of resources can
be contingent upon certain predetermined business
conditions being met, so that spikes in one team’s
volume does not unduly impact another team’s
availability or service levels.

Percentage Allocation
Distributing interactions between queues based on
a percentage of total volumes (e.g., 60% to Site A
and 40% to Site B).

Priority Queuing

Routing which uses priority values to give
preference for one queue or interaction over
another. Priorities can be incremented over time,
so if a lower-ranked interaction has been waiting
longer, it will be serviced before a higher-ranked
interaction that has just arrived. This ensures that
no interaction ever waits too long for service.

Queue Treatments
Routing that plays audio (e.g., music, ads,
messages) or provides certain functionality while
callers are waiting in queue or on hold.

Ring No Answer/Redirect on No Answer
(RONA)

Routing to an alternative target if the original
target fails to answer (e.g., agent failed to log out).
The agent will be targeted the first time, but after

that an action can be specified (e.g., log out) so
that agent isn’t targeted again subsequently.

Segmentation
Routing based on the type of customer, the value
of the opportunity, or other marketing
segmentation data.

Skills-Based

Routing to the best-skilled available agent based
on a combination of skills specified in the routing.
This is sometimes called ’agent-level routing,’

since Genesys routing is capable of looking down to
an individual agent’s unique set of skills. However,
in practice routing typically looks for the desired
skill set across a ’universal queue,’ to optimize
utilization across a large pool of resources.

Statistical Routing

Routing based on various database lookups and
operational conditions, such as Estimated Wait
Time (EWT), queue depth, service levels (SLAs),
performance goals, agent occupancy, skill
utilization, seasonality, special events, business
processes, etc.

Target Expansion

Routing that expands its targets to increase the
pool of agents able to handle an interaction, be it
after a time period or triggered by the Estimated
Wait Time (EWT) being greater than a defined
threshold. The highest skill level is first targeted
until the time limit is reached, and then routing

Routing Applications and Workflows

Composer Help 515

expands to include the next level of skills,
cascading down until all skill levels are included in
the targeting. This ensures that if the best suited
pool of agents are unavailable, then after the
expansion timeout the next best pool of agents are
included in the targeting.

Transfers

Routing to handle transfers. Need to consider the
routing for transfers that are directed either into or
out of the contact center. The routing priority may
vary depending on whether it is an internal transfer
(within the contact center) or external transfer (to/
from an outside group or entity).

Workforce

Routing that factors in various workforce
considerations such as schedules, shrinkage,
absenteeism, training, skill development, desktop/
tools, new-hires/career paths, agent affinity for
particular interactions, outsourcers, unions, labor
laws, etc.

Voicemail
Routing of inbound calls to voicemail (e.g., after

hours group voicemail inboxes). Or outbound
routing which addresses what to do if a voicemail is
reached (i.e., leave a message or not).

How many skills total does an organization typically have?

It depends on the size and requirements of the organization, but generally we see a range
somewhere between 20-75 skills total. Once you start to approach 100 or more skills, you need to
question if you are really taking advantage of the combinatorial power of Genesys skills (i.e., where
agents can be multi-skilled and Genesys routing can look for multiple combinations of skills).

The average agent is typically highly proficient in 3-4 skills each, but may have lower proficiency in
other skills to provide backup. Expert agents may be highly proficient in 10 or more skills.

Skills and proficiencies grow and change over time, which is useful for staff development and
retention. Skills need to be monitored and aligned across staffing and routing.

If you find there are certain skills &endash; a, b, c &endash; that every agent has, then maybe you’ve
dissected the skills too granularly. Try renaming/regrouping these into one mega-skill (e.g., A). At the
same time, you don’t want to group so many skills together that you’ve gone back to queue-based
routing, where each skill maps to a separate queue.

If an organization requires many skills, rather than hard-coding each one separately directly into the
routing logic, a better and simpler approach may be to reference the skills as variables within the
routing logic. Then do a data-dip into a database or table look-up from a separate file. That way
when skills need to be modified, this can be done in the external data source housing the skill
information, without having to change the actual routing logic itself. Soft-coding skills is an effective
approach if you find that skills change frequently over time, but the core routing does not. Certain
industries demand a high level of subject matter expertise (e.g., finance, insurance, healthcare), so
there are more total skills the organization needs. At the same time, since each agent requires more
specialized expertise to handle these inquiries, each agent typically handles fewer call types than in
other industries where agents may be more of generalists.

Routing Applications and Workflows

Composer Help 516

Don’t confuse Skills with Attached Data. For instance, consider situations in which many corporate
clients need to be supported, or there are state-specific licensing requirements (e.g., 401ks,
insurance plans). The specific account or plan can be identified based on the phone number dialed
(DNIS) or other information gathered in the IVR and attached to the call. There may be hundreds of
these possibilities. However, this doesn’t necessarily mean there need to be hundreds of different
skills corresponding to each. An individual agent might be trained to handle a more generalized skill
(e.g., 401Ks in general), and a particular plan’s specifics can be screen-popped through to the
agent’s desktop based on the Attached Data.

How many routing applications should an organization have?

As a rule of thumb, a large contact center solution (a major line of business) should not need more
than 10 routing applications and subroutines (not counting reusable objects and subroutines used
across applications).

It’s important to encompass two key design considerations when planning routing &endash;
Flexibility and Simplicity. This can be done by creating generic components and modularizing parts
for reuse. A routing model which is data-driven and accommodates the logic shared across
applications and lines of business helps to eliminate duplicated logic or code. Functionality which is
replicated should be separated out into a sub-routine to minimize the need to change multiple
applications for feature enhancements and/or defect fixes. This minimizes the number of
applications required and still meets the demands of complex routing requirements.

What are skill proficiency levels, and what are they used for?

Proficiency is an optional way of reflecting how relatively good an agent is at a particular skill (e.g.,
Spanish level 5 vs. 10). Following the ’Simplicity’ design principle, it’s best to keep to three (or fewer)
levels of skill proficiencies &endash; for instance, High = 9, Medium = 6, and Low = 3. This allows
additional proficiency levels to be added in between if required in the future.

Proficiency enables Target Expansion &endash; e.g., first target agents with skill of Sales ≥ 9
proficiency for 15 seconds, then target Sales ≥ 6 for 15 seconds; then target Sales > 0). This
circumvents agents having to log off one agent group/queue and log into another, which is a common
issue with legacy ACD-based solutions and can be avoided using Genesys routing.

How many tiers of cascading routing should there be?

With basic Skills-Based Routing, 4 tiers are typical &endash; 3 for the three skill proficiencies and the
forth tier for emergency (e.g., breached threshold, all agents log off).

When using additional soft skills to provide an extra level of customer experience, then an additional
tier will be required before the 4 tiers previously mentioned.

Routing Applications and Workflows

Composer Help 517

What Reporting considerations need to be taken into account?

First, the Reporting requirements need to be well defined. What are the business goals of the
solution? How will success be measured? What are the KPIs? How does the business need to slice
and dice the data? How will reporting be represented? What needs to be monitored in near real-time
vs. historically? Who are the different consumers of reporting and what do they want/need to see?
What business intelligence is needed &endash; analytics, trends, outliers, outcomes, actionable

insights, alerts?

Routing must then be aligned with those Reporting needs. This is typically supported through
Attached Data associated with each interaction (e.g., line of business, customer segment, routing
point/agent, service type, disposition code, business result, etc.). Decide on a flexible approach for
attaching data. Don’t attach too much (as it may have a performance impact). Consider codifying
values to reduce the total data overhead. And be very clear about what data represents at the point
it was attached.

What Workforce Management considerations need to be taken
into account?

Genesys routing allows an interaction to be serviced by the best-skilled available agent across a
virtualized pool of resources, and to expand the target (to lower proficiency level and/or a different
skill set) if the desired target isn’t available. Altering the original target (such as in target expansion)
will always affect Workforce Management (WFM), so it’s important to include WFM into the routing
considerations.

• For instance, sometimes an agent might be working on a call type that is outside of what they normally
work on. So supervisors/team leads need the right insight to know their people are working on the
right thing at the right time.

Genesys Routing works with a variety of industry WFM solutions, but there are additional advantages
to using Genesys Workforce Management:

• The Genesys WFM solution provides historical data collection and real-time analytics for all interaction
types being monitored by the Genesys environment.

• Genesys WFM integrates with the Genesys suite to utilize all of the Site, Agent, Skill, and Skill level
information contained therein.

• Genesys also provides the ability to base routing on agents’ specific future schedule states in Genesys
WFM. For instance, if an agent is scheduled to go on break soon, routing will not direct an interaction
to them, to stay in adherence.

Skills should not be changed to re-route traffic, due to absenteeism or overflow.

• Frequent ad hoc re-skilling of agents (to redirect traffic flow) is inefficient, fails to leverage dynamic
routing, and can wreak havoc with the accuracy of WFM forecasting for skill types.

• Agents should already have their skills and proficiencies in their profiles, but they may be scheduled to
take particular call types based on their scheduling and routing logic. Re-skilling of agents typically
only happens if they have acquired new skills (after training) or taken on a new job role.

Routing Applications and Workflows

Composer Help 518

• Most interaction flows should be handled via dynamic routing (such as target expansion). If traffic must
be manually redirected, then rather than re-skilling agents, keep agent skills the same and redefine the
’activity set’ object within Genesys WFM. This reschedules agents to work on different activities during
a given time period. That way you are rescheduling the types of work they are handling, rather than
changing the agents’ actual skills. This approach is based on doing schedule-based routing (not just
skills-based routing), and has a dependency on Genesys WFM, thus taking advantage of the
interoperability across the Genesys suite of solutions.

What are the best practices for migrating from traditional queue-
based routing to Genesys Customer Experience Routing?

The most common mistake that organizations make when moving away from legacy ACD
environments is trying to replicate a like-for-like solution. While this is sometimes inescapable as an
interim step (e.g., due to end-of-life equipment), it should be avoided at all costs as the end state.
Seize the opportunity to re-evaluate your current customer experience and create an optimal

solution:

• Start by identifying the business goals and customer experiences you want to deliver.
• Segment your customers and determine an appropriate customer service strategy for each (e.g., Elite

Customers, High Value, Mass Market, and Low Value).
• Consider the various channels and contact drivers of customer interactions. Rather than treating these

as siloed touch points, craft them into seamless customer journeys. (These journeys will likely vary per
segment.)

• Evaluate your workforce and identify their hard and soft skills. Determine which skill sets and
proficiencies are needed to deliver the desired customer journeys. Are there gaps? Do job roles,
teams, or training need to change?

• Prioritize (rank) desired customer journeys and match with optimal skill targets for each. Then consider
the next best treatment and target if these conditions cannot be met.

As a rule of thumb, routing should be designed so that:

• Your most valuable customer interactions (top 10-20%) receive the best service most of the time.
• The majority of your customer interactions (60-80%) receive good service (e.g., slightly longer wait, less

skilled agents) much of the time.
• Your costly customer interactions, overflows, or exceptional situations (bottom 5-20%) receive adequate

service and the minority of the time.

Routing Applications and Workflows

Composer Help 519

Getting Started with Route Applications
The information in this book will help you get started using Composer to build SCXML-based
strategies (hereafter called routing applications) which can be comprised of one or more workflows).
It assumes you have reviewed the topics in the general Getting Started with Composer section.

Preparation

Composer provides a wide range of tools to satisfy the needs of a diverse developer population.
Ideally, you will be already be familiar with SCXML, XML, and HTML. If you do not wish to write code

or use existing code templates, you can build routing workflows using Composer's designer where
you place, configure, and connect routing blocks.

• View the samples
• Set preferences
• Review the blocks for routing applications
• Review the Quick Start topic

Get Started

• Create a new routing Project
• If routing multimedia interactions, review IPD planning & preparation.

Routing Applications and Workflows

Composer Help 520

IRD Functionality Included in Composer
Composer enables you to create SCXML-based routing applications to run on the Universal Routing
8.x platforms and, as such, it includes functionality that was previously provided through Genesys
Interaction Routing Designer (IRD). The information below is provided for existing Genesys customers
transitioning to Composer, who are familiar with creating strategies in IRD.

Composer Blocks and IRD Objects

Composer refers to the fundamental element of a workflow as a block; whereas in IRD
documentation, this element is referred to as an object. The tables below group IRD objects based on
their IRD toolbar category name and point to the corresponding functionality in this release of
Composer. Summary information is presented below.

• Learn about the differences between Composer and Interaction Routing Designer, which has
historically been used to create routing applications.

• See the Composer Quick Start for how to create a simple routing strategy, attach data that will appear
on the agent desktop, and route to the preferred agent.

Data & Services
IRD Object Name Composer Block Name Description

Database Wizard DB Data
DB Data retrieves information
from the database. Uses a Query
Builder.

Web Service Web Service
Invokes Web Services. GET, POST
and SOAP over HTTPS are
supported.

Web Request
Invoke any supported HTTP web
request or REST-style web
Service. See sample: Routing
Based on Web Request.

Also see Composer's Server Side Blocks.

Miscellaneous
IRD Object Name Composer Block Name Description

Assign Assign Assigns a computed value/
expression or a literal value to a

Routing Applications and Workflows

Composer Help 521

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/IRD

Multi-Assign
variable. Variables are defined
in the Entry block. Capable of
multiple assignments.

Call Subroutine Subroutine Creates reusable sub-modules.

Entry Entry

Sets global error (exception)
handlers. Defines global
variables (see Variables section
below).. All routing strategy
diagrams must start with an
Entry block.

Exit Exit
Terminates the strategy and
returns control back to calling
workflow in case of a subroutine.

Error Segmentation
Multiple error output ports can be
created in Composer blocks
based on each block's Exception
property.

Function
Multi-Function ECMAScript

Builds an ECMAScript expression
using the Expression Builder.
Many URS functions are

available as Genesys Functional
Modules described the
Orchestration Server
Documentation Wiki can invoke
multiple functions.

If
Assign, Branching, ECMAScript
blocks all open Expression
Builder

Expression Builder can be used
to create IF expressions.

Multi-Attach ECMAScript Can be used for attaching data to
an interaction.

Also see Composer's Routing Flow Control Blocks.

Routing
IRD Object Name Composer Block Name Description

Selection Target

Routes an interaction to a target,
which can be Agent, AgentGroup,
ACDQueue, Place, PlaceGroup,
RoutePoint, Skill, or Variable. Skill
target uses Skill Expression
Builder.

Percentage Target

Statistics Order property in
Target block, lets you perform
percentage allocation. Also see
sample: Routing Based on
Percent Allocation.

Default Default Route Routes the interaction to the
default destination. Can be

Routing Applications and Workflows

Composer Help 522

overrridden by the Set Default
Route block.

Routing Rule
Orchestration Server 8.1 does
not support service level routing
rules.

Switch to Strategy
Orchestration Server 8.1 does
not support switch to strategy
routing rules.

Force Route Force Route Not exposed as a routing rule in
Composer.

Statistics Target

Although statistical routing rules
are not yet supported as in IRD's
Statistics routing object, users
can use the Target object
Statistic property to route based
on the value of a statistic. A
Statistics Manager and Builder let
you create your own statistics
from URS predefined statistics.

Also see Composer's Routing Blocks.

Segmentation
IRD Object Name Composer Block Name Description

ANI Branching See Your First Application: DNIS
Routing for an example.

DNIS Branching See Your First Application: DNIS
Routing for an example.

Date Branching See the sample Routing Based on
Date & Time.

Day of Week Branching See the sample Routing Based on
Date & Time.

Time Branching See the sample Routing Based on
Date & Time.

Classification Segmentation Branching

For classification segmentation,
an ECMAScript function
determines if a particular
category name or ID exists in the
array of category objects
represented by an application
variable.

Generic Branching

Use as a decision point in a
workflow. It enables you to
specify multiple application
routes based on a branching
condition.

Routing Applications and Workflows

Composer Help 523

Also see:

Composer Common Blocks

Context Services Blocks.

Voice Treatment

See Composer Equivalent to IRD Treatment.

eServices Multimedia

See Composer Equivalent to IRD Multimedia.

Outbound

See Outbound Common Blocks

Context Services

See Context Services Blocks

Business Process

See Interaction Processing Diagrams Overview and Interaction Process Diagram Blocks. Reusable
Objects

• IRD List Object: See Composer's List Object Manager.
• IRD Variable List Dialog Box: See Entry block Variables property.

In contrast to IRD, which defines variables in a special dialog box outside of the strategy, Composer
defines both workflow and Project variables.

Routing Applications and Workflows

Composer Help 524

Workflow Post Installation
Workflow post installation steps are described below.

Tomcat

Important
Starting with Composer 8.1.561.35, only Tomcat 10.1.x are supported. Provide the
Tomcat installed location and Composer installed location in Preferences. Use the
button, Update tomcat configuration to switch between Tomcat versions and ports.

This step is necessary for both voice and routing applications. For Tomcat settings:

1. Select Window > Preferences, then expand Composer and select Tomcat. Starting with 8.1.420.14,
Composer supports Tomcat 7. Composer installation adds the role for manager-gui to Tomcat
configuration for callflows and workflows. The default username and password for the bundled Tomcat
is admin. The username and password for manager-gui is tomcat.

2. Provide the same port number that you specified during installation. The default user name and
password for the bundled Tomcat is admin.

3. To start Tomcat, click the button on the main menu. If necessary, see Tomcat Service Failed to
Start.

If you already have Java Composer Projects in the workspace and did not perform the Tomcat
configuration earlier, perform the following steps to deploy the project on Tomcat:

1. From the Project Explorer, right-click on the Java Composer Project and select Properties.
2. Select Tomcat Deployment and click the Deploy button.

Note: This also needs to be done if a Java Composer Project is imported or renamed as well.

Also see: Configuring_Proxy_Settings_in_Tomcat.

Configuration_Server

Routing applications may be developed either:

• With a connection to Configuration Server
• Or in an offline mode, without connecting to Configuration Server

Routing Applications and Workflows

Composer Help 525

https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Post#Configuring_Proxy_Settings_in_Tomcat

Whether or not to connect depends on what you wish to do. For example, you would need to connect
to Configuration Server in order to access configuration objects through the Target block. You can
connect to Configuration Server now or wait until strategy design time. To bring up the Connect
Configuration Server dialog box:

1. From the main menu, select Configuration Server > Connect. Or select from the toolbar. Or use the
keyboard shortcut: Alt+I+C. (To disconnect, keyboardshortcut is: Alt+I+D).

2. Enter Username, Password, Application, Host, and Port information for the Configuration Server
used in your environment.

3. Enter the Client Port Range. When connecting to Configuration Server, Composer will attempt to find
an unused client-side port within the specified range to establish the connection.

4. Select Use Secure connection for Transport Layer Security (TLS) when connecting to Configuration
Server.

5. Click Next:

• If authentication with the supplied User Name and Password is unsuccessful, Composer
displays informational text in a Configuration Server Connection Error dialog box.

• If a secure connection cannot be made, or if Transport Layer Security is not configured, a
Configuration Server Connection Error dialog box appears.

In both of the above scenarios, click the Details button for more information.

1. Select the Tenant. For a single-tenant environment, select Resources.
2. Click Finish. Composer can now access Configuration Server data during validation (if configured to do

so) and other operations.

Notes:

• You can configure an inactivity timeout for the connection to Configuration Server as well as the
time for the timeout warning dialog. For information on these features, see the Genesys Security
Deployment Guide.

• For making live calls, you must manually configure the Routing Point in the Configuration Database
as described in the chapter on creating SCXML-based strategies in the Universal Routing 8.1
Deployment Guide. You must also configure other Universal Routing Server options as described in
that guide.

• Routing applications are not stored in Configuration Server as in 7.x and earlier. They are stored in
the Workspace that you specify.

MIME_Types

MIME (Multipurpose Internet Mail Extensions) refers to a common method for transmitting non-text
files via Internet e-mail. By default the SCXML MIME type is already configured in the Tomcat server
bundled with Composer. If you are using the Internet Information Services (IIS) Application Server to
deploy SCXML strategies, add the following MIME type extensions through the IIS Manager of your
webserver:

Routing Applications and Workflows

Composer Help 526

.json text/json

.scxml text/plain

.xml text/xml

Predefined_Statistics

There is an option to control whether or not to create Universal Routing Server predefined statistics.
You will want to do this if you plan to route based on the value of a statistic (for example, statistic
StatTimeInReadyState).

1. Select Window > Preferences.
2. Expand Composer > Configuration Server.
3. Check the box: Create router predefined statistics when connecting to Configuration Server.

Orchestration

In addition to specifying the HTTP request parameters, both Universal Routing Server (URS) and
Orchestration Server (ORS) must be properly configured outside of Composer using Configuration
Manager or Genesys Administrator. In addition to specifying HTTP request parameters, the URS
configuration option strategy must be set to ORS. This ensures that URS is prepared to process
interactions according to requests received from ORS. Important! if you have both Composer and IRD
set up in the same environment, check in Interaction Routing Designer's Loading View that you have
not loaded an IRD 7.x routing strategy on the same Route Point DN where the built-in strategy is
loaded. This will create a conflict and cause your SCXML application not to launch.

Stream_Manager

Perform these steps in Configuration Manager or Genesys Administrator if using Stream Manager to
play treatments via the Composer treatment blocks (such as PlaySound). After installing Stream
Manager as described in the Framework 7.6 Stream Manager Deployment Guide:

1. Set up a SIP <Switching Office and a SIP Switch.
2. Set up a SIP T-Server with an association to the SIP Switch.
3. For your SIP T-Server, ensure that the sip-port option under the TServer section is unique in your

environment.
4. Make sure there is a connection between your SIP T-Server and Stream Manager.
5. For Stream Manager options, in the contact section, make sure the SIP port is unique in your

environment.
6. On your SIP Switch, create a DN of type Voice over IP Service to enable Stream Manager to properly

play the treatments. For information on Stream Manager and the Voice over IP Server type DN, refer to

Routing Applications and Workflows

Composer Help 527

the Voice Platform Solution 8.1 Integration Guide.

7. In the Annex tab of this DN, add a section called TServer with the following options:

• Name: contact, Value: :<IP Address of Stream Manager>:<SIP Port of Stream Manager>
• Name: service-type, Value: treatment

Optional

8. You may also need a DN of type Trunk for your SIP softphone. In the Annex tab, add a section called
TServer.

• Name: contact, Value:<IP address of where SIP softphone is running>

Defining Preferences

You can configure Preferences for SCXML-based routing applications now or later.

ORS_Debugger

You can configure Preferences for the ORS Debugger now or later. To set ORS Debugger preferences:

1. Select Window > Preferences, then expand Composer and select Debugging.
2. Specify the following settings:

• Network Interface. Composer debugging uses this setting to make the socket connection
for the Debugger control channel. Select the interface that is applicable to your scenario.
The debugging server (GVP or ORS) must be able to access the Tomcat server, bundled as

part of Composer, for fetching the Voice or Routing application pages. If you have multiple
NIC cards of multiple networks (such as Wireless and LAN) select the interface on which GVP
or ORS will communicate to your desktop. In case you are connected over VPN, select the
VPN interface (such as PPP if connected via a Windows VPN connection).

• Enter the Name, Display Name, and IP Addresses.
• Client Port Range. Enter a port range to be used for connection to ORS for SCXML

debugging sessions.

3. Expand Debugging, select ORS Debugger, and specify the fields below. You can change this
information when creating a launch configuration.

• ORS Server Host Name. Enter the IP address for the ORS Server.
• ORS Server Port. Enter the debugger port for the ORS Server.This is defined in the ORS

configuration as [scxml]:debug-port, and defaults to 7999. ORS must have debug-enabled
set to true.

Note: New launch configurations are pre-populated with the above host name and port information,
which can be changed.

Routing Applications and Workflows

Composer Help 528

• Use Secure Connections. Check to enable secure communications (SSL/TLS) between the
Composer client and ORS, for SCXML debugging sessions. The connection between
Composer and ORS is mutually-authenticated TLS if implemented on the ORS side. Note: As
of the Composer 8.1.1 release date, this feature is not yet implemented on the ORS side.

Routing Applications and Workflows

Composer Help 529

Upgrading Workflows

Upgrading Projects and Diagrams

See topic Upgrading Projects and Diagrams.

Upgrading Workflows Prior to 8.0.4

Some previously created workflow diagrams cannot be upgraded:

• Composer 8.0.2 began support for the creation and testing of SCXML-based workflows for inbound voice
use cases. Upgrading workflow diagrams created in the 8.0.2 release of Composer, which introduced
this new feature, is therefore not supported.

• Composer 8.0.3 began support for the Context Services option of the Universal Contact Server
Database and the processing of multimedia interactions. This release also introduced interaction
process diagrams, which are roughly the equivalent of IRD business processes. Upgrading workflow
diagrams created in the 8.0.3 release of Composer, which introduced these new features, is therefore
not supported.

Migrating IRD Strategies into Composer Projects

Starting with Composer 8.1, you can migrate routing strategies created with Interaction Routing
Designer 8.0+ into Composer Projects as SCXML-based workflow diagrams. For more information, see
the IRD to Composer Migration Guide.

Routing Applications and Workflows

Composer Help 530

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UpgradingProjectsandDiagrams
https://docs.genesys.com/Documentation/Composer/8.1.2/Migration/Welcome

Preferences for Routing Applications
Composer preferences apply to all Projects within the workspace. To open the Preferences dialog box,
select Window > Preferences. You can set preferences for the following:

• Business Rules
• Composer Diagram
• Configuration Server
• Context Services
• Customizer
• ORS Debugger
• GAX Server
• Help
• ISS .NET Preferences
• Orchestration Server Options
• Orchestration Server Preferences
• Time Zone
• Tomcat
• SCXML File
• Security
• XML Preferences

Tip
You can also set options in the Project Properties dialog box. Right-click a Project and
select Properties

Preferences for Routing Applications

Composer Help 531

Business Rule Preferences
See Business Rule Preferences in Business Rule Common block.

Preferences for Routing Applications

Composer Help 532

Configuration Server Preferences

To set preferences for connecting to Configuration Server:

1. Select Window > Preferences > Composer > Configuration Server.
2. Select or clear the check box for Connect to the Configuration Server on startup.
3. Select or clear the check box for Create Router predefined statistics when connecting to

Configuration Server. Set this preferences if you plan to route based on the value of a URS
predefined statistic. For more information on URS predefined statistics, see the chapter on routing
statistics in the Universal Routing 8.1 Reference Manual.

3. Select or clear the check box for Validate Skill Expressions. You have the option of clearing the check
box when using complex skill expressions that use both literal expressions and variables, for which skill
expression validation fails.

4. Specify Configuration Database object validation:

• No validation. You may wish to select this option if objects that will used in routing have not
yet been configured.You may also wish to select this option if you do not have the required
Configuration Database permission as described in the Genesys Security Deployment Guide.
For the Configuration Database, permissions and security are defined in the Security tab of
the properties dialog box in Configuration Manager or (for web access) Genesys
Administrator. The No Validation setting also allows application development to continue
when access to Configuration Server is not currently available. Composer can still validate
strategies with the Configuration Server items excluded.

• Validate if connected. If you will not always be connected to Configuration Server, you
may wish to select this option.

• Validate. Select to have Composer validate that the objects exist in the Configuration
Database.

5. Published interaction process diagram when it is saved.If checked, Composer will publish an
interaction process diagram when it is saved. It will not publish or prompt to connect to Configuration
Server if disconnected. Note: This auto-publish does not display a message when publishing is
successful. However, it will display message if publishing fails.

6. Check or uncheck Prompt to save before Publishing Interaction Process Diagram.
7. uncheck Delete published objects when Interaction Process Diagram is deleted.
8. uncheck Delete published objects when Project is closed or deleted.
9. Set the Inactivity Timeout preference to have Composer automatically close the Configuration Server

connection when the user does not interact with Composer in any way for the inactivity-timeout period
as described in the Inactivity Timeout chapter of the Genesys Security Deployment Guide. Composer
displays a warning dialog two minutes in advance of this time. By default, the inactivity timeout is to be
set to 0 (turned off).

10. Keep the Fetch Timeout (sec) value to use the Composer default of 10 seconds. If configured, the
Fetch Timeout value will be used as the timeout for fetching to Configuration Server queries. While
fetching larger amounts of data, set the Fetch Timeout value accordingly. Note: Any change in the Fetch
Timeout value requires a re-connection to Configuration Server.

Preferences for Routing Applications

Composer Help 533

Diagram Preferences
Select Window> Preferences > Composer > Composer Diagram. The following preferences for
diagrams can be set in the Preferences dialog box:

Global Settings

1. Select or clear the check box for each of the following diagram global settings:

• Show Connection Ports. If enabled, connection ports (both exception ports and out ports)
are always displayed on blocks. This makes it convenient to draw links between blocks and
to get immediate feedback on how many ports each block provides. However, in this case,
the ability to reposition connections on a block is not available. If switched off, connection
ports are not displayed by default, but repositioning or finer control over connection link
placement becomes available. Note: This preference applies to all projects and is not
available for individual projects.)

• Show popup bars. If enabled, this setting displays basic blocks from the blocks palette in a
pop-up bar if you hover your mouse on the diagram for one or two seconds without clicking.
Note: blocks are shown in icon view only.)

• Enable animated layout. If enabled, causes diagrams to gradually animate to their
location when the Diagram \> Arrange \> Arrange All menu option is clicked.

• Enable animated zoom. If enabled, while using the zoom tools, shows a gradual transition
between the initial and final state of the diagram on the canvas. If off, the zoom is
instantaneous. Similar behavior for animated layout when the Diagram \>\> Arrange \>\>
Arrange All menu option is clicked.

• Enable anti-aliasing. If enabled, improves the appearance of curved shapes in the
diagram. You can see its effect on the circles in the Entry and Exit blocks.

• Show CodeGen success message. If unchecked, then the confirmation dialog at the
completion of code generation will not be shown.)

• Prompt to Save Before Generating Code. If checked, when you generate code for an
unsaved diagram, a prompt appears indicating the diagram has been modified and asking if
you want to save the changes before generating code. The dialog box also contains a
checkbox: Automatically save when generating code and do not show this message again.

• Show Validation success message. If unchecked, then the confirmation dialog at the time
of Validation will not be shown.)

• Enable Validation for Prompt Resources. This preference is used for voice applications.
If unchecked, then a validation check for missing prompts is not performed at the time of
Validation.

• Interaction Process Diagram. If unchecked, Composer will save Interaction Process
Diagrams before publishing.

• Prompt to delete Published objects when Interaction Process Diagram is deleted. If
unchecked, Composer will attempt to delete any Published objects when an Interaction
Process Diagram is deleted. If Composer is not connected to Configuration Server, object

Preferences for Routing Applications

Composer Help 534

deletion will not work.
• Parameters auto synchronization (available starting with 8.1.410.14). This option

reduces developer coding time by enabling Composer to automatically declare variables in a
Main diagram to match input/output variable names in Subdialog block/Subroutine diagrams
and to automatically perform the mapping. This feature is available for both user and
system variables. For example, if a Subroutine diagram returns a variable called “xyz” and if
Composer automatically declares “xyz” in the Main diagram to hold the output, then you do
not have to manually do the mapping. If enabled, you are prompted for auto-
synchronization whenever there is a need to change parameters names or add new
variables in the dialogs.
Scenarios:
1. Subdialog or Subroutine Diagram: Entry Block—The auto-synchronization process will

synchronize any newly added/updated variables and existing variables in the
Subdiagram. If you add a new Input type variable, a prompt appears asking whether to
add a corresponding Input parameter. You are also prompted to select or add the Input
source variable in all the called Subroutine diagrams. New parameter naming in the
calling Subdialog block is the same as the Input variable added in the Entry Block. If the
Subroutine diagram is called from many diagrams, Composer provides a variable
selection option for the called diagrams.

2. Main callflow Diagram: Entry Block—If you add a new Input type variable, a prompt
appears asking whether to add the corresponding input parameter. You are also
prompted to select or add an Input source variable in all the called Play Application
blocks. New Parameter naming in the calling Play Application block is the same as the
Input variable added in the Entry Block. If the Main diagram was called from multiple
Play Application blocks, a variable selection option for all the called blocks is provided.

3. Subdialog or Subroutine diagram: Exit Block—If you change or delete a return parameter,
a prompt appears on whether to delete the Output parameter and/or the missing ones in
case of a change in all the called Subroutine or Subcallflow diagrams.

4. The auto-synchronization parameter option also applies when there is a change in a
configured Subroutine diagram. The auto-synchronization dialog confirmation appears as
soon as a Subroutine diagram is added/updated. If the confirmation dialog is selected, it
automatically synchronizes the Subroutine parameters to the Main diagram. This auto-
synchronization prompt always appear even though the same diagram is updated again.
When Output parameters are added in the Exit block, parameter synchronization also
occurs.

5. Application URL for Publish and Debugging. Select Use IP Address or Use Host
Name.

Notes:

Composer creates unique names for auto-sync variables, such as <SubBlockName>_<VariableName>.
SubBlockName is the name of the Subroutine/ Subdialog / Play Application blocks where the Subroutine diagram is
being invoked. VariableName is the input variable name created in a Subroutine diagram.

2. Click Apply.

Colors and Fonts

1. Select Appearance under Composer Diagram.

Preferences for Routing Applications

Composer Help 535

2. Click Change and make selections to change the default font if you wish.
3. Click the appropriate color icon beside any of the following and make selections to change color:

• Font color
• Fill color
• Line color
• Note fill color
• Note line color

4. Click Apply.

Connections

1. Select Connections under Composer Diagram.
2. Select a line style from the drop-down list:

• Oblique
• Rectilinear

3. Click Apply.

Pathmaps

1. Select Pathmaps under Composer Diagram.
2. Click New to add a path variable to use in modeling artifacts, or If the list is populated, select the check

box of a path variable in the list.
3. Click Apply.

Printing

1. Select Printing under Composer Diagram.
2. Select Portrait or Landscape orientation.
3. Select units of Inches or Millimetres.
4. Select a paper size (default is Letter).
5. Select a width and height (for inches, defaults are 8.5 and 11; formillimeters, defaults are 215.9 and

279.4).
6. Select top, left, bottom, and right margin settings (for inches, defaults are 0.5; for millimeters, defaults

Preferences for Routing Applications

Composer Help 536

are 12.7).
7. Click Apply

Rulers and Grid

You can make use of rulers and grids when creating diagrams. Rulers and grids can provide a
backdrop to assist you in aligning and organizing the elements of your callflow diagrams.

1. Select Rulers and Grid under Studio Diagram.
2. Select or clear the Show rulers for new diagram check box (not selected by default).
3. Select ruler units from the drop-down list:

• Inches
• Centimeters
• Pixels

4. Select or clear the Show grid for new diagrams check box (not selected by default).
5. Select or clear the Snap to grid for new diagrams check box (selected by default).
6. Type a value for grid spacing (for inches, the default is 0.125; for centimeters, the default is 0.318; for

pixels, the default is 12.019).
7. Click Apply.

Preferences for Routing Applications

Composer Help 537

Setting Context Services Preferences
Go to Window > Preferences > Composer > Context Services to open the Context Services
dialog box. If using a Composer version prior to 8.1.440.18, the dialog box will not contain a Service
management section.

Preferences for Routing Applications

Composer Help 538

Preferences for Routing Applications

Composer Help 539

Guidelines for Context Services Preferences
[+] Guidelines for Context Services Preferences
The table below supplies some guidelines for defining Context Services Preferences.

Installation Type Customer Profile
Management Service Management

Context Services 8.1 or earlier -
Profile and Service APIs served
by UCS

Set UCS parameters according to
UCS options.

Do not check the Use Genesys
Mobile Service checkbox. Set
the UCS parameters according to
UCS options.

Context Services 8.5 or later - No
Load Balancer

Set UCS parameters according to
UCS options.

Check the Use Genesys Mobile
Service checkbox. Set GMS
parameters according to GMS
options.

Context Services 8.5 or later -
Load Balancer (LB)

Set UCS parameters to match the
LB options.

Check the Use Genesys Mobile
Service checkbox. Set GMS
parameters to match the LB
options.

Customer Profile Management Section

1. Use the Guidelines for Context Services Preferences section above for selecting/unselecting the
Connect to Universal Contact Server when designing diagrams box.

2. Under Server Host Name, enter the server host IP address in your Configuration Database, which
identifies the Universal Contact Server. See Tip below.

3. Enter the Server Port number for Universal Contact Server. For the port number, open the Universal
Contact Server Application object in your Configuration Database, go to Options tab, select the
cview section, and the port option.

4. Enter the Base URL for the Context Services server. This should only be configured if you use UCS 8.1.
Do not set if you use UCS 8.5.

5. Under Security Settings, Use secure connection, select Never or TLS if Transport Layer Security is
implemented as described in the Genesys 8.1 Security Deployment Guide.

6. Select Use Authentication to require a user name and password when connecting to Universal
Contact Server. If selected, enter the User and Password fields.

7. Click the Test Connection button (enabled if the Connect to Universal Contact Server when
design diagrams box is checked). Clicking should cause connection successful to appear. If not, check
that Universal Contact Server is running and that the entered host/port values are correct. Other
sources of error could be that the base URL parameter value is incorrect or the UCS version is not 8.1 or
higher.

8. Under Context Services object Validation, select one of the following: No validation, Validate if
connected, or Validate. This setting is used and shared by the Profile/Service blocks.

Preferences for Routing Applications

Composer Help 540

https://docs.genesys.com/Documentation/System/latest/SDG/Welcome

Tip
Host/port/URL/tenant are used at design time by Composer (when the Connect to
Universal Contact Server when designing diagrams box is selected). They are
also used by Composer when publishing an interaction process diagram. Composer
stores these parameters in the EnhancedRoutingScript objects. SCXML applications
can then read those settings at runtime to connect to UCS/GMS accordingly.

Service Management Section

1. Select either Use Genesys Mobile Services or Connect to the Universal Contact Server when
designing diagrams. See Guidelines for Context Services Preferences section above for more
information. Steps 2, 3, and 4 below relate to UCS or GMS, depending on the Use Genesys Mobile
Services box.

2. Under Server Host Name, enter the host IP address. See above note (Tip).
3. Enter the server port number.
4. Enter the Base URL for the host. When using GMS, the base URL is normally /genesys/1/cs.
5. Enter the Tenant. GMS Context Services (optionally) supports multi-tenancy. The tenant to use is

passed as a header (ContactCenterId=x) of the request. This field is disabled when Connect to the
Universal Contact Server when designing diagrams is selected.

6. Under Security Settings, Use secure connection, select Never or TLS if Transport Layer
Security is implemented as described in the Genesys 8.1 Security Deployment Guide.

7. Select Use authentication to require a user name and password. If selected, enter the User and
Password fields.

8. Click the Test Connection button. Clicking should cause connection successful to appear. When using
GMS, no connection is made from Composer to GMS. Connections to GMS are initiated only at runtime
by ORS/MCP.

9. Under Context Services object Validation, select one of the following: No validation, Validate if
connected, or Validate. This setting and the setting below is used and shared by the Profile/Service
blocks.

10. Under Local Settings, select the time zone.

Tip
Composer can successfully communicate with UCS at design stage whatever the UCS
mode is (production or maintenance). However, UCS needs to be in production mode
at runtime stage (when running Context Services SCXML or VXML applications, even
when using GVP Debugger).

Preferences for Routing Applications

Composer Help 541

https://docs.genesys.com/Documentation/System/latest/SDG/Welcome

Customizer Preferences
To bring up Customizer Preferences:

1. Click the Window menu.
2. Select Preferences.
3. Expand Composer.
4. Select Customizer Preferences. The Customizer Preferences dialog box opens. The Callflow Diagram

Editor and Workflow Diagram Editor customization plug-ins are display only and can be used for
debugging.

The Customizer
Preferences dialog box:

• Reports on the location of the storage area (cstore directory) on disk. Diagrams that you save as
templates are stored here.

• Lists registered plug-ins as shown in the Customization Manager view.
• Allows you to suppress confirmation dialogs associated with plug-ins. If checked, it suppresses the

Preferences for Routing Applications

Composer Help 542

success/failure indicator message when you save a diagram as a template.

Preferences for Routing Applications

Composer Help 543

ORS Debugger Preferences
Select Window > Preferences > Composer > Debugging > ORS Debugger. ORS Debugger
preferences are usually set during post-Installation configuration, when you first run Composer. A
Debugger Cheat Sheet (Help > Cheat Sheets > Composer > Routing Applications) also

provides detailed configuration instructions.

Preferences for Routing Applications

Composer Help 544

GAX Server Preferences
Select Window > Preferences > Composer > GAX Server.

If using the OPM Block for a voice or routing application, you must set GAX Server Preferences.

Tip
GAX refers to a Genesys Administrator Extension (GAX) plug-in application used by
Genesys EZPulse, which is accessible from a web browser. EZPulse enables at-a-
glance views of contact center real-time statistics in the GAX user interface.
Composer diagrams connect to GAX using the preference login credentials for fetching
the Audio Resource Management (ARM) parameters or IDs list configured for the
tenant as described in the Configuration options appendix of the Genesys
Administrator Extension Deployment Guide.

The following preferences can be set in the GAX Server Preferences dialog box:

• Server Host Name/IP. Enter the hostname or address of the Application server hosting the GAX
Server.

• Port Number. Enter the port number for the GAX Server used in your environment.
• Username. Enter the username defined in the Configuration Database for logging into the GAX

server.
• Password. Enter the password defined in the Configuration Database for logging into the GAX

server.

Preferences for Routing Applications

Composer Help 545

Help Preferences
Window > Preferences > Composer > Help

The resulting page contains a link to the online Composer help wiki. For example:

http://docs.genesys.com/?title=Special:ComposerHelp&keyword={keyword}&locale={locale}&version={version}

Preferences for Routing Applications

Composer Help 546

IIS.NET Preferences
Select Window > Preferences > Composer > IIS/.NET.

IIS/.NET preferences are usually set during post-installation configuration, when you first run
Composer. Detailed post-installation configuration instructions are provided in the Setting IIS
Preferences Cheat Sheet (Help > Cheat Sheets > Composer > Building Voice Applications),
and also in Post-Installation Configuration.

Preferences for Routing Applications

Composer Help 547

Orchestration Preferences
Select Window > Preferences > Composer > Orchestration Server. Enter the Orchestration
Server Load Balancer URL.

Also see:

• Orchestration Options

• Orchestration Extensions

Preferences for Routing Applications

Composer Help 548

https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/Load
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/Load

Orchestration Options
Using Composer, you can create Routing applications for the Genesys Orchestration Platform 8.x
(ORS)—which takes the Genesys core capability of routing, extends it, and integrates it tightly with
other Genesys products.

There are two ways to view Orchestration Server options:

1. Right-click a Project and selecting Properties.
2. When a Project is selected, click the Properties menu and select Properties.

In the resulting dialog, select Orchestration Options. The options are:

• Use External Events
• Start Workflow SCXML application on interaction.onrouterequest event (described below)
• Use Single GVP Session to Execute Treatments
• Use Interaction Submitters
• Interaction Detach

Preferences for Routing Applications

Composer Help 549

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/RoutingFAQs
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/InteractionQueueBlock#Submitter_Objects
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSDetach

Also see:

• Orchestsration Preferences

• Orchestration Extensions

Start Workflow SCXML application on interaction.onrouterequest
Event

Starting with 8.1.400.37, Composer adds a Project-level option, Start Workflow SCXML
application on interaction.onrouterequest event, that you can use to control the start of a
workflow SCXML application. If enabled, an interaction process diagram will start the workflow
diagram SCXML upon receiving the interaction.onrouterequest event for voice interactions. If this
option is not enabled, Composer will use the interaction.added event for regular voice calls and

Preferences for Routing Applications

Composer Help 550

the interaction.attach.done event for consult calls. To change this option, you must generate
code for all the interaction process diagram files in a Project. By default, this option is not enabled. As
result, older applications will continue to start the workflow diagram SCXML upon receiving the
interaction.added event. This option should not be enabled for multimedia (non-voice)
interactions. Composer also adds the interaction.onrouterequest event to the default set of voice
event handlers.

Preferences for Routing Applications

Composer Help 551

Orchestration Extensions
Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property. Use this property to add
custom attributes into any/all states and sub-states for any block they are configured in. Add the ORS
Extensions property to the Properties view for a selected block by clicking the Show Advanced
Properties button.

Show Advanced Properties

When creating a new diagram in Composer perspective, this button appears on the right side of the
Composer GUI, between the palette of blocks and the Properties view.

This property gives the ability to use any attribute Orchestration Server supports in addition to the
SCXML standard. For information on these attributes, see the attributes prefixed with "_" in the
SCXML Elements section of the Orchestration Server Developer's Guide. For example, you can specify
additional attributes to be added into the SCXML <state> element, which Orchestration Server can
then use to control persistence on a <state> level and for other functionality in the future.

Orchestration Options

Selecting Properties from the Project menu opens a dialog box showing the properties of the
selected Project or of the Project that contains the selected resource. Select Orchestration Options to
view other settings.

Preferences for Routing Applications

Composer Help 552

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef#SCXML_Elements
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/Persist

Detaching Interactions
Starting with Release 8.1.400.35, Composer adds a new Project properties option, Interaction
Detach, in the Orchestration Options dialog (shown below), which can generate the detach attribute
in the ixn:redirect tag in the following Routing blocks: (Default Route, Force Route, Queue
Interaction, Route Interaction, Routing Rule, and Target).

Selecting Use Platform in the dialog sets the attribute value to true and instructs Orchestration
Server to detach an interaction from the current session before routing to the specified target, which
can free Orchestration Server to start processing the next session. Keeping the default of Use
Application causes the detach attribute not to be used, in which case the <ixn:detach> tag will be
used by the generated SCXML application.

Notes:

• Previously created Projects upgraded to this version will have the Use Application detach option and
generate the <ixn:detach> tag for the detach operation. Also, the default value of the Detach
property for the above Routing blocks is changed to true.

• Any new Routing blocks added will have the Detach Property default set to true.
• Diagrams upgraded to this version will continue to have the previously set values for the Detach

property.

You can specify the detach method at the Composer level, at the Project level, or at the Block level.

Composer Level

Use the Detach and Attach blocks available from the Flow Control palette group.

Project Level

Right-click a Project, select Properties > Orchestration Options. The dialog box below opens.

Preferences for Routing Applications

Composer Help 553

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements

Under Interaction Detach, the options are Use Platform or Use Application.

[+] Use Platform
Interaction Detach = Use Platform (default value for new Projects)

If Use Platform is selected, Composer will generate the new detach attribute in the
<ixn:redirect> tag in the above Routing blocks that have the Detach property enabled.

<state id="_reserved_Target1_redirect">
<onentry>

<ixn:redirect detach="true" requestid="App_Target1['requestid']"
interactionid="system.InteractionID" from="system.ThisDN"

to="App_Target1['targetResource']" type="_genesys.queue.rType.RouteTypeDefault"
hints="_data.All_Locations"/>

</onentry>
<transition event="interaction.redirect.done"

Preferences for Routing Applications

Composer Help 554

cond="_event.data.requestid==App_Target1['requestid'])" target=
"$$_MY_PREFIX_$$._reserved_NextBlock"/>

</state>

eServices Blocks and Use Platform
Use Platform in SCXML code generation is applicable only for blocks that use the <ixn:redirect>
tag. The following eServices blocks do not use <ixn:redirect> tag and therefore cannot use the
Use Platform option shown above: Chat Transcript, Create Email, Email Forward, Email Response, and
Create SMS. You can still change the default value for the Detach property in these blocks.

Event Handling
When enabling the Use Platform option, Composer-generated code for the Routing blocks with the
Detach property enabled will no longer handle detaching (<ixn:detach>) the interaction and re-
attaching (<ixn:attach>) the interaction after a failed <ixn:redirect>.

The following events will no longer be handled by the generated code for these blocks:
interaction.detach.done and interaction.attach.done.

Starting with 8144, Composer validates error.interaction.attach and
error.interaction.detach exceptions in the Detachable blocks. If Platform Detach is enabled,
the Detachable blocks having the above said exceptions will throw a warning.

The interaction.deleted event will be discarded at the application level (interaction process dialog
Events) when its resultof attribute value is detaching in order to prevent premature application
termination. As a result, application developers are no longer be required to handle the
interaction.deleted event in multiple places when detaching interactions.

[+] Use Application
Interaction Detach = Use Application (default value for upgraded Projects)

If Use Application is selected, Composer will continue to generate the <ixn:detach> tag to detach
interactions, in addition to the <ixn:redirect> tag.

<state id="_reserved_Target1_detach_run">
<onentry>

<ixn:detach interactionid="system.InteractionID"
requestid="App_Target1['requestid']"/>

</onentry>
<transition event="interaction.detach.done"

cond="_event.data.requestid==App_Target1['requestid'])"
target="$$_MY_PREFIX_$$._reserved_Target1_redirect"/>
</state>
<state id="_reserved_Target1_redirect">

<onentry>
<!-- NO detach attribute attribute usage. This code must run on ORS without in-

redirect detach support -->
<ixn:redirect requestid="App_Target1['requestid']"

interactionid="system.InteractionID" from="system.ThisDN" to="App_Target1['targetResource']"
type="_genesys.queue.rType.RouteTypeDefault" hints="_data.All_Locations"/>

</onentry>

Preferences for Routing Applications

Composer Help 555

<transition event="interaction.redirect.done"
cond="_event.data.requestid==App_Target1['requestid'])"
target="$$_MY_PREFIX_$$._reserved_NextBlock"/>

<transition event="error.interaction.detach"
cond="_event.data.requestid==App_Target1['requestid'])"
target="$$_MY_PREFIX_$$._reserved_Target1_attach">

<script>
App_Target1['error.rethrow'] =

{'name':_event.name,params:{'requestid':_event.data.requestid,'error':_event.data.error,'description':_event.data.description}};
</script>

</transition>
</state>
<state id="_reserved_Target1_attach">

<onentry>
<ixn:attach interactionid="system.InteractionID"

requestid="App_Target1['requestid']"/>
</onentry>
<transition event="interaction.attach.done"

cond="_event.data.requestid==App_Target1['requestid'])"
target="$$_MY_PREFIX_$$._reserved_NextBlock">

<!-- re-throw original error.interaction.redirect for the application -->
<script>

__Raise('error.interaction.redirect', App_Target1['error.rethrow'].params);
</script>

</transition>
</state>

Block Level

If the Detach property is set to true for the above Routing blocks, Orchestration Server uses the new
detach attribute and the interaction is detached from the session before routing to the specified
target.

If the Detach property value is set to false (default), then no detach occurs before routing.

If the Target block Route property = true, then code generation will detach the interaction before
queue:submit since the Orchestration Platform will redirect after queue:submit. This is applicable for
both Use Platform and Use Application under Interaction Detach.

Inter-Session Communication

Composer-generated applications support passing context from the source application session to the
destination application session when the interaction is associated with a new Orchestration session
after a detaching operation in the originating Orchestration session. This allows the new application
that runs in the new session to access data (variables) previously collected in the originating session.

This feature is controlled by properties Pass Context, Pass Context Timeout of detachable blocks in
the originating Orchestration session, and by properties Read Context, Read Context Timeout of the
destination interaction process diagram (IPD).

To support this feature, the Composer originating application writes some data to the interaction user
data just before detaching the interaction. When enabling the Use Platform option, this user data

Preferences for Routing Applications

Composer Help 556

update must be done right before the <ixn:redirect>.

Preferences for Routing Applications

Composer Help 557

SCXML File Preferences
To set SCXML file preferences:

1. Select Window > Preferences > Composer > SCXML Files.
2. Select the suffix that Composer should add to SCXML files. The default is scxml.
3. Select the encoding for the file. The encoding attribute in an SCXML document specifies the encoding

scheme. The encoding scheme is the standard character set of a language. The SCXML processor uses
this encoding information to know how to work with the data contained in the SCXML document. UTF-8
is the standard character set used to create pages written in English. Select from the following:

• ISO 10646/Unicode(UTF-16LE) Little Endian
• US ASCII
• ISO Latin-1
• Central/East European (Slavic)
• Southern European
• Arabic, Logical
• Arabic
• Chinese, National Standard
• Traditional Chinese, Big5
• Cyrillic, ISO-8859-4
• Cyrillic, ISO-8859-5
• Greek
• Hebrew, Visual
• Hebrew
• Japanese, EUC-JP
• Japanese, ISO 2022
• Japanese, Shift-JIS
• Japanese, Windows-31J
• Korean, EUC-KR
• Korean, ISO 2022
• Thai, TISI
• Turkish

4. Check the box to warn if no grammar is specified when validating SCXML files (not selected by default).
5. Click SCXML Templates.

Preferences for Routing Applications

Composer Help 558

SCXML Templates

Composer provides a set of predefined templates when writing SCXML code to create routing
strategies. You can either start off from scratch in the SCXML editor or use one of the available
templates as a starting point. Use this preference to create, edit, or remove templates as well as to
import and export templates.

1. Select Window > Preferences > Composer > SCXML Templates.
2. In the resulting Templates dialog box, do one of the following:

• To create a new template click New... The New Template dialog box opens for naming and
describing the new template.

• To edit an existing template, select its row and then click Edit...The Edit Template dialog box
opens for editing.

• To remove a template, select its row and click Remove. If you change your mind, click
Restore Removed,

• To import a template, click the Import... button, navigate to the folder containing the SCXML
file, select the file, and click Open.

• To export one or more templates, select the row(s) and click the Export... button. In the
Export Templates window, click the target location and click Save.

• If you change your mind after editing a predefined template, click Restore Defaults.

3. Click Source.

Source

Source preferences are based on the XML Editor preferences. See that topic for more information.

Syntax Coloring

Syntax coloring preferences are based on the XML Editor preferences. See that topic for more
information.

Preferences for Routing Applications

Composer Help 559

Security Preferences
Use the Security preferences page to specify the location of the Trust Store that holds security
certificates.

Window > Preferences > Composer > Security

The certificates are used, for example, when Composer connects to Universal Contact Server with a
secured connection. By default, Composer uses the Java Runtime Environment (jre) Trust Store. The
default password for the Trust Store is changeit.

Preferences for Routing Applications

Composer Help 560

Tomcat Preferences
Select Window > Preferences > Composer > Tomcat Tomcat preferences are usually set during
post-installation configuration, when you first run Composer. Detailed post-installation configuration
instructions are provided in the Configure Tomcat and Debugger Settings Cheat Sheet (Help > Cheat
Sheets > Composer > Building Voice Applications), and also in Callflow Post-Installation
Configuration or Workflow Post Installation Configuration.

Preferences for Routing Applications

Composer Help 561

Introduction to Routing Workflows
This section gives a high-level overview of creating SCXML-based routing strategies ("workflows") in
Composer's integrated development environment.

• What is a Routing Workflow

• Architecture Diagram for Workflows

• Workflow Example and Palette

• SCXML File Editor

• Sessions and Interactions

• Interaction Process Diagrams

Introduction to Routing Workflows

Composer Help 562

What is a Routing Workflow?

What is Routing?

In the simplest terms, routing is the process of sending an interaction to a target, for example,
sending an incoming telephone call to an agent. In practice, an interaction must undergo various
types of processing between the time it arrives at the contact center and the selection and routing to
the appropriate target. Each processing-point is an opportunity for some sort of processing to take
place or for Universal Routing Server (URS) to make a decision based on the current situation—with
the goal of getting the interaction delivered to the most appropriate target.

What is a Routing Workflow?

A routing workflow is a set of decisions and instructions that tells Universal Routing Server how to
handle and where to direct interactions under different circumstances.

At any given processing-point in the workflow, only one of several possible outcomes can be optimal.
Universal Routing Server uses the workflow instructions to determine which outcome is optimal and
sends the interaction along a specified route accordingly.

There are various ways to create an SCXML-based workflow in Composer:

1. By working with blocks to create a workflow in Composer or Composer Design perspective.
2. By writing code in the Composer_Code_Editors (which may include using templates).
3. By importing an existing workflow.

Routing Blocks and Ports

Each processing-point is represented graphically in a workflow by a routing block, which has:

• One entry port
• One or more red exception ports
• One or more green exit ports.

The figure below shows how these ports appear for a block in Composer's workflow designer.

Introduction to Routing Workflows

Composer Help 563

Introduction to Routing Workflows

Composer Help 564

Architecture Diagram for Workflows
To give the "Big Picture" and show the various Genesys components used for SCXML-based
workflows, below is a high-level diagram of the Universal Routing 8.x architecture.

The SCXML-based strategy creation and processing steps above are keyed to the numbers below.

1. The developer specifies Configuration Server objects as routing targets prior to creating the routing
application in Composer. For example, a routing target could be an agent (Person object) or Agent
Group or an interaction can be sent to a queue. The developer may also create workflows that route
based on the value of a Stat Server statistic or a statistic that you defined in Composer's Statistics
Builder.

2. The developer (or other persona) creates and tests the routing application and manually deploys it on a
web application server. Once this is done, the runtime life cycle of the routing logic can begin with a
routing request.

3. URS gets an EventRouteRequest message from T-Server or another media server such as an eServices
media server.

4. The request goes to the Routing Point. URS gets the URL of the application server to be contacted about
SCXML strategy to be provided, which is a property of the Routing Point. After the URL is obtained, ORS
issues the HTTP GET (or POST) request to the application server.

5. The application server executes the request and returns the SCXML document back to ORS.
6. Upon getting the response, ORS passes the received SCXML document to the SCXML engine. The SCXML

Introduction to Routing Workflows

Composer Help 565

https://docs.genesys.com/Documentation/GA/8.5.2/user/ConfigMgmt
https://docs.genesys.com/Documentation/Composer/8.1.5/Deployment/Preinstallation#Application_Server_Requirements
https://docs.genesys.com/Documentation/ES/8.5.1/Depl/archi

engine runs the SCXML application, invoking ORS/URS services as needed.
7. ORS or URS issues a RequestRouteCall message to the media server.

Delivering an Interaction to Agent Desktop

Once ORS/URS identifies a routing target, other servers are involved in the process of delivering the
interaction to the agent desktop.

• In the case of voice interactions, SIP Servers /T-Servers are involved.
• In the case of PBX based architectures (not SIP servers), PBXes are involved (by the commands from T-

Servers).

In summary:

Interaction Type Target Identification Deliver to Desktop

Multimedia URS/ORS Interaction Server > Media
Server

Voice Over IP URS/ORS SIP Server (includes media
control)

Old/PBX archiectures URS/ORS T-Server > PBX

Introduction to Routing Workflows

Composer Help 566

Workflow Example and Palette
The figure below shows an example routing workflow in Composer Design perspective.

As shown above, in Composer Design perspective, the palette of blocks appears on the left. When
creating workflows, you drag blocks from palette, drop them in the center canvas area, configure
their properties in the lower Properties tab, and connect them.

Introduction to Routing Workflows

Composer Help 567

SCXML File Editor
Composer also has an editor for those who like to write their own code. The figure below shows
example strategy code in Composer's SCXML editor.

• SCXML File Preferences control colors and other aspects of SCXML editing.
• For editing functionality, see Accessing the Editors and Templates.

Introduction to Routing Workflows

Composer Help 568

• For sample strategies, see Universal Routing 8.1 SCXML Strategy Samples.

Introduction to Routing Workflows

Composer Help 569

Sessions and Interactions
Orchestration Server introduces the concept of sessions. An understanding of these concepts is
important to effectively use Routing functionality in Composer. Please consult the Orchestration
Server 8.1 Deployment Guide for references to detailed technical information.

Composer generated SCXML applications make sure that an SCXML session is created whenever an
interaction is pulled from an Interaction Queue and presented to the SCXML application. This
behavior applies to:

• All new interactions received by Orchestration platform.
• Interactions that have been placed in the interaction by an SCXML application.
• New interaction created by Orchestration platform as a result of an action (e.g., E-mail Response and

Create SMS blocks).

However, under certain circumstances, use of the SCXML State block or a hand-coded subroutine
may result in a new interaction being created. In such cases, special care must be taken to process
the new interaction since the default behavior is to take action on the original interaction that
resulted in the session being created. One of the following approaches is recommended in such
cases.

• If the Interaction ID is not known, retrieve the Interaction ID from the
_genesys.ixn.interactions[x].g_uid list.

• Place the new interaction in a different queue using the Queue Interaction block. When the interaction is
presented to the workflow connected to the queue, a new session is created, thereby all further actions
are performed on the presented interaction.

Introduction to Routing Workflows

Composer Help 570

Interaction Process Diagrams

What is an IPD?

An interaction process diagram (IPD) provides a high level view of how multimedia interactions flow
through various components like media servers, interaction queues, workbins, and workflows. An IPD
is somewhat similar to a Business Process in Interaction Routing Designer, but is SCXML-based,
contains additional functionality and works with Orchestration Server.

Starting SCXML Page

In addition, an IPD functions as the starting SCML page for both voice and multimedia interactions
and results in using the same session across the entire interaction process. It also updates objects in
Configuration Server and activates the linkages specified in the IPD.

• When used for voice interactions or interaction-less processing, an IPD contains a single Workflow block.
• When used for multimedia interactions, an IPD contains at least one and possibly multiple Media Server,

Interaction Queue, and Workflow blocks. The example shown below is available as a template (Routing
After Sending Autoresponse) when you create a new Project.

Introduction to Routing Workflows

Composer Help 571

An IPD used for multimedia interactions:

• Visually presents and directs the flow of interactions through various processing blocks (media servers,
queues, and workflows).

• Defines what happens to customer multimedia interactions from the point of arrival at your contact
center to the point of completion.

• Can implement the procedures used by agents, supervisors, quality assurance, and other personnel in
your company to accomplish your company's business objectives related to incoming multimedia
interactions.

An IPD also enables visual configuration of the associated Configuration Server objects. When
connected to Configuration Server, you trigger the actual Configuration Database update by using
Composer's Publish operation. Publishing causes Composer to push out relevant subsets of the
configuration information to Configuration Server. Here platform components can query for the
information and use it for processing interactions.

SCXML File Creation

Composer expects IPDs (*.ixnprocess files) to be present in the Interaction Processes folder. This

Introduction to Routing Workflows

Composer Help 572

folder is accessible from the Project Explorer. The code generation step creates SCXML files for the
following types of diagrams:

• Interaction process diagram: One SCXML file is created for:

• Each Interaction Queue block present in the diagram with the name IPD_<Diagram
Name>_<Interaction Queue Block name>.scxml (Multimedia interaction scenarios).

• Each Workflow block present in the diagram, that is not connected to an Interaction Queue block
with the name IPD_<Diagram Name>_<Workflow Block name>.scxml (voice or interaction-less
scenarios). Each of these files represents an entry point into this application and can be specified
in the EnhancedRoutingScript object. This Script object should never point directly to a workflow or
sub-workflow SCXML file.

• Workflow diagram, sub-workflow diagram: Both types of files have the .workflow extension. Code
generation creates an SCXML file for each diagram with the same name as the diagram name.

The IPD SCXML file includes one or more workflow SCXML files which, in turn, can contain a hierarchy
of sub-routine SCXML files. Orchestration Server combines all these related files into a single
document and then executes the resulting combined SCXML document. Due to this reason, the line
numbers mentioned in Orchestration Server logs may not match the line numbers in individual
Composer SCXML files. See the Orchestration Server documentation for information on how to obtain
access to this merged document.

Starting a New IPD

See Starting a New IPD when creating a routing application.

Executing an IPD

The following Genesys servers work together to execute an interaction processing diagram:

• For multimedia interactions, handles queue processing, delivery of interactions to selected resources,
and invoking multimedia services. For information on Interaction Server, start with the eServices/
Multimedia 8.1 Deployment Guide.

• (ORS) interprets the top-level SCXML document created as a result of the interaction processing
diagram. For information on ORS, start with Orchestration Server 8.1 Deployment Guide.

• ORS provides the Genesys Functional Modules (Queue, Interaction, Voice Interaction, Dialog, Resource),
which are described in the Orchestration Server 8.1.3+ Developer's Guide.

ORS sends requests to Universal Routing Server, invoking actions from these modules based on its
SCXML interpretation. URS then determines available resources (which may be another queue or the
final target, such as an agent) where interactions can be delivered to and returns responses back to
ORS with the resultant action information.

Introduction to Routing Workflows

Composer Help 573

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/OrchExt

Creating Routing Applications
This section describes how to create routing applications, both in the workflow designer and in the
editor after workflow post installation configuration.

• IPD Planning and Preparation
• IPD is Starting SCXML Page
• Creating a New Routing Project
• Creating the IPD
• Creating a New Workflow Diagram
• Using the SCXML Editor
• Using SCXML Templates
• Your First Routing Application
• Using URS Functions

Also see the video below on one way (out of many) to create a routing strategy. This video
demonstrates the use Composer's Project and diagram templates. To optimize viewing, use the video
button at the bottom to expand to full-screen.

Creating a Simple Routing Strategy

Link to video

Creating Routing Applications

Composer Help 574

https://player.vimeo.com/video/155082323?title=0&byline=0&portrait=0

IPD Planning & Preparation
This topic discusses preparation and planning for creating an interaction process diagram (IPD) that
will process multimedia interactions. An IPD for voice interactions contains only a single workflow
block. When planning an IPD for multimedia processing, start by considering the basic stages in the
interaction life-cycle. You can then design an IPD that encompasses all stages, just one stage, or
multiple stages. This topic presents four basic stages, which are especially applicable to e-mail
processing, but could apply to other media types as well. The stages are:

1. Pre-Route
2. Route-to-Agent
3. Review
4. Pre-Send

Each stage is summarized below. Pre-Routing Stage The main activities in the pre-routing stage of
e-mail handling can potentially include:

• Determining whether an e-mail has already been processed by Genesys. This can be accomplished via
the absence or presence of an Interaction Subtype Business Attribute assigned by Interaction Server.

• Classifying e-mails based on content analysis, which can assign a category code. Once a category code
is assigned to an e-mail, you can configure other types of processing to occur based on the category
code.

• Screening e-mails for certain words or patterns of words. Once a screening rule match occurs, you can
configure other types of processing based on the match.

• Sending an acknowledgement and/or automatic standard response to the customer originating the e-
mail.

• Determining the agent (if any) who previously handled the interactions related to this service.

Route-to-Target Stage This may or may not be an agent target. For example, the e-mail may be:

• Sent to a queue for submittal to other routing strategies and further processing.
• Sent to a queue for failed interactions.
• Forwarded outside the contact center to an expert with the expectation of getting a response back.
• Redirected to another agent without the expectation of getting a response back.
• Routed to an agent target for construction of a response.

Review Stage The reviewer could be a manager, supervisor, or QA Person. You may want to have
two different types of quality assurance review:

• A supervisor review that checks the skills of the agent who constructed the response.
• An analysis that performs a sanity check; for example, to prevent sending out a bank account password

in an interaction or to screen interactions for inappropriate language.

Creating Routing Applications

Composer Help 575

Pre-Send Stage The cycle of going from queue to routing workflow to queue can continue until the
interaction reaches some final outbound queue. The pre-send stage performs last-minute quality
checking and allows for attaching additional information to interactions when needed.

IPD Preparation

This section summarizes the preparatory steps for creating an IPD prior to actually creating,
configuring, and placing blocks in Composer. It also describes the Configuration Database and
Universal Contact Server Database objects that must exist first so they can be selected from
Composer blocks.

1. Determine the interaction life cycle at your contact center.
2. Determine the media server, which will be referenced by the Media Server block. Check that the

required Endpoints have been defined.
3. Determine which Composer blocks will be used in routing workflows reference by the Workflow block to

perform the various processing required at each stage of interaction processing as described in the IPD
Planning topic.

4. For each interaction processing stage, assign a name to the required IPD.
5. If you plan on having multiple IPDs linked via workflows, name the queues that will connect the

workflows contained within each IPD.
6. Determine the selection criteria for extracting interactions from queues (Views property in the

Interaction Queue block). For example, you may wish to extract certain interaction types earlier than
other interaction types.

7. Create the required Knowledge Manager objects, such as categories and standard responses. For more
information, see the eService/Multimedia 8.0 Knowledge Manager Help.

8. Create the required Configuration Manager/Genesys Administrator objects, such as media server
Applications, Skills, Persons, Agent Groups, Places, Place Groups, and Business Attributes, just to
mention a few. For more information, see the Framework 8.1 Configuration Manager Help.

9. Optionally, map Context Services attributes to Configuration Server Business Attributes. Once this is
done, you can select a Business Attribute DB ID for a value in many Context Services block fields.

10. Create the routing workflow(s) that will perform the specialized processing tasks, which will be
referenced by Workflow block(s).

Creating Routing Applications

Composer Help 576

Starting SCXML Page
The starting SCXML page for any Composer routing project is the SCXML page generated from an
interaction process diagram (IPD) and not the SCXML page generated from a workflow. IPD SCXML
pages internally include workflow SCXML pages. An IPD is therefore required for both voice and
multimedia workflows. When an IPD diagram is Published, Composer sets the URL of the starting
SCXML page in the resultant Script object of type Enhanced Routing.

When executing an IPD, the Orchestration Platform "merges" the IPD SCXML page and any included
workflow SCXML pages to create a single page and then executes that page.

Note: One Composer Project may contain multiple IPDs. Both Java Composer Projects and .NET
Composer Projects support IPDs.

Creating Routing Applications

Composer Help 577

Creating a New Project
When building any application in Composer, you first need to create a Project. A Project contains all
the workflows and other files for your application. It also automatically creates the required
interaction process diagram. By associating a callflow or workflow or other routing application with a
Project, you enable Composer to manage all the associated files and resources in the Project
Explorer.

The information below describes creating a new Java Composer Project. For information on creating a
new .NET Composer Project, see Composer Project Types and Directories.

Creating a Project

Before creating a new Project, you may wish to review Your First Application DNIS Routing for the
sample GVP voice application, Hello World Sample.

To create a new Composer Project:

1. In the menu bar, click the Create a Java Composer Project button. Or click the button for a .NET
Composer Project. Or click the New button above the Project Explorer and select Composer >
Composer > Projects.

2. In the Project dialog box, type a name for your Project.
3. If you want to save the Composer Project in your default workspace, select the Use default location

check box. If not, clear the check box, click Browse, and navigate to the location where you wish to
store the Composer Project.

4. Select the Project type:

• Integrated Voice and Route. Select to create a Project that contains both callflows and
workflows that interact with each other; for example a routing strategy that invokes a GVP
voice application.
For a video tutorial on an Intergrated Voice and Route Project, see Integrated Voice and
Route Application.
For more information on both voice and routing applications, see What is GVP and How Do
Voice Apps Work and What Is a Routing Strategy, respectively.
Note: This selection grayed out if you have not enabled Composer's routing functionality as
described in the Hiding File Types topic.

• Voice. Select to create a Project associated with the GVP 8.x. This type of Project may
include callflows, and related server-side files. For more information on this type of Project,
see topic What is GVP and How Do Voice Apps Work.

• Route. Select to create a Project associated with the URS 8.x SCXML Engine/Interpreter. For
more information on this type of Project, see topic, What Is a Routing Workflow. This
selection grayed out if you have not enabled Composer's routing functionality as described
in the Hiding File Types topic.

5. Click Next.

Creating Routing Applications

Composer Help 578

6. If you want to use templates, expand the appropriate Project type category and select a template for
your application. Templates are sample applications for different purposes. If you want to start from
scratch, choose the Blank Project template and click Next.

7. Select the default locale and click Next.
8. Optional. If using the GVP ICM Adapter in a VoiceXML application, select the Enable ICM checkbox to

enable integration. When checked, ICM variables will be visible in the Entry block. See the ICM
Interaction Data block for more information.

9. Click Finish.

Composer now creates your new Project. Your new Project folder and its subfolders appear in the
Project Explorer. The canvas area shows default.ixprocess tab for the interaction process diagram.

Creating Routing Applications

Composer Help 579

Creating the IPD
Note: Composer automatically creates a default IPD as part of new Project creation. You can also
create an IPD on demand using the main toolbar button. This topic presents typical high-level steps
for creating:

• IPDs for Voice Workflows
• IPDs for Multimedia Workflows

Notes:

• IPDs are not stored in Configuration Server. Your Workspace (Interaction Processes folder in Project
Explorer) is the only location where these diagrams exist (and, of course, in source control if enabled).

• If a Composer Project contains a folder at include/user, then any files with extension .js will be
included in the generated SCXML. This allows you to write custom ECMAScript and include it in the
application.

Creating IPDs for Voice Workflows

An IPD for a voice workflow contains a single Workflow block. After creating a new Project (which
automatically creates an IPD with a Workflow block), the typical high level steps are as follows:

1. Click the default.ixprocess tab on the canvas that will contain the IPD.

Note: You can change the name of an interaction process diagram file by right-
clicking the file name in the Project Explorer and selecting Rename. This brings
up a preview dialog. After accepting the change, the default.ixprocess tab
reflects the name change.

Creating Routing Applications

Composer Help 580

2. Double-click the Workflow block to display its properties in the Properties tab below.

3. Opposite Resource, click under Value to display the button.

4. Click the button to open the Select Resource dialog box and select the empty workflow diagram. If
you have not changed the name, this will be default.workflow.

Note: There is no need for a Media Server block or an Interaction Queue block when creating an IPD
for a voice workflow.

5. Click the default.workflow tab on the canvas as shown above and use the designer to develop your
workflow diagram. This includes saving and validating. For more information on developing a workflow,
see the Example Diagram section in the Creating a New Workflow topic.

6. Validate the code and Publish your IPD diagram.
7. Generate the code by selectingDiagram > Generate Code, or by clicking the Generate Code icon on

the upper-right of the Composer main window when the canvas is selected. Check the Problems tab
for errors and fix any problems. If code generation succeeds, click OK at the confirmation dialog box.
The SCXML code is generated in the src-gen folder. The generated file name in the src-gen folder will
follow the format:

<ipd_diagram_name>_<workflow_block_name>.scxml Note: One file per voice/interaction-less (see
Interaction ID) workflow block will be generated.

Creating Routing Applications

Composer Help 581

8. Debug the workflows.
9. Deploy the Project.

Note: Composer Diagram Preferences includes the following:

• Prompt to Save before Publishing Interaction Process Diagram.
• Prompt to delete Published objects when Interaction Process Diagram is deleted.

Creating IPDs for Multimedia Workflows

After creating a new Project (which automatically creates an IPD with a Workflow block), the typical
high level steps for creating an IPD for multimedia interactions are as follows:

1. Click the default.ixprocess tab on the canvas that will contain the IPD.
2. Add a Media Server block that has at least one Endpoint defined to the canvas by double-clicking or

dragging and dropping. Configure the Media Server block properties in the Properties view.
3. Add an Interaction Queue block to the canvas by double-clicking or dragging and dropping. Configure

the Interaction Queue block properties in the Properties view. This includes defining at least one
interaction queue view.

4. Connect the Media Server Endpoint to the Interaction Queue block.
5. Click the default.workflow tab and use the designer to develop your workflow diagram.
6. Click the default.ixprocess tab and open the Workflow block. Use the Resource property to point the

workflow diagram you just developed.
7. Connect the view from the Interaction Queue block to the Workflow block.

The subsequent steps of adding additional blocks to complete the IPD or linking IPDs with workflows
are user-defined and reflect your company's business logic. This includes saving and validating. For
example, you may choose to continue processing interactions in this IPD by repeating the process of
sending interactions from workflows back to queues, using views to extract the interactions, and then
sending the interactions for further specialized processing by other workflows.

8. Validate the code and Publish your IPD diagram.
9. Generate the code for the IPD and workflow diagram All generated files go into the src-gen folder of the

Project.
10. Click the tab on the canvas that contains the IPD and generate the code. The generated file name in the

src-gen folder will follow the format: <ipd_diagram_name>_<interactionqueue_block_name>.scxml

Note: One file will be generated for each interaction queue. Functionally these files will be equivalent.
Generating one file per queue makes it easier to configure the application URL manually. As the
developer, you will know the interaction queue you have submitted the interaction to and therefore
can easily identify the correct SCXML page.

11. Debug the workflows.
12. Deploy the Project.

Creating Routing Applications

Composer Help 582

Manually execute any other configuration steps in Configuration Server using Genesys Administrator
or Configuration Manager. For example, you must hook up your mailbox to send e-mails to the new
end point defined in your e-mail server.

Generated Files

Multiple top level SCXML files are generated, one for each Interaction Queue connected to the Media
Server block Endpoints. This allows different start states and different sessions for different
interactions pulled from different Interaction Queues connected to the media servers. File names for
the generated files use the following format:

• For IPDs that do not contain Interaction Queue blocks: IPD_<ipdname>_<Workflow block name>.scxml
• For IPDs that use interaction queues: IPD_<ipdname>_<InteractionQueue block name>.scxml

Each top level SCXML file for an IPD includes:

• All workflows (generated SCXML files) referred to by the Workflow blocks in the IPD.
• All workflows (generated SCXML files) referred to indirectly via Interaction Queues in other IPD’s.

The SCXML file inclusion in the top-level document is done using <xi:include>. The workflow file
name without the .scxml extension is used for the _prefix attribute.

Creating Routing Applications

Composer Help 583

Creating a New Workflow Diagram

Cheat Sheets

Composer provides a cheat sheet to walk you through the steps for building a routing strategy.

• In the Welcome Screen (Help > Welcome), click the Composer link and select the Create a Routing
Strategy tutorial. It will also describe the steps for how to simulate calls.

• If you are already inside the workbench, access the same cheat sheet from the Menu bar at the top by
selecting Help > Cheat Sheets > Composer > Routing Strategy.

Adding a Workflow Diagram to a Project

To add a new workflow diagram to an existing Composer Project:

1. Click the button on the main toolbar to create a new workflow .

• Or use the keyboard shortcut: Ctrl+Alt+R.
• Or select File > New > Workflow Diagram.
• Or right-click the Workflows folder in a Project and select New > Other > Workflow

Diagram.

2. In the wizard, select the tab for the type of the workflow. There are two main types of workflows in
Composer represented by wizard tabs:

• Main Workflow: Used for the main application where the call will land or be transferred to
from another application.

• Subworkflow: Used for modularizing your applications. It is useful for structuring large
applications into manageable components.

3. Select either Main Workflow or Subworkflow.
4. Select the type of diagram.
5. Click Next.
6. Select the Project.
7. Click Finish.
8. Create the workflow. See Your First Application "DNIS Routing" on how to get started.

Note: The condition expression for event-related properties in interaction process (IPD) and workflow
diagrams are not XML-escaped when generating the SCXML code. For more information, see
Troubleshooting ORS Compile Errors and Non Escaped Special Charcters.

Creating Routing Applications

Composer Help 584

Using the SCXML Editor
The Composer SCXML editor is embedded/integrated within the user interface and are made
available to you whenever an .scxml file is created or accessed within Composer.

Creating a New Project

Follow the steps below after you have created a Project.

1. Switch to Composer perspective.
2. Click the File menu and select New > SCXML File. The Create New SCXML File dialog box opens.
3. Select the Project.
4. Name the file. You now have two choices:

• If you do not wish to use a template, click Finish.
• To use a template, click Next, Use SCXML Template, select the template, and click Finish.

The Workflows folder in the Project Explorer shows the name of the file under your Project. Composer
displays the SCXML Editor.

5. Create the code.

Open an Existing or Imported File

The SCXML editor also opens whenever you open an existing .scxml ile, whether previously created
as described above, or previously imported into Composer. Open an existing file as follows:

• Select File > Open File and navigate to the file to open, OR

Open a Project's src or src-gen folder in the Project Explorer, then double-click the file to open it in
the editor.

Creating Routing Applications

Composer Help 585

Using SCXML Templates
To create a new SCXML file for an existing Project:

1. Select from the menu: File > New > Other
2. Select from Wizard: Composer > Other > SCXML file.
3. Select the Project name for the new file.
4. Type a file name for your new file and click Next. The Select SCXML Template dialog box opens. The

Use SCXML Template check box is selected.
5. Select a template to preview.
6. Click Finish. The SCXML editor opens with your new file.

Also see ProjectTemplates.

Creating Routing Applications

Composer Help 586

Your First Application: Routing Based on
DNIS or ANI
The steps below lead you through creating a simple routing strategy workflow for voice interactions.
This workflow routes incoming calls based on the number dialed by the customer (DNIS) English-
speakers dial one number; Spanish-speakers dial another number. Assume this number is attached to
the interaction when it arrives at the contact center.

Note: The same type of Composer configuration could also be used to route incoming calls based on
the originating phone number (ANI).

Starting the Workflow

After creating a new Project in Composer Design or Composer perspective:

1. Click the button on the main toolbar to create a new workflow and continue with step 2.
Alternatives:

• Select File > New > Workflow Diagram or select File > New > Other. In the New dialog
box, expand Composer > Diagrams. Select Workflow Diagram and click Next. Continue
with step 2.

• Or use the keyboard shortcut: Ctrl+Alt+R and continue with step 2.

2. In the Main workflow tab, select Empty Diagram and click Next.
3. Select the parent Project.
4. Name the diagram (must have an extension of .workflow) and click Finish. The Workflows folder in

the Project Explorer shows the name of your diagram under your Project.
5. Select the Workflows folder in the Project you just created.
6. Build the diagram as described below.

Creating the Workflow Diagram

For general guidelines on placing, configuring, and connecting blocks, see the Using the Designer
topic.

1. Connect to Configuration Server. You can also use the keyboard shortcut: Alt+I+C.
2. Create a new project called "DNIS_Routing."
3. Add the following blocks from the Palette to the canvas area: Entry, Branching, Target (add two), and

Creating Routing Applications

Composer Help 587

Exit.
4. Use the ConnectionLinks to connect the Entry block to the Branching block.

Typically, you start by segmenting incoming interactions to take different paths in the workflow. For
example, you could segment by date, time of day, day of week, number dialed (DNIS), or originating
number (ANI), just to mention a few examples. You could also segment based on a logical expression
that you create in Expression Builder. You can use the Branching block for this purpose as described
below.

1. Select the Branching block to cause the lower Properties tab to show the fields associated with the
block. An alternative method is to right-click the Branching block and select Show Properties View
from the shortcut menu.

2. In the Properties tab, opposite theConditions field, click under the Value column. This brings up the
button.

3. Click the button. This brings up the Branching Conditions dialog box.
4. In the Branching Conditions dialog box, select Add. Condition0 appears under Node Name.
5. Change Condition0 to 8004662809.

6. Click opposite 8004662809 under Expression. This brings up the button.

7. Click the button to bring up Expression Builder.

Using Expression Builder

We will now define two sample expressions in Expression Builder. In the case of the Branching block,
the expressions will define the branching conditions that will cause interactions to take different
paths in the strategy.

1. Click the button on the right to expand Expression Builder.
2. Expand Workflow variables followed by System.
3. Double-click DNIS. Expression Builder appears as shown below.

Creating Routing Applications

Composer Help 588

4. Continuing with this example, note that "DNIS" appears to appear under Expression field opposite 1. ANI
and DNIS correspond to URS functions getDNIS() and getANI(). These functions can be used in a call or
workflow to read the DNIS and ANI of the call. ANI is the originating phone number (user name of the
calling SIP phone). DNIS is the number that the user dialed (provisioned number for the application, or
"dialog" if you're making the call through the debugger).

5. Opposite Operators, click the button for the equal sign (=). data.DNIS= now appears under Expression
field.

6. Type a single quote after the equal sign.
7. Type the 800 number. For this example, use 8004662809.
8. Type a single quote after the number. Expression field now shows data.DNIS='8004662809'.

9. Click the button to validate the expression. No syntax error found appears above.
10. Click OK to close the Expression Builder dialog box and return to the Branching Conditions dialog box.
11. In the Branching Conditions dialog box, select Add. This time Condition1 appears under Node Name.
12. Change Condition1 to 8008361447.

Creating Routing Applications

Composer Help 589

13. Click opposite 8008361447 under Expression. This brings up the button.

14. Click the button to bring up Expression Builder.
15. Repeat the Expression Builder steps to add the second expression: DNIS='8008361447' and click OK.

The Branching Conditions dialog box now appears as shown below.

16. Click OK in the Branching Conditions dialog box. The Branching block now shows three ports.

• The second and third ports correspond to the conditions defined in the Expression Builder.
• As described ahead, the first port could be used for default routing or another purpose.

17. Connect the second port to the Target block below it.
18. Connect the third port to the Target block below it. The routing strategy diagram (8.0.3) now appears

as shown below.

Creating Routing Applications

Composer Help 590

19. Save the diagram as it exists so far by selecting File > Save.

Target Selection

This section describes how to configure the Target blocks in our example strategy diagram. Targets
refers to routing target objects that exist in your Configuration Database. For example: Agent, Agent
Group, ACD Queue, Place, Place Group, Route Point, Skill, or Variable.

1. Click a Target block to cause the lower Properties tab to show fields. An alternative method is to right-
click the block and select Show Properties View from the shortcut menu.

2. In the Properties tab, opposite the Name property, type EnglishAgents. The name must start with an
underscore or a letter.

3. Click under Value opposite the Targets property to display the button.

4. Click the button. The Targets dialog box opens.
5. Click Add in the Targets dialog box.
6. Click under Type to display a down arrow.
7. Click the down arrow and select the target type. Available selections are: Agent, AgentGroup,

ACDQueue, Place, PlaceGroup, RoutePoint, Skill, or Variable.
8. Select AgentGroup. AgentGroup appears under Type.

9. Click under the Name field to display the button.

Creating Routing Applications

Composer Help 591

10. Click the button. Targets of type AgentGroup appear for selection. An example is shown below.

Creating Routing Applications

Composer Help 592

11. Select a routing target. In this case, select EnglishAgents and click OK.
12. Click OK in the Targets dialog box.

Routing Based on the Value of a Statistic

You have the option of instructing Universal Routing Server to use the value of a statistic during
target selection. For example, you may wish to route to an agent who has been in a "Ready" state for
the longest period of time.

1. If you have not already done so, make sure the Configuration Server preference is set to control
whether or not to create Router predefined statistics when connecting to the Configuration Server.

2. In the Properties tab, opposite the Statistic property, click under the Value column to display the
button.

3. Click the button to open the Statistics dialog box.

You can select from the following statistics:

CallsWaiting RStatLoadBalance StatTimeInReadyState
InVQWaitTime StatAgentsTotal StatAgentsAvailable
PositionInQueue StatCallsAnswered StatAgentsBusy
RStatLBEWTLAA StatCallsCompleted StatAgentsInQueueLogin
RStatCallsInQueue StatCallsInQueue StatAgentsInQueueReady

Creating Routing Applications

Composer Help 593

RStatCallsInTransition StatEstimatedWaitingTime StatAgentLoading
RStatCost StatExpectedWaitingTime StatAgentLoadingMedia
RStatExpectedLBEWTLAA StatLoadBalance StatAgentOccupancy
RStatExpectedLoadBalance StatServiceFactor

For a definition of each statistic, refer to the chapter on routing statistics in the Universal Routing 8.1
Reference Manual.

4. For the sample strategy, select StatTimeInReadyState.
5. In the Properties tab, opposite the Statistics Order property, click under the Value column to display a

drop-down menu.
6. Select Max from the drop-down menu since we want the agent who has spent the maximum amount of

time in a Ready state. You have no finished configuring the first Target block.

Adding Additional Blocks and Connecting

1. Repeat the steps in the Target Selection section to define properties for the second Target block for
Spanish-speaking Agents.

2. Repeat the steps in the Target Selection section to add a third Target block named DefaultRouting for
default routing where you route to an Agent target type.

3. Connect the three Target blocks to the Exit object. The routing strategy diagram now appears as shown
below.

Creating Routing Applications

Composer Help 594

YourFirstApp8.gif

Saving

1. Save the diagram as it exists so far by selecting File > Save. You will not be able to generate code if
you do not save the file.

2. If you have set your Configuration Server preferences to do so, validate the code by selecting Diagram
> Validate.

You can also click the Validate icon on the upper-right of the Composer main window when the
workflow canvas is selected. The Problems tab shows the results of validation for this particular
Resource. Fix any problems before continuing.

Generating Code

1. Generate the code by selecting Diagram > Generate Code, or by clicking the Generate Code icon
on the upper-right of the Composer main window when the canvas is selected. Check the Problems tab
for errors and fix any problems. If code generation succeeds, click OK at the confirmation dialog box.
The SCXML code is generated in the src-gen folder.

2. Test the workflow.

Creating Routing Applications

Composer Help 595

3. Deploy the workflow.

Creating Routing Applications

Composer Help 596

Using URS and ORS Functions
Composer's Expression Builder allows you to use SCXML elements and extensions as described the
Orchestration Server Developer's Guide as well as Universal Routing Server (Workflow) functions.

Expression Builder opens from many blocks; to name a few:

• Assign--Assign Data Property
• Branching--Conditions Property
• ECMAScript (for workflows)--Script Property
• Entry--Variables Property
• Log--Logging Details Property
• Looping--Exit Expression Property

Using one or more of the above blocks in a workflow gives access to functions for SCXML-based
strategies. The_genesys subcategory is where you will find modules that access Genesys-platform
related objects, properties, and functions. Starting with Release 8.1.410.14, Composer exposes
SetIdealAgent and GetIntegerKey() URS equivalent functions in Expression Builder.

Creating Routing Applications

Composer Help 597

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/Welcome
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/OrchExt

Below is summary information on certain functions accessible via Expression Builder.

Interaction Priority

URS always puts interactions into waiting queues according to their priorities. The priorityTuning
function defines how URS handles interactions with the same priorities. By default, interactions with
the same priority are ordered according to the time the interaction began to wait for some target.

• useAge parameter(true or false). If true, URS uses the time the interaction was created instead of the
time interaction is placed into the waiting queue. Age of interaction is usually the time that URS starts
the strategy for the interaction.

• usePredict parameter (true or false). If true, then URS calculates the estimated time for the
interaction to be answered and will use this time instead of the time that the interaction has already

Creating Routing Applications

Composer Help 598

waited.
• useObjective parameter (true or false). This parameter works with the URS use_service_objective

option (Universal Routing 8.1 Reference Manual), which allows you to scale the time interval for
processing different interactions. If this option set to true, URS scales the time interval that the
interaction waits (or is going to wait) according to the Service Objective of the interaction

If two interactions wait the same time, such as 60 seconds, but interaction #1 has a Service
Objective of 30 seconds and interaction #2 has a Service Objective of 120 seconds, then URS puts
interaction #1 ahead of interaction #2 in the queue (60/30 > 60/120). The figure below shows how to
access the priorityTuning function in Expression Builder.

• For more detailed information on using this function, see the Universal Routing 8.1 Reference Manual
and the Universal Routing 8.1.Routing Application Configuration Guide located on the Universal Routing
Wiki.

• For information on Orchestration Server functions, see Orchestration Extensions and Core Extensions
topics in the Orchestration Developers Guide.

Creating Routing Applications

Composer Help 599

Routing Block Palette Reference
When you create an application, Composer's palette contains the diagram building blocks. The block
categories that appear depend on what tab is selected above the design area or what workflow or
callflow is selected in the Project Explorer. For example, to see blocks for creating GVP voice
applications, click a *.callflow tab. To see blocks for creating routing applications, click a *.workflow
tab, such as default.workflow.

The palette contains the link tools, and various categories of blocks used to build routing workflow
diagrams:

• Output Links are used to connect blocks in the order that the application should follow. Exception
links indicate error conditions.

• Flow Control Blocks. Use to control interaction flow control within a workflow diagram.

• Routing Blocks. Routing blocks specify a routing action to be performed with the current interaction,
such as sending an interaction to a specific agent group.

• Voice Treatment Blocks. Voice Treatment blocks specify an action to be performed with the current
interaction, such as playing music for the caller.

• Server Side Blocks. Server-Side blocks provide the ability to interact with internal and external
custom server-side pages, Web Services, and URLs. These blocks can be used to exchange data like
VoiceXML and SCXML variables, JSON strings between GVP interpreter, and custom server-side pages.

• Context Services Blocks. Context Services refers to an optional capability of Universal Contact Server
and its Universal Contact Server (UCS) Database, a repository of customer-related service, and
interaction-centric data (current and historical) from Genesys and third party sources.

Routing Block Palette Reference

Composer Help 600

• eServices Blocks. Use to create a routing workflow that performs specialized processing of multimedia
(non-voice) interactions.

• Outbound Blocks. Use to support Genesys Outbound Contact, a product for creating, modifying,
running, and reporting on outbound campaigns for proactive customer contact.

• Interaction Process Diagram Blocks appear when such a diagram is selected. Use to provide a high
level view of how multimedia routing interactions flow through various components like media servers,
interaction queues, workbins, and workflows. In addition, an IPD functions as the starting SCXML page
for both voice and multimedia interactions.

Tip
Should you accidentally cause the palette to disappear, click the Hide/Show Palette
button.

Routing Block Palette Reference

Composer Help 601

Interaction Process Diagram Blocks
The following blocks can comprise an interaction process diagram (IPD):

• Interaction Queue block to define or select a multimedia (non-voice) interaction queue in an interaction
process diagram and to create Views, which defines conditions for pulling interactions out of the queue
for submittal to workflows.

• Media Server block to get interactions of a particular media type (other than voice) into an interaction
process diagram.

• Workflow block to point to a workflow resource (workflow diagram or SCXML file) to which interactions
should be sent for processing.

• Workbin block to define a temporary storage area called a workbin, which is accessible from the agent
desktop.

• Flow Control blocks to support multiple views per interaction queue, the following Flow Control blocks
are available when creating an IPD: Branching, ECMAScript, Log.

• Workflow-Generated Blocks

Working with IPDs

Information on working with IPDs is presented below.

• IPD Overview
• Starting a New IPD
• Interaction Queue Views
• Linking IPDs with Workflows
• Publishing Updates

Interaction Process Diagram Blocks

Composer Help 602

IPD Differences Voice and Multimedia
There is a difference between interaction process diagrams (IPDs) used for voice-only interactions
and IPDs used for multimedia interactions.

• An IPD for multimedia interactions will contain Interaction Queue, Media Server, and Workflow blocks
and possibly multiple instances of each block depending on the design.

• An IPD for voice interactions will only contain a Workflow block that points to a single workflow resource.

• An IPD for multimedia interactions may contain workflow-generated blocks whereas an IPD for voice
interactions will not show these nodes.

For more information, see:

• Example Multimedia Workflow
• Starting SCXML

Interaction Process Diagram Blocks

Composer Help 603

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UsingeServicesBlocks#Example_Multimedia_Workflow
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/StartingSCXML

Starting a New IPD
Use these instructions after reviewing the IPD Planning and Preparation topic. Before starting a new
IPD, you may wish to Connect to Configuration Server (optional). You can do this now or during the
validation phase. When not connected, Configuration Database objects do not appear for selection in
Composer dialog boxes; you must know the names in advance.

Method #1: Create a New Java Composer Project

1. Create a new Java Composer Project. In Composer Design perspective, this automatically creates an
Interaction Processes folder and default.ixprocess file in the Project Explorer. It also automatically
creates the following tabs on the canvas:

• default.ixprocess

• default.workflow

The default.ixprocess tab contains a starting Workflow block. The Palette tab shows the Media
Server, Interaction Queue, and Workflow blocks. It also access certain Flow Control blocks.

Interaction Process Diagram Blocks

Composer Help 604

You can rename the IPD at any time by right-clicking the default.ixnprocess file in the
Interaction Processes folder in the Project Explorer and selecting Rename. The renaming
operation does not result in any changes being written to Configuration Server.

Method #2: New IPD Diagram Wizard

1. Bring up the wizard. There are various ways:
• Click the Create New Interaction Process button on the toolbar.
• Or select File > New > Other > Composer > Diagrams > Interaction Process Diagram.
• Or in the Project Explorer > Right-click > New > Other > Composer > Diagrams > Interaction

Process Diagram.

2. Name the IPD
3. Select or create the associated Project.
4. Click Finish.

Interaction Process Diagram Blocks

Composer Help 605

Composer creates an Interaction Processes folder and default.ixprocess file in the Project Explorer. It
also automatically creates default.ixprocess and default.workflow tabs on the canvas. The
default.ixprocess tab contains a starting Workflow block. The palette shows the Media Server,
Interaction Queue, and Workflow blocks. Note: An IPD does not use Entry or Exit blocks.

Tip
To display the IPD properties below, select an *.ixn.process tab above the design
area, then click inside the design area,

An IPD contains the following properties:

Name Property

This property shows the name of the diagram. An IPD diagram can be renamed at any time. The
renaming operation will not result in any changes being written to Configuration Server.

Events Property

With the .ixnprocess tab selected, click the empty space in the IPD to see Events in the Properties
view.

The Events property (which replaces the 8.1.2 Wait for Event property) works with the Interaction ID
property in Routing and certain eServices blocks. You select/enter the event(s) that the generated
code will wait for before the workflow code is invoked. If unset, the IPD code will not wait for any
event before invoking the workflow code. ORS will transition on the first event received. The
Application does not need to receive all declared events to transition to the next block.

Starting with Release 8.1.400.33, Composer supplies default handler sets (voice, multimedia,
interaction-less processing) and a Custom option for customizing handlers. You can change the set
at any point of time and generate code. Pre-defined sets are non-editable and should be used for
specific media processing. The Custom type can be used to customize the handlers. The Configure
Events dialog box, which opens from the Events property, is shown below when interaction.added
is selected.

Interaction Process Diagram Blocks

Composer Help 606

Refer to Intra Version Upgrades for event upgrade logic.

Event Handlers
All system handlers run into the system thread of the application while the workflow generated code
runs into the user thread of the application.

Event handlers can control the lifecycle of the user thread by raising the application.start event
(to start the application, see the interaction added event handler) or the application.exit event (to

Interaction Process Diagram Blocks

Composer Help 607

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UpgradingProjectsandDiagrams#Intra_Version_Upgrades

terminate the application, see the interaction deleted event handler).

To define this property in case of "interaction-less" processing (defined below), you may:

• Wait for a user-defined event:
• Add a new Event item in the Events property list.
• Specify the appropriate Event name.
• In the body of that event, add the code: <raise event="application.start"> to start the user

thread (to run the workflow SCXML).

• Start the application without waiting for any event:
• Remove all Events items
• Or disable all Events items
• Or in the Events dialog box, add the predefined "interaction-less processing" event (or any similar

event having no Event AND no Condition defined).

In addition to catch all errors, Composer defines the following events:

• interaction.present or interaction.added. This property will be used by default as a value of the
IPD/Events property.

• interaction.onmerge. This event will be caught by the generated IPD SCXML. The value of the variable
system.InteractionID will be updated when the transfer is completed. The parent or primary interaction
ID will be referred to instead of the consult interaction ID.

• interaction.deleted (active interaction id). This event will be caught by the generated IPD SCXML.
Default behavior will be to exit the session. Default behavior can be overrriden if interaction.deleted is
handled in the workflow diagram.

• interaction.deleted (consult interaction id). This event will be caught by the generated IPD SCXML.
Default behavior will be to exit the session if the parent interaction is gone or to do nothing otherwise.
Default behavior can be overridden if interaction.deleted is handled in the workflow diagram.

Note: The condition expression for event-related properties in interaction process (IPD) and workflow
diagrams are not XML-escaped when generating the SCXML code. For more information, see
Troubleshooting ORS Compile Errors and Non Escaped Special Charcters.

Interaction-less Processing
In the case of "interaction-less" processing (for example, see the Force Route Block Interaction ID
Property), you can start an ORS session using the ORS REST API and then decide either not to wait
(no Wait For Event defined) or to wait for a user-defined event. The ORS REST API allows you to send
an event to a particular ORS session. To define this property:

1. Click under Value to display the button.

2. Click the button to open the Wait For Event dialog box.
3. Do one of the following:

• Leave interaction.present to keep the default value, the system variable InteractionId, which
will be initialized automatically in this case.

Interaction Process Diagram Blocks

Composer Help 608

• Click Add and select from the list of SCXML events or enter the event name. After selecting
an event, the dialog box displays a description of the event.

A system variable, AppStartEvent, will be generated in the IPD <datamodel>, which will be
initialized to the contents of the specified start event. If unset, the variable will be set to undefined
(not the string undefined).

• If necessary, click Remove to clear a selected event.

4. Click OK.

Created By Property

To be filled in by the user/author of the document.

Created On Property

Auto-populated by Composer to indicate the timestamp when the diagram was created.

Designed Using Property

Auto-populated by Composer to indicate version of Composer used to create this diagram.

Last Modified By Property

Provided by the user to indicate who updated the diagram last.

Last Modified On Property

Filled in by Composer when the diagram is modified.

Version Property

Provided by the user for versioning purposes during development.

Interaction Process Diagram Blocks

Composer Help 609

Namespaces Property

Use to refer to custom namespaces in the generated code. To define this property:

1. Click under Value to display the button.

2. Click the button to open the Namespaces dialog box.
3. Click Add.
4. Enter the namespace prefix (see example below)
5. Enter the namespace URL (see example below)
6. Click OK.

When an event is sent to an ORS session via http, a response can be sent back from the session via
http by using the ws:response tag as shown below. <ws:response
requestid="_data.reserveSendId" resultcode="JSON.stringify(resultReserve)" />
Namespace: xmlns:ws=[http://www.genesyslab.com/modules/ws http://www.genesyslab.com/
modules/ws]

Extensions Property

This attribute allows arbitrary attributes to be added to the root <scxml> element and is used by
Orchestration Server to control persistence, session recovery, and other functionality.

Note: Composer-generated SCXML applications do not support the w3c value for the
_transitionStyle extension attribute.

Refer to <scxml> element, _transitionStyle extension attribute in the SCXML Language Reference
section of the Orchestration Server Developer's Guide for details.

Read Context Property

This is the counterpart of the Pass Context property in the Routing Blocks. The value of this property
is true or false. When true, the application will try to read the URL of the originating session from the
interaction's User Data. If that URL is defined, it will then attempt to fetch the context from the
originating Orchestration Session.

Session Persistence Property

With the .ixnprocess tab selected, click the empty space in the IPD to see Session Persistence in the
Properties view.

Select true or false. Use this property to set the _persist attribute of the <scxml> tag when

Interaction Process Diagram Blocks

Composer Help 610

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/Welcome

generating the SCXML code. For more information, see the <scxml> element Attribute Details,
SCXML Language Reference section, in the Orchestration Server Developer's Guide.

Deleting Blocks

IPD diagram non-linked blocks can only be deleted directly from the IPD Diagram canvas. To delete
the linked blocks, go to the corresponding workflow diagram and delete or modify the routing blocks.

Interaction Process Diagram Blocks

Composer Help 611

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/Welcome

Interaction Queue Block
Note:

• Starting with 8.1.4, Composer-created SCXML-based routing applications are assigned to Views instead
of being assigned to interaction queues (as in previous releases) and use a Submitter object for this
purpose. This change enables enhanced pulling of multimedia interactions from interaction queues.

The Interaction Queue block is used only for multimedia workflows.Use it to define or select a
multimedia (non-voice) interaction queue in an interaction process diagram and to create Views,
which defines conditions for pulling interactions out of the queue for submittal to workflows. You can
create multiple Views per queue.

In contrast, you use the Queue Interaction block to place interactions in queues, not to define
queues.

• The Publishing operation pushes the interaction queue into the Configuration Database. Its definition is
stored as a CfgScript object of type Interaction Queue. After defining or selecting an interaction
queue, you can direct incoming (outside) interactions into the queue using the Media Server block and
end points.

• Queues that you defined with the Interaction Queue block appear for selection in the Queue Interaction
block.

• Composer shows one output port per defined View (Views property below). This allows the user to route
interactions coming through this View to a specific workflow.

• For all properties below, no updates to Configuration Server are created until you invoke the Publish
operation.

• You cannot reuse an existing interaction queue in the same IPD, but you can use the same interaction
queue in different IPDs. For more information, see Linking IPDs with Workflows.

• Composer points Interaction Queue objects directly to EnhancedRoutingScript (ERS) objects. It does
not point Interaction QueueView objects to EnhancedRoutingScript objects.

Interaction Process Diagram Blocks

Composer Help 612

https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/eServices

• If routing blocks refer to previously unpublished queues, these references may become incorrect when
the queue is published. These errors are caught by workflow validations and should be fixed by
selecting the published queue in any block properties that show this validation error.

The Interaction Queue block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Click under Value to display the button. Enter text to describe the block.

Object Name

A unique Configuration Server Object Name will be created once a Publish operation is executed. No
updates to the database are created until you invoke the Publish operation. If no name is specified for
the interaction queue, it will default to the currently implemented naming convention of <project
name>.<diagram name>.<block name>. Note: If you rename the block after its corresponding
CfgScript object is created in Configuration Server, the original published object name in
Configuration Server remains unchanged. For more information, see Publishing Updates.

Enabled Property

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later.

Existing Queue Property

Use this property to select an existing interaction queue. Any changes made to the queue in the IPD
are updated in Configuration Server during the Publish operation.

Interaction Process Diagram Blocks

Composer Help 613

Queue Description Property

Enter a description of the interaction queue. This property will map to the Description key in the
annex section Queue of the CfgScript object for the interaction queue.

Views Property

Use the Views property to open a dialog box where you can define parameters for Interaction Server
to use when processing multimedia interactions waiting in queues. The Composer GUI creates one
outport per View. It is mandatory to define at least one View for an interaction queue in an IPD. These
parameters work with the Workflow block Maximum Interactions property and Interaction Server's
own option settings as described in the eServices 8.1 Reference Manual. See the Interaction Server
options section in Interacting with eServices in the Orchestration Server 8.1.4 Deployment Guide.

In Configuration Server, each View will be created as a separate CfgScript object of type
InteractionQueueView.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Submitter Objects

In the Composer GUI, the connection between interaction queue View and a workflow (strategy) is
represented by interaction Submitter Script object. When you add an interaction queue to a IPD,
define a View, point the Workflow block to a .workflow file, and publish, this creates a Submitter
Script object in the Configuration Database. This is applicable when using the eServices/
Orchestration Server feature enhanced pulling of interactions from queues and Use Interaction
Submitters is set to true within Composer.

Use Interaction Submitters
Selecting Properties from the Project menu opens a dialog box showing the properties of the
selected Project or of the Project that contains the selected resource. Select Orchestration Server
Options to set Use Interaction Submitters. For older Projects upgraded to 8.1.4, Use Interaction
Submitters is off by default. This option is enabled by default for new 8.1.4 Projects.

You must manually enable this option in the Project Properties to continue with the new way of
publishing.

Interaction Process Diagram Blocks

Composer Help 614

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/WorkflowBlock
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/eServices
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/eServices#Pulling_Multimedia_Interactions_from_Interaction_Queues

Defining a View

To define a view:

1. Click under Value to display the button.

2. Click the button to open the View Properties dialog box (see the Interaction Queue Views topic).
3. Click Add to display Main, Parameterized Conditions, and Segmentation tabs.
4. After you complete the applicable fields in these tabs, click OK to close the View Properties dialog box.

Note: Multiple views are supported on a single queue. This enables certain interactions to be
processed earlier than others.

Interaction Queue Definition

To clarify the term, interaction queue, interaction queues used for multimedia (non-voice interactions)
are compared with virtual queues used for voice interactions. Genesys software maintains both
interaction and virtual queues.

• A queue in an interaction process diagram is called an interaction queue. You use Composer's
Interaction Queue block to create/configure an interaction queue, which can also be thought of as a
persistent queue. Once an interaction queue is configured and activated, multimedia interactions
arriving from media servers are selected and extracted using the View block property. They are then
submitted to Workflows that send them to another interaction queue or a target (such as an agent,
workbin, or server). The definition of an interaction queue defined is stored as a Script object in the
Configuration Database.

• In contrast, all voice interactions arriving from T-Servers are submitted to Universal Routing Server
(URS), which places them in virtual queues. A virtual queue is not a physical queue but rather a logical
queue to which all voice interactions are queued if the specified targets within a routing workflow are
not available.

Deleting Interaction Queues

If you delete an Interaction Queue block from an IPD, Composer does not allow deletion of the
Interaction Queue block itself. In this case, you must manually clean up the objects using Genesys
Administrator.

Interaction Process Diagram Blocks

Composer Help 615

Adding an Interaction Queue
Starting with Release 8.1.410.14, you can use a queue defined in referenced Projects:

In the Project (A) containing the queue you want to use in another Project (b):

1. Add an Interaction Queue block to the interaction process diagram (IPD).
2. Publish the IPD so that the Interaction Queue gets published to the Configuration Server.
3. In the Project (b) where you want to use the interaction queue contained in Project A, open Project

Properties > Project References and add a reference to Project A.
4. Edit the Queue property for a workflow block. You can now select queues defined in the Project A IPD as

well as Project B IPD.

This feature is available via the following blocks/properties:

• Email Forward/ Output Queue
• Create SMS/Interaction Queue
• Email Response/Output Queue
• Route Interaction/ Queue For Existing Interaction
• Route Interaction/Queue for Outgoing Interaction
• Queue Interaction/ Interaction Queue Name
• Create email/ Output Queue
• Chat Transcript/Output Queue

Interaction Process Diagram Blocks

Composer Help 616

Interaction Queue Views
This topic applies to the Views property for the Interaction Queue Block and Workbin Block topics.
Views contain parameters used when pulling interactions from queues and workbins for submittal to
all workflows for further processing.

Notes:

• Starting with 8.1.4, Composer-created SCXML-based routing applications are assigned to Views instead
of being assigned to interaction queues (as in previous releases) and use a Submitter object for this
purpose. This change enables enhanced pulling of multimedia interactions from interaction queues.

• This block is used only for multimedia workflows.

Multiple Views Per Queue

You can create multiple views per queue, with each view managing submission of an interaction to a
separate routing workflow. Composer creates a dedicated output port on the Interaction Queue block
for each view defined in the block. You can connect multiple workflows to the same view. Flow Control
blocks are available.

Defining Views

You are required to create at least one view. To define a view: From the Views property in the
Interaction Queue or Workbin block:

1. Click under Value to display the button.

2. Click the button to open the View Properties dialog box.

Interaction Process Diagram Blocks

Composer Help 617

https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/eServices#Pulling_Multimedia_Interactions_from_Interaction_Queues

3. Click Add to display fields in the Main tab.
4. Complete the fields as described below.

Main Tab

Fields in the Main tab are described table below.

Field Description

Enabled Check the box to make the view ready to extract
interactions.

Name Enter a name for the view to be used when saving
as Configuration Database Script object.

Description Enter text describing the view.

Check Interval

Enter the number of seconds to specify the
frequency (time interval) that Interaction Server
will use to check the queue and, if necessary,
adjust the number of interactions that can be
submitted to the workflow based on the Scheduling
field.

Condition You have the option of creating an expression to be

Interaction Process Diagram Blocks

Composer Help 618

used as the basis for extract interactions from the
queue. Examples:
customer_segment='gold' AND service_type='sales'
_time_in_queue[] > 4320 You can specify one or more
expressions, which can be comprised of:

• An interaction attribute name from the
interactions table. The eServices/Multimedia
User’s Guide lists and describes the interaction
attributes that you can use when building an
expression.

• A relational operator, such as an equal sign or a
greater than sign.

• The attribute value in single quotes.
• The expression is used for interaction selection

as if you were constructing a SQL SELECT
statement and specifying a WHERE clause.

Order

You have the option of defining the order for
extracting interactions from the queue:
order:= [property_order[,order]]property_order:=
property_name [asc|desc] Example using an attribute found
in the eService/Multimedia interactions table: priority DESC

Scheduling

Use to specify the scheduling condition that
Interaction Server should use, based upon the
scheduled time contained in interactions. The
interaction scheduling functionality uses a
database field called scheduled_at, which is
mapped to an interaction property called
ScheduledAt. For information on this field, see the
chapter on interaction properties in the eService/
Multimedia User’s Guide.
Select one of the following:

• Ignore Scheduling. Default. Select if there is no
scheduled processing. Even if the value of
ScheduledAt is set for some interactions,
Interaction Server ignores it.

• Scheduled Only. Select to process only
interactions that are scheduled (ScheduledAt is
set) as per the value of the scheduled time. If
selected, Interaction Server uses the following
condition: (_current_time() >=
scheduled_at) and the following order:
scheduled_at, received_at, id.

This condition and the conditions below are stored in the Scripts
folder of Configuration Manager, InteractionQueueView object,
Annex tab.

• Scheduled and Unscheduled. Select to process
scheduled interactions at scheduled times

Interaction Process Diagram Blocks

Composer Help 619

(ScheduledAt is set) and after that, process
unscheduled interactions. In this case,
scheduled interactions are delayed until the
scheduled time, and all others are processed
immediately afterwards. If selected, Interaction
Server uses the following condition:
((scheduled_at is NULL) OR (_current_time()
>= scheduled_at)) and the following order:
scheduled_at, received_at, id.

• Unscheduled Only. Select to process only
interactions that are unscheduled
(ScheduledAt is not set). Interaction Server
uses the following condition: (scheduled_at is
NULL)

Database Hints

This field is only applicable to an Oracle database.
Background: Oracle allows special tags in SQL queries that
cause queries to execute in a way that optimizes performance.
These tags are called Hints. For example, you may wish Oracle
to use a certain index to reorder data during query execution.
You can apply a Hint, which will cause Oracle to use a specific
index. One Hint that Oracle provides is: /*+ index
(interactions interactions_default_view_idx) */. You
could enter this Hint in the Database Hints field.

Parameterized Conditions Tab

Use the Parameterized Conditions tab to specify interaction attributes that can be used in pull
requests from clients of Interaction Server (for example, from an agent desktop). Each pull request
can use any listed attribute, a combination of listed attributes, or none. If an attribute is not listed on
this tab, then client applications cannot use it. For details on pull requests, see the RequestPull
section in the chapter on Interaction Management Protocol in the eService/Multimedia Open Media
Interaction Models Reference Manual. For example, if the Parameterized Conditions tab lists the
from_address attribute, then a pull request from a client can include a condition such as
from_address=joe_customer@myisp.com. This would retrieve all interactions from a particular
contact. The Condition tab and the Parameterized Conditions tab both make use of interaction
attributes (see the chapter on Interaction Properties in the eService/Multimedia User's Guide. The
difference between them is:

• The Condition tab states a condition that applies to all pull requests.
• The Parameterized Conditions tab only lists attributes that can be used as parameters in a pull request,

but it is up to the client whether or not to use these attributes.

You can: Select the attribute from a drop-down list of interaction attributes. This list includes most of
the attributes in the interactions table. The exceptions are abandoned_at, destinations,
moved_to_queue_at, scheduled_at, server_id, and snapshot_place_id. You can also enter the
name of a custom property that you have created in Configuration Manager. Creating custom
properties is described in the Interaction Properties section of the chapter on Interaction Properties in
the eService/Multimedia User's Guide.

Interaction Process Diagram Blocks

Composer Help 620

Using the Parameterized Conditions Tab

1. Click the Parameterized Conditions tab in the View Properties dialog box.
2. Click Add. The Property Configuration dialog box opens.

3. Under Name, enter an Interactions table attribute.
4. Under Value, enter a value.
5. Click OK. The View Properties dialog box shows your entry.

Segmentation Tab

Use the Segmentation tab on the View Properties dialog box to submit an equal number of
interactions of different segments, to define a default limit for each segment pulled from a queue,
and to limit the total number of interactions that can be submitted to a workflow.

Use Case
Assume the following:

Interaction Process Diagram Blocks

Composer Help 621

• You have a simple business process: a queue, the queue’s view, a strategy, and a submitter that
submits interactions from the queue to the strategy through the view.

• There are two groups of agents equal in number. One group is trained to handle only customers of the
gold Customer Segment and another group is trained to handle only customers of the bronze Customer
Segment.

• The strategy directs interactions to the corresponding group of agents based on the value of the
customer_segment property of an interaction (assume the value could be either gold or bronze).

• Next, start placing interactions into the queue, five interactions from bronze customers, then four
interaction from gold customers, then again five interactions from bronze customers, three from gold,
and so on.

If the strategy has a limit of five interactions that may be submitted into it, when the limit is reached,
the strategy will be full of interactions from bronze customers, but will have no interactions from gold
customers. As a result, interactions from gold customers will be waiting back in the queue and free
agents, who are able to handle them, will also be waiting. Because the interactions are not yet in the
strategy, the strategy is unable to route the interactions. To avoid such a scenario, you could add the
customer_segment value to the Segmentation tab of the View Properties dialog box. After that,
Interaction Server will fetch all interactions from the queue, grouping by the customer_segment
property. It will find two distinct values of the property: gold and bronze. Interaction Server will then
divide strategy limit by two (the number of distinct values) and limit the submission of each group of
interactions to the strategy by the calculated value. As a result, Interaction Server submits an equal
number of interactions from each group.

Using the Segmentation Tab

1. Click the Segmentation tab in the View Properties dialog box.

Interaction Process Diagram Blocks

Composer Help 622

2. Click Add. The Property Configuration dialog box opens.
3. Opposite Name, enter an Interactions table attribute.
4. Opposite Value, enter a value.
5. Enter a Segment Interval. Specifies the time, in seconds, that elapses before Interaction Server

rechecks the queue and adjusts the number of interactions that can be submitted to the strategy
according to segmentation options. If you do not specify a value, Interaction Server uses the default
value (set in the General tab). Use this parameter when the default interval at which a queue is
checked for new interactions is too long, causing highly time-sensitive interactions to remain in the
queue too long.

6. Enter a Segment Limit. Enables you to override the maximum number of interactions that can be
submitted to a strategy according to the configured segmentation options. If you do not enter a value,
Interaction Server uses the limits set in the strategy. Starting with 81410, the IPD View publish logic
does not generate default-limit option in the View section if the value is 0. The default-limit option is
generated only if the value is greater than zero. For existing Diagrams, republishing the IPD diagram
removes the default-limit option if the value is zero and updates the value if it is greater than zero.

7. Enter a Default Segment Limit. Enables you to control the segmentation feature by specifying default
number of interactions per segment.The segmentation feature ensures that equal number of
interactions that belong to different segments are submitted into the URS strategy. By default,
Interaction Server calculates that number by dividing the total limit for number of interactions in the
strategy by the actual number of unique segments present.This Default Per Segment option overrides
this behavior and uses this option value instead of calculating the limit dynamically.This feature is
useful when the number of segments is large (> 1000) and changes rapidly in a wide range. In this

Interaction Process Diagram Blocks

Composer Help 623

case, it might take too long for the segmentation algorithm to balance the number of interactions
submitted to URS. The Default-Segment Limit is generated only if the value is greater than zero. For
existing diagrams, republishing the IPD remove the Default Segment Limit if the value is zero; updates
the value if it is greater than zero.

8. Click OK. The View Properties dialog box shows your entry.

Interaction Process Diagram Blocks

Composer Help 624

Media Server Block
This block is used only for multimedia workflows. Use the Media Server block to get interactions of a
particular media type (other than voice) into an interaction process diagram.

Endpoints

A Media Server is associated with one or more Endpoints, with each Endpoint connecting the Media
Server to an interaction queue. For a Media Server block to show Endpoints, those Endpoints must
first exist in the Configuration Database. Then, after you select the Media Server via the Composer
Application Property, the Endpoint ports appear on the Media Server block as well as being listed
opposite the Composer Endpoints property. The figure below illustrates this.

Interaction Process Diagram Blocks

Composer Help 625

Endpoints1.gif

The Publishing operation causes Composer to push the information into the Configuration Database.
Its definition is stored as a CfgScript object. The Media Server block will usually be the first block in a
multimedia IPD followed by an Interaction Queue block, and then a Workflow block. The process goes
like this: You connect a Media Server Endpoint to an Interaction Queue block and the Interaction
Queue block to a Workflow block. This arrangement directs multimedia interactions from the media
server into a queue. A view defined for the queue then pulls interactions from the queue and sends
them to a workflow for specialized processing. Notes

• A Media Server block has one or more outports; no input ports are available.
• Multiple Media Server blocks in an IPD cannot refer to the same media server application.

Interaction Process Diagram Blocks

Composer Help 626

Media Servers Supported

Composer supports using the following Genesys eService/Multimedia media servers in IPDs:

• E-mail Server Java--interfaces with the enterprise mail server and the Genesys Web API Server, bringing
in new e-mail interactions from customers and sending out replies or other outbound messages.

• SMS Server--used for the common text messaging service available on cellphones and other handheld
devices.

• Chat Server--works with Web API Server to open, conduct, and close chat.
• Third Party Server, such as Capture Point applications. Capture Point applications are defined in two

possible ways:

1. An application with type CFGCapturePoint.

2. An application with type CFGThirdPartyServer, containing a configuration option called capture-point-
type in the settings section.

For more information on the above server types, see the eServices 8.1 Deployment Guide. The Media
Server block has the following properties:

Name Property

Find this property's details under Common Properties.

Application Property

Select a media server to specify the CfgApplication object in Configuration Server that this block
represents. Any media server already referenced by other Media Server blocks in the same IPD will
not be listed. Once the media server Application object is selected, each Endpoint defined in its
CfgApplication object will be shown as an outport on the block. Notes:

• Different Media Server blocks in the same IPD cannot refer to the same Media Server Application
instance in Configuration Server.

• The same Media Server instance in Configuration Server may be referenced by multiple IPDs.
• One IPD can have multiple Media Server blocks.

Endpoints Property

Click under Value to display the Media Server Endpoints dialog box and select one or more Endpoints.
An Endpoint connects a media server to a queue (Interaction Queue block) within an IPD. The dialog
box lists all the Endpoints associated with the media server specified in the Media Server Application
property. When you connect an Endpoint to an Interaction Queue block in the IPD diagram, this will

Interaction Process Diagram Blocks

Composer Help 627

cause interactions coming out of this Endpoint to go into the named interaction queue. Notes:

• For endpoints already existing on the selected Media Server, only those that were previously unused are
displayed as outports on the block. All endpoints are displayed in the Endpoints dialog, with information
about which diagram is using each endpoint.

• You may define Media Server Endpoints in offline mode. The changes will take effect immediately in the
local IPD diagram. However, other IPD diagrams that use this Media Server will not see the changes as
that will require that Configuration Server be updated with Endpoint details.

• In offline mode, you may input multiple Endpoints and have those definitions stored. Updates to
Configuration Server occur when Composer is connected to Configuration Server and you invoke the
Publish action.

• If an Endpoint of a Media Server is already assigned in Configuration Server, then the Endpoint for the
Media Server block is not available for connection to an Interaction Queue block.

• If a Media Server block is deleted, its definition will be removed from the IPD. However, the Media
Server object in Configuration Server will not be modified. Any Endpoints created in the current Media
Server block will remain and may be deleted using Genesys Administrator. You can, however, delete the
Endpoints first and then delete the block.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Interaction Process Diagram Blocks

Composer Help 628

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Workflow Block
This block can be used for voice workflows, multimedia workflows, or interaction-less processing
when the block is not connected to an Interaction Queue block. Use this block in an interaction
process diagram to point to a workflow resource (workflow diagram or SCXML file) to which
interactions should be sent for processing. Outgoing connections automatically appearing from a
Workflow block that represent objects specified inside the workflow are referred to in this help as
"workflow-generated blocks."

Important
When a workflow is part of an interaction process diagram used for multimedia
interactions, always finish the workflow (and each workflow branch) with one of these
blocks: Stop Interaction, Queue Interaction, or Route Interaction.

The Workflow block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Click under Value to display the button. Enter text to describe the block.

Object Name Property

A unique Configuration Server object name will be created once a Publish operation is executed. No
updates to the database are created until you invoke the Publish operation. Note: If you rename the
block after its corresponding CfgScript object is created in Configuration Server, the original
published object name in Configuration Server remains unchanged. For more information, see
Publishing Updates.

Workflow Blocks and Publishing an IPD
When publishing an interaction process diagram (IPD) to Configuration Server, Workflow blocks are
handled in two different ways:

Use Case #1: The Workflow block is dedicated to voice or interaction-less processing. In that case,

Interaction Process Diagram Blocks

Composer Help 629

you must use a stand-alone block (the block is not connected to any other block).

• When generating the code: Composer generates one SCXML file per such Workflow block (Name=
IPD_<ipd file name>_<workflow block name>.scxml).

• When publishing: Composer creates one Enhanced Routing Script object (Name=<Project
Name>.<IPD name>.<Workflow block name>) per such Workflow block in the IPD being published. The
Application/url property of the ERS refers to the SCXML url (if deployed). The Workflow block Object
Name property (read only property) is updated to the name of the EnhancedRoutingScript object.

Use Case #2: The Workflow block is dedicated to multimedia processing. In this case, the block is
connected (directly or indirectly) after a Workbin block or an Interaction Queue block.

• When generating the code: Composer generates one SCXML file per Interaction Queue/Workbin block
(Name=IPD_<ipd file name>_<interaction queue block name>.scxml). If an IPD has an Interaction
Queue block connected to multiple Workflow blocks (multiple views are defined on the Interaction
Queue block), only one SCXML file is generated when generating the code for that IPD. This unique IPD
SCXML is used to initiate the execution for all Workflow blocks. At runtime, the Workflow SCXML to
execute is selected depending on the view the interaction is pulled from.

• When publishing: Composer creates one Interaction Queue Script object (Name=<Project Name>.<IPD
name>.<Interaction Queue block name>) per Interaction Queue block. Composer creates one
Interaction Queue InteractionQueueViews Script object (Name=<Project Name>.<IPD
name>.<Interaction Queue block name>.<View name>) per Interaction Queue block defined view.
Composer creates one EnhancedRoutingScript object (Name=<Project Name>.<IPD
name>.<Interaction Queue block name>.Routing) per Interaction Queue block in the IPD being
published. The Application/url property of this EnhancedRoutingScript object refers to the Queue IPD
SCXML url (if deployed). Composer does NOT create an EnhancedRoutingScript object for the
workflow blocks. The Workflow block Object Name property (read only property) is NOT updated.

Resource Property

To define a resource:

1. Click under Value to display the button.

2. Click the button to open the Select Resource dialog box.
3. Select a workflow resource, which can be:

• A workflow diagram that exists in any of the Projects in the Composer workspace.
• An SCXML file created in Composer's SCXML Editor.

4. Select the workflow resource.
5. Click OK. An example is shown below.

Interaction Process Diagram Blocks

Composer Help 630

Maximum Interactions Default Limit

(Maximum Interactions in Composer versions previous to 8.1.440.18.) Use this property to specify the
maximum number of interactions allowed for a strategy to process at any given time. Possible valid
values are 1 - 50,000 and If not specified, Interaction Server uses the default limits configured in its
options as described by the max-submitted-interactions option, which includes the URS and
InteractionServer object name. For more information on this option, see the eServices Reference
Manual.

Important
This block property is only relevant for interactions queued on Interaction Server and
takes precedence over any settings configured in Interaction Server and on the Annex
tab of the Interaction Queue.

During an IPD publish, the EnhancedRoutingScript object in Configuration Server will have this
configured value published under the "Default" section.

Maximum Interactions Limit

This property allows you to enter multiple sets of URS and Interaction Server names with limits. The
same combination of URS Server name and Interaction Server name is allowed only once. During an
IPD Publish operation, the EnhancedRoutingScript object in the Configuration Database will have
these values published under the $URSServerName$ section. Possible valid values are any integer
between 1-50,000.

Interaction Process Diagram Blocks

Composer Help 631

Shortcut Menu

Right-clicking a Workflow block opens a menu with the following options:

• Add Note
• File
• Edit
• Delete From Model
• Format
• Open Workflow
• Show Properties View

Selecting Open Workflow opens the workflow resource file in Composer.

• If the resource is a workflow, the diagram will be opened in the workflow diagram editor.
• If the resource is a SCXML file, it will be opened in the SCXML editor in Composer.

Interaction Process Diagram Blocks

Composer Help 632

Workbin Block
This block is used only for multimedia workflows. Use this block in an interaction process diagram to
define a temporary storage area called a workbin, which is accessible from the agent desktop. You
can then use the Workbin property in the Route Interaction block when redirecting interactions for
continued processing. Internally, a workbin has a queue and can support views. The workbin owner
(agent, agent group, place, or place group) can view contents of the workbin and pull interactions out
in any order. An agent associated with a workbin may get a notification when interactions are put into
the workbin.

Input and Output Ports

A Workbin block:

• Does not have any input ports. You add Interactions to a workbin via the Route Interaction block in a
workflow diagram.

• Has only one outport, which can be connected to a Workflow block in the IPD. Floating workbins are
also allowed that are not required to be connected to Workflow blocks. This allows interactions routed
to workbins to remain in workbins until they are pulled out by agents

The Interaction Workbin block has the following properties:

Name Property

Use this property to define the name of the workbin, which will appear on the block in the IPD (this is
not the Configuration Database name). Find this property's details under Common Properties.

Block Notes Property

Click under Value to display the button. Enter text to describe the block.

Object Name Property

A unique Configuration Server Object Name will be created once a Publish operation is executed. No
updates to the database are created until you invoke the Publish operation. Note: If you rename the
block after its corresponding CfgScript object is created in Configuration Server, the original
published object name in Configuration Server remains unchanged. For more information, see
Publishing Updates.

Interaction Process Diagram Blocks

Composer Help 633

Interaction Queue Property

Specifies the queue to be used with this workbin. This may be an existing queue in the IPD or it can
be a private queue exclusive to this workbin. Multiple workbins can use the same queue.

1. Click under Value to display the button.

2. Click the button to open the Workbin Interaction Queue dialog box.
3. Select one of the following:

• Use Private Queue for a queue exclusive to this workbin.
• Use Queue to select an interaction queue already defined in this IPD.

4. Click OK.

Views Property

A workbin can have one or more views defined in it. Each view represents an exit channel from the
workbin (or workbin’s queue). The criteria defined in the view must be satisfied before an interaction
can exit out from the view. You can also use a view to enable certain types of interactions to be
processed earlier than others. Note: Irrespective of the number of views defined in the Workbin block,
the block will have only one outport and will feed interactions to only one workflow. To define a view:

1. Click under Value to display the button.

2. Click the button to open the View Properties dialog box.
3. Click Add to display Main, Parameterized Conditions, and Segmentation tabs. For information on these

tabs, see Interaction Queue Views.
4. After you complete the applicable fields in these tabs, click OK to close the View Properties dialog box.

Each view will be created as a separate CfgScript object of type Interaction Queue View.

Description Property

Enter text that describes the workbin.

Display Name Property

Enter a display name for the workbin to appear in the interaction process diagram.

Interaction Process Diagram Blocks

Composer Help 634

Enabled Property

Select true or false to enabled or disabled this queue as ready to accept interactions. A queue may
be enabled during design time. Note: Setting this property is equivalent to enabling or disabling the
Workbin object from Genesys Administrator or Configuration Manager.

Order Property

Use this property to specify the WHERE clause of a SQL statement, which will determine the order in
which interactions will be sorted in the workbin.

Owner Property

A workbin may be owned by (associated with) one or more agents. Click the down arrow and select
one of the following:

• Agent
• Agent Group(default)
• Place
• Place Group

Agents associated with a workbin may get a notification if an item is placed in the workbin.

Enabled Property

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Interaction Process Diagram Blocks

Composer Help 635

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Deleting Workbins

If you delete a Workbin block from an IPD in online mode, Composer displays a prompt asking if you
wish to delete its Configuration objects. These will include:

• Interaction Workbin (CfgScript:: InteractionWorkBin)
• Interaction Queues (CfgScript::InteractionQueue)
• Interaction Queue Views (CfgScript:: InteractionQueueView)

If you indicate Yes," then the Interaction Queue object and view objects will be deleted from
Configuration Server. If you indicate No," Composer will not delete these objects from Configuration
Server. You must manually clean up these objects outside of Composer. In offline mode, if you delete
a Workbin block from an IPD, the Configuration Server connection dialog is shown. If a connection
cannot be established, object deletion will fail and you must manually delete the objects outside of
Composer.

Interaction Process Diagram Blocks

Composer Help 636

Flow Control Blocks
In an IPD, when an interaction is submitted from an interaction queue to a routing workflow, you can
create multiple views per queue, with each view having its own set of conditions and managing
submission of an interaction to a separate routing workflow. To support multiple views per interaction
queue, the following Flow Control blocks are available when creating an IPD:

• Branching
• ECMAScript
• Log

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Interaction Process Diagram Blocks

Composer Help 637

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Workflow Generated Blocks
Outgoing connections automatically appearing from a Workflow block that represent objects specified
inside the workflow are called workflow-generated blocks. Composer generates the following types
of workflow-generated blocks:

• Forward to External (Email Forward Block)
• Autoresponse
• Chat Transcript
• Classify Interaction
• Dynamic Target
• Queue Reference
• Stop
• Workbin Reference

For example, assume a Workflow block in an IPD references a workflow that contains a Queue
Interaction block that references an interaction queue, a Route Interaction block that specifies a
routing target, and a Stop Interaction block. The workflow-generated Stop, Queue Reference, and
Dynamic Target blocks appear as shown in the figure below.

Interaction Process Diagram Blocks

Composer Help 638

Queue Reference Block

If a workflow referenced in any Workflow blocks puts an interaction into a queue using the Chat
Transcript, Email Response, E-mail Forward, or Queue Interaction block, the IPD shows this
information. It display an additional block of type Queue Reference to represent the interaction queue
and shows an interaction going from the Workflow block to this Queue Reference block. This block is
automatically generated by Composer, therefore is not available on the IPD palette. Composer uses a
different color, appearance, and structure for the Queue Reference block allowing you to easily
differentiate it from other blocks selectable from the palette. If a workflow referenced in any Workflow
block creates a new interaction, the IPD shows this information using the Queue Reference block.
The connector for the new interaction from the Workflow block to the ‘Queue Reference’ block will be
shown with a distinctive line pattern in a different color from normal connectors. UI team will be
consulted. If the queue used in the Queue Interaction block was already defined in the IPD, the
workflow will connect back to the Interaction Queue block already be present in the diagram. Blocks
Linking to Queue Reference Blocks

• IPDs will show a linked Chat Transcript workflow-generated block if a referenced workflow uses a Chat
Transcript block. The linked Chat Transcript block will link to a Queue reference block representing the
queue used in the relevant block in the workflow.

• IPDs will show a linked E-mail Response workflow-generated block if a referenced workflow uses an E-
mail Response block. The linked E-mail Response block will link to a Queue reference block representing
the queue used in the relevant block in the workflow.

• IPDs will show a linked Forward workflow-generated block if a referenced workflow creates a reply e-
mail using the E-mail Forward block with Forward to External as the Forward Type property. The linked
Forward block will link to a Queue reference block representing the queue used in the relevant block in
the workflow.

• IPDs will show a linked Classify Interaction workflow-generated block if a referenced workflow uses a
Classify Interaction block to classify an interaction.

Dynamic Target Block

If a workflow referenced in any Workflow blocks routes the interaction to a dynamic target via the
Route Interaction block, the IPD diagram will show this information using an additional block of type
"Dynamic Target." This block is not available in the IPD palette since it is automatically generated by
Composer. A Dynamic Target block gives a visual indication of the type of target the interaction is
being routed to. A note attachment is added to the block giving details of the targets.

Stop Block

If a workflow referenced in any Workflow block stops an interaction using the Stop Interaction block,
the IPD shows this information using an additional block of type "Stop." This block is not available in
the IPD palette since it is automatically generated by Composer.

Interaction Process Diagram Blocks

Composer Help 639

Workbin Reference

If a workflow referenced in any Workflow blocks uses the Route Interaction block to put an interaction
into a workbin, the IPD diagram shows this information using a workflow-generated blocks of type
"Workbin Reference." If a referenced Workbin block uses a non-private queue, a Queue Reference
block is shown in the IPD originating from the Workbin Reference block. This is helpful if the Workbin
block uses a queue that is defined in another IPD in the same Project. These blocks are not available
in the IPD palette since they are automatically generated by Composer. The figure below shows
example Queue Reference and Workbin Reference blocks.

Interaction Process Diagram Blocks

Composer Help 640

Linking IPDs with Workflows
You can't explicitly link IPDs together as there is no higher-level diagram in Composer that shows IPDs
as blocks and then allows you to interconnect them. To clarify:

• IPDs are linked via the workflows they are connected to. For example, assume IPD1 references
Workflow1 and this workflow uses an Queue Interaction block. The block can be set to route the
interaction to a Queue2 and Queue2 could exist in IPD2. Therefore IPD1 gets connected to IPD2.

• Interaction Queue blocks in IPDs don’t reference queues; they are queues.
• An interaction queue can be defined in only one IPD. Once defined and Published, a corresponding

object is created in Configuration Server. This interaction queue cannot exist in any other IPD. It can,
however, be referenced by blocks in any number of workflows in the same Project.

Note: IRD allows moving a queue from one business process to another. Once moved, the queue can
be used in the new business process. To do the same in Composer, you can copy an Interaction
Queue block from one IPD and paste into another. Then delete the block from the original IPD. The
same Interaction Queue block cannot exist in two IPDs.

Interaction Process Diagram Blocks

Composer Help 641

Publishing Updates
Publishing an interaction process diagram validates Project configuration information and pushes the
information out to Configuration Server. When you configure an Interaction Queue, Workflow, or
Workbin block, Composer does not send the information to Configuration Server until you invoke the
Publish operation. This gives you complete control of the update process. When publishing an
interaction process diagram, Composer also updates the Configuration Server/Object Name property
of the IPD blocks for which a configuration object was created (applies to Workflow, Workbin,
Interaction Queue blocks). You can set Configuration Server Preferences to:

• Automatically publish upon saving.
• Display a prompt to save before publishing.
• Delete published objects when an interaction process diagram is deleted.
• Delete published objects when a project is closed or deleted.

For information on resetting IPD Publish information, see the figure under the Reset IPD Publish
Information heading in the Project Properties topic.

When to Publish

• Any time properties for any of the blocks in the IPD are changed or blocks are added/removed.
• For example, to create a Submitter Script object in the Configuration Database.
• Any time a workflow diagram is renamed. In such cases, you must go back to the Workflow block in the

IPD diagram and point the block to the renamed workflow.
• If you rename your workflow Project -- this will change the deployment URL for the Project. Publishing

again will point the enhanced routing object to the new URL.
• If you delete Published objects in Configuration Server, you can re-publish the diagram to create new

objects.

Note: If routing blocks refer to previously unpublished queues, these references may become
incorrect when the queue is published. These errors are caught by workflow validations and should be
fixed by selecting the published queue in any block properties that show this validation error.

How to Publish

1. Before publishing, you must connect to Configuration Server.
2. Right-click an interaction process diagram in the Project Explorer.
3. Select Publish to Configuration Server. The following message appears: The selected IPD diagram's

data was successfully published to Configuration Server.

Interaction Process Diagram Blocks

Composer Help 642

Once these objects are created successfully in Configuration Server, some manual configuration is
still required before interactions can work. For example, to redirect e-mails to an Endpoint, you must
set endpoint key in the pop-clientX section of the e-mail server Application to the correct end-point.
For more details, see Deploying a Routing Application.

Overwriting Published Queues
Starting with Composer 8.1.520.##, Composer supports the ability to overwrite published queues.
Users can now choose to override or ignore the existing script objects on Configuration Server when
republishing an interaction script. This new functionality is very useful in multiple user environments.
Prior to this release, only the first user publishing a script was considered as the owner of the project
and other users (even from the same team) were restricted from publishing IPD objects to
Configuration Manager.

Consider two users, A and B. A starts initial development, publishes the IPD objects, and shares the
project with B. B imports the project and makes some additional improvements to contribute to the
project. Prior to this release, when B tries to republish the IPD objects, the following error message is
displayed:

Instead, beginning with this release, a new dialog box is now displayed when a user tries to publish
interaction scripts which have already been published to Configuration Manager. The user can then
select the items which needs to be re-published.

Interaction Process Diagram Blocks

Composer Help 643

Composer Marker Section

The Publish operation puts a marker section in each Configuration Database object it creates. The
section name is __COMPOSER__. The section has the following keys:

Key Name Value Description

source composer Hard-coded value to indicate
object was created by Composer

last_updated <timestamp>

Indicates the timestamp when
the publish operation was
initiated that modified this
object. Example: Thu Jan 07
11:26:36 PST 2010. I

owner_diagram <string> Name of the Composer diagram
that published this object.

owner_project <string>
Name of the Composer project
that owns the IPD diagram in
owner_diagram.

owner_uuid <string>
Identifier of the Composer
diagram that published this
object.

IRD Objects Not Modified

The Publish operation does not modify queue and view objects that were not created by Composer.
This avoids accidentally modifying objects previously created by Universal Routing's Interaction
Routing Designer (IRD), which may cause issues in a legacy IRD/URS system. Using the marker
section described above to indicate where the object was created, the following types of objects are
not modified if they were not created by Composer:

Interaction Process Diagram Blocks

Composer Help 644

• CfgScript of type Interaction Queue
• CfgScript of type Interaction Queue View
• CfgScript of type Workflow

Media Server Block Update Detail

The following updates are written to Configuration Server for all Media Server blocks in all IPD
diagrams in the Project:

• Updates endpoints:<tenant DBID> section of specified CfgApplication.
• Each endpoint name attribute's value is set to the name of the interaction queue's CfgScript object that

it is connected to. Only endpoints that were owned by this diagram, or were previously unconnected,
are updated.

Interaction Queue Block Update Detail

The following updates are written to Configuration Server for all [blocks in all IPD diagrams in the
Project:

• A CfgScript object (type = Interaction Queue) is created under the current tenant/Scripts folder. If the
object already exists, its properties are updated.

Block Property Configuration Server Object/Option

Description CfgScript object/Annex Section Queue/Description
property

Queue Enabled
State property of the CfgScript object.
If TRUE, set to CFGEnabled. If FALSE, set to CFGDisabled.

• In the Annex of the CfgScript object, the property application is created in section Orchestration.
Composer writes the value in this format: script:<name of Enhanced Routing CfgScript object where
<name of EnhancedRouting CfgScript object> will be replaced with the workflow name.

This will essentially cause all views of the interaction queue to submit interactions to the SCXML
application that the Enhanced Routing object points to. In the IPD, this will be a Workflow block
pointing to an existing workflow diagram or an SCXML file. Note: If you rename an Interaction Queue
block after its corresponding CfgScript object has been created, the object name in Configuration
Server remains unchanged. Instead, the key Name in the Annex section Namespace and its value are
set to the new name. Composer displays the changed name.

Interaction Process Diagram Blocks

Composer Help 645

Interaction Queue View Property Update Detail

The following updates are written to Configuration Server for all Views defined for all Interaction
Queue blocks and Workbin blocks in all IPD diagrams in the Project:

• A CfgScript object (type = Interaction Queue View) is created under the current tenant/Scripts folder.
If the object already exists, its properties are updated. The name of the object follows this format:

<container queue CfgScript object name>/<view name>

Block Property Config. Server Object
Type Annex/Option Section Key/Property

View Name CfgScript Namespace Name
Description CfgScript View Description
Enabled CfgScript - State property
Check Interval CfgScript View Freeze Interval
Condition CfgScript View Condition
Order CfgScript View Order
Scheduling CfgScript View scheduling-mode
Parameterized
Conditions (multi-
valued)

CfgScript View
Each value creates a
key like
"Condition.<value>"

Database Hints (Oracle) CfgScript View sql-hint

Segmentation (multi-
valued) CfgScript View

segment-by
Value will be
"value1,value2,...valueN"

Segment Check Interval CfgScript View segment-check-interval
Segment Limit CfgScript View segment-total-limit

Note: If you rename a View after its corresponding CfgScript object has been created, the object
name in Configuration Server remains unchanged. Instead, the key Name in the Annex section
Namespace and its value are set to the new name. Composer displays the changed name.

Workflow Block Update Detail

The following updates are written to Configuration Server for all Workflow blocks in the Project.

• A CfgScript object of the Enhanced Routing type is created under the current tenant/Scripts folder.
• In its annex, property url is created in section Application. The value is the URL of the generated SCXML

document on the Composer web server (bundled Tomcat or local IIS). You can change this property
using Configuration Manager or Genesys Administrator to set the correct value for the deployment
environment.

In its annex, in section ApplicationParams, the key CustomerView_URL is added. Its value is in this
format: [http:// http://]<configured CV host>:<configured CV port>. Context Services port and host

Interaction Process Diagram Blocks

Composer Help 646

values are picked up from Composer preferences.

Workflow Blocks and Publishing an IPD
This use cases below apply when Use Interaction Submitters is not enabled and you are not using
Interaction Submitters.

In this case, when publishing an interaction process diagram (IPD) to Configuration Server, Workflow
blocks are handled in two different ways:

Use Case #1: The Workflow block is dedicated to voice or interaction-less processing. In that case,
you must use a stand-alone block (the block is not connected to any other block).

• When generating the code: Composer generates one SCXML file per such Workflow block (Name=
IPD_<ipd file name>_<workflow block name>.scxml).

• When publishing: Composer creates one Enhanced Routing Script object (Name=<Project Name>.<IPD
name>.<Workflow block name>) per such Workflow block in the IPD being published. The Application/
url property of the ERS refers to the SCXML url (if deployed). The Workflow block Object Name property
(read only property) is updated to the name of the Enhanced Routing Script object.

Use Case #2: The Workflow block is dedicated to multimedia processing. In this case, the block is
connected (directly or indirectly) after a Workbin block or an Interaction Queue block.

• When generating the code: Composer generates one SCXML file per Interaction Queue/Workbin block
(Name=IPD_<ipd file name>_<interaction queue block name>.scxml). If an IPD has an Interaction
Queue block connected to multiple Workflow blocks (multiple views are defined on the Interaction
Queue block), only one SCXML file is generated when generating the code for that IPD. This unique IPD
SCXML is used to initiate the execution for all Workflow blocks. At runtime, the Workflow SCXML to
execute is selected depending on the view the interaction is pulled from.

• When publishing: Composer creates one Interaction Queue Script object (Name=<Project Name>.<IPD
name>.<Interaction Queue block name>) per Interaction Queue block. Composer creates one
Interaction Queue View Script object (Name=<Project Name>.<IPD name>.<Interaction Queue block
name>.<View name>) per Interaction Queue block defined view.

Composer creates one Enhanced Routing Script object (Name=<Project Name>.<IPD
name>.<Interaction Queue block name>.Routing) per Interaction Queue block in the IPD being
published. The Application/url property of this Enhanced Routing Script object refers to the Queue IPD
SCXML url (if deployed). Composer does NOT create an Enhanced Routing Script object for the
workflow blocks. The Workflow block Object Name property (read only property) is NOT updated.

Workbin Block Update Detail

The following updates are written to Configuration Server for all Workbin blocks in the Project.

• A CfgScript object of the Interaction Workbin type is created under the current tenant/Scripts folder. If
the object already exists, its properties are updated.

• A CfgScript object of the Interaction Queue type is created under the current tenant/Scripts folder. The
name of the object follows this format: <Workbin CfgScript object name>.PrivateQueue.

Interaction Process Diagram Blocks

Composer Help 647

• A CfgScript object of the Interaction Queue View type is created under the current tenant/Scripts
folder. The name of the object follows this format: <Workbin CfgScript object name>.PrivateView.

• A CfgScript object of the Enhanced Routing type is created under the current tenant/
Scripts folder. The name of the object follows this format: <Workbin CfgScript object
name>.PrivateQueue.Routing.

• A CfgScript object of the Interaction Queue View type is created under the current tenant/Scripts
folder for each of this workbin user defined view. The name of the object follows this format: <Workbin
CfgScript object name>.<view name>.

Starting with Composer 8.1.410.14, Composer generates one Submitter for each not-private view
(<project name>.<IPD name>.<Workbin name>.<View name>.submitter). Each Submitter is
published with the following parameters:

Submitter>Strategy=<project name>.<IPD name>.<Workbin name>.PrivateQueue.Routing
Submitter>View=<project name>.<IPD name>.<Workbin name>.<View name>

Deleting Items from Configuration Server

Configuration Server objects (Enhanced Routing, Interaction Queue, Interaction Queue View, Workbin)
might be deleted from the Configuration Server in following situations:

• An interaction process diagram is deleted and that IPD contained blocks for which configuration objects
were created. See also Configuration Server Preferences, Delete published objects, when Interaction
Process Diagram is closed or deleted option. Note that Composer must be connected to the
Configuration Server in order to be able to effectively delete the Configuration objects.

• A project containing interaction process diagrams is closed or deleted and those IPD contained block(s)
for which configuration objects were created. See also see Configuration Server Preferences, Delete
published objects when Project is closed or deleted option. Note that Composer must be connected to
the Configuration Server in order to be able to effectively delete the Configuration objects.

• An interaction process diagram is published and
• some blocks of that IPD, for which configuration objects were created, have been deleted.
• some blocks of that IPD, for which configuration objects were created, have been updated (for

example some views were removed from an Interaction Queue block).

In all cases, the user is prompted for deletion confirmation for each Configuration Server object that
Composer is going to delete.

Interaction Process Diagram Blocks

Composer Help 648

Interaction Process Diagram Blocks

Composer Help 649

Route Flow Control Blocks
The table below summarizes the routing blocks used for flow control.

Assign Block Use to assign a computed value/expression or a
literal value to a variable

Attach Block Use for attaching a specific interaction to the
current Orchestration Server session.

Begin Parallel Block Use to enable the design of multiple threads, such
as running busy treatments in parallel files.

Branching Block

Use as a decision point in a callflow or workflow. It
enables you to specify multiple application routes
based on a branching condition. Depending on
which condition is satisfied, the call follows the
corresponding application route.

Cancel Event Block Use to cancel a custom event.

Detach Block Use for detaching a specific interaction from the
current Orchestration Server session.

Disconnect Block
Use to invoke the Cancel Call treatment, which
ends the strategy and deletes the interaction from
URS memory.

ECMAScript Block Use to build an ECMA Script expression for routing
decisions.

End Parallel Block Use to mark the end of the threads that were
started by a matching Begin Parallel block.

Entry Block
All routing strategy diagrams must start with an
Entry block. Defines variables that can be shared
across different blocks in the same workflow. The
Entry block cannot have any incoming connections.

Exit Block
Use to terminate the workflow or to return control
back to calling workflow in case of subworkflow
(subroutine).

Log Block
Use to log information about the application; for
example, caller-recorded input that is collected
while the application is running, or error messages.

Looping Block In cases where multiple records are returned, the
Looping block can loop through all the records.

Raise Event Block Use to throw custom events.

Response Block Sends a response to a request-based event from an
external application to the Orchestration Platform.

SCXML State Block
Use to write custom SCXML code for Composer to
include in the SCXML document that it generates
based on the workflow diagram.

Subroutine Block Use to invoke external SCXML documents or a sub-
workflow created using Composer.

Route Flow Control Blocks

Composer Help 650

User Data Use to update an interaction's User Data.

Wait Event Block
Use to have ORS transition out when one of the
defined events is received and the associated
condition is true.

Route Flow Control Blocks

Composer Help 651

Assign Common Block
Use the Assign common block to assign a computed value/expression or an entered value to a
variable. Function getSIPHeaderValue(headername) returns the SIP header value associated with the
given SIP headername. You may wish to use this function with the Assign block. By default, this
option is disabled for backward compatibility. To set this preference, right-click the Project, select
Properties, Default Logging and check Log Assign block Variable assignments. Applicable for
both Java and .NET Projects.

Starting with 8.1.440.18, Composer Assign blocks are enhanced to generate logging statements as
part of code generation. With this enhancement ORS and MCP logs will show the Assign variables and
expressions.

A new Project-level property, Default Logging, is added to control this logging capability. By default,
this option is disabled for backward compatibility. Applicable for both Java and .NET Projects.

Route Flow Control Blocks

Composer Help 652

The Assign block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Assign Data Property

This property assigns a value (expression) to a variable. You select the variable and then enter an
expression, either a literal or one created in Expression Builder.

To select a variable and assign a value:

1. Click the Assign Data row in the block's property table.

Route Flow Control Blocks

Composer Help 653

2. Click the button to open the Assign Data to Variables dialog box.
3. Click in the Variable field to display a down arrow.
4. Click the down arrow and select a variable whose value will be evaluated to determine the branching

condition. Default application variables are described in the Entry block for voice applications and the
Entry block for routing applications. You can also use a custom variable.

5. Click under Expression to display the button.

6. Click the button to open Expression Builder. For examples of how to use Expression Builder, see the
ExpressionBuilder topic.

7. Select an operator for the branching condition.Your variable's value will be equal to (==), less than (<),
greater than (>). less than or equal to (<=), greater than or equal to (>=) or not equal to (!=) to value
you enter in the Expression field.

8. In the Expression field, create a value to compare to the variable's value. Enclose the value in single
quotes (' ').

9. Click the button to validate the expression. Syntax messages appear under the Expression Builder
title.

10. Click OK to close Expression Builder and return to the Assign Data to Variables dialog box.
11. You can make multiple variable/value assignments. Click the Add button if you wish to add more

assignments and repeat the steps above.

Editing Expressions

To edit an expression:

1. Click its row under Expression in the Assign Data to Variables dialog box. This causes the button to
appear.

2. Click the button to re-open Expression Builder where you can edit the expression.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks.

• For callflows, invalid ECMAScript expressions may raise the following exception event: error.semantic.
• For workflows, invalid ECMAScript expressions may raise the following exception events:

error.script.SyntaxError, and error.script.ReferenceError.

You can use custom events to define the ECMAScript exception event handling.

Route Flow Control Blocks

Composer Help 654

Condition Property

Find this property's details under Common Properties for Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 655

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Attach Block
Use the Attach block for attaching a specific interaction to the current Orchestration Server session.
For more information see <attach> in the Orchestration Server Developer's Guide, Interaction
Interface Action Elements.

The Attach block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

This property provides the ability to define a set of exceptions handled by this block. Any exception
not caught by a block in a thread might be caught by the enclosing Begin Parallel block. Find more
detail under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 656

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/InteractionIntf#Action_Elements
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/InteractionIntf#Action_Elements

Interaction ID Property

This property specifies the ID of the Interaction to attach to this Orchestration Server session. Set to a
meaningful value or keep the default value, which is the system variable InteractionId. Find more
details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 657

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Begin Parallel Block
Use this block to enable the design of multiple threads, such as running busy treatments in parallel
files. A thread is a list of blocks that run one after another. Use the End Parallel block to mark the end
of the threads that were started by a matching Begin Parallel block. Starting with 8.1.2, Composer
removes the restriction on the type of blocks that can be used in a busy treatments chain in 8.1.0
and earlier. Blocks such as the ECMAScript block, Database blocks, and so on, are now usable in busy
treatment chains. Blocks that work on an interaction or create new interactions may not be used as
busy treatments.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 658

Body Property

This property represents the SCXML that is mandatorily executed in the Parallel block before the
parallel regions or legs begin to execute. This is useful for initialization of variables or other logic that
should be completed before parallel regions begin to execute.

1. Click opposite Body under Value. This brings up the button.

2. Click the button to bring up the Configure Body dialog box.

3. Enter the executable content of the <state> element. . All content (children) of the state are editable.
You also have the option of adding code to <onentry> and <onexit>.

4. When through, click OK. Note: The editor does not validate against the SCXML schema.

Complete All Threads Property

This property controls when Orchestration Server is to transition out of the <parallel> structure.

Threads Property

block will have a Threads property to specify the number of threads to run in parallel. The number of
outport will be automatically adjusted accordingly.

Route Flow Control Blocks

Composer Help 659

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 660

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Branching Common Block
The Branching block is used for both routing and voice applications. For an example of using the
branching block in a strategy, see the Your First Application topic. Use the Branching block as a
decision point in a callflow or workflow. It enables you to specify multiple application routes based on
a branching condition. Depending on which condition is satisfied, the call follows the corresponding
application route. A default path is automatically created once the conditions have been defined. If
the application cannot find a matching condition, it routes the call to the default flow. Note: To
support creating multiple views per interaction queue, the Branching block is available when creating
an IPD.

Date/Time Functions

You can open Expression Builder from the Condition property and access the following date/time URS
functions (Data Category=URS Functions > Data Subcategory=genesys):

• _genesys.session.timeInZone(tzone)

• _genesys.session.dayInZone(tzone)

• _genesys.session.dateInZone(tzone)

• _genesys.session.day.Wednesday

• _genesys.session.day.Tuesday

• _genesys.session.day.Thursday

• _genesys.session.day.Sunday

• _genesys.session.day.Saturday

• _genesys.session.day.Monday

• _genesys.session.day.Friday

The Branching block has the following properties:

Exceptions Property

The Branching block has no page exceptions.

Name Property

Find this property's details under Common Properties for Workflow Blocks.

Route Flow Control Blocks

Composer Help 661

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Condition Property

Find this property's details under Common Properties for Workflow Blocks.

Conditions Property

Selecting this property open a dialog box with Name, Expression, and Post Action columns. Here you
have the option of specifying some ECMAScript code to be executed when a condition evaluates to
true and the branching path is selected. Any javascript code you type in Post Action column will be
executed as part of the <transition> body related to the condition.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks. You can also define custom
events.

Ignore Script Errors Property

This property is related to the Conditions property, Post Action column. Any scripting error raised
while executing the Post Action code is discarded when the Ignore Script Errors property is set to true.

Logging Details Property

Find this property's details under Common Properties for WorkflowBlocks.

Log Level Property

Find this property's details under Common Properties for Workflow Blocks.

Route Flow Control Blocks

Composer Help 662

Enable Status Property

Find this property's details under Common Properties for Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 663

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Cancel Event Block
Use cancel a custom event. You specify the event name and a message, which is selection of a
dynamic variable. It is a terminating block (can end an application instead of an Exit block).
Orchestration Server 8.1.2+ versions are required for Raise and Cancel Event blocks.

The Cancel Event block has the following properties:

The Cancel Event block has no page exceptions.

Name Property

Find this property's details under Common Properties for Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Condition Property

Find this property's details under Common Properties for Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Workflow Blocks.

Route Flow Control Blocks

Composer Help 664

Request Id Property

Select the variable containing the request ID.

Enable Status

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 665

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Detach Block
Use the Detach block for detaching a specific interaction from the Orchestration Server session. For
more information see the Orchestration Server Developer's Guide, <detach> interface action
element. The Detach block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

This provides the ability to define a set of exceptions handled by this block. Any exception not caught
by a block in a thread might be caught by the enclosing Begin Parallel block. Find more details under
Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 666

Interaction ID Property

This property specifies the ID of the Interaction to detach from this ORS session. Set to a meaningful
value or keep the default value, which is the system variable InteractionId. Find more details under
Common Properties.

Pass Context

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (that is the new orchestration session started to handle the
interaction after it was redirected to an other routing point) to request the context of the originating
session. After the processing for this block is over, the originating session is blocked until the
destination session actually reads the context. The context consists of the system and user variables.

Pass Context Timeout

This property can be passed a positive integer value or a variable. This is the maximum time to wait
(in seconds) for the destination session to read the originating session's context.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 667

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Disconnect Block Routing
Use to disconnect the caller and end the call. The Disconnect block invokes the CancelCall treatment,
which ends the workflow and deletes the interaction from URS memory. The Disconnect block has the
following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Find
more details under Common Properties.

Terminate Session Property

Select true or false.

Condition Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 668

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Single Session Treatments

When using the Play Application, Play Sound (Music and ARM Types) Exit, and Disconnect blocks,
voice applications can now optionally use a single VXML session on Media Control Platform to play/
run multiple treatments instead of using one session per treatment. This enables DTMF buffering
between multiple MSML treatments. For more information, see Single Session Treatments.

Route Flow Control Blocks

Composer Help 669

ECMAScript Block
Orchestration Server (ORS) 8.0+ supports SCXML plus ECMAScript as a routing language for use in
Composer when creating routing workflows. While the core SCXML provides State Chart functionality,
you can specify ORS-specific instructions, such as conditions that can be used for routing decisions,
in the form of ECMAScript. The Script property brings up Composer's Expression Builder for creating
those conditions in the form of expressions. Use the ECMAScript block to build an ECMAScript
expression.

Notes:

• The ECMAScript block supports general ECMAScript in addition to ORS-specific Extensions.

• If the Composer Project contains a folder at include/user, then any files with extension .js will be
included in the generated SCXML. This allows you to write custom ECMAScript and include it in the
application.

• To support creating multiple views per interaction queue, the ECMAScript block is available when
creating an IPD.

• To set external event processing when transitioning out of ECMAScript blocks, select Properties from
the Project menu. A dialog box opens showing the properties of the selected Project or of the Project
that contains the selected resource. Select Orchestration Server Options to set external event
processing.

• Also see the SCXML State Block.

Important
Composer currently supports ECMAScript (ES) 5.

The ECMA Script block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 670

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/OrchExt

Exceptions Property

Find this property's details under Common Properties.

• For callflows, invalid ECMAScript expressions may raise the following exception event: error.semantic
• For workflows, invalid ECMAScript expressions may raise the following exception events:

error.script.SyntaxError and error.script.ReferenceError

You can use custom events to define the ECMAScript exception event handling.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Script Property

To create an ECMAScript expression in Expression Builder:

1. Click opposite Script under Value. This brings up the button.

2. Click the button to bring up Expression Builder.

Expression Builder gives access to various categories of data, which can be used in expressions. To
create an expression, follow the instructions in the Creating Expressions topic.

Route Flow Control Blocks

Composer Help 671

Excluding Agents
Note: When _genesys.queue.excludeAgents is used in a routing workflow before a Target block,
the URS-provided list of excluded agents will be applied to the current or any future Target block. The
effect of the_genesys.queue.excludeAgents execution can be cancelled only by the execution of
another _genesys.queue.excludeAgents or if URS stops this interaction processing.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Using Genesys Extensions

Assume you expand Orchestration Server Functions in Expression Builder.

The Orchestration Server Functions category shows various Genesys-supplied Orchestration
Extensions described in the Orchestration Server Developer's Guide, such as the
genesys.queue.checkAgentState extension shown below. Also, the Universal Routing 8.1 Reference
Manual describes many URS equivalent functions, which have similar names but are not necessarily
equivalent. For example, the Functions chapter of that manual describes a CheckAgentState function.
These functions are intended to be called in Interaction Routing Designer, which was historically used
to create routing strategies prior to Composer.

Assume you double-click genesys.queue.checkAgentState. Expression Builder now appears as
shown below.

Route Flow Control Blocks

Composer Help 672

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#genesys.queue.checkAgentState

ECMA1.gif

Route Flow Control Blocks

Composer Help 673

In this case, the genesys.queue module implements the target selection functionality of URS (finding
resources for interactions and delivering interactions to the resource). When URS executes these
extensions, it returns events back to the instance of logic running the SCXML document that
requested the action.

Route Flow Control Blocks

Composer Help 674

End Parallel Block
This block works with the Begin Parallel Block to enable the design of multiple threads. Use the End
Parallel block to mark the end of the threads that were started by a matching Begin Parallel block.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 675

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 676

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Entry Block and Variables
Use the Entry block to:

• Set global error (exception) handlers.
• Define global variables for the workflow.

All workflow and callflow diagrams must start with an Entry block, which cannot have any incoming
connections. There are different Entry blocks for routing workflows and voice callflows. The Entry
block is used as the entry point for a main workflow or subworkflow (subroutine). Composer throws a
validation message if the Entry block is missing or more than one is added.

The Entry block defines the initial entry state for interactions, all global state variables, and the
datamodel. In the SCXML code for the workflow, all subsequent blocks are added as child states
inside the Entry block’s state. This allows the event handlers in the Entry block to act as global event
handlers for the entire workflow. Any events not caught at the local level (for individual blocks) are
caught at the global level by the Event handlers in the Entry block.

The Entry block global variables define the State for the application and are maintained as the
<datamodel> in the SCXML engine. The Back End block provides a Pass State property to pass state
information to the Server side.

An Entry block user-defined variable can be used to access the results of a Stored Procedure call
specified in a DB Data block for both voice and routing applications. Note: Outlinks starting from the
Entry block cannot be renamed or assigned a name through the Properties view.

The Entry block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Use this property to define which exceptions or events to handle at the Entry block. This block
contributes a state in the generated SCXML code that is a parent state for all blocks in a Workflow.

Route Flow Control Blocks

Composer Help 677

This allows an event received for any of the workflow blocks to be handled at the Entry block.

1. Click opposite Exceptions under Value. This brings up the button.

2. Click the button to bring up the Exceptions dialog box. The sample below shows the dialog with
with the interaction.deleted event selected.

Starting with 8.1.410.14, a resultof guard condition check is now made when processing eServices/
child interactions. The Entry block interaction.deleted event handlers are updated with the following
guard conditions:

• Current interaction deletion.
• The interaction.deleted event is from an interaction deletion and not from a detach operation.

_event.data.interactionid == system.InteractionID && (!_event.data.resultof ||
_event.data.resultof == 'deletion')

3. Click Add to add new exceptions to the list of handled exceptions.
4. For each exception, specify a unique name and an exception event. Also see handling eServices

Switchovers.

• Name--Composer uses the name of the exception to label the outport.
• Event--Use to select the specific exception event.
• Condition--The guard condition for this exception, which you define in Expression Builder. The

exception is selected only if the condition evaluates to true.

Route Flow Control Blocks

Composer Help 678

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/EServicesFailovers
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/EServicesFailovers

• Target--If true, an exception port is created and the user can connect it to the block this exception
will transition to when it is executed. If false, the exception will not cause a change in the state
configuration when it is executed. The executable content contained in the exception will still be
executed, so the exception will function as a simple exception event handler.

• Body--(optional) Executable scxml code that will be executed when this event is received and any
specified condition evaluates to true. This code is executed before any other blocks that are
connected as this exception's event handlers.

5. When done with the dialog box, click OK.

You can also find general information on the Exceptions property under Common Properties.

Variables Property

You have the option of defining application variables in the Entry block (Application variables can also
be defined outside the Entry block via the toolbar). Variable descriptions entered in the Entry block
are visible when selecting the variable for use in other blocks, such as the Assign block. Composer
supports passing variables between a workflow and sub-workflow. To view variables:

1. In the Properties tab, click opposite Variables under Value to display the button.
2. Select Project, System, or User Variables.
3. Click the arrow to display the selected type. An example System Variables dialog box is shown below.

Route Flow Control Blocks

Composer Help 679

The Entry block lists all the variables associated with the workflow. Composer supports the following
types of variables for workflow diagrams in the Entry block:

• Predefined system variables, which cannot be edited or deleted, but applications can modify their
values.

• Project variables local to the diagram file.
• Input variables, which are only used for Subroutines. These are user-defined and should be passed

from the main diagram to the called Subroutine diagram file.

Starting with 8.1.410.14 you can:

• Invoke the Entry Block variables dialog when a property is selected in the Properties view using ALT+V.
• Enable Composer to automatically declare variables in a Main callflow to match input/output variable

Route Flow Control Blocks

Composer Help 680

names in Sub-callflows and automatically perform the mapping. For more information, see the auto
synchronization option in Diagram Preferences.

Also see:

• The DB Data Common Block, Column Names and Records Variable properties.
• The User Data Block, Variable Naming section.

Restore System Variables Default Values

Projects created in earlier versions of Composer may throw runtime errors due to incorrectly
initialized system variables after upgrading to Composer 8.1.3. This was due to changes in how
system variables are stored and handled in 8.1.3. To resolve this, the Entry block Variables dialog
contains a button to restore system variables to default values. This can be used to reset variables
and fix initialization. However, this also removes any custom values set in system variables. After
resetting system variables, these custom values will need to be set again.

When upgrading to 8.1.4+ versions from prior 8.1.300.58 versions, make sure the workflow diagram
Entry Block System variables have the latest default values. If not, workflow diagram file validation
generates a warning message in the Problems view: System variables have non-default values. To
restore the System variables to Composer-supplied default values, open the Entry Block > Variables
dialog and use the Restore system variables default values button to reset the system variables.

Defining Variables

Important! When defining a variable name, the name:

• Must not start with a number or underscore.
• May consist of letters, numbers, or underscores.

When you define and initialize a variable that is expected to be played as a date later on in the
workflow, define the value using the following format: yyyyymmdd. Example: MyDate=20090618.
You must use this format; Composer does not perform any conversions in this case. When you define
and initialize a variable that is expected to be played as a time later on in the workflow, define a 12
hour-based value using the following format: hhmmssa or hhmmssp. Examples: MyTime=115900a or
MyTime=063700p. Define a 24 hour-based value using the following format: hhmmssh Example:
MyTime=192000h. You must use this format; Composer does not perform any conversions in this
case. Default Application Variables See the Variables: Project and Workflow topic. Adding a New
Variable To add a new variable in the Application Variables dialog box:

1. Click Add. Composer add a row for variable and generates a temporary name and number; for
example: var7.

2. Select the row and supply the Name, Type, Value, and Description fields.
3. Click OK.

Variable Name You can use the Variable name field for either of the following purposes:

Route Flow Control Blocks

Composer Help 681

• To enter the name of a new variable.
• To change the name of an existing variable. To do this, select an existing variable from the list of

variables. The variable's name appears in the Variable box, and you can the change its value in the
Value box.

Excluded Characters The Variable name field will not accept the following special characters:

• less-than sign (<)
• greater-than sign (>)
• double quotation mark ()
• apostrophe (‘)
• asterisk (*)
• ampersand (&)
• pound (#)
• percentage (%)
• semi colon (;)
• question mark (?)
• period (.)
• all characters that are considered ECMAscript operators; example: "-"

The variable Value field will not accept the following special characters:

• less-than sign (<)
• greater-than sign (>)
• double quotation mark ()
• apostrophe (‘)
• ampersand (&)
• plus sign (+)
• minus sign (-)
• asterisk (*)
• percentage (%)

Condition Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 682

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Refactoring Variables

Starting with Composer 8.1.450.33, when you rename a variable in the Entry block's Application
Variables dialog and click OK, a new refactoring dialog is displayed as follows:

thumb|center|300px

The refactoring dialog displays the other impacted instances of the variable you are renaming.
Previously, when a variable was refactored, Composer displayed validation error messages to notify
users to change the variable name in other impacted blocks, only when the particular diagram was
validated. This new feature allows users to select variables to be refactored in the different impacted
blocks of a diagram when they rename any variable in the Entry block.

• Select the instances that you want to refactor and click OK. The selected variables are refactored. If you
close the refactoring dialog before the process completes, the operation is cancelled.

Important
If you do not want to refactor the any of the listed instances through the dialog, click
Cancel and then click OK on the confirmation dialog to update the variables manually.

• Once the process is completed, a confirmation dialog is displayed.

Route Flow Control Blocks

Composer Help 683

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

• If any errors are encountered during the process, a dialog listing the exceptions is displayed. You can
revert any changes using the Revert option on this dialog.

Important
Refactoring does not automatically save the diagram file. The diagram file must be
saved manually.

Note: For variables that you do not select from the refactoring dialog, Composer generates validation
error messages (after diagram validation) to notify users to manually change those variables' names
in the impacted blocks.

The following objects are not considered while refactoring:

• VXML Form Block (in Callflows)
• SCXML State Block (in Workflows)
• ECMA Script Block (in Workflows)
• Script Block (in Callflows)
• Project Variables in Workflow Diagrams
• Root Document Variables in Callfow Diagrams

Important
This feature is enabled by default. To turn it off, deselect the Enable Variable
Refactoring option under Preferences > Composer Diagram.

Route Flow Control Blocks

Composer Help 684

Exit Block Routing
Use to terminate the workflow or to return control back to calling workflow in case of a subworkflow
(subroutine). Every strategy flow must have at least one Exit block (multiple Exit blocks are allowed,
such as when using the Branching block). Composer generates a validation message if an Exit block
is missing. If a workflow does not perform target selection and reaches the Exit block, the call is
default routed to the default destination in Configuration Server, which is a configured DN. For more
information, see option default_destination in the Universal Routing 8.1 Reference Manual. The
Exit block has the following properties:

Name Property

The Name property is present in all blocks in Composer. The Name property is the first property for all
blocks.

• Use the Value field beside in the Name property row of the block's property table to name the block.
Block names should conform to ECMAScript and SCXML identifier naming conventions, and they are
limited to a maximum of 255 characters.

• Names may consist only of numbers, letters, or initial underscores (_).
• Names should only begin with a letter or underscore.
• Names can end only with a letter or a number.
• Except for the Entry and Exit blocks, you should give all blocks a descriptive name. For example, if an

Input block asks the caller to input an account number, then the name of the block could be
Input_Account_Number.

• The name of the block is used as the Name of the <form> tag that gets generated for that block.

To provide a name for a block:

1. Select the Name row in the block's property table.
2. In the Value field, type a block name that conforms to the restrictions above.

Block Notes Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 685

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.
Can be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event (IPD (Event property) to initialize InteractionId, or not define an event at all.
For scenarios with an interaction (IPD Diagram/Event=interaction.present for example), you may
keep the default value for the Interaction ID property. The default value is the system variable
InteractionId, which is initialized automatically in this case. For other scenarios (any scenario
where the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Return Values Property

This property is visible only for subworkflows. Use to specify the variable(s) whose value(s) will be
returned once the Exit block is executed. To select return variables:

1. Click the Return Values row in the block's property table.

2. Click the button to open the Return Values dialog box.

Route Flow Control Blocks

Composer Help 686

3. Select individual variables, or click Select all or Deselect all as needed.
4. Click OK to close the Return Values dialog box.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Single Session Treatments

When using the Play Application, Play Sound (Music and ARM Types) Exit, and Disconnect blocks,
voice applications can now optionally use a single VXML session on Media Control Platform to play/
run multiple treatments instead of using one session per treatment. This enables DTMF buffering
between multiple MSML treatments. For more information, see Single Session Treatments.

Route Flow Control Blocks

Composer Help 687

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Response Block
The Response block works with the <response> Action Element, an Orchestration Server extension,
which can be used in SCXML code. For more information, see the Orchestration Server Developer’s
Guide, Core Extensions, Web Services Interface, Action Elements, <response> Action Element.

Use the Responses block to send a response to a request-based event from an external application to
the Orchestration Platform.

In summary, the Response block:

• Waits for and responds to a particular request sent to Orchestration Server's HTTP interface.
• Responds to a particular request that was received earlier and referenced by its _sendid.
• Supports a timeout capability to transition out if no request is received within a specified time range.
• Reads parameters from the request.
• Specifies parameters in the response.

Name Property

Find this property's details under Common Properties for Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Exceptions Property

This property provides the ability to define a set of exceptions handled by this block. Find more detail
under Common Properties.

Condition Property

Find this property's details under Common Properties for Workflow Blocks.

Route Flow Control Blocks

Composer Help 688

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Web_Services_Interface

Logging Details Property

Find this property's details under Common Properties for Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Workflow Blocks.

Event Property

Use this optional property to store the content of the request (JSON data) in a variable. Click the
down arrow and select a variable. The default value is system.ANI set in the Entry block, Variables
property.

Request ID Property

Use requestid to create an expression identifying the request to which the Response block is going to
reply. Expression Builder will show _event.sendid representing the request that was received earlier.
The default value is _event.sendid where _event is the last event received by this session.

Requests Property

When this property is specified, the Response block will block the application execution (or the
parallel leg of the application it belongs to) until one of the specified events is received and the
(optional) associated condition expression returns true. The Request ID Property should be assigned
to its _event.sendid default value.

Parameters Property

Use this property to specify parameters and values for the response to the external request.

1. Click the Parameters row in the block's property table.

2. Click the button to open a dialog box and ExpressionBuilder for configuring the parameters and
values for the response to the external request.

Route Flow Control Blocks

Composer Help 689

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/EntryBlockRouting#Variables_Property
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Web_Services_Interface

Result Property

Use the Result property to create a string which will represent the result code associated with the
response to the external request. For more information see the Orchestration Server Developer's
Guide, Action Elements, resultcode.

Type Property

Use the Type property to specify whether the response to the external request is positive or negative.
For more information, see the Orchestration Server Developer's Guide, Action Elements, type.

Timeout Property

Use this property to select a variable containing a timeout value, which will be used to transition out
if no request is received within a specified time range or keep the default of 30 (added starting with
8.1.440.18).

This property supports the following:

• Literal integer value. For example: Timeout=4 & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with integer value. For example: Timeout=Variable(4) & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with string value. For example: Timeout=Variable('6') & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'6s'"/>.

• Variable with string value including unit. For example: Timeout=Variable('6ms') & Unit=second
<send event="'WaitEvent1.wait.timeout'" delay="'6ms'"/>. In this case, the unit specified in the
variable is used instead of the static property unit.

Unit Property

Use this property to specify the units for the Timeout property.

Enable Status Property

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later.

Route Flow Control Blocks

Composer Help 690

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Web_Services_Interface
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Web_Services_Interface

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 691

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Log Common Block
Use a Log block to record information about an application. For example, you can log caller-recorded
input collected while an application is running or error messages. You can use the Log block for any of
the following purposes:

1. Informational – To log the application specific data
2. Error – for logging error details
3. Warning – to flag any warnings
4. Debug – for debugging

The categories in the Log Level property correspond to the above.

When used for a callflow, the Log block writes the log to the Genesys Voice Platform logs (Media
Control Platform) using the VoiceXML <log> tag.

The Log block has the following properties:

The Log block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

For callflows, invalid ECMAScript expressions may raise the following exception events:
error.semantic. For workflows, invalid ECMAScript expressions may raise the following exception
events:

• error.log.ReferenceError

Route Flow Control Blocks

Composer Help 692

• error.illegalcond.SyntaxError

• error.illegalcond.ReferenceError

You can use custom events to define the ECMAScript exception event handling.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Label Property

This property applies to workflows only. It provides meta-data for the logging details.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 693

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Looping Common Block

Use this block to iterate over a sequence of blocks multiple times in the following scenarios:

1. Iterate over a sequence of blocks based on a self-incrementing counter (FOR).
2. Iterate indefinitely until an exit condition is met (WHILE).
3. Iterate over records/data returned by the DB Data block (CURSOR/FOREACH). Also, populate variables if

variables mapping is defined.
4. Iterate over data returned by Context Services blocks (FOREACH). Also, populate variables if Variables

Mapping is defined.
5. Iterate over JSON Array defined in the application.

For scenarios 1 and 2 above, use the Looping block with a reference to the block retrieving the data.
Scenarios 3 and/or 4 can be used in conjunction with 1 or 2, in which case the loop will exit when
either of the exit conditions is met.

Prerequisite

You must perform the following steps in order for the Looping block to be used to iterate over data
returned by the DB Data block:

1. Create a folder named Scripts in the Project folder.
2. In the Entry block, specify a value for the Scripts property such as ../include/DBRecordSetAccess.js

The Looping block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Route Flow Control Blocks

Composer Help 694

Counter Initial Value Property

A Counter variable controls the number of loops. Specify the initial value by entering a positive
integer (including zero) or selecting the variable that contains the initial value. Composer will
increment the Counter variable after each iteration. The value of the Counter variable is available
after the looping has exited. This is a mandatory property if the Counter Variable property is
specified.

Counter Variable Property

Enter a name for the variable used to store the Counter value or select the variable that contains the
name. This is a mandatory property if the Counter Initial Value property is specified.

Current Record Variable Property

Select a variable to be used to store the current record when iterating over records. Composer will
assign the current record after each iteration. This property is ignored if the Data Source Property is
not set

Data Source Property

Specify a block reference to the DB Data or a Context Services block (with Variables Mapping
support) that provides the data to be iterated or select the variable that contains a JSON Array. This is
a mandatory property if Counter Initial Value and Counter Variable are not specified.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Counter Max Value Property

Specify the maximum value by entering a positive integer greater than the initial value or selecting
the variable that contains the maximum value. When the Counter variable reaches the maximum
value, then the block connected to the Exit port is executed. This is a mandatory property if the
Counter Variable property is specified or if the Data Source property is not specified.

Route Flow Control Blocks

Composer Help 695

Exit Expression Property

This property is optional. If specified, prior to each iteration the exit expression is evaluated. If true,
the flow goes out via the Exit port of the block. This condition is used in conjunction with max records
(if Data Source is specified) or Counter Max Value (if Counter Variable is specified). To enter an exit
expression

1. Opposite the Exit Expression property, click under Value to display the button.

2. Click the button to open Expression Builder. For examples of how to use Expression Builder, see the
Expression Builder topic.

3. Create the exit expression and click OK.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 696

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Using the Looping Block (Counter-based without a Data Source)

1. Add a Looping block and connect the previous block outport to the Looping block.
2. Connect the Next outport to the sequence of connected blocks.
3. Connect the outport of the last block in the sequence in step 2 back to the looping block to form a loop.
4. Connect the Exit outport of the looping block to the block(s) to continue processing after the loop has

exited. The diagram when a looping block is used should appear as follows:

FOR loop: To iterate over the PromptCounter block 10 times, the following properties are set:

• Counter Initial Value is 1.
• Counter Variable Name is Variable(MyCounterVariable).
• Counter Max Value is 10.

WHILE loop: To iterate over the PromptCounter block until a condition is satisfied, the following
property is set:

• Exit expression is loginSuccessful != true.

Route Flow Control Blocks

Composer Help 697

Using the Looping Block with a DB Data/Context Services Block

1. Add a Looping block and connect the DB Data/Context Services block outport to the Looping block.
2. Connect the Next outport to the sequence of connected blocks.
3. Connect the outport of the last block in the sequence in step 2 back to the looping block to form a loop.
4. Connect the Exit outport of the looping block to the block(s) to continue processing after the loop has

exited. The diagram when a looping block is used should appear as follows:

CURSOR/FOREACH loop: To iterate over the PromptColumn1 block for each record returned by the
DBData1 block, the following property is set:

• Data Source = Block Reference (DBData1)

This example assumes variables were mapped for Column1 in DB Data1. If variables were not
mapped, then another Assign block would be needed to store the value into a variable and the
variable is then specified in the PromptColumn1 block.

Route Flow Control Blocks

Composer Help 698

Raise Event Block
Use the Raise Event block for Composer to throw custom events. You specify the event name and a
message, which is selection of a dynamic variable. It is a terminating block (can end an application
instead of an Exit block). Orchestration Server 8.1.2+ versions are required for Raise and Cancel
Event blocks.

Also see CustomEvents.

The Raise Event block has the following properties:

• The Raise Event block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Delay Property

Enter the timeout or select a variable. Maps to send delay.

Enter a value or select a variable. Examples are shown below using Timeout. This property supports
the following:

• Literal integer value. For example: Timeout=4 & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with integer value. For example: Timeout=Variable(4) & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with string value. For example: Timeout=Variable('6') & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'6s'"/>.

• Variable with string value including unit. For example: Timeout=Variable('6ms') & Unit=second
<send event="'WaitEvent1.wait.timeout'" delay="'6ms'"/>. In this case, the unit specified in the
variable is used instead of the static property unit.

Route Flow Control Blocks

Composer Help 699

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

Unit Property

Select seconds or milliseconds for the delay. Maps to <send delay>.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Event Property

Maps to send event. Enter a value or select a variable.

Parameters Property

Add a list of key-values. Maps to <param>.

Enable Status

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later.

Route Flow Control Blocks

Composer Help 700

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 701

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

SCXML State Block
Use to write custom SCXML code for Composer to include in the SCXML document that it generates
based on the workflow diagram. The SCXML State block has the following properties:

Name Property

Click under Value and enter the block name. Composer will use the name to identify the block in the
diagram and as the state name in the SCXML code.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Use to configure the exception nodes, with each port being hooked up to an event configured by you
and selectable using Add Custom Event. Find this property's details under Common Properties.

Body Property

This property contains all the executable content of the <state> element (<onentry>, <onexit>,
<final>, …).

1. Click opposite Body under Value. This brings up the button.

2. Click the button to bring up the Configure Body dialog box.

Route Flow Control Blocks

Composer Help 702

3. Enter the executable content of the <state> element. . All content (children) of the state are editable.
You also have the option of adding code to <onentry> and <onexit>.

4. When through, click OK. Note: The editor does not validate against the SCXML schema.

Transitions Property

Use this property to add additional outports (transitions) using the block's custom Transitions dialog.

1. Click opposite Transitions under Value. This brings up the button.

2. Click the button to bring up the Configure Transitions dialog box.
3. Click Add. The dialog box now appears as shown below.

Route Flow Control Blocks

Composer Help 703

4. For each transition, specify at least one name, event, condition, or target (you are not required to
complete all three fields). An output port is created for every transition

• Name--Composer uses the name of the transition to label the outport.
• Event--Use to select the event that will trigger this transition.
• Condition--The guard condition for this transition. The transition is selected only if the

condition evaluates to true.
• Target--If true, an output port is created and the user can connect it to the block this

transition will transition to when it is executed. If false, the transition will not cause a change
in the state configuration when it is executed. The executable content contained in the
transition will still be executed, so the transition will function as a simple event handler.

If a target is set, an outport for that transition will appear and you can connect it to other blocks. If a
target is not set, an outport for that transition does not appear; in this case, you can add some
SCXML code to handle the event. When through in the dialog box, click OK.

Condition Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 704

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Using the SCXML State Block

The sample below demonstrates one way of using the SCXML State block to:

1. Register an Agent-DN (Needed in order to send a Logoff request)
2. Logoff Request for an Agent
3. Unregister the Agent-DN

Below is an example diagram using the SCXML State block and example code. If you do not have the
Agent information, retrieve it from the Configuration Database with FindCfgObjURS. Register the
Agent, make the Agent not ready, and then log out the Agent, all using the URS trek function. The
details of this function can be found by the http request—for example:

http://< urs host>:< urs http port>/urs/help/misc/trek

where the http port is defined in the URS options section http. Also you must enable this method by
setting methods to all in the same section.

Route Flow Control Blocks

Composer Help 705

For this example, create the following Project variable: vursFetchReqID.

[+] Restrictions, Disclaimer and Copyright Notice
Any authorized distribution of any copy of this code (including any related documentation) must
reproduce the following restrictions, disclaimer and copyright notice:

The Genesys name, the trademarks and/or logo(s) of Genesys shall not be used to name (even as a
part of another name), endorse and/or promote products derived from this code without prior written
permission from Genesys Telecommunications Laboratories, Inc.

The use, copy, and/or distribution of this code is subject to the terms of the Genesys Developer
License Agreement. This code shall not be used, copied, and/or distributed under any other license
agreement.

THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Copyright © 2008—2016 Genesys Telecommunications Laboratories, Inc. All rights reserved.

Route Flow Control Blocks

Composer Help 706

[+] Example SCXML Code
<onentry>

<script>
var KVPs = 'number:' + '704' + '|tenant:' + system.TenantName +

'|switch:' + _genesys.ixn.interactions[system.InteractionID].location.media_server;
var vLocalParms = [2, KVPs];
var ursFunc = 'urs/call/' +

_genesys.ixn.interactions[system.InteractionID].voice.connid + '/func/FindConfigObject';
</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "params" expr="uneval(vLocalParms)" />
</session:fetch>

</onentry>

Transitions:

Event: session.fetch.done
Condition: _event.data.requestid == vursFetchReqID
Body: (if you want the data to be in JSON form)

var vEventData = _event.data.content.toString();
vEventData = vEventData.replace(/[.]/g, ",");
vEventData = vEventData.replace(/\\u000a/g,"");
vEventContent = JSON.parse(vEventData);

Results will be:

vEventContent =
{

dbid:159,
type:1,
number:"704",
name:"",
switchdbid:103,
switch:"SipSwitch",
tenantdbid:101,
tenant:"orchestration",
annex:{TServer:["true"]}

}

Event: error.session.fetch
Condition: _event.data.requestid == vursFetchReqID
Body: (whatever you want to do if an error happens)

trekRegister:

<onentry>
<script>
var ursFunc = 'urs/trek/exec';

</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "switch" expr="'SipSwitch'"/>
<param name= "thisdn" expr="'704'" />
<param name= "event" expr="'RequestRegisterAddress'" />

</session:fetch>
</onentry>

Transitions:

Route Flow Control Blocks

Composer Help 707

Event: session.fetch.done
Condition: _event.data.requestid == vursFetchReqID
Body: (if you want the TEvent data to be in JSON form)

var vEventData = _event.data.content.toString();
vEventData = vEventData.replace(/[.]/g, ",");
vEventData = vEventData.replace(/\\u000a/g,"");
vEventContent = JSON.parse(vEventData);

Results will be:

vEventContent =
{

event:"EventRegistered",
AddressType:1,
AddressInfoType:8,
AddressInfoStatus:1,
AgentID:"704",
ThisDN:"704",
AgentWorkMode:0,
ReferenceID:53,
TimeinSecs:1461257507,
TimeinuSecs:61000,
return:"ok",
Extensions:
{

AgentStatus:2,
AgentStatusTimestamp:1461257264,
AgentStatusReliability:0,
AgentLoginTimestamp:1461257264,
AgentLoginReliability:0,
AgentSessionID:"7MQNHM3BJ15RN2NS1ABJKTUT0K00006G",
AgentWorkMode:0,
status:0,
EmulateLogin:"true"

}
}

Event error.session.fetch – handled as in first example.

trekNotReady:

<onentry>
<script>
var ursFunc = 'urs/trek/exec';

</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "switch" expr="'SipSwitch'"/>
<param name= "thisdn" expr="'704'" />
<param name= "event" expr="'RequestAgentNotReady'" />

</session:fetch>
</onentry>

trekLogout:

<onentry>
<script>
var ursFunc = 'urs/trek/exec';

</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "switch" expr="'SipSwitch'"/>
<param name= "thisdn" expr="'704'" />
<param name= "event" expr="'RequestAgentLogout'" />

Route Flow Control Blocks

Composer Help 708

</session:fetch>
</onentry>

Route Flow Control Blocks

Composer Help 709

Subroutine Block
Use the Subroutine block to create reusable sub-modules (sub-workflows). You can invoke external
SCXML documents or use a sub-workflow created using Composer. The input and output parameters
names will be automatically picked from the sub-workflow created by Composer. Composer supports
passing variables between a workflow and sub-workflow.

Also see Using Composer Shared Subroutines.

Important
Starting with Composer 8.1.3 versions, the callflow diagram Subdialog block and the
workflow diagram Subroutine block use absolute paths with the Project name to refer
to the location of the selected resource in the Workspace, e.g., workspace:///WFM/
Workflows/subroutine.workflow. Renaming or copying Projects requires a manual
update to change the Project name in the Subroutine and Subdialog blocks.

Creating a Subroutine Using A Sub-Workflow

1. Create the main workflow diagram file using New > Other > Composer > Workflow diagram >
Main Workflow.

2. After designing the main workflow diagram, create the sub-workflow diagram using New > Other >
Composer > Workflow diagram > Sub-Workflow.

3. In the Entry Block of the sub-workflow diagram, enter the parameters, which will be passed as input
from the main to the sub-workflow diagram.

4. Design the sub-workflow diagram.

Route Flow Control Blocks

Composer Help 710

5. In the Exit block of the sub-workflow diagram, select the variables, which will be returned back to the
called main diagram.

6. In the main diagram, use the Subroutine Block to call the newly created sub-workflow and the input and
output parameters. For input/output synchronization, use the Uri property of the Subroutine block to
select the sub-workflow diagram.

Now the Parameters property can be used for the Parameter Synchronization. The main diagram
implicitly parses the sub-workflow parameters and lists them in the Parameter settings dialog as
shown below.

Route Flow Control Blocks

Composer Help 711

7. Define the value for the input type variables and collect the returning output type variables in a
variable.

The Subroutine block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Uri Property

The Uri property specifies the destination (URL or Composer Project) depending on the value of the
Type property. To set a URL destination for the Uri property (Type property is set to URL):

1. Select the Uri row in the block's property table.
2. In the Value field, type a valid URL. Variables should not be selected as all subroutines are fetched by

Orchestration Server before it starts executing the application at which time variables do not exist.

To set a Project destination for the Uri property (Type property is set to ProjectFile):

1. Click the Uri row in the block's property table.

Route Flow Control Blocks

Composer Help 712

2. Click the button to open the Uri dialog box.
3. Select a workflow in the list.
4. Click OK to close the dialog box.

Type Property

The Type property sets the type of the invoked subroutine. There are two options:

• URL--The invoked sub-workflow can be found at the location specified in the Uri property.
• ProjectFile--The invoked sub-workflow is another workflow in the Project.

To select a value for the Type property:

1. Select the Type row in the block's property table.
2. In the Value field, select URL or ProjectFile from the drop-down list.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Parameters Property

Use the Parameters property to specify parameters to pass to the invoked sub-workflow. To specify

Route Flow Control Blocks

Composer Help 713

parameters: The URI field must contain a value.

1. Click the Parameters row under Value.

2. Click the button to open the Subroutine Input Output Parameters dialog box.
3. Click the Add button to enter parameter details.
4. In the Parameter field, accept the default name or change it.
5. From the Type drop-down list, select input, output, or inout:

input Input parameters are variables submitted to the
sub-workflow.

output
Output parameters are variables that the sub-
workflow returns and will be reassigned back to
the current workflow.

input/output Inout parameters are parameters that act as both
input and output.

6. In the Expression drop-down list, select from among the variables shown, type your own expression, or
click the button to use Expression Builder.

7. In the Description field, type a description for this parameter.
8. Click Add again to enter another parameter, or click OK to finish.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 714

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

User Data Block
You can use in a routing application to update an interaction's User Data and for attaching Business
Attributes, Categories and Skills. Corresponds to function _genesys.ixn.setuData under Functions in
the Orchestration Developer's Guide and available in Expression Builder. This block generates
ECMAScript inside an SCXML state and does not rely on External Service Protocol via
<session:fetch>. For manually attaching categories to an interaction, the User Data block can be
used and then a Branching block can be (optionally) used to segment interactions to different logical
branches based on the different categories. Important! See Mandatory User Data For UCS Blocks.

Important Notes

• Do not assign the value of a variable named data to a key-value pair. This will not work since the
generated code also declares a variable named data.

• When the Wait for Event property is set to true and User Data blocks are used in both the parallel legs,
use Internal Key Prefix to reliably verify the user data attachment.

The User Data block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Assign Data Property

This property specifies one or more key-value pairs to add to the interaction’s User Data. To specify
key-value pairs, click in the Value column to display the button and click it to bring up the
dialog. Data from various sources can be attached as well as free form key value pairs can be
specified (Default). However, note that only one category can be used in a block. Switching
categories will erase previously specified values.

Route Flow Control Blocks

Composer Help 715

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/InteractionIntf#Functions

UserData1.gif

1. Default This option can be used to specify both the key name and the key value as literals or variables.

Note: In case the key or value contains special characters that may require encoding e.g. '<', '-', or
quotes, define a variable and set its value to this literal and use the variable as the value.

2. Business Attributes This picks up specific business attributes and if connected to Configuration
Server, shows a list of values configured for these attributes.

3. Skills One or more skills can be specified. If connected to Configuration Server, a list of skills is shown.

4. Categories This option requires an active connection to Configuration Server and supports attaching
categories defined in Configuration Server as well as Relevancy for the category. Relevancy is a
number from 1 to 100 that reflects the minimum relevance percentage that each classification
category must have in order for Classification Server to consider an interaction as belonging to that
category.

Click the Add button to add a key-value pair of the selected type. When done, click Ok to dismiss the
dialog and Save the diagram.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Route Flow Control Blocks

Composer Help 716

Exceptions Property

Find this property's details under Common Properties.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.
Can be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an InteractionId property. Instead, when ORS started processing
an interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event to initialize InteractionId, or not define an event at all. For scenarios with an
interaction (IPD Diagram/Wait For Event=interaction.present for example), you may keep the
default value for the Interaction ID property. The default value is the system variable InteractionId,
which is initialized automatically in this case. For other scenarios (any scenario where the system
variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 717

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Internal Key Prefix

Starting with 8.1.420.14, Composer attaches an internal key along with the configured user data.
When the Wait for Event property is set to true and User Data blocks are used in both parallel legs,
use Internal Key Prefix (the Show Advanced Properties button) to reliably verify the user data
attachment. The value of the internal key is the time stamp of the application change. This key is
used internally to verify whether the interaction.udata.changed event has been received. If
parallel User Data blocks are used in a workflow, the internal keys might mismatch, which leads to a
timeout of User Data blocks. You can configure the internal key prefix either directly through this
property or through variables. The configured value will be attached as a prefix to the existing
Composer-generated internal key; for example:
Composer_<Internal Key Prefix>_internal_key = <timestamp>

Important
Use the Internal Key Prefix only when setting user data from two parallel legs and
waiting for confirmation in both legs.

Wait For Event Property

This property allows you to choose whether to wait for the user data changed event before
transitioning to the next block.

1. Click Wait for Event under Property.
2. Under Value, select one of the following:

• True
• False

Timeout Property

Select the variable that contains the timeout value for the user data change event. This property
supports the following:

• Literal integer value. For example: Timeout=4 & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with integer value. For example: Timeout=Variable(4) & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with string value. For example: Timeout=Variable('6') & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'6s'"/>.

• Variable with string value including unit. For example: Timeout=Variable('6ms') & Unit=second
<send event="'WaitEvent1.wait.timeout'" delay="'6ms'"/>. In this case, the unit specified in the

Route Flow Control Blocks

Composer Help 718

variable is used instead of the static property unit.

Route Flow Control Blocks

Composer Help 719

Wait Event Block
Use to have ORS transition out when one of the defined events is received and the associated
condition is true. The Wait block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Event Property

Enter a value or select the variable that contains the data associated with the event that makes ORS
transition out.

Transitions Property

Use this property to define the events/condition pairs that makes ORS transition out. ORS does not
need all the events in the list to occur in order to transition out, but only one of them. The condition
is optional. If not set, it behaves as if condition was true (ORS transitions out of the block). To specify
events/condition pairs:

1. Click the Transitions row in the block's property table.

2. Click the button to open the Configure Transitions dialog box.
3. Click Add to add an entry.
4. Enter the Event.
5. Click under Conditions.

6. Click the button to use Expression Builder to define the conditions.

Route Flow Control Blocks

Composer Help 720

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Timeout Property

Select the variable that contains the timeout value or keep the default of 30 (added in 8.1.440.18). If
the timeout expires before one of the targets is available, the interaction is routed to the error port (if
the Exception property is configured for the block). This property supports the following:

• Literal integer value. For example: Timeout=4 & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with integer value. For example: Timeout=Variable(4) & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with string value. For example: Timeout=Variable('6') & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'6s'"/>.

• Variable with string value including unit. For example: Timeout=Variable('6ms') & Unit=second
<send event="'WaitEvent1.wait.timeout'" delay="'6ms'"/>. In this case, the unit specified in the
variable is used instead of the static property unit.

Unit Property

Select the unit of measure for the timeout.

Route Flow Control Blocks

Composer Help 721

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Route Flow Control Blocks

Composer Help 722

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Routing Blocks
The table below summarizes the Routing blocks.

Cancel Removes a route request from a queue and from
target consideration.

Default Route Instructs URS to route a voice interaction to the
default destination.

Queue Interaction Places an a non-voice interaction into an existing
queue.

Force Route
Force Universal Routing Server to route the
interaction to the first target type without any
other operations.

Query Queries the status of a route request.

Single Step Transfer

Use this block for both voice and multimedia
interactions to force Universal Routing Server (URS)
to route the interaction to the first target type (ACD
Queue, Destination Label, or Routing Point) without
any other operations.

Route Interaction Routes a non-voice interaction to one or more
target objects.

Routing Rule
Selects routing rules that currently exist in the
Configuration Database, such as those created with
Interaction Routing Designer.

Stop Interaction Requests Interaction Server to stop processing an
interaction.

Target
Routes a voice interaction to a target. Can be used
for percentage and/or conditional routing using
threshold expressions.

Update Updates the criteria associated with an outstanding
submit request.

Ideal Agent Block Routes to the most ideal agent to handle an
interaction when more than one is available.

Also see:

• Percent and Conditional Routing
• Statistics Manager and Builder.

Routing Blocks

Composer Help 723

Cancel Block
Use the Cancel block to remove a route request from a queue and from target consideration. Can be
used for both voice and multimedia interactions. For more information, see the Orchestration Server
Developer’s Guide, Queue Interface, Action Elements, <cancel> Action Element.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 724

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable system.ANI. If the
queue is present, then all outstanding requests are cleared from the defined queue. The interactionid
attribute is only used in conjunction with the queue attribute and is only needed when your
application is handling multiple interactions. For more information, see the Orchestration Server
Developer’s Guide, Queue Interface, Action Elements, <cancel> Action Element, Interactionid.

Request ID Property

Specify either:

• a variable holding the request ID of an outstanding queuing request;
• or a Target/Route Interaction block (Block Reference)

Queue Property

Optional. To specify a queue:

1. Click under Value to display the button.
2. Click Add to open the Configure Queue dialog box. Do one of the following:

• If you are connected to Configuration Server, select Configuration Server. Select the
queue from the Value field. This is the queue containing the route request to be cancelled.
Queues listed here were previously defined with the Interaction Queue block.

• Select Literal and enter the name of the queue in the Value field.
• Select Variable and select the variable that contains the value.

3. Click OK.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Routing Blocks

Composer Help 725

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

Default Routing Block
Instructs URS to route the interaction to the default destination, as specified by the default DNs at
the Routing Point or by the URS configuration option default_destination. When you use the Default
Route block in a strategy, it sends the interaction to that destination. Once set this will be applicable
for the entire duration of the strategy unless overridden by a Default Routing block in the workflow
execution.

The Default Route block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements referenced in the Orchestration Server wiki.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.

Can be used for interaction-less processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction.

Background: Previous to 8.1.1, Composer did not expose an Interaction ID property. Instead, when
ORS started processing an interaction, a generated SCXML application automatically initialized the

Routing Blocks

Composer Help 726

system variable, InteractionId. This variable was then used internally by Routing and certain
eServices blocks when interacting with ORS.

With the introduction of support for Interaction-less processing, you can now define a specific event
(IPD Diagram Wait_For_Event_Property) to initialize InteractionId, or not define an event at all.

For scenarios with an interaction (IPD Diagram/Wait For Event=interaction.present for example), you
may keep the default value for the Interaction ID property. The default value is the system variable
InteractionId, which is initialized automatically in this case.

For other scenarios (any scenario where the system variable InteractionId is not set), you may choose
to:

1. Not use blocks that require an Interaction ID.
2. And/or set the Interaction ID property to a meaningful value.
3. And/or assign a meaningful value to the InteractionId system variable.

Detach Property

Controls whether the Orchestration Platform should <detach> an interaction from the current session
before routing to the specified targets. When this property is set to true, the interaction is detached
from the current session.

Note: A Project properties option, Interaction Detach, in the Orchestration Options dialog can
generate the detach attribute in the <ixn:redirect> tag in the Routing blocks. See Detaching
Interactions from Sessions.

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 727

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Pass Context Property

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (that is the new orchestration session started to handle the
interaction after it was redirected to an other routing point) to request the context of the originating
session. After the processing for this block is over, the originating session is blocked until the
destination session actually reads the context. The context consists of the system and user variables.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Routing Blocks

Composer Help 728

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Force Route Block
Use this block for both voice and multimedia interactions to force Universal Routing Server (URS) to
route the interaction to the first target type (ACD Queue, Destination Label, or Routing Point) without
any other operations. The interaction is then routed unconditionally, i.e., URS does not check the
status of the destination. Warning! Force should always be thought of as a last plan of action and
therefore used infrequently. The Force Route block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Destination Property

Use this property to specify the forced routing destination. The property also supports specifying a
Resource type, which allows you to specify key-values. Find this property's details under Common
Properties.

Exceptions Property

Find this property's details under Common Properties.

From Property

A value expression, which returns the address that this interaction is to be redirected from. Set this
property to the variable DNIS for voice interactions, or to the variable InteractionID for multimedia
interactions. Composer will automatically set this property to DNIS or to InteractionID when the
Destination property is set (respectively) to a Target Block or to a Route Interaction block. When the
Destination property is not assigned a Block Reference value, you must select the appropriate From
value.

1. Click under Value to display the button.

Routing Blocks

Composer Help 729

2. Click the button to open the From dialog box.
3. Select one of the following:

• Literal. For Value, you can specify:

• An agent: <agent id>
• A place: <place id>
• A DN: <number>
• An e-mail address: <username>@<host> or _origin or _origin.all or _udata
• A customer number: <dn number>
• A target format addresses: <Target DN>

See the Orchestration Server Documentation Wiki for those literals that apply to multimedia
interactions only.

• Variable. If the variable contains a string, see Literal above. If the value is a JSON object,
Value can refer to:

• An agent: {agent: <agent id>, type:A}
• An agent group: {agent: <name>, type:AG}
• A place: {place: <place id>, type:AP}
• A place group: {place: <name>, type:PG}
• A DN: {dn: <number>, type:Q or RP or DN, switch:<switch name>}
• An interaction queue: {id: <q name>, type:iq }
• A workbin: {id: <wb name>, type:wb<owner>}
• A customer number: {dn: <number>}
• A target format addresses: Resource object from the queue.submit.done event (the

Target Block Resource Selected property).

See the Orchestration Server Documentation Wiki for those literals that apply to multimedia
interactions only.

• Configuration Server to select the from Switch//DN if connected.

• Resource to select a resource using properties that will form a JSON object.

See the Orchestration Server Documentation Wiki.

4. Click OK to close the From dialog box.

Routing Blocks

Composer Help 730

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for interaction-less processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event IPD Wait_For_Event property to initialize InteractionId, or not define an event
at all. For scenarios with an interaction (IPD Diagram/Wait For Event=interaction.present for
example), you may keep the default value for the Interaction ID property. The default value is the
system variable InteractionId, which is initialized automatically in this case. For other scenarios (any
scenario where the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Routing Blocks

Composer Help 731

Detach Property

Controls whether the Orchestration Platform should <detach> an interaction from the current session
before routing to the specified targets. When this property is set to true, the interaction is detached
from the current session.

Note: A Project properties option, Interaction Detach, in the Orchestration Options dialog can
generate the detach attribute in the <ixn:redirect> tag in the Routing blocks. See Detaching
Interactions from Sessions.

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

Type Property

Use to define the type of redirection processing that is to be done. For more information and
individual values, see the Orchestration Server Documentation Wiki.

Enable Status Property

Find this property's details under Common Properties.

Pass Context Property

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (that is the new orchestration session started to handle the
interaction after it was redirected to an other routing point) to request the context of the originating
session. After the processing for this block is over, the originating session is blocked until the
destination session actually reads the context. The context consists of the system and user variables.

Routing Blocks

Composer Help 732

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Force Routing to an External Number

Scenario: When force routing and doing a single-step consult to a routing point, where an external is
dialed.

If you get these error messages:

expr='Error message: Cannot get link and/or device from call'. ‘invalid source”

Check that the system.ThisDN variable has the right value when it reaches the Force Route block.

Routing Blocks

Composer Help 733

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Queue Interaction Block
Use this block to place a multimedia (non-voice) interaction into an existing queue created with the
Interaction Queue block. The generated SCXML code instructs Universal Routing Server to request
Interaction Server to move the current interaction into the specified queue. You can select an existing
interaction queue from within this block or specify a variable that contains the name of an interaction
queue. You can also send an interaction to a queue in another IPD within the same Project. The
selected interaction queue appears as a Queue Reference block in the interaction process diagram.
Important Note! Each interaction path in a workflow for multimedia interactions should end with one
of these blocks: Stop Interaction, Queue Interaction, or Route Interaction. Also see information on the
App Terminate Ixn On Exit variable.

Use Case

The logic of a routing workflow may determine some attributes of an interaction, such as by looking
at the Subject line of an inbound e-mail, and then use different interaction queues as a method of
segmenting these different types of interactions. You could use the Branching block for this purpose.
The Queue Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 734

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Interaction Queue Name Property

Use this property to specify the queue where the interaction is to be placed.

1. Click under Value to display the button.
2. Click the button to open the Interaction Queue dialog box. Your dialog box may include existing IRD

business processes with associated interaction queues underneath.
3. Select an interaction queue to which the incoming interaction has to be sent.
4. Click OK.

Starting with Release 8.1.410.14, you can use a queue defined in referenced Projects. For more
information, see AddingQueues.

Starting with Release 8.1.440.18, the Interaction Queue property supports selecting a queue
dynamically through a variable. The selected variable will be used in the generated code in the
destQueue variable 'id' option. Example:

<state id="_reserved_QueueInteraction1_redirect">
<onentry>

<script>
var destQueue = {'type':'IQ','id':var0};

</script>
<ixn:redirect detach="true"

requestid="App_QueueInteraction1['requestid']" interactionid="system.InteractionID"
from="system.InteractionID" to="destQueue"/>

</onentry>
</state>

Routing Blocks

Composer Help 735

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event (IPD Diagram Wait For Event property) to initialize InteractionId, or not define
an event at all. For scenarios with an interaction (IPD Diagram/Wait For Event=interaction.present for
example), you may keep the default value for the Interaction ID property. The default value is the
system variable InteractionId, which is initialized automatically in this case. For other scenarios (any
scenario where the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Detach Property

Controls whether the Orchestration Platform should <detach> an interaction from the current session
before queueing it. When this property is set to true, the interaction is detached from the current
session.

Note: A Project properties option, Interaction Detach, in the Orchestration Options dialog can
generate the detach attribute in the <ixn:redirect> tag in the Routing blocks. See Detaching
Interactions from Sessions.

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

Routing Blocks

Composer Help 736

Pass Context Property

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (that is the new orchestration session started to handle the
interaction after it was redirected to an other routing point) to request the context of the originating
session. After the processing for this block is over, the originating session is blocked until the
destination session actually reads the context. The context consists of the system and user variables.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Routing Blocks

Composer Help 737

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Query Block
Use the Query block to query the status of a route request. Can be used for both voice and
multimedia interactions. For more information, see the Orchestration Server Developer’s Guide,
Queue Interface, Action Elements, <query> Action Element.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 738

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

Request ID Property

Request ID is an input parameter. Specify either:

• a variable holding the request ID of an outstanding queuing request;
• or a Target/Route Interaction block (Block Reference)

Expected Wait Time Property

Select a variable to contain the expected wait for the route request. Also see:

• Expected Wait Time
• Login Size
• Position in Queue
• Request ID
• Total Size
• Queue Poll Rate

Login Size Property

Select the variable to contain the number of agents logged in currently targeted for the route request
(you must have URS 8.1.3+). The selected variable will be populated with the respective output value
obtained from the operations described in the Expected Wait Time property.

Position in Queue Property

Click the down arrow under Value and select the variable to contain the position that the route
request currently has in the queue. The selected variable will be populated with the respective output
value obtained from the operations described in the Expected Wait Time property.

Priority Property (Queue)

To use this optional property, click the down arrow under Value and select the variable, which
contains a value expression returning the current priority of the route request in the queue. For more
information, see http://www.w3.org/TR/scxml/#ValueExpressions.

Routing Blocks

Composer Help 739

Total Size Property

Select the variable to contain the total number of agents that could be targeted for the route request.
The selected variable will be populated with the respective output value obtained from the operations
described in the Expected Wait Time_Property. You must have installed Universal Routing Server
8.1.3+.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Routing Blocks

Composer Help 740

Route Interaction Block
Use this block to route a multimedia (non-voice) interaction to one or more target objects (use the
Target block for voice interactions). You can also route to a target based on the value of a Skill
expression. An interaction process diagram associates routing targets with queues, either interaction
queues or virtual queues. When defining Route Interaction block properties, you have the option of
selecting queues for both the existing interaction and a new outgoing interaction that may be
created. You can also define a new interaction queue from within the block so you don't have to
navigate away. Important Note! Each interaction path in a workflow for multimedia interactions
should end with one of these blocks: Stop Interaction, Queue Interaction, or Route Interaction. Also
see information on the App Terminate Ixn On Exit variable.

Use Case

• An inbound interaction hits a virtual route point, initiating a workflow routing strategy.
• The workflow strategy looks up data for the interaction in the customer database to determine the last

agent who helped this customer and to determine the intent of the customer interaction.
• Next, the workflow sets priority to the interaction based on media type (for example, e-mail or chat) and

customer segment (for example, Gold or Silver). Note: Setting the priority of an interaction is a
Universal Routing Server function that is not directly related to target selection, but is normally done
prior to target selection as a way to segment interactions.

• If the last agent exists, the workflow routes to the agent based on variable, setting a timeout of five
seconds.

• If the last agent used is unavailable (timeout exceeded), the workflow routes to an Agent Group that is
properly skilled to handle this type of interaction.

• There is an Escalation interaction queue configured as an outgoing interaction queue, so the agent can
select this interaction queue from the desktop application in case he cannot handle the interaction
himself and he needs to escalate it.

The Route Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 741

Condition Property

Find this property's details under Common Properties.

Detach Property

Controls whether the Orchestration Platform should <detach> an interaction from the current session
before routing to reserved targets. When this property is set to true, the interaction is detached from
the current session.

Note: A Project properties option, Interaction Detach, in the Orchestration Options dialog can
generate the detach attribute in the <ixn:redirect> tag in the Routing blocks. See Detaching
Interactions from Sessions.

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

Activity Property

Optional. Click the down arrow and select the variable that contains the Activity to be used for
Workforce Management-based routing.

Clear Targets Property

Optional. Select true if targets listed in the object should be retained after the interaction moves on
through the workflow and encounters other Route Interaction object. For more information, see the
Clear Targets description for the voice interaction Target block.

Cut Off Time Property

Optional. Click the down arrow and select the variable that contains the cut-off time (in seconds) that
defines the time window in which a potential target must be assigned to the activity defined in the
Activity property above.

Routing Blocks

Composer Help 742

Enable Status Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Expected Wait Time Property

To use this optional property, click the down arrow under Value and select a variable to contain the
expected wait time that the interaction will be given in the queue. The selected variable will be
populated with the respective output value obtained from the operations described next.

Starting with 8.1.4, the Target block and Route Interaction block provide an integrated mechanism to
playback the estimated waiting time to customers, including defining the playback repeat interval. To
implement this mechanism, the Target and Route Interaction blocks have new properties (variables)
to capture the result of queue.query.done.

• Expected Wait Time
• Login Size
• Position in Queue
• Request ID
• Total Size
• Queue Poll Rate

If any of the above five properties are set, the application does a queue:query after the
queue.submit.requestid.

The queue:query is repeated every x secs until queue.submit.done is received. There is no
additional outport.

The variables used for the five properties can be used in a Busy Treatment block, such as Play
Application. Or you may put the Target block in a parallel leg and use the variables (for example, to
speak the estimate wait time) in another leg.

If the call is distributed right away, then the application is presented an error.queue.query event
(the queue:query is processed after the queue.submit.done). If nothing is done, that unexpected
error will terminate the application. As a result:

• When assigning a variable to any of the above five properties, you will be prompted to automatically
add a target-less exception for error.queue.query.

• Diagram validation will show a warning if one of the five properties is set and no handler is defined in
the Target block (or one of its parents, // or the Entry block).

Routing Blocks

Composer Help 743

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

Hints Property

This property is for use by Orchestration Server. Its use is described in various action elements
referenced in the Orchestration Developer's Guide.

It can be used to specify extension data in Treatment blocks. To do this, use an ECMAScript block to
create an ECMAScript object and assign properties to it. Then specify this object in the Hints property
by selecting the variable whose content is a JSON object. This object is passed to ORS at runtime.

For example, define variable myExtensions and myHints and set them as shown below in an
ECMAScript block.
myExtensions={'NO_ANSWER_TIMEOUT':'10','NO_ANSWER_OVERFLOW':'recall','NO_ANSWER_ACTION':'notready'};
myHints = { ‘extensions’ : myExtensions); Then specify myHints as the value of the Hints
property in the Route Interaction object.

Include Requests from Previous Blocks Property

This property controls whether the block should transition if a target from previous Target block is
selected even though it may not be specified in the current block. Set it to true for cascaded target
lookups. If set to false, the block will wait until a target specified in the current block is selected for
routing.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event IPD Wait_For_Event_property to initialize InteractionId, or not define an
event at all. For scenarios with an interaction (IPD Diagram/Wait For Event=interaction.present for
example), you may keep the default value for the Interaction ID property. The default value is the
system variable InteractionId, which is initialized automatically in this case. For other scenarios
(any scenario where the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Routing Blocks

Composer Help 744

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfEvents#hints_Attribute_Considerations

Logged In Only Property

Select true or false to indicate whether only logged in agents can pull interactions out of this
Workbin. Use to prevent logged out agents from pulling interactions. Selecting true = logged in
agents only.

Logging Details Property

Find this property's details under Common Properties.

Login Size Property

Select the variable to contain the number of agents logged in that can be targeted for the request
(you must have URS 8.1.3+). The selected variable will be populated with the respective output value
obtained from the operations described in the Expected Wait Time property.

Log Level Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Pass Context Property

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (that is the new orchestration session started to handle the
interaction after it was redirected to an other routing point) to request the context of the originating
session. After the processing for this block is over, the originating session is blocked until the
destination session actually reads the context. The context consists of the system and user variables.

Routing Blocks

Composer Help 745

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Position in Queue Property

Click the down arrow under Value and select the variable to contain the position that the interaction
will be given in the queue. The selected variable will be populated with the respective output value
obtained from the operations described in the Expected Wait Time property.

Priority Property (Queue)

To use this optional property, click the down arrow under Value and select the variable, which
contains a value expression returning the priority that the interaction will be given in the queue. For
more information, see http://www.w3.org/TR/scxml/#ValueExpressions.

Priority Property (Target Selection)

To use this optional property, click the down arrow under Value and select the variable, which
contains a value expression returning the priority that the interaction will be given during target
selection.

Queue Poll Rate Property

Select the variable to contain how frequently the block will poll for latest values and populate
selected variables.

Queue for Existing Interaction Property

Optional. To specify a queue for an existing interaction:

1. Click under Value to display the button.
2. Click Add to open the Queue for Existing Interaction dialog box. Do one of the following:

• If you are connected to Configuration Server, select Configuration Server.
Select the interaction queue from the Value field. This is the interaction queue to which the
incoming interaction has to be sent.
Queues listed here were previously defined with the Interaction Queue block.

• Select Literal and enter the name of the interaction queue in the Value field.
• Select a variable (introduced in 8.1.420).

3. Click OK.

Routing Blocks

Composer Help 746

Queue for Outgoing Interaction Property

Use to create a new interaction. Only one new interaction may be created. The agent must close the
existing interaction with no further processing allowed.

1. Click under Value to display the button.
2. Click Add to open the Queue for Outgoing Interaction dialog box. Do one of the following:

• If you are connected to Configuration Server, select Configuration Server.
Select the interaction queue from the Value field. This is the interaction queue to which any
new interaction generated has to be sent. For example, the agent might create a new e-mail
to a supervisor as a result of handling another interaction. Queues listed here were
previously defined with the Interaction Queue block.

• Select Literal and enter the name of the interaction queue in the Value field.
• Select a variable (introduced in 8.1.420).

3. Click OK.

Request ID Property

Set to a meaningful value or keep the default value, which is the system variable system.ANI. The
selected variable will be populated with the respective output value obtained from the operations
described in the Expected Wait Time property.

Route Property

Use this property to set the SCXML <queue:submit> route attribute.

1. Click under Value to display the button.

2. Click the button to open the Route dialog box.
3. Select one of the following:

• Variable. Then for Value, select the variable that contains either True (default) or False.
• Literal. Then for Value, enter either True or False.

When set to false, the functional module will not attempt to route the associated interaction.

Statistic Property

Optional. If you wish to route based on the value of a statistic:

Routing Blocks

Composer Help 747

1. Click under Value to display the button.

2. Click the button to open the Statistic dialog box.
3. Select one of the following:

• Literal. For Value, you can write in a URS-predefined statistic or a custom statistic
created with Statistics Builder.

• Variable.
• Configuration Server to select a statistic. In order to select a statistic, you must be

connected to Configuration Server and have set the option to use URS Predefined
statistics.

4. Click OK when through in the dialog box.

The URS predefined statistics are described in the Universal Routing 8.1 Reference Manual.

The statistic you select is used by Universal Routing Server to determine which target to route the
interaction to if more than one target is available. After defining a complete set of available agents
(taking agent capacity rules into consideration, if configured), URS applies the selection criteria
specified in the Target block, which can include using the minimum or maximum value of the statistic
(see Statistics Order property).

Statistics Order Property

Optional. This property can work with the Statistics property. Select Max or Min to specify whether
the interaction should be routed to the target with the maximum or the minimum value of the
statistic.

Target Component Selected

Select a variable containing the agent-level target to which the interaction was routed or should be
routed to definitively.

• If the target specified in <submit> and selected for routing is of type Agent, Place, Queue, or
Routing Point, this contains the target itself.

• If the desired target type is Agent Group, Place Group, or Queue Group, the function returns the
agent, place, or queue from the corresponding group to which the interaction was sent.

The target format is Name@StatServerName.Type. The selected variable will be updated with the
target information after receiving a queue.submit.done.

Target Deviation From Ideal Agent

New with 8.1.410.14. Select a variable to hold the result of calling the Universal Routing Server (URS)

Routing Blocks

Composer Help 748

TargetListSelected function to calculate a value indicating an agent target's deviation from ideal
agent to handle an interaction. When the property is assigned to a variable, Composer makes a call
to URS right after getting queue.submit.done:

'urs/call/@' + system.InteractionID + '/func/TargetListSelected?params=[]'

URS returns a string similar to the sample below:

return:ok|dn:7001|rdn:7001|switch:SIP_Switch|agent:KSippola|place:SIP_Server_Place1|target_location:Stat_Server|stat_value:0|cost.type:X

If the Set Ideal Agent block is used before the Route Interaction block, the URS reply includes a
mismatch key-value pair. The below sample was obtained with: SetIdealAgent[Billing > 6] and
the target with Skill Billing == 5).

return:ok|dn:7001|rdn:7001|switch:SIP_Switch|agent:KSippola|place:SIP_Server_Place1|target_location:Stat_Server|stat_value:0|mismatch:2|cost.type:X

In this sample, the Target Deviation From Ideal Agent variable is assigned the (integer) value (i.e., 2)
of the mismatch key-value pair when available, undefined otherwise.

Target Object Selected

Select a variable containing the high-level target (one that you specify in a <submit>) to which the
interaction was routed or should be routed to definitively. If a skill expression is used, the function
returns: ?:SkillExpression@statserver.GA or
even ?GroupName:SkillExpression@statserver.GA. The target format is
Name@StatServerName.Type. The selected variable will be updated with the target information after
receiving a queue.submit.done.

Target Queue Selected Property

Select a variable containing the DN and the switch name of the target to which the interaction was
routed or should be routed to definitively. The selected variable will be updated with the target
information after receiving a queue.submit.done.

Total Size Property

Select the variable to contain the total number of agents that can be targeted for the request. The
selected variable will be populated with the respective output value obtained from the operations
described in the Expected Wait Time_Property. You must have installed Universal Routing Server
8.1.3+.

Routing Blocks

Composer Help 749

https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills#Calculating_the_Deviation_From_Ideal
https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills#Calculating_the_Deviation_From_Ideal
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/IdealAgentBlock

Targets Property

Use this property to specify routing targets and for percentage or conditional routing.

1. If you have not already done so, connect to Configuration Server.
2. Opposite the Targets property, click under Value.
3. Click the ... button. The Targets dialog box opens.

The figure above shows the dialog box when Min or Max is selected for the Statistics Order property. In this case, a Stat Server
column appears. If you select Percentage for the Statistics Order property, a Weight column appears instead of a Stat Server
column (see Statistics Order property above).

4. Click Add in the Targets dialog box.
5. Click under Type to display a down arrow.
6. You can route based on various criteria. Click the down arrow and select the target Type (defined in

Genesys Administrator): Agent, AgentGroup, LCA, Place, PlaceGroup, Skill, List object or Variable. At

Routing Blocks

Composer Help 750

runtime, the application reads the key-value pairs in the targets section. The name part of the key-
value pair can be used at your convenience. Only the value part of the key-value pair is read by the
application and must be defined as indicated under <targetid> in the Orchestration Developer's Guide,
Parameter Elements. For example, a valid value is: ksippo@.A

7. Click under Name to display to bring up a dialog box. Targets of the selected Type appear for selection.
8. Select the name of routing target and click OK. You have the option to add another target.
9. If applicable, select a Stat Server. Or, if you selected Percentage for the Statistics Order property,

enter the Weight column.
10. Starting with 8.1.440.18, you can check agent availability in the Route Interaction block before

executing <queue:submit> by selecting true for Check Agent Availability. This "skip targets"
feature can improve the efficiency of finding an agent by enhancing or relaxing the target criteria
without waiting until the routing timeout is reached in the Route Interaction block. If multiple/mixed
target types are used in the dialog, the skip target-enabled target types will take precedence and will
cause Route Interaction block execution to be skipped if no agent is available. In this case, a warning
message appears stating that the Route Interaction block uses different target types with skip targets
enabled.

11. The Route Interaction block adds a new "Skip Target" outport in the workflow diagram if Check Agent
availability is enabled for one of the target types in the block. Note: This feature is not supported for
the following target types: List Objects, Skill expressions, and Variables.

12. Starting with 8.1.440.18, you also have the option of using the threshold functions for conditional
routing. You can use Threshold to define additional conditions the target must meet to be considered as
valid routing target. Click the button under Threshold to open Expression Builder where you can create
a threshold expression. See Creating Threshold Expressions in the Target block topic. Threshold is not
supported for the following target types: List Objects and Variables.

13. Click OK when through in the Targets dialog box.

Important
The option of routing an interaction to the last called agent (LCA) is available only
from release 8.1.510.12

Timeout Property

Optional. Enter an integer to specify the time in seconds an interaction waits for an available target
or keep the default of 90 (added in 8.1.440.18). If the timeout expires before one of the targets is
available, the interaction is routed to the error port (if the exception property is configured for the
block).

Virtual Queue Property

Optional. A virtual queue a logical queue, not a physical queue. Interactions can be queued to a
virtual queue if the specified targets are unavailable. To select a virtual queue.

Routing Blocks

Composer Help 751

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Parameter_Elements

1. Click under Value to display the button.

2. Click the button to open the Virtual Queue dialog box.
3. Select an Alias, Switch, and Number. For more information on these fields, start with the Framework

Configuration Manager Help.
4. Click OK.

Workbin Property

Use this property if you wish to route this interaction to an agent workbin. To select a workbin:

1. Click under Value to display the button.

2. Click the button to open the Workbin Properties dialog box.
3. Select a workbin previously defined with the Workbin block.
4. Optional. Click the Show Unpublished Workbins box.
5. Click OK.

Starting with 8.1.440.18, Composer adds support for dynamic Workbin selection.

• Composer adds variable support in Route interaction Block, Workbin property.
• A new Workbin Type property is added.
• You can use variables in the Route Interaction block Targets property when the Workbin property is

used.

Workbin Type Property

This property, added in 8.1.440.18, works along with the Workbin property. See the Workbin property
above. Select one of the following from the dropdown: Agent, Agent Group, Place, Place Group.

• If a Workbin block object is selected in the Workbin property, this property is auto-populated with the
Workbin Block Owner property value.

• If a variable is selected in the Workbin property, you can edit the Workbin Type property to set the
corresponding Owner type.

Routing Blocks

Composer Help 752

Routing Rule Block
Note: The Routing Rule block does not create routing rules. Instead, you select routing rules that
currently exist in the Configuration Database, such as those created with Interaction Routing
Designer as described in the Universal Routing 8.1.x Reference Manual.

Routing rules specify the method of target selection for voice interactions. Composer supports using
the following types of routing rules:

• Load Balancing
• Percentage
• Statistics

The Routing Rule block has the following properties:

Name Property

Find this property's details under Common Properties. Enter the name of the Routing Rule block for
the workflow. The name of the routing rule in the Configuration Database is entered in the Rule Name
property below.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 753

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Pass Context Property

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (that is the new orchestration session started to handle the
interaction after it was redirected to an other routing point) to request the context of the originating
session. After the processing for this block is over, the originating session is blocked until the
destination session actually reads the context. The context consists of the system and user variables.

Rule Name Property

Use this property to specify the routing rule name.

1. Click under Value to display the button.

2. Click the button to open the Rule Name dialog box.
3. From the Type dropdown menu, select Literal, Variable, or Configuration Server

• If you select Literal, enter the name of an existing routing rule exactly how it appears in the
Configuration Database. In Configuration Manager, Routing Rules are stored in the
Transactions folder.

• If you select Variable, select the name of the variable that contains routing rule.
• If you select Configuration Server and are connected, existing routing rules appear for

selection based on the Rule Type property entry. Select a routing rule.

4. Click OK to close the dialog box.

Rule Type Property

Click the down arrow under Value and select one of the following:

Routing Blocks

Composer Help 754

• Load Balancing—Use to distribute voice interactions to Universal Routing Server (URS) queues
according to statistic StatEstimatedWaitTime as described in the Universal Routing 8.1 Reference
Manual.

• Percentage—Use to distribute voice interactions to targets based on a set percentage for each target.
When this criterion is used, every target must be supplied with a non-negative integer percentage.

• Statistics—Use to route voice interactions. It uses a routing rule so that URS can obtain the values of
defined statistics for targets from Stat Server.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.

Can be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction.

Background: Previous to 8.1.1, Composer did not expose an InteractionId property. Instead, when
ORS started processing an interaction, a generated SCXML application automatically initialized the
system variable, InteractionId. This variable was then used internally by Routing and certain
eServices blocks when interacting with ORS.

With the introduction of support for Interaction-less processing, you can now define a specific event
(IPD Event Property) to initialize InteractionId, or not define an event at all.

For scenarios with an interaction (IPD Diagram/Event=interaction.present for example), you may
keep the default value for the Interaction ID property. The default value is the system variable
InteractionId, which is initialized automatically in this case.

For other scenarios (any scenario where the system variable InteractionId is not set), you may
choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Detach Property

Controls whether the Orchestration Platform should <detach> an interaction from the current session
before routing the interaction. When this property is set to true, the interaction is detached from the

Routing Blocks

Composer Help 755

current session.

Note: A Project properties option, Interaction Detach, in the Orchestration Options dialog can
generate the detach attribute in the <ixn:redirect> tag in the Routing blocks. See Detaching
Interactions from Sessions.

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Routing Blocks

Composer Help 756

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Set Ideal Agent Block
Starting with Composer release 8.1.410.14, workflow diagrams add a Set Ideal Agent block to the
Routing palette, which allows you to select the most ideal agent to handle an interaction when more
than one agent is available. You can also use this functionality to select the most ideal interaction
when there is more than one interaction competing for the same agent. The Composer Set Ideal
Agent block invokes the Universal Routing Set Ideal Agent functionality described in Using Agent
Skills for Ideal Agent Selection.

This block has two specific Set Ideal Agent properties: Interaction ID (default:
system.InteractionID) and Target (provides support for Skill Expression Builder).

Important
In order to use this block, you must have installed Universal Routing Server release
8.1.400.22 or later.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties. The error.session.fetch exception is supported.

Condition Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 757

https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills
https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Action_Elements

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable
system.InteractionID. Can be used for interaction-less processing for scenarios where the
InteractionId variable is not automatically initialized, but instead must wait for an event. An example
would be an SCXML application triggered by a Web Service that does not add an interaction.

ORS Extensions Property

Starting with release 8.1.4, Composer blocks used to build routing applications (with the exception of
the Disconnect and EndParallel blocks) add a new ORS Extensions property.

Enable Status Property

Find this property's details under Common Properties.

Target Property

Use this property to specify a skill expression.

1. If you have not already done so, connect to Configuration Server.

2. Opposite the Target property, click under Value to display the button.

3. Click the button. Expression Builder opens with Target selected and available Skills listed below.
4. Construct a skill expression to select the ideal agent as described in Using Agent Skills for Ideal Agent

Selection.

[+] Set Ideal Agent Code Sample

Routing Blocks

Composer Help 758

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions
https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills
https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills

<state id="SetIdealAgent">
<onentry>

<log expr="_sessionid + ': Inside Set Ideal Agent Block: SetIdealAgent'" />
<script>var skillexpr = ["Billing >10"];</script>

<session:fetch requestid="App_SetIdealAgent['requestid']" srcexpr="'urs/call/@' +
system.InteractionID + '/func/SetIdealAgent'" timeout="30" method="'urs'">

<param name= "params" expr="uneval(skillexpr)" />
</session:fetch>

</onentry>
<transition event="session.fetch.done"

cond="_event.data.requestid==App_SetIdealAgent['requestid']" target="$$_MY_PREFIX_$$.Exit1">
<log expr="'Composer Application:default Block: SetIdealAgent'" />
<log expr="'Session FETCH DONE'" />
<script>storeEvent("SetIdealAgent", _event);</script>

</transition>
</state>

Routing Blocks

Composer Help 759

Single Step Transfer Block
Use this block for both voice and multimedia interactions to force Universal Routing Server (URS) to
route the interaction to the first target type (ACD Queue, Destination Label, or Routing Point) without
any other operations. The interaction is then routed unconditionally, i.e., URS does not check the
status of the destination. Warning! Force should always be thought of as a last plan of action and
therefore used infrequently. The Force Route block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Destination Property

Use this property to specify the routing transfer destination. Find this property's details under
Common Properties.

Exceptions Property

Find this property's details under Common Properties.

From Property

A value expression, which returns the address that this interaction is to be redirected from. Set this
property to the variable DNIS for voice interactions, or to the variable InteractionID for multimedia
interactions. Composer will automatically set this property to DNIS or to InteractionID when the
Destination property is set (respectively) to a Target Block or to a Route Interaction block. This
property also supports a Resource type,which allows you to specify key-values. For additional
information, see the Force Route Block.

Routing Blocks

Composer Help 760

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Interaction ID Property

This property specifies the ID of the Interaction to detach from this ORS session. Set to a meaningful
value or keep the default value, which is the system variable InteractionId. Find more details under
Common Properties.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Detach Property

Use for multi-site routing. Controls whether the Orchestration Platform should <detach> an
interaction from the current session before routing to the specified targets. When this property is set
to true, the interaction is detached from the current session.

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

Routing Blocks

Composer Help 761

Pass Context

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (that is the new orchestration session started to handle the
interaction after it was redirected to an other routing point) to request the context of the originating
session. After the processing for this block is over, the originating session is blocked until the
destination session actually reads the context. The context consists of the system and user variables.

Pass Context Timeout

This property can be passed a positive integer value or a variable. This is the maximum time to wait
(in seconds) for the destination session to read the originating session's context.

Enable Status Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 762

Stop Interaction Block
Use this block to send a request to Interaction Server to stop processing an interaction. This results in
an notification to Universal Contact Server, or to a third party server, that processing for this
interaction is finished. You can also:

• Select a reason code (configurable through Configuration Manager or Genesys Administrator), which is
attached to the interaction.

• Indicate that the interaction should be deleted from the Universal Contact Server database.

Important Note! Each interaction path in a workflow for multimedia interactions should end with
one of these blocks: Stop Interaction, Queue Interaction, or Route Interaction.

Also see information in App_Terminate_Ixn_On_Exit variable.

Use Case

• A customer support engineer is using Siebel to track customer support tickets. After a specific ticket is
updated by the engineer, an action that he takes in Siebel triggers a Siebel workflow.

• That workflow initiates an event that generates, using the Genesys Open Media API, an interaction
process diagram, which in turn, triggers a routing workflow.

• The workflow specifies that an e-mail should be created.
• The workflow specifies that the e-mail should be sent to the customer, from a Customer Support e-mail

address, copying specific interested parties.
• If the process of sending the e-mail fails for any reason, the e-mail can be queued to a different queue

(for example, so it can be manually reviewed and perhaps the customer will be notified by phone
instead).

• If the process of sending out the e-mail is successful, the workflow would specify that the processing of
the interaction should be stopped, and will provide the appropriate reason. This information will be part
of a notification that is provided to Universal Contact Server or to a third party server.

The Stop Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 763

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Notify Property

Use this property to select a Universal Contact Server or third party media server to notify about the
stop processing action.

1. Click under Value to display the button.
2. Click the button to open the Notify dialog box.
3. Under Notify, you have the option of checking the box to delete the interaction from Universal Contact

Server Database.
4. Click one of the following buttons: Notify UCS or Notify Third Party Server.

Routing Blocks

Composer Help 764

5. Under Details:

If you selected Notify Third Party Server:

• Opposite Application Type, click the down arrow to select the type in the Configuration
Database. See the Application Type note below.

• Opposite Application Name, click the button. In the resulting Notify dialog box, select
Literal if you wish to manually enter the name. Select Configuration Server if you wish to
select it from the Value field.

• Opposite Service, click the button to enter the type of notification service for the third
party server.

• Opposite Name, click the button to enter the name of the notification service for the
third party server.

If you selected Notify UCS, select the Application Name of the Universal Contact Server. The
remaining fields are disabled.

Note on Application Type

The supported Application Type names are:

• ChatServer
• ClassificationServer
• ContactServer,
• EmailServer
• GenericClient
• GenericServer
• ThirdParyApp
• ThirdPartyServer

Interaction Server treats any connection in its Connections list as an ESP server, except some well
known types, like DBServer, Stat Server, T-Server, and URS. Any new Application Type will also be
treated as an ESP server. No special configuration is required.

With Application Name, if there is a connection to it from Interaction Server, then the specific server
will be called (or its backup). If only type is specified, Interaction Server will select any one of the
applications in its Connections list having the specified type. This works fine with specific types, like
E-mail server or Chat Server, but for generic types, there can be multiple different applications with
the same generic type. So to call a generic server, the name must be specified.

Load balancing can still be used. Starting from 7.6.1 ESP server clusters are supported. The cluster
application name (with type ApplicationCluster) can be specified in ESP request. In this case,
Interaction Server will load balance between applications the cluster has connections to. Interaction
Server will also always check that the ESP server supports the required tenant (has it in tenants list)
and will only load balance between ESP servers that support required tenant.

6. Click OK to close the Notify dialog box.

Routing Blocks

Composer Help 765

Use Notify Property

Select true to notify Universal Contact Server or the third party server about the stopping the
processing of the interaction including the reason.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.

Can be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction.

Background: Previous to 8.1.1, Composer did not expose an Interaction ID property. Instead, when
ORS started processing an interaction, a generated SCXML application automatically initialized the
system variable, InteractionId. This variable was then used internally by Routing and certain
eServices blocks when interacting with ORS.

With the introduction of support for Interaction-less processing, you can now define a specific event
(IPD Wait_Event property) to initialize InteractionId, or not define an event at all.

For scenarios with an interaction (IPD Diagram/Wait Event=interaction.present for example), you
may keep the default value for the Interaction ID property. The default value is the system variable
InteractionId, which is initialized automatically in this case.

For other scenarios (any scenario where the system variable InteractionId is not set), you may choose
to:

• Not use blocks that require an Interaction ID
• And/or set the Interaction ID property to a meaningful value
• And/or assign a meaningful value to the InteractionId system variable

Reason to Stop Interaction Property

Use this property to get the stop processing reason code.

1. Click under Value to display the button.
2. Click the button to open the Reason to Stop Interaction dialog box.
3. Opposite Type, select one of the following as the source for the reason code:

• Literal to enter the reason code manually in the Value field.
• Configuration Server to select a predefined reason code as Business Attribute in the Value

field.
• Variable to select a variable for the reason code in the Value field.

Routing Blocks

Composer Help 766

4. Click OK to close the dialog box.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Routing Blocks

Composer Help 767

Target Block
Use to route an voice interaction to a target (use Route Interaction for multimedia interactions). Also
use for percentage routing and conditional routing using the threshold functions.

• See note on excluding agents before Target blocks.

The Target block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Activity Property

Starting with 8.1.410.03, you can specify a Workforce Management Activity for routing and a related
Cut Off Time (see property below) to specify a timeout. Select the variable that contains the WFM
Activity.

Clear Targets Property

Click the down arrow and select true or false (default). If set to true, URS retains the targets listed in
the block are after the interaction moves on through the strategy and encounters other Target blocks.

• This option is only applicable if more than one Target block is used along the same path in the strategy.
It has nothing to do with how agents specified within the block are evaluated for availability. If no
additional Target blocks are included in the path and no agent is available, the interaction is default-
routed. If more than one agent is available, URS uses the statistic specified in the Statistics property to
determine which agent receives the interaction.

• If Clear Targets = false and the current interaction encounters a Target block later in the strategy, the
targets in this block are added to those of the next Target block. If Clear Target = true, the targets are
not added to the list of any Target block that the interaction encounters later in the strategy.

Routing Blocks

Composer Help 768

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ECMAScriptBlock#Excluding_Agents
https://docs.genesys.com/Documentation/WM/latest/SHelp/CfgActvs

For example, assume two Target blocks are used in a strategy with the first Target block configured
with three agents and a timeout of 30 seconds and the second Target block configured with four new
agents and a timeout of 60 seconds. The Clear Targets setting determines which agents are
considered as targets for an interaction.

• Clear Targets = true. In the first Target block, URS waits for 30 seconds for any of the three agents to
become available. If none are available before the timeout expires, the strategy resumes. When the
second Target block is encountered, URS only considers these four new agents as possible targets
during the 60-second timeout. URS does not consider (clears) the first three agents as possible targets.

• Clear Targets = false and none of the agents listed in the first Target block are available. When the
interaction encounters the second Target block, URS considers the first three agents and the four new
agents as possible targets during the 60-second timeout set in this object. If no more Target blocks
follow the second Target block and no agents are available before the timeout expires, the interaction is
routed to the error port.

Condition Property

Find this property's details under Common Properties.

Cut Off Time Property

Starting with 8.1.430.03, you can specify the timeout number of seconds to wait for retrieving an
Workforce Management Activity.
Code generation:

<queue:submit interactionid="system.InteractionID" requestid="App_Target_SCXML['requestid']"
route="false" timeout="20" clearontimeout="false">

<queue:targets>
<queue:activity cutofftime="10" name="varWFMActivity"/>

</queue:targets>
</queue:submit>

Detach Property

Controls whether the Orchestration Platform should <detach> an interaction from the current session
before routing to reserved targets. When this property is set to true, the interaction is detached from
the current session.

Note: A Project properties option, Interaction Detach, in the Orchestration Options dialog can
generate the detach attribute in the <ixn:redirect> tag in the Routing blocks. See Detaching
Interactions from Sessions.

Routing Blocks

Composer Help 769

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

Enable Status Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties. Note: Exceptions for Busy treatment blocks
should be handled in the Target block to which they are connected and not in the Busy treatment
blocks themselves. Busy treatment exceptions are raised as the error.queue.submit exception and
not as exceptions listed in individual treatment blocks.

Expected Wait Time Property

To use this optional property, click the down arrow under Value and select a variable to contain the
expected wait time that the interaction will be given in the queue. The selected variable will be
populated with the respective output value obtained from the operations described next.

Starting with 8.1.4, the Target block and Route Interaction block provide an integrated mechanism to
playback the estimated waiting time to customers, including defining the playback repeat interval. To
implement this mechanism, the Target and Route Interaction blocks have new properties (variables)
to capture the result of queue.query.done. There is also a property (Advanced properties) to configure
the poll period (1 second by default).

• Login Size
• Position in Queue
• Request ID
• Total Size
• Queue Poll Rate

If any of the above five properties are set, the application does a queue:query after the
queue.submit.requestid.

The queue:query is repeated every x secs until queue.submit.done is received. There is no
additional outport.

Routing Blocks

Composer Help 770

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

The variables used for the five properties can be used in a Busy Treatment block, such as Play
Application. Or you may put the Target block in a parallel leg and use the variables (for example, to
speak the estimate wait time) in another leg.

If the call is distributed right away, then the application is presented an error.queue.query event
(the queue:query is processed after the queue.submit.done). If nothing is done, that unexpected
error will terminate the application. As a result:

• When assigning a variable to any of the above five properties, you will be prompted to automatically
add a target-less exception for error.queue.query.

• Diagram validation will show a warning if one of the five properties is set and no handler is defined in
the Target block (or one of its parents, // or the Entry block).

From Property

A value expression, which returns the address that this interaction is to be redirected from. Set this
property to the variable DNIS for voice interactions, or to the variable InteractionID for multimedia
interactions. Composer will automatically set this property to DNIS or to InteractionID when the
Destination property is set (respectively) to a Target Block or to a Route Interaction block. When the
Destination property is not assigned a Block Reference value, you must select the appropriate From
value.

1. Click under Value to display the button.

2. Click the button to open the From dialog box.
3. Select one of the following:

• Literal. For Value, you can specify:

• An agent: <agent id>
• A place: <place id>
• A DN: <number>
• An e-mail address: <username>@<host> or _origin or _origin.all or _udata
• A customer number: <dn number>
• A target format addresses: <Target DN>

See the Orchestration Server Documentation Wiki for those literals that apply to multimedia
interactions only.

• Variable. If the variable contains a string, see Literal above. If the value is a JSON object,
Value can refer to:

• An agent: {agent: <agent id>, type:A}
• An agent group: {agent: <name>, type:AG}
• A place: {place: <place id>, type:AP}

Routing Blocks

Composer Help 771

• A place group: {place: <name>, type:PG}
• A DN: {dn: <number>, type:Q or RP or DN, switch:<switch name>}
• An interaction queue: {id: <q name>, type:iq }
• A workbin: {id: <wb name>, type:wb<owner>}
• A customer number: {dn: <number>}
• A target format addresses: Resource Object from the queue.submit.done event (the

Target Block Resource Selected property).

See the Orchestration Server Documentation Wiki for those literals that apply to multimedia
interactions only.

• Configuration Server to select the from Switch//DN if connected.

• Resource to select a resource using properties that will form a JSON object.

See the Orchestration Server Documentation Wiki.

4. Click OK to close the From dialog box.

Hints Property

This property is for use by Orchestration Server. Its use is described in various action elements
referenced in the Orchestration Developer's Guide.

Include Requests from Previous Blocks Property

This property controls whether the block should transition if a target from previous Target block is
selected even though it may not be specified in the current block. Set it to true for cascaded target
lookups. If set to false, the block will wait until a target specified in the current block is selected for
routing.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Set to
a meaningful value or keep the default value, which is the system variable InteractionId. Find more
details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 772

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfEvents#hints_Attribute_Considerations

Login Size Property

Select the variable to contain the number of agents logged in that can be targeted for the request
(you must have Universal Routing Server 8.1.3+). The selected variable will be populated with the
respective output value obtained from the operations described in the Expected Wait Time property.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Log Level Property

Find this property's details under Common Properties.

Pass Context Property

This property accepts true/false values. When set to true and Detach is also true:

• URL built with the block name is stored into this interaction's user data (user data key name is
'_composer_originating_session') just before detaching the interaction. That URL will be used by the
orchestration destination session (the new orchestration session started to handle the interaction after
it was redirected to an other routing point) to request the context of the originating session. After the
processing for this block is over, the originating session is blocked until the destination session actually
reads the context. The context consists of the system and user variables.

Position in Queue Property

Click the down arrow under Value and select the variable to contain the position that the interaction
will be given in the queue. The selected variable will be populated with the respective output value
obtained from the operations described in the Expected Wait Time property.

Priority Property (Target Selection)

To use this optional property, click the down arrow under Value and select the variable, which
contains a value expression returning the priority that the interaction will be given during target
selection.

Routing Blocks

Composer Help 773

Priority Property (Queue)

To use this optional property, click the down arrow under Value and select the variable, which
contains a value expression returning the priority that the interaction will be given in the queue. For
more information, see [http://www.w3.org/TR/scxml#ValueExpressions http://www.w3.org/TR/
scxml/#ValueExpressions].

Queue Poll Rate Property

Click the Show Advanced Properties button to view. Select the variable to contain how frequently the
block will poll for latest values and populate selected variables.

Request ID Property

Set to a meaningful value or keep the default value, which is the system variable system.ANI. The
selected variable will be populated with the respective output value obtained from the operations
described in the Expected Wait Time property.

Resource Selected Property

Click the down arrow and select the variable that specifies the target resource for the interaction.

Route Property

Use this property to set the SCXML <queue:submit> route attribute. Also see the Use Access Code
property below.

1. Click under Value to display the button.

2. Click the button to open the Route dialog box.
3. Select one of the following:

• Variable. Then for Value, select the variable that contains either true (default) or false.
• Literal. Then for Value, enter either true or false.

When set to false, the functional module will not attempt to route the associated interaction.

Routing Blocks

Composer Help 774

Statistics Property

Optional. If you wish to route based on the value of a statistic:

1. Click under Value to display the button.

2. Click the button to open the Statistic dialog box.
3. Select one of the following:

• Literal. For Value, you can write in a URS-predefined statistic or a custom statistic
created with Statistics Builder.

• Variable.
• Configuration Server to select a statistic. In order to select a statistic, you must be

connected to Configuration Server and have set the option to use URS Predefined
statistics.

4. Click OK when through in the dialog box.

The URS predefined statistics are described in the Universal Routing 8.1 Reference Manual .

The statistic you select is used by Universal Routing Server to determine which target to route the
interaction to if more than one target is available. After defining a complete set of available agents
(taking agent capacity rules into consideration, if configured), URS applies the selection criteria
specified in the Target block, which can include using the minimum or maximum value of the statistic
(see Statistics Order property).

Statistics Order Property

This property can work with the Statistics property.

• Select Max or Min to specify whether the interaction should be routed to the target with the maximum
or the minimum value of the statistic.

• Select to route interactions to targets based on a percentage allocation. This selection causes the dialog
box that opens from the Targets property to display a column where you can specify a percentage for
each target.

Routing Blocks

Composer Help 775

Targets Property

Use this property to specify routing targets and for percentage or conditional routing.

1. If you have not already done so, connect to Configuration Server.

2. Opposite the Targets property, click under Value to display the button.

3. Click the button. The Targets dialog box opens.

Routing Blocks

Composer Help 776

The figure above shows the dialog box when Min or Max is selected for the Statistics Order property. In this case, a Stat Server
column appears. If you select Percentage for the Statistics Order property, a Weight column appears instead of a Stat Server
column (see Statistics Order property above).

4. Click Add in the Targets dialog box.
5. Click under Type to display a down arrow.
6. You can route based on various criteria. Click the down arrow and select the target Type (defined in

Genesys Administrator): Agent, AgentGroup, ACDQueue, Campaign Group, Destination Label,
LCA, Place, PlaceGroup, Queue Group, Route Point, Skill or Variable. At runtime, the application
reads the key-value pairs in the targets section. The name part of the key-value pair can be used at
your convenience. Only the value part of the key-value pair is read by the application and must be
defined as indicated under <targetid> in the Orchestration Developer's Guide, Parameter Elements. For
example, a valid value is: ksippo@.A

7. Click under Name to display to bring up a dialog box. Targets of the selected Type appear for selection.
8. Select the name of routing target and click OK. You have the option to add another target.
9. If applicable, select a Stat Server. Or, if you selected Percentage for the Statistics Order property,

Routing Blocks

Composer Help 777

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Parameter_Elements

enter the Weight column.
10. Starting with 8.1.410.14, you can check agent availability in the Target block before executing

<queue:submit> by selecting true for Check Agent Availability. This "skip targets" feature can
improve the efficiency of finding an agent by enhancing or relaxing the target criteria without waiting
until the routing timeout is reached in the Target block. If multiple/mixed target types are used in the
dialog, the skip target-enabled target types will take precedence and will cause Target block execution
to be skipped if no agent is available. In this case, a warning message appears stating that the Targets
block uses different target types with skip targets enabled.

11. The Target block adds a new "Skip Target" outport in the workflow diagram if Check Agent availability
is enabled for one of the target types in the block. Note: This feature is not supported for the following
target types: List Objects, Routing Points, Destination Labels, Campaign Groups, Skill expressions, and
Variables.

12. Starting with 8.1.440.18, you also have the option of using the threshold functions for conditional
routing. You can use Threshold to define additional conditions the target must meet to be considered as
valid routing target. Click the button under Threshold to open Expression Builder where you can create
a threshold expression.See Creating Threshold Expressions below. Threshold is not supported for the
following target types: List Objects and Variables.

13. Click OK when through in the Targets dialog box.

Important
The option of routing an interaction to the last called agent (LCA) is available only
from release 8.1.510.12

Target Component Selected Property

Select a variable containing the agent-level target to which the interaction was routed or should be
routed to definitively.

• If the target specified in <submit> and selected for routing is of type Agent, Place, Queue, or
Routing Point, this contains the target itself.

• If the desired target type is Agent Group, Place Group, or Queue Group, the function returns the
agent, place, or queue from the corresponding group the interaction was sent to.

The target format isName@StatServerName.Type. The selected variable will be updated with the
target information after receiving a queue.submit.done.

Target Deviation From Ideal Agent

New with 8.1.410.14. Select a variable to hold the result of calling the Universal Routing Server (URS)
TargetListSelected function to calculate a value indicating an agent target's deviation from ideal
agent to handle an interaction. When the property is assigned to a variable, Composer makes a call

Routing Blocks

Composer Help 778

https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills#Calculating_the_Deviation_From_Ideal
https://docs.genesys.com/Documentation/R/8.1.4/Ref/AgentSkills#Calculating_the_Deviation_From_Ideal

to URS right after getting queue.submit.done:

'urs/call/@' + system.InteractionID + '/func/TargetListSelected?params=[]'

URS returns a string similar to the sample below:

return:ok|dn:7001|rdn:7001|switch:SIP_Switch|agent:KSippola|place:SIP_Server_Place1|
target_location:Stat_Server|stat_value:0|cost.type:X

If the Set Ideal Agent block is used before the Target block, the URS reply
includes a mismatch key-value pair. The below sample was obtained with:
SetIdealAgent[Billing > 6</tt>] and the target with Skill <tt>Billing == 5</tt>).

<pre>return:ok|dn:7001|rdn:7001|switch:SIP_Switch|agent:KSippola|place:SIP_Server_Place1|
target_location:Stat_Server|stat_value:0|mismatch:2|cost.type:X

In this sample, the Target Deviation From Ideal Agent variable is assigned the (integer) value (i.e., 2)
of the mismatch key-value pair when available, undefined otherwise.

Target Object Selected Property

Select a variable containing the high-level target (one that you specify in a <submit>) to which the
interaction was routed or should be routed to definitively. If a skill expression is used, the function
returns: ?:SkillExpression@statserver.GA or
even ?GroupName:SkillExpression@statserver.GA. The target format
isName@StatServerName.Type. The selected variable will be updated with the target information after
receiving a queue.submit.done.

Target Selected Property

Select a variable containing the DN and the switch name of the target to which the interaction was
routed or should be routed to definitively. The target format is Name@SwitchName.Type. The selected
variable will be updated with the target information after receiving a queue.submit.done.

Timeout Property

If not specified, validation generates an error.

If not specified, validation generates an error. Enter an integer to specify the time in seconds an
interaction waits for an available target or keep the default of 10 (added starting with 8.1.440.18). If

Routing Blocks

Composer Help 779

the timeout expires before one of the targets is available, the interaction is routed to the error port (if
the exception property is configured for the block).

Upon entering any Target block, if a target was not selected and at least one statistic is not open and
waiting time is 0, URS adjusts waiting time to the maximum specified in URS options
reservation_pulling_time and treatment_delay_time values. This eliminates the possibility of not
routing the first call after URS is started.

Total Size Property

Select the variable to contain the total number of agents that can be targeted for the request. The
selected variable will be populated with the respective output value obtained from the operations
described in the Expected Wait Time_Property. You must have installed Universal Routing Server
8.1.3+.

Type Property

Use to define the type of redirection processing that is to be done. For more information and
individual values, see the Orchestration Server Developer's Guide on the Orchestration Server Wiki.

Use Access Code Property

Set to true to update the DN property of the resource reserved based on routing criteria to include
the access code returned by URS. If true and the Route property is set to false, the resource object
will still be modified even though the Target block will not route the call to the resource.

Use Access Code Setter Property

This property specifies the name of the function to use to update the resource with the returned
access code. By default, this property points to the updateDN(accesscode, dn) function from
include/RouteFeature.js. You can update the provided function so that all Target blocks that use
this function benefit from the update. Or you can provide your own function to implement specific
needs for a specific block.

Use Treatments Property

You can specify Busy treatments that will be executed while waiting for targets to become available.
To enable Busy treatments, set this property to true. Busy treatments are similar to Mandatory

Routing Blocks

Composer Help 780

treatments that you can specify using individual Voice Treatment blocks.

This property provides instructions to Universal Routing Server for handling the interaction before an
eligible target is available to receive it. Treatments (or Busys treatments) are played to callers while
the call is waiting in a queue. You can specify any number of treatments for an interaction. The
waiting interaction receives each treatment for the specified duration, in the specified order.

Any time that URS finds an available target for the call, the previously-started and currently-played
busy treatment (and the entire Busy treatments chain) will be interrupted in favor of routing the call
to a target. Target availability is checked upon starting a treatment, on updates from Stat Server, and
usually every 2 seconds (the value of this time interval is configurable by the URS option
pulse_time).

In order to specify treatments, this property must be set to true. Setting to true displays a new Busy
treatments outport on the Target block. As shown below, you can connect treatment blocks to this
outport that should be used for Busy treatments. Connect the last Busy treatment block back to its
Target block. This indicates the completion of the Busy treatments loop.

Routing Blocks

Composer Help 781

Important
Busy treatment blocks cannot handle exceptions or be used for exception handling.
Diagram validation will check that the loop is completely correctly and that only
appropriate blocks are used for Busy treatments.

Virtual Queue Property

Use this property to define the enabled ACD virtual queue for the tenant. The virtual queue is not a
physical queue but rather a logical queue to which interactions are queued if the specified targets are
not available. Also see the Virtual Queue Selected property, which lets you select a variable. To define
the virtual queue:

1. Opposite the Virtual Queue property, click under Value to display the button.

2. Click the button. The Virtual Queue dialog box opens.
3. Configuration Database are listed for selection. Select a queue.
4. Click OK.

Virtual Queue Selected Property

Select a variable containing a logical queue (Alias) to which interactions are queued if the specified
targets are not available. Also see the Virtual Queue property below, which lets you specify the
queue.

Creating Threshold Expressions

When using the Target block, Targets property, to define a threshold expression, there are two
different cases:

• The threshold expression uses the function(s) sdata, acfgdata, lcfgdata. Composer converts the
expression into a string. At runtime, ORS passes this string to URS. The expression must not contain
variables as URS will not be able to evaluate them. For example:
Threshold=sdata('agtgrp1.GA', 'StatAgentsAvailable') > 12

• The threshold does not contain any occurence of the sdata, acfgdata, lcfgdata. Composer included the
expression as is in the generated SCXML and ORS will evaluate the expression before passing the result
of that expression evaluation to URS. The expression may use variables. For example:

Routing Blocks

Composer Help 782

Threshold=myvar

The variable value may contain occurrences of sdata, acfgdata, lcfgdata functions. For example:

myvar="sdata('agtgrp1.GA', 'StatAgentsAvailable') > 12"

Or Threshold=var1 + var2 where var1="sdata('agtgrp1.GA', 'StatAgentsAvailable') > "
and var2="12"

See Queue Interface Action Elements for more detail.

Routing Blocks

Composer Help 783

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

Update Block
Use the Update block to update the criteria associated with an outstanding submit request. Can be
used for both voice and multimedia interactions. For more information, see the Orchestration Server
Developer’s Guide, Queue Interface, Action Elements, <update> Action Element.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Routing Blocks

Composer Help 784

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

Priority Property

To use this optional property, click the down arrow under Value and select the variable, which
contains a value expression returning the current priority of the update request. For more
information, see http://www.w3.org/TR/scxml/#ValueExpressions.

Request ID Property

Specify either:

• a variable holding the request ID of an outstanding queuing request;
• or a Target/Route Interaction block (Block Reference).

Timeout Property

Keep the detault of 30 (added in 8.1.440.18), or enter a value to be used to update the routing
timeout for the pending queuing request (the initial queueing timeout is usually specified using the
Target block Timeout property or the Route Interaction block Timeout property). For more information,
see the Orchestration Server Developer’s Guide, Queue Interface, Action Elements, <update> Action
Element, timeout.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Routing Blocks

Composer Help 785

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/QueueIntf#Action_Elements

Percent and Conditional Routing
You can also use the Target Block for:

• Percentage routing or for
• Conditional routing using the threshold functions

Percentage Routing

When using the Target Block, If percentage is selected for the Statistics Order property, the Targets
dialog box, which opens from the Targets property, displays a Weight column as shown below.

Here you can enter numbers to specify percentage allocation for each target.

Conditional Routing

Universal Routing Server's threshold functions can be used in the Target block for conditional routing,
such as "share agents by service level agreement routing" as described in the Universal Routing 8.1
Routing Application Configuration Guide. The Targets dialog box, which opens from the Targets
property, displays a Threshold column. Click the button under Threshold to open Expression Builder

Routing Blocks

Composer Help 786

where you can create a threshold expression.

Routing Blocks

Composer Help 787

Routing to the Last Called Agent
Beginning with release 8.1.510.12, Composer supports routing interactions to the Last Called Agent
(LCA), that is, the most recently contacted agent. This is supported for both voice and non-voice
multimedia interactions through the Target block and the Route Interaction block respectively.

When a customer calls a contact center, the agent ID and call time are saved to the customer contact
information in the UCS database. As a result, a future call from the customer can be routed to the
same agent.

Important
The LastCalledAgent_EmployeeID and LCA_EmplID_voice customer profile
attributes are persisted in the UCS database only if the Interaction Workspace option
contact.last-called-agent.<mediatype>.enable is set to TRUE as described here
and is applicable only for inbound and outbound calls, and not for internal calls.

To enable this functionality in Composer, a new target type, LCA, is added to the Targets dialog
accessed through the Targets property in the Target block and the Route Interaction block.

If the last called agent's details are known, users can optionally specify a variable in the Name
column of the Target dialog to directly route to the agent. If no variable is selected in the Name
column, the <session:fetch> action element is used to identify the customer, retrieve the agent
information from the UCS database, and then route to the particular agent.

Routing to the Last Called Agent

Composer Help 788

Important
The other options in the Targets dialog (Stat Server, Check Agent Availability, and
Threshold) are not applicable for the LCA target type.

Important
When LCA is selected as the target type, a script is generated within the target state
as part of code generation to retrieve the last called agent's ID from UCS and is used
as the routing target. If the last called agent is not available, the other targets
specified in the block are attempted.

Routing to the Last Called Agent

Composer Help 789

Voice Treatment Blocks
Busy treatments can be played to callers when all the targets selected by URS are busy and the
interaction is waiting for an available target. You can specify treatments using the blocks below or
use the UseTreatments property.

Also see Single Session Treatments.

Connecting to Busy Treatment Port

The following treatment blocks may be connected to the Busy Treatments port of the Target block
and used as busy treatments: Play Application, Play Sound, Play Message, User Input, Set Default
Route, Pause, Create User Announcement, Delete User Announcement, IVR, and Disconnect. This will
enable you to see all defined busy treatments in the diagram as well as use the Properties view to
configure busy treatments. The table below summarizes the voice treatment blocks.

Cancel Call Use this block to stop a currently running dialog.
Create User Announcement Use this block to record a caller announcement.

Delete User Announcement
Use this block delete an announcement created by
a caller using the Create User Announcement
block.

IVR Use to invoke an interactive voice response (IVR)
unit and connect the interaction to the IVR.

Pause Use to suspend treatment processing for a
specified duration.

Play Application
Use to execute an application (such as a Composer
voice application) or a script on a device, such as
an IVR.

Play Sound

Use to play audio resources of the following type:

• Music
• BusyTone
• FastBusyTone
• RingBack
• RecordedAnnouncement (on Stream Manager)
• Silence

Play Message Use to invoke/play audio or text-to-speech
Announcement treatments.

User Input Use to play a text-to-speech announcement, collect
digits, and (optionally) verify the input digits.

Voice Treatment Blocks

Composer Help 790

Set Default Route Use to set/change the default route number at any
time.

Voice Treatment Blocks

Composer Help 791

Composer Equivalent to IRD Treatment
Composer includes treatment functionality that was previously provided through Genesys Interaction
Routing Designer (IRD). The information below is provided for existing Genesys customers
transitioning to Composer, who are familiar with using IRD's Treatment objects. The Composer Busy
Treatment? column specifies whether the treatment is supported as a busy treatment. If not, it is
only supported as a mandatory treatment.

• Mandatory treatments are those to which an interaction will be subject whether there are any available
targets or not.

• Busy treatments are applied when all the targets selected are busy and the interaction is waiting for an
available target.

Composer
Equivalent

Composer Busy
Treatment? IRD Treatment SCXML Tags Description

Create User
Announcement no Record User

Announcement <dialog:createann>

Records an
announcement
from a user and
associate it with a
specific user.

Delete User
Announcement no Delete User

Announcement <dialog:deleteann>

Deletes an
announcement
created by a caller
using the Create
User
Announcement
treatment.

Disconnect no Cancel Call <dialog:stop>
Disconnect the
caller and end the
call.

IVR yes IVR <dialog:remote>

Invokes an
interactive voice
response (IVR) unit
and connect the
interaction to the
IVR.

Pause yes Pause
<send>
(mandatory)
<pause> (busy)

Suspends
treatment

processing for a
specified duration.

Play Application yes Play application dialog:start

Executes an
application or
script on the IP
device. It is
possible to pass
parameters to the
application and

Voice Treatment Blocks

Composer Help 792

get return values.

Play Message yes Play
announcement dialog:play

Plays an
announcement for
the caller.

Play Message yes Text to speech
dialog:play
<prompts
type=tts>

Generates speech
from text. No
recorded
announcements
can be used.

Play Sound yes Busy dialog:playsound
type="busy"

Connects the
interaction to the
source of a busy
tone. The caller
hears a busy
signal.

Play Sound yes Fast busy dialog:playsound
type="fastbusy"

Connects the
interaction to the
source of a
different busy
tone. The caller
hears a fast busy
signal. This
treatment is
supported on a
limited number of
switches.

Play Sound yes Music dialog:playsound
type="music"

Connects the
interaction to a
music source.

Play Sound yes Ringback dialog:playsound
type="ringback"

Connects the
interaction to a
ringback tone
source.

Play Sound yes Silence dialog:playsound
type="silence"

Specifies an
interval without
sound.

Play Sound yes RAN dialog:playsound
type="ran"

Similar to the
Music object. The
source must be a
RAN port on the
switch. This
treatment is
supported by a
limited number of
switches.

Set Default Route no Set default
destination

dialog:
setdialogdefaultdest

Sets or changes
the default
destination.

User Input yes
Play
announcement
and collect digits

dialog:playandcollect
Plays an
announcement for
the caller and
requests that the

Voice Treatment Blocks

Composer Help 793

caller provide
information by
inputting digits.

User Input yes Text to speech and
collect digits dialog:playandcollect

Generates speech
from text and then
requests input
from the caller in
the form of digits.

User Input yes Collect digits dialog:collect

Collects digits that
a caller enters. For
example, you
might collect an
account number.
Don’t specify prompts
in UserInput block. It
will generate code for
<dialog:collect>/

Digit verification in
User Input yes Verify digits <playandverify>

The IRD Verify
Digits object
prompts a caller to
enter digits that
will be compared
to a desired
response.

Voice Treatment Blocks

Composer Help 794

Cancel Call Block
Use this block to stop a currently running dialog. The Cancel Call block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 795

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Extensions Property

Select the variable to retrieve extensions data in event dialog.stop.done as described in the
Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface section of the
Orchestration Server Documentation Wiki.

Request ID Property

Select the variable whose value is the ID of the previously started dialog-related action.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 796

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Create User Announcement Block
Use this block to record a caller announcement. The treatment device returns an announcement ID
(User ID property) for the newly created announcement, which the application can use later to trigger
playback of the announcement in other treatment blocks that support playing prompts. The Create
User Announcement block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 797

Enable Status Property

Find this property's details under Common Properties.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Extensions Property

Select the variable to retrieve extensions data in event dialog.createann.done as described in the
Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface section of the
Orchestration Server Documentation Wiki.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event (IPD Wait For Event property) to initialize InteractionId, or not define an event
at all. For scenarios with an interaction (IPD Diagram/Wait For Event=interaction.present for
example), you may keep the default value for the Interaction ID property. The default value is the
system variable InteractionId, which is initialized automatically in this case. For other scenarios (any
scenario where the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Voice Treatment Blocks

Composer Help 798

Announcement ID Property

Select the variable (Project or workflow) that contains the identifier for the created announcement.
This application variable may be used later in other blocks to work with the caller announcement
created in this block. The Delete User Announcement block will accept this variable if you wish to
delete this announcement.

Prompts Property

This property lets you define of a series of elements (prompts), which are pieced together. Each
prompt can be described as interruptible or non-interruptible.

1. Click the Prompts row in the block's property table.

2. Click the button to open the Prompts dialog box.
3. Click Add to add a prompt.
4. Under Type, select one of the following:

• Announcement--Plays an announcement to the calling party. In this case, the Value field
contains a number of elements (from 1 to 10. Each element is named with a number
ranging from 1 to 10 and contains a number of entries describing announcement elements.
Announcement prompts do not have a user association.

• FormattedDigits--Used to collect digits from the caller.
• Text--Essentially the same as Announcement, except all elements are of type text. This

option does not allow mixing recorded announcements with text-to-speech. Use when
Announcement is not supported.

• User Annoucement-- Announcements with a user association previously created with the
Create User Announcement block can be played via this type of prompt.

5. Under Interruptible, select true or false to indicate if the caller can interrupt the message .
6. Under Value, enter the prompt parameters.
7. Click Add again to enter another prompt, or click OK to finish.

Abort Digits Property

Select the variable to contain up to 2 digits that the caller can use to abort the recording process. If
aborted, an error event is generated.

Reset Digits Property

Select the variable to contain a sequence of up to 2 digits that the caller can use to restart the

Voice Treatment Blocks

Composer Help 799

recording process and discard any recording made up to that point in this bock will be discarded. This
is not an error condition.

Start Timeout Property

Select the variable to contain the number of seconds that the routing platform should wait for the
caller to start recording the announcement.

Termination Digits Property

Select the variable to contain a sequence of up to 2 digits that the caller can use to indicate the end
of the recording process. This indicates a success case.

Total Timeout Property

Select the variable to contain the number of seconds for which the routing platform should wait for
the caller to complete recording.

Request ID Property

Select the variable to hold the ID associated with the treatment request from the orchestration
application or the resource.

Wait For Treatment End Property

Select true or false.

• If true, the transition to the next block occurs when the treatment is finished (or if a timeout occurs).
• If set to false, processing goes to the next block once the treatment is successfully started instead of

waiting for the treatment to complete. The Request ID variable holds the ID of the treatment.

User ID Property

Select or enter the variable to contain the user identifier to be associated with this recording. This
can be used to trigger playback of the recording in other treatment blocks that support playing
prompts.

Voice Treatment Blocks

Composer Help 800

Important
You can also specify a path manually. But only relative paths (that is, relative to the
directory that is configured for recordings) are supported for this property. For
example, file://RecordingFolder\\2111.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 801

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Delete User Announcement Block
Use this block to delete an announcement created by a caller using the Create User Announcement
block. The Delete User Announcement block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML

Voice Treatment Blocks

Composer Help 802

application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event (IPD Wait For Event property) to initialize InteractionId, or not define an event
at all. For scenarios with an interaction (IPD Diagram/Wait For Event=interaction.present for
example), you may keep the default value for the Interaction ID property. The default value is the
system variable InteractionId, which is initialized automatically in this case. For other scenarios (any
scenario where the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Extensions Property

Select the variable to retrieve extensions data in event dialog.deleteann.done as described in the
Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface section of the
Orchestration Server Documentation Wiki.

Announcement ID Property

Enter or select the variable to contain the identifier of the announcement to delete.

User ID Property

Select or enter a variable to contain the user identifier associated with the recording to be deleted.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 803

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

IVR Block
Use this treatment block to invoke an interactive voice response (IVR) unit and connect the
interaction to the IVR. Specify the IVR in a format similar to that of a target because Universal Routing
Server (URS) transfers the interaction in the same way as it would when routing to a target. The IVR
produces a set of DNs from the source (corresponding to a target ID), location, type, and Stat Server
information. If any of these DNs are available, it sends the interaction to one of them. Note: URS does
not verify that the DN to which it sends the interaction is an IVR. It may be useful to send the
interaction to a queue, which distributes it to the actual IVR. When specifying an IVR target:

• The IVR itself is often configured in Configuration Layer as a DN of type Voice Treatment Port, where
Voice Treatment Option scripts can run.

• The most frequent configuration for using IVRs in a workflow involves creating a Place in Configuration
Layer and creating a shortcut from the place to the IVR DN. Then IVRs can be used as treatments by
specifying the Place or a Place Group that corresponds to an IVR.

• Another way to specify the IVR is to set the Compatibility Mode property to "true" and then manually
enter the DN as a source and the name of the switch as the location (<DN>@<name of switch>) as the
Remote Resource.

All voice treatments except IVR work at the switch or the intelligent peripheral. The IVR treatment is
different from the other treatments because URS routes the interaction to an IVR, just as it does for a
target. Therefore, the format used to specify the IVR treatment is similar to that for a target. The IVR
block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 804

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event using the IPD Wait For Event property to initialize InteractionId, or not
define an event at all. For scenarios with an interaction (IPD Diagram/Wait For
Event=interaction.present for example), you may keep the default value for the Interaction ID
property. The default value is the system variable InteractionId, which is initialized automatically in
this case. For other scenarios (any scenario where the system variable InteractionId is not set), you

Voice Treatment Blocks

Composer Help 805

may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Application Property

Select the variable to contain the identifier of the application that will be started by the specified
remote resource as part of this treatment. Used only if the Compatibility Mode property = true.

Extensions Property

Select the variable to retrieve extensions data in event dialog.remote.done as described in the
Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface section of the
Orchestration Server Documentation Wiki.

Compatibility Mode Property

Select true or false to control if IVR information is specified in a format compatible with how targets
are specified in URS as described in the Universal Routing 8.1 Reference Manual. See the Remote
Resource property for more information.

Failover Resource Property

Select the variable to contain the address of the resource to which this interaction will be routed in
case there is an error in routing to the resource specified in the Remote Resource property. This
resource would be used, for example, if the connection to T-Server is lost. The format of this value
depends on the value of the Compatibility Mode property.

• If Compatibility Mode = true, the value must in the targeted format: 2323@www.genesys.com\
server1.AG

• If Compatibility Mode = false, the value can be a string for the target resource in the format
TargetName@StatServerName.TargetType as described in Universal Routing 8.1 Reference Manual,
Chapter 2, Target Properties.

Voice Treatment Blocks

Composer Help 806

Remote Resource Property

Select the variable that contains the address of the remote resource that will be used to provide the
treatment. The format of this value depends on the value of the Compatibility Mode property.

• If Compatibility Mode = true, the value must in the format: DN.SWITCH (like 2323@switch_name) or
• If Compatibility Mode = false, the value can be a string for the target resource in the format:

targetname@statservername.targettype (like PlaceGroup@Ststserver.GP)as described in Universal
Routing 8.1 Reference Manual, Chapter 2, Target Properties.

Treatment Duration Property

Enter the maximum duration in seconds for which this treatment can be executed. After this duration,
the treatment is considered finished successfully by the platform. Limitation: It is not possible for the
application to determine if the IVR treatment completed successfully or it was cut short once the
treatment duration expired.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 807

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Pause Block
Use this block to suspend treatment processing for a specified duration.

• If a treatment block other than the IVR block precedes the Pause block, that treatment continues for the
duration of the Pause treatment.

• In the case of a preceding IVR treatment, the Pause treatment starts only after the interaction has been
returned to the routing point. Then the caller hears nothing for the specified time interval.

The Pause block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 808

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Duration Property

Enter a value or select the variable to contain the time in seconds for which treatment processing
should be suspended. This property supports the following. Note: The example below uses Timeout.

• Literal integer value. For example: Timeout=4 & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with integer value. For example: Timeout=Variable(4) & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'4s'"/>.

• Variable with string value. For example: Timeout=Variable('6') & Unit=second <send
event="'WaitEvent1.wait.timeout'" delay="'6s'"/>.

• Variable with string value including unit. For example: Timeout=Variable('6ms') & Unit=second
<send event="'WaitEvent1.wait.timeout'" delay="'6ms'"/>. In this case, the unit specified in the
variable is used instead of the static property unit.

Unit Property

Click the down arrow and select either second or millisecond.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 809

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Play Application Block
Use to execute an application (such as a Composer voice application) or a script on a device, such as
an IVR.

• For URS-controlled applications where the call lands on the strategy first and then a VXML application is
called using the Play Application treatment, GVP must be configured as DN type VoiceOverIP Service.
Find detailed configuration instructions in Voice Platform Solution Integration Guide.

• Debugging a Play Application block will not step into the associated Callflow diagram and will not launch
a GVP debugging sessions. Instead debugging will continue on to the block after the Play Application
block.

Also see Passing Parameters. The Play Application block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 810

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event (IPD Wait For Event property) to initialize InteractionId, or not define an event
at all. For scenarios with an interaction (IPD Diagram/Wait For Event=interaction.present for
example), you may keep the default value for the Interaction ID property. The default value is the
system variable InteractionId, which is initialized automatically in this case. For other scenarios (any
scenario where the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Voice Treatment Blocks

Composer Help 811

Extensions Property

Select the variable to retrieve extensions data in event dialog.start.done as described in the
Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface section of the
Orchestration Server Wiki.

Language Property

To set the active language:

1. Select the Language row in the block's property table.
2. Click under Value to display a down arrow.
3. Select one of the following languages:

• English (US)
• Spanish
• Mandarin
• Cantonese
• Vietnamese
• French
• French (Canada)
• German
• Italian
• Japanese
• Korean
• Russian

Parameters Property

If the Type property is not URL, use the Parameters property to specify any treatment parameters:

1. Click the Parameters row in the block's property table.

2. Click the button to open the Input and Output Parameter Sync dialog box.
3. Click Add to add a treatment parameter.
4. Under Parameter Name, accept the default name or change it.
5. From the Parameter Type drop-down list, select input.

Voice Treatment Blocks

Composer Help 812

Note: If the Type property is set to ProjectFile, the dialog box shows only input variables as
Composer validates against the specified callflow.

6. Under Value, select from among the variables shown.
7. Under Definition, type a description for this parameter.
8. Click Add again to enter another parameter, or click OK to finish.

To delete a parameter, select an entry from the list and click Delete. Also see the Passing Parameters
section below. Next Generation Interpreter (NGI) Change In 8.1 and prior releases, a parameter
in the SIP Request URI was exposed as a VoiceXML session variable as follows:

• Request URI: sip:dialog@host;ParameterA=ValueA

• Session Variable: session.connection.protocol.sip.requesturi['ParameterA'] (Note: The case is
preserved)

Starting from 8.1.1, the parameter name will be converted to lowercase in the session variable’s
array index. Example:

• Request URI: sip:dialog@host;ParameterA=ValueA

• Session Variable: session.connection.protocol.sip.requesturi['parametera'] (Note: The index
has to be lowercase.)

Any parameters set in the Play Application block will be accessed in NGI with the parameter name in
all lowercase.

Resource Property

Use to specify the treatment resource.

1. Click under Value.
2. The Resource property works with the Type property.

• If URL or Id is the selected Type, clicking under Value displays a down arrow. Click the down
arrow and select a variable. For GVP applications, the variable must contain the full URI of
the VXML page.

• If ProjectFile is the selected Type, clicking under Value displays the button. Click to
open a dialog box where you can select the Project file/callflow for the treatment application.
Integration with voice callflows is provided so it is possible to select a callflow diagram file
as the project file. In this case, Composer will automatically substitute the actual URL of the
page at the time of Code Generation.

Type Property

Identifies the type of Resource.

Voice Treatment Blocks

Composer Help 813

1. Click under Value to display a down arrow.
2. Select one of the following types:

• URL--Indicates that the Resource is a .vxml file and not a callflow. Composer currently does not
parse this .vxml file so the Input and Output Parameter Sync dialog box described under the
Parameters property does not open.

• ProjectFile--Indicates that the Resource is a callflow.
• Id--Indicates the ScriptID parameter as described in the Genesys Voice Platform 8.1 Reference Help

(see Sample VoiceXML Applications > CTI Interactions > Treatments (Post Initiate Transfer) > Play
Application topic). The Play Application treatment is invoked without APP_URL specified in the
strategy.

Use User Data Property

When set to true, Composer will automatically update the interaction’s User Data with the input/inout
parameters specified in the Parameters property. Similarly, Composer will automatically read the
interaction's User Data and update corresponding variables for every inout/output parameter
specified in the Parameters property. Uses to avoid the procedure described in the Passing
Parameters property description.

Request ID Property

Select the variable to hold the ID associated with the treatment request from the orchestration
application or the resource.

Wait For Treatment End Property

Select true or false.

• If true, the transition to the next block occurs when the treatment is finished (or if a timeout occurs).
• If set to false, processing goes to the next block once the treatment is successfully started instead of

waiting for the treatment to complete. The Request ID variable holds the ID of the treatment.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 814

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Passing Parameters

To pass parameters from a workflow to a callflow that is being invoked with the Play Application
block, follow these steps: Note: Step 2. below is required only for SIPS and is not mandatory for CTIC
flow cases.

1. Create a variable of type Input in the Variables property of the callflow’s Entry block. The variable name
must be all lowercase.

2. At a point before the Play Application block in the workflow, add an ECMAScript block with the following
script contents:

var input = new Object(); input.xyz = _data.VariableToPass; _genesys.ixn.setuData(input); xyz should
match the variable name that you created in step 1. You can replace _data.VariableToPass with any
variable, or a literal value, such as a string or number.

3. In the callflow, access the value using the variable that was created in step 1. Its value will be set
automatically to the value specified in the ECMAScript block at the beginning of the callflow. Its value
will be set at the beginning of the callflow to the value specified in the ECMAScript block in the
workflow.

To pass parameters from a callflow (invoked from a Play Application block) back to the workflow,
follow these steps:

1. Create a variable of type User in the Variables property of the callflow’s Entry block. The variable name
must be all lowercase.

2. In the callflow, use this variable to store any value that you want to pass back to the workflow.
3. In the callflow’s Exit block, specify the variable as a return value.
4. In the workflow, after the Play Application block, the value will be available in the workflow variable

_genesys.ixn.interactions[ixnid].udata.xyz, where xyz matches the name of the variable created in step
1.

Single Session Treatments

When using the Play Application, Play Sound (Music and ARM Types) Exit, and Disconnect blocks,
voice applications can now optionally use a single VXML session on Media Control Platform to play/
run multiple treatments instead of using one session per treatment. This enables DTMF buffering
between multiple MSML treatments. For more information, see Single Session Treatments.

Voice Treatment Blocks

Composer Help 815

Play Sound Block
Use to play audio resources of the following types:

• Music
• BusyTone
• FastBusyTone
• RingBack
• RecordedAnnouncement (on Stream Manager)
• Silence
• ARM

The Play Sound block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 816

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId. Can
be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an Interaction ID property. Instead, when ORS started processing an
interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event (Event property) to initialize InteractionId, or not define an event at all. For
scenarios with an interaction (IPD Diagram/Events=interaction.present for example), you may keep
the default value for the Interaction ID property. The default value is the system variable
InteractionId, which is initialized automatically in this case. For other scenarios (any scenario where
the system variable InteractionId is not set), you may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 817

Extensions Property

Select the variable to retrieve extensions data in event dialog.playsound.done as described in the
Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface section of the
Orchestration Server Wiki.

Duration Property

The time, in seconds, that the treatment is applied.

Music Repeat Count

Use this property to specify the number of times an audio file is to be played. If no repetition is
specified, the audio file continuously loops. To specify this behavior, the default is set to -1.

Important
If the ARM sound type is chosen and both Duration and Music Repeat Count are
specified, Duration takes precedence over Music Repeat Count.

Resource Property

Specify the location of the sound resource. Testing will be done against Genesys Stream Manager, a
media server that generates and processes media streams in Real-time Transport Protocol (RTP)
format. For more information on Stream Manager, start with the Framework 7.6 Stream Manager
Deployment Guide. You will need to configure special DNs for these treatments in Configuration
Server.

Sound Type Property

Identifies the type of sound.

1. Click under Value to display a down arrow.
2. Select one of the following types:

• Music
• BusyTone

Voice Treatment Blocks

Composer Help 818

• FastBusyTone
• Ringback
• Recorded Annoucement
• Silence
• ARM

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Single Session Treatments

When using the Play Application, Play Sound (Music and ARM Types) Exit, and Disconnect blocks,
voice applications can now optionally use a single VXML session on Media Control Platform to play/
run multiple treatments instead of using one session per treatment. This enables DTMF buffering
between multiple MSML treatments. For more information, see Single Session Treatments.

Voice Treatment Blocks

Composer Help 819

https://docs.genesys.com/Documentation/Composer/Draft/Help/ORSExtensions

Play Message Block
Use to invoke/play audio or text-to-speech Announcement treatments. As described in the Genesys
Voice Platform Deployment Guide. GVP supports automatic speech recognition (ASR) and speech
synthesis (text-to-speech [TTS]) as part of a VoiceXML dialog, through supported third-party ASR and
TTS engines that use open standards. The Play Message block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 820

Enable Status Property

Find this property's details under Common Properties.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.
Can be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction. Background: Previous to
8.1.1, Composer did not expose an InteractionId property. Instead, when ORS started processing
an interaction, a generated SCXML application automatically initialized the system variable,
InteractionId. This variable was then used internally by Routing and certain eServices blocks when
interacting with ORS. With the introduction of support for Interaction-less processing, you can now
define a specific event to initialize IInteractionId, or not define an event at all. For scenarios with
an interaction (IPD Diagram/Event=interaction.present for example), you may keep the default
value for the InteractionId property. The default value is the system variable InteractionId,
which is initialized automatically in this case. For other scenarios (any scenario where the system
variable InteractionId is not set), you may choose to:

• Not use blocks that require an Interaction ID
• And/or set the Interaction ID property to a meaningful value
• And/or assign a meaningful value to the InteractionId system variable

Extensions Property

Select the variable to retrieve extensions data in event dialog.play.done as described in the
Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface section of the
Orchestration Server Wiki.

Voice Treatment Blocks

Composer Help 821

Language Property

To set the active language:

1. Select the Language row in the block's property table.
2. Click under Value to display a down arrow.
3. Select one of the following languages:

• English (US)
• Spanish
• Mandarin
• Cantonese
• Vietnamese
• French
• French (Canada)
• German
• Italian
• Japanese
• Korean
• Russian

Prompts Property

This property lets you define of a series of elements (prompts), which are pieced together. Each
prompt can be described as interruptible or non-interruptible.

1. Click the Prompts row in the block's property table.

2. Click the button to open the Prompts dialog box.
3. Click Add to add a prompt.
4. Under Type, select one of the following:

• Announcement--Plays an announcement to the calling party. In this case, the Value field
contains a number of elements (from 1 to 10). Each element is named with a number
ranging from 1 to 10 and contains a number of entries describing announcement elements.

• FormattedDigits--Used to collect digits from the caller.
• Text--Essentially the same as Announcement, except all elements are of type text. This

option does not allow mixing recorded announcements with text-to-speech. Use when
Announcement is not supported.

• User Annoucement--Announcements with a user association previously created with the

Voice Treatment Blocks

Composer Help 822

Create User Announcement block can be played via this type of prompt.

5. Under Interruptible, select true or false to indicate if the caller can interrupt the message .
6. Under Value, select the variable containing the prompt parameters.
7. Starting with Composer 8.1.410.14, a Userid column is introduced. It is enabled when you select Type

as Userannouncement. You can select a variable or enter a literal. This is the GVP UserID, which can be
used in conjunction with userannid to provide the context for interpreting the userannid (often the
Tenant name).

8. Click Add again to enter another prompt, or click OK to finish.

Type of Prompts Property

Click the down arrow and select Announcement or Text-To-Speech.

Request ID Property

Select the variable to hold the ID associated with the treatment request from the orchestration
application or the resource.

Wait For Treatment End Property

Select true or false.

• If true, the transition to the next block occurs when the treatment is finished (or if a timeout occurs).
• If set to false, processing goes to the next block once the treatment is successfully started instead of

waiting for the treatment to complete. The Request ID variable holds the ID of the treatment.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 823

Set Default Route
Use this block to set/change the default route number at any time. Can override the default
destination set by the Default Routing block. Once set, this will be applicable for the entire duration
of the strategy unless overridden by another Set Default Route block in the workflow execution.

The Set Default Route block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 824

Enable Status Property

Find this property's details under Common Properties.

Destination Property

Enter the DN number for the default destination.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied.

Users can enter a value or select any runtime variable from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki

Extensions Property

Select the variable to retrieve extensions data in dialog. setdialogdefaultdest.done as
described in the Orchestration Developers Guide, Orchestration Extensions, Dialog Log Interface
section of the Orchestration Server Wiki.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 825

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

User Input Block
Use to play a text-to-speech announcement, collect digits, and (optionally) verify the input digits. The
User Input block has the following properties.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Voice Treatment Blocks

Composer Help 826

Enable Status Property

Find this property's details under Common Properties.

Device ID Property

If specified, ORS will play treatments itself; otherwise, treatment playing is delegated to URS. The
device should specify the DN where the call is currently located. If the call is on multiple DNs, specify
the DN for which the treatment will be applied. Users can enter a value or select any runtime variable
from the dropdown.

Hints Property

This property is for future use by Orchestration Server. Its use will be described in various action
elements reference in the Orchestration Server wiki.

Abort Digits Property

Select the variable to contain a sequence of up to two keys that the caller can enter to abort the
recording process. The IP considers this as a failed recording attempt.

Backspace Digits Property

Select the variable to contain a sequence of up to two keys causing the previous keystroke to be
discarded.

Ignore Digits Property

Select the variable to contain a sequence of up to two keys to be treated as though the keys have not
been pressed.

Reset Digits Property

Select the variable to contain a sequence of up to two keys causing all the previous keystrokes to be
discarded. The digit collection resumes.

Voice Treatment Blocks

Composer Help 827

Termination Digits Property

Select the variable to contain a sequence of up to two keys causing all the digits, not including the
TERM_DIGITS, to be returned to the service logic as collected digits.

Language Property

To set the active language:

1. Select the Language row in the block's property table.
2. Click under Value to display a down arrow.
3. Select one of the following languages:

• English (US)
• Spanish
• Mandarin
• Cantonese
• Vietnamese
• French
• French (Canada)
• German
• Italian
• Japanese
• Korean
• Russian

Prompts Property

This property lets you define of a series of elements (prompts), which are pieced together. Each
prompt can be described as interruptible or non-interruptible.

1. Click the Prompts row in the block's property table.

2. Click the button to open the Prompts dialog box.
3. Click Add to add a prompt.
4. Under Type, select one of the following:

• Announcement--Plays an announcement to the calling party. In this case, the Value field
contains a number of elements (from 1 to 10. Each element is named with a number ranging

Voice Treatment Blocks

Composer Help 828

from 1 to 10 and contains a number of entries describing announcement elements.
• FormattedDigits--Used to collect digits from the caller. Starting with Composer 8.1.410.14, a

Userid column is introduced. It is enabled when you select Type as Userannouncement. You
can select a variable or enter a literal. This is the GVP UserID, which can be used in
conjunction with userannid to provide the context for interpreting the userannid (often the
Tenant name).

• Text--Essentially the same as Recorded Announcement, except all elements are of type text.
This option does not allow mixing recorded announcements with text-to-speech. Use when
RecordedAnnouncement is not supported.

• User Announcement--Announcements with a user association previously created with the
Create User Announcement block can be played via this type of prompt.

5. Under Interruptible, select true or false to indicate if the caller can interrupt the message .
6. Under Value, enter the prompt parameters.
7. Click Add again to enter another prompt, or click OK to finish.

Timeout Prompts Property

This property defines the list of prompts to be played to the caller if a timeout occurs while waiting
for input.

1. Click the button to open the Timeout Prompts dialog box.
2. Click Add to add a prompt.
3. Under Type, select one of the following:

• Announcement--Plays an announcement to the calling party. In this case, the Value field
contains a number of elements (from 1 to 10. Each element is named with a number
ranging from 1 to 10 and contains a number of entries describing announcement
elements.Starting with Composer 8.1.410.14, a Userid column is introduced. It is enabled
when you select Type as Userannouncement. You can select a variable or enter a literal.
This is the GVP UserID, which can be used in conjunction with userannid to provide the
context for interpreting the userannid (often the Tenant name).

• FormattedDigits--Used to collect digits from the caller.
• Text--Essentially the same as Recorded Announcement, except all elements are of type text.

This option does not allow mixing recorded announcements with text-to-speech. Use when
RecordedAnnouncement is not supported.

• User Announcement--Announcements with a user association previously created with the
Create User Announcement block can be played via this type of prompt.

4. Under Interruptible, select true or false to indicate if the caller can interrupt the message .
5. Under Value, enter the prompt parameters.
6. Click Add again to enter another prompt, or click OK to finish.

Voice Treatment Blocks

Composer Help 829

Type of Prompts Property

Select one of the following:

• Announcement
• Text-to-Speech

Clear Input Property

Use this property to Indicate whether any information that has been input should be cleared before
digit collection starts. Select true or false.

Digit Timeout Property

Select the variable to contain the number of seconds the IP should wait between DTMF digits.

Number of Digits Property

Select the variable to contain the number of digits to be collected. The maximum number of digits
that can be collected is 31. The maximum number of digits can be equal to 0. In this case, no time is
spent waiting for the caller to input digits, and a response is returned indicating 0 digits collected.
The standard does not specify whether the response should contain a success or a failure indication,
so expect an undefined behavior.

Start Timeout Property

Select the variable to contain the number of seconds the IP should wait for the caller to begin DTMF
input.

Total Timeout Property

Select the variable to contain the total number of seconds the IP should wait for the caller to provide
the requested DTMF input.

Voice Treatment Blocks

Composer Help 830

Verify Input Property

This property determines if the User Input block should also verify the collected input against a set of
specified digits. If set to true, digits verification will be enabled and will allow for multiple attempts.

• If set to true, will generate <dialog:playandverify>.
• If set to false, block will generate <dialog:playandcollect>.

Collected Digits Variable Property

Select the variable to contain the collected digits.

Extensions Property

Select the variable to retrieve extensions data in dialog.collect.done,
dialog.playandcollect.done, dialog.playandverify.done as described in the Orchestration
Developers Guide, Orchestration Extensions, Dialog Log Interface section of the Orchestration Server
wiki.

Request ID Property

Select the variable to hold the ID associated with the treatment request from the orchestration
application or the resource.

Wait For Treatment End Property

Select true or false.

• If true, the transition to the next block occurs when the treatment is finished (or if a timeout
occurs).

• If set to false, processing goes to the next block once the treatment is successfully started instead
of waiting for the treatment to complete. The Request ID variable holds the ID of the treatment.

Failure Prompts Property

This property defines the prompts to be played to the caller if input verification against the specified
digits fails.

Voice Treatment Blocks

Composer Help 831

1. Click the Failure Prompts row in the block's property table.

2. Click the button to open the Prompts dialog box.
3. Click Add to add a prompt.
4. Under Type, select one of the following:

• Announcement--Plays an announcement to the calling party. In this case, use the Value
field to specify the prompt elements (can be up to 10). Each element is named with a
number ranging from 1 to 10 and contains a number of entries describing the
announcement elements. Announcement prompts do not have a user association.Starting
with Composer 8.1.410.14, a Userid column is introduced. It is enabled when you select
Type as Userannouncement. You can select a variable or enter a literal. This is the GVP
UserID, which can be used in conjunction with userannid to provide the context for
interpreting the userannid (often the Tenant name).

• FormattedDigits--Used to collect digits from the caller.
• Text--Essentially the same as Announcement, except all elements are of type text. This

option does not allow mixing recorded announcements with text-to-speech. Use when
Announcement is not supported.

• User Announcement--Announcements with a user association previously created with the
Create User Announcement block can be played via this type of prompt.

5. Under Interruptible, select true or false to indicate if the caller can interrupt the message .
6. Under Value, enter the prompt parameters.
7. Click Add again to enter another prompt, or click OK to finish.

Retry Prompts Property
This property defines prompts to be played to the caller if input verification
against specified digits fails.
1. Click the Retry Prompts row in the block's property table.

• Click the button to open the Prompts dialog box.
• Click Add to add a prompt.
• Under Type, select one of the following:

• Announcement--Plays an announcement to the calling party. In this case, use the Value
field to specify the prompt elements (can be up to 10). Each element is named with a
number ranging from 1 to 10 and contains a number of entries describing the
announcement elements. Announcement prompts do not have a user association. Starting
with Composer 8.1.410.14, a Userid column is introduced. It is enabled when you select
Type as Userannouncement. You can select a variable or enter a literal. This is the GVP
UserID, which can be used in conjunction with userannid to provide the context for
interpreting the userannid (often the Tenant name).

• FormattedDigits--Used to collect digits from the caller.

Voice Treatment Blocks

Composer Help 832

• Text--Essentially the same as Announcement, except all elements are of type text. This
option does not allow mixing recorded announcements with text-to-speech. Use when
Announcement is not supported.

• User Announcement--Announcements with a user association previously created with the
Create User Announcement block can be played via this type of prompt.

5. Under Interruptible, select true or false to indicate if the caller can interrupt the message .
6. Under Value, enter the prompt parameters.
7. Click Add again to enter another prompt, or click OK to finish.

Success Prompts Property

This property defines this list of prompts to be played to the caller if input is successfully verified
against specified digits.

1. Click the Success Prompts row in the block's property table.

2. Click the button to open the Prompts dialog box.
3. Click Add to add a prompt.
4. Under Type, select one of the following:

• Announcement--Plays an announcement to the calling party. In this case, use the Value
field to specify the prompt elements (can be up to 10). Each element is named with a
number ranging from 1 to 10 and contains a number of entries describing the
announcement elements. Announcement prompts do not have a user association. Starting
with Composer 8.1.410.14, a Userid column is introduced. It is enabled when you select
Type as Userannouncement. You can select a variable or enter a literal. This is the GVP
UserID, which can be used in conjunction with userannid to provide the context for
interpreting the userannid (often the Tenant name).

• FormattedDigits--Used to collect digits from the caller.
• Text--Essentially the same as Announcement, except all elements are of type text. This

option does not allow mixing recorded announcements with text-to-speech. Use when
Announcement is not supported.

• User Announcement--Announcements with a user association previously created with the
Create User Announcement block can be played via this type of prompt.

5. Under Interruptible, select true or false to indicate if the caller can interrupt the message .
6. Under Value, enter the prompt parameters.
7. Click Add again to enter another prompt, or click OK to finish.

Dtmf Verification Option Property

This attribute determines which verification scheme is used. Select one of the following:

Voice Treatment Blocks

Composer Help 833

• Compare Digits--Input is compared against specified digits.
• Local Table--Lookup Local table indexing associated with a user id.
• Compare Dialing Plan Format--Format compliance with a specified dialing plan.

Verification Attempts Property

Select the variable to contain the number that determine the number of attempts to be made for
verifying collected digits.

Verification Data Property

Select the variable to contain the verification data. This property determines what the input digits are
compared against.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Voice Treatment Blocks

Composer Help 834

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Single Session Treatments
Starting with Composer 8.1.300.78, Composer supports ORS-centric GVP single-session treatments.
When using the Play Application, Play Sound (Music and ARM Types) Exit, and Disconnect blocks,
voice applications can now optionally use a single VXML session on Media Control Platform to play/
run multiple treatments instead of using one session per treatment. This enables DTMF buffering
between multiple MSML treatments.

ComposerPlayTreatments VXML File

A static master VXML page, located in the src directory, is used for playing treatments in one GVP
session: (ComposerPlayTreatments.vxml). Treatment URLs to play can be Composer diagram-
generated VXML file, Media Control Platform built-in treatments or third party sub-dialog URLs. The
ORSSessionID will be provided as initial Play Application input parameters; successive HTTP requests
can pass treatment input parameters. Treatment execution results and return results will be passed
back to the ORS session.

Orchestration Options Dialog Box
The Orchestration Options dialog box is used for this functionality.

Voice Treatment Blocks

Composer Help 835

Workflow Block Changes

• Main workflow -> Exit /Disconnect Block: Generates code to end the GVP session if active based on
KeepGVPSessionAlive and isGVPSessionActive flags.

• Play Application / Play Sound (music) -> Change in code to simulate treatments.

IPD Diagram Changes

• New event handlers have been added to handle communication between the GVP master page and the
SCXML application.

1. composer.dialog.play - Play Application block request to IPD diagram for treatment request after the
Master VXMl page is in action.

2. composer.dialog.start.done - Master VXML page request to ORS session for treatment done.
3. error.composer.dialog.start - Master VXML page request to ORS session for treatment error.

Voice Treatment Blocks

Composer Help 836

4. composer.dialog.exit - Exit/Disconnect block request to IPD diagram for exiting GVP session.
5. composer.workflow.proceed - IPD diagram to Play Application block event to proceed further (compare

to dialog.start.done or dialog.start.requestid).
6. composer.workflow.exit - IPD diagram response event to composer.dialog.exit request from Exit or

Disconnect block event to proceed exit (After GVP session exists response "this event" is thrown).

Play Application Parameter Passing
In the traditional ORS treatments model, Play application treatment parameter passing happens via
User Data, which has been sent along with the treatment request to GVP. In the Single GVP session
model, User Data availability will be a limitation as the successive treatment requests happen via
events. However, there are no changes to the input/output parameters defining mechanism in the
Play Application block. That means the input/output parameters in Play Application blocks will be sent
to the master VXML via events and then be propagated to each subdialog in
system_treatment_params json object.

To receive Input parameters:

• In sub-callflows, instead of using InteractionData blocks to access User Data, use the
system_treatment_params object’s properties. First <form> in the Sub-callflow should have the
following lines to receive the input parameters and the treatment language:

Note: Even if the Play Application block does not send or receive parameters, the above <var> tags
must be added to the Sub-Callflows since the Master VXML always sends these parameters.

To return output parameters to Play Application blocks: No changes here; variables defined in
the Exit block will return to the Play Application block (if Wait for Treatment End is set to true).

Master VXML Flow Page:

Voice Treatment Blocks

Composer Help 837

GVP Wait and Session Timeouts:

The GVP Master VXML application can wait to receive the next treatment request from the ORS
session. The GVP wait timeout before requesting ORS is now controlled on the ORS side instead of
GVP side due to Prompt queuing impacts. Following are the options available to control GVP wait
timeout between treatments and GVP session timeout:

1. gvp_Wait_Treatment_Timeout variable on the IPD diagram file is used to delay responses to GVP when
no treatment is ready to be executed. The default value of this variable is 1s and this can be configured
at the ERS object -> Application Params section in Configuration Manager. If configured, the new value
will take effect.

Voice Treatment Blocks

Composer Help 838

2. Orchestration Option -> Property page -> Number of wait treatment requests should GVP wait to end
the session. When there is no treatment to play for a while, this option is used to control the GVP
session timeout.

3. Total GVP session timeout = Number of wait requests * gvp_Wait_Treatment_Timeout. For example, 10
continuous wait requests with a delay of 3 seconds will provide 30-seconds of GVP Session timeout for
a idle case -> 10 * 3s = 30 seconds.

Frequently Asked Questions
How can I run treatments in a separate GVP session while not disturbing the Master VXML session?
Using Assign blocks, set flag _data.keepGVPSessionAlive to false before your treatment block and
reset to true after your treatment block.

What if ORS logic does not have any treatments after the first Play Application treatment?
The Master VXML session will poll ORS (IPD diagram SCXML) based on the
gvp_Wait_Treatment_Timeout value until it reaches the maximum GVP Session Timeout
(configurable via Composer Project properties) and ends the session as GVP Session timeout.

What if the workflow wants to end the Master VXML session in the middle of a call?
The workflow may have to send the "exit" treatment request to GVP to end the session.

How do I send and receive parameters in this GVP Single Session model?
Passing input parameters to the GVP session continue to work using the Udata methodology with no
changes. Receiving output parameters happen via the composer.dialog.start.done event
(composer_treatment_result option).

What if the "GVP Keepalive" option is unchecked in the Orchestration Options property page?
Code generation is required whenever there are changes in the Orchestration Options properties
page. If the "GVP Keepalive" option is unchecked, code generation will generate code for normal ORS-
MCP paradigm treatments.

How do I end the Master VXML treatment session in a workflow diagram?
Use SCXML state block to generate an "exit" request to the GVP Master Session.

What if the treatment URL is wrong or not available?
The Master VXML will try to execute the treatment URL as subdialog and return back the return
results. If the URL cannot be executed, error.composer.dialog.start will be returned back as error
result to IPD diagram.

How do I cancel the Master VXML treatment dialog using ORS Cancel Call?
The Master VXML session's dialog requestID will be available in the
_data.gvpMasterTreatmentRequestID variable of the application. To manually end the GVP master
VXML session use the following code snippet in a SCXML State block.

<state id="CancelMasterVXML">
<onentry>

<script>

Voice Treatment Blocks

Composer Help 839

var composerRequestID = _sessionid+'_'+generateComposerTrtRequestID();
</script>

<if cond="_data.keepGVPSessionAlive==true &&_data.isGVPSessionActive==true">
<send event="'composer.dialog.exit'">

<param name="treatment_id" expr="'exit'"/>
<param name="treatment_url" expr="''"/>
<param name="treatment_GVPRequestID"

expr="composerRequestID"/>
<param name="treatment_waitForEnd" expr="'true'"/>

</send>
<else/>

<raise event="proceedNext"/>
</if>
</onentry>
<transition event="composer.workflow.exit" cond="_event.data.requestID ==

composerRequestID"
target="$NextBlock$">

<script>
_data.isGVPSessionActive =false;
_data.keepGVPSessionAlive = false; // Optional - Set

keepGVPSessionActive to false
to completely end the Single GVP session and run ordinary ORS treatments

onwards.
</script>

</transition>
<transition event="proceedNext" target="$NextBlock$">
</transition>

What if the treatment URL VXML page is a Main type callflow (does not have the <return> tag, but
instead the <exit> tag)?
If a Main type callflow diagram is used, a treatment VXML page would have an <exit> tag, which will
end the GVP session and return back to ORS. As a result, successive treatment requests will start a
new Master VXML page. For this reason, sub callflows are required to maintain a Master VXML page
session.

When an ORS/workflow diagram does not have any treatment to execute, what will GVP do and how
often will it poll an ORS session?
GVP will execute "wait" (silence) treatments while waiting for the next treatment request from ORS.
GVP polls ORS based on the gvp_Wait_Treatment_Timeout value until the GVP session timeout is
reached.

Voice Treatment Blocks

Composer Help 840

eServices Blocks
The eServices blocks are used to create a routing workflow for specialized processing of multimedia
interactions. Also see the topic: IRD Functionality Included in Composer.

Composer Route Block Name Block Has Usable Output
Data to be used in App? Purpose

Analyze Yes
Starting with release 8.1.410.14,
Composer adds an Analyze block
for enhanced content analysis.

Chat Transcript Yes
Generates a reply e-mail to a
chat interaction and attaches a
chat transcript.

Classify Interaction Yes

Classifies a text-based
interaction based on content,
and attach one or more
Classification categories to the
interaction.

Create E-mail Yes Creates an e-mail to be sent out

Email Forward
No
Redirect E-mail Reply from External
Resource

The Forward Type property
specifies the type of functionality
by allowing you to select
Forward, Reply to Customer, or
Redirect.

Email Response
Auto-acknowledgement
Autoresponse Create Notification

Combines the functionality of
IRD's Acknowledgement,
Autoresponse, and Create
Notification objects.

Create Interaction block Yes
Creates an interaction record in
the Universal Contact Server
Database for a customer contact.

Create SMS Yes
Creates a Short Message Service
(SMS) message via an external
SMS server

External Service(ESP) Yes

Exchanges data with third party
(non-Genesys) servers that use
the Genesys Interaction SDK or
any other server or application
that complies with Genesys
Interaction Server (GIS)
communication protocol.

Find Interactions Yes
Get the list of interactions
matching some specific
condition.

Identify Customer Yes
Identifies a contact based on the
interaction User Data. Returns a
list of matching Contact IDs
based on the User Data. Creates

eServices Blocks

Composer Help 841

a contact record in the UCS
Database or update the UCS
Database record of the matching
contact

Queue Interaction No Places a non-voice interaction in
an existing queue

Route Interaction No

Sends a non-voice interaction to
one or more target objects:
Agent, AgentGroup, PlaceGroup,
Skill, or target contained in a
variable.

Render Message Yes
Requests Universal Contact
Server to create message
content.

Send E-mail No Sends an -email message
created with Create E-mail block

Screen Interaction Yes
Screens a text-based interaction
for specific content (specific
words or patterns)

Set Agent State No Dynamically manage agent
resource states via ESP methods.

Send SMS No Send an SMS message created
using the Create SMS block

Stop Interaction No
Sends a request to Interaction
Server to stop processing this
interaction.

Update Contact No
Updates customer profile
information in the UCS Database,
based on data attached to an
interaction.

Update Interaction No
Sends a request to Interaction
Server to update or delete
interaction attributes.

Update UCS Record No

Updates the properties of an
interaction in the Universal
Contact Server database. Can be
used for both interactions
currently in process and
interactions already processed.

Important
For the Create Email, Email Forward, Email Response, Send Email, Chat Transcript, and
CreateSMS blocks, Orchestration Server does not copy User Data from any Interaction
into an outgoing ESP request. Currently there is no attribute support to overwrite this
behavior. If User Data must be included as part of the above blocks, use External
Service blocks or SCXML State blocks to directly call the ESP methods
(\\CFGEmailServer\\Email\\Forward and \\CFGEmailServer\\Email\\Send).

eServices Blocks

Composer Help 842

Special Note on Validation and Off-Line Mode

When using Composer in offline mode (not connected to the Configuration Server), you can edit block
properties that depend on information from Configuration Server. Later, when you connect to
Configuration Server and validate the Interaction Processing diagram, Composer will validate the
values you entered in off-line mode.

eServices ECMAScript Functions

These functions are available for use in Expression Builder.

• For classification segmentation, an ECMAScript function determines if a particular category name or ID
exists in the array of category objects represented by an application variable. This variable can be the
output of the Classify Interaction block, enabling the Branching block to be used for segmentation
based on category.

• For manually attaching categories to an interaction, the User Data block can be used and then a
branching block can be (optionally) used to segment interactions to different logical branches based on
the different categories.

For a summary of the eServices blocks, see Composer Equivalent to IRD Multimedia.

eServices Blocks

Composer Help 843

Composer Equivalent to IRD Multimedia
Composer includes multimedia functionality (processing non-voice interactions) that was previously
provided through Genesys Interaction Routing Designer (IRD). The list below is not all-inclusive.
Instead, it gives some examples for existing Genesys customers transitioning to Composer, who are
familiar with using IRD's Multimedia objects.

Composer Route
Block Name

Block Has Usable
Output Data to be
used in App?

Equivalent IRD Block/
Object Purpose

An ECMAScript function
allows you to manually
attach Classification
categories to
interactions

No Attach Categories
Segment interactions to
different logical
branches based on the
different categories.

Email Forward No

Forward E-mail
Redirect E-mail

Reply from External Resource

The Forward Type
property specifies the
type of functionality by
allowing you to select
Forward, Reply to
Customer, or Redirect.

Email Response Yes

Autoknowledgement
Autoresponse

Create Notification

Combines the
functionality of IRD’s
Acknowledgement,
Autoresponse, and
Create Notification
objects.

Chat Transcript Yes Chat Transcript
Generates a reply e-mail
to a chat interaction and
attaches a chat
transcript.

Classify Interaction Yes Classify

Classifies a text-based
interaction based on
content, and attach one
or more Classification
categories to the
interaction.

Create E-mail Yes Create E-mail Creates an e-mail to be
sent out

Identify Customer Yes Identify Customer

Identifies a contact
based on the interaction
User Data. Returns a list
of matching Contact IDs
based on the User Data.
Creates a contact record
in the UCS Database or
update the UCS
Database record of the
matching contact

eServices Blocks

Composer Help 844

Send E-mail No Send E-mail
Sends an -email
message created with
Create E-mail block

Screen Interaction Yes
Screens a text-based
interaction for specific
content (specific words
or patterns)

Create Interaction block Yes Create Interaction

Creates an interaction
record in the Universal
Contact Server
Database for a
customer contact.

Create SMS Yes Create SMS
Creates a Short
Message Service (SMS)
message via an external
SMS server

Render Message Yes Render Message
Content

Requests Universal
Contact Server to create
message content.

Send SMS No Send SMS
Send an SMS message
created using the
Create SMS block

Queue Interaction No Queue Interaction
Places a non-voice
interaction in an
existing queue

Route Interaction No Route Interaction

Sends a non-voice
interaction to one or
more target objects:
Agent, AgentGroup,
PlaceGroup, Skill, or
target contained in a
variable.

Stop Interaction No Stop Interaction
Sends a request to
Interaction Server to
stop processing this
interaction.

Update Customer No Update Contact

Updates customer
profile information in
the UCS Database,
based on data attached
to an interaction.

External Service (ESP) Yes External Service

Exchanges data with
third party (non-
Genesys) servers that
use the Genesys
Interaction SDK or any
other server or
application that
complies with Genesys
Interaction Server (GIS)
communication
protocol.

eServices Blocks

Composer Help 845

Special Note on
Validation and Off-Line
Mode: When using
Composer in “offline”
mode (not connected to
the
Configuration_Server),
you can edit block
properties that depend
on information from
Configuration Server.
Later, when you connect
to Configuration Server
and validate the
Interaction Processing
diagram, Composer will
validate the values you
entered in off-line mode.
Other Composer Blocks
for Multimedia
Processing
Interaction Process
Diagram (IPD) NA Business Process

Interaction Queue Block NA Interaction Queue Block
Allows you to define an
Interaction Queue used
for multimedia
interactions.

Media Server Block NA Media Server

Represents an existing
Media Server, such as a
chat or e-mail server.
Allows you to get
interactions into an IPD.

Workflow Block NA Strategy

Points to an existing
Workflow resource
(.workflow diagram) to
which an interaction can
be sent for processing.

Also see Context Services Blocks Overview.

eServices Blocks

Composer Help 846

Analyze Block
Starting with release 8.1.410.14, Composer adds an Analyze block for enhanced content analysis.
The Analyze block, available on the eServices palette, combines the functionality of the existing
Classify Interaction and Screen Interaction blocks and sorts screening rules into categories. The
category name shows all roots so screening rules belonging to multiple categories can be selected in
the same request.

An example is shown below.

eServices Blocks

Composer Help 847

https://docs.genesys.com/Documentation/ES/8.5.0/KMUser/KMwelcome
https://docs.genesys.com/Documentation/ES/8.5.0/KMUser/ScrRules
https://docs.genesys.com/Documentation/ES/8.5.0/KMUser/categSR

The Analyze Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 848

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties. You can move error.session.fetch from Not
Supported to Supported.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Interaction ID Property

The current interaction ID. Defaults to the system variable system.InteractionID. Can be used for
interaction-less processing for scenarios where the InteractionId variable is not automatically
initialized, but instead must wait for an event. An example would be an SCXML application triggered
by a Web Service that does not add an interaction.

eServices Blocks

Composer Help 849

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt

Result Property

Select a variable for the raw result data (which arrives in json structure) returned by the Classification
Server. The default is customerdata. The variable can be parsed and attached to the interaction for
further use in the workflow, such as by attaching the results to an interaction’s User Data. This
enables you to analyze this User Data to make further routing decisions.

Action Property

Select screen, classify, or a variable. Only one Action can be selected.

Analyzing Data Property

This is where the data located for the screening or classify action. Enter a User Data key to search
for data to be analyzed or enter a variable.

1. Click under Value to display the button.

2. Click the button to open the Analyzing Data dialog box.

• If you select Variable, select a variable from the dropdown list.
• If you select User Data, enter the User Data key to search.
• If you select UCS, the Universal Contact Server database is used for analysis.

Important
UCS is selected by default and the data to be analyzed is taken from the Universal
Contact Server database unless you select Variable or User Data.

Categories Property

Select the categories for classifying interactions.

1. Click under Value to display the button.

2. Click the button to open the Categories dialog box.
3. Click Add.

• If you are connected to Configuration Server, you can select the categories for classification.
• You can also select Literal and then enter the name of the category in the Value field.

eServices Blocks

Composer Help 850

• You can also select Variable and then select a variable containing the raw ID of the category from
the Value field.

Classification Server Property

Select a Classification Server from those in the Configuration Server database. If you leave this field
empty, Interaction Server uses the first available Classification Server named in its Connections list.

1. Click under Value to display the button.

2. Click the button to open the Application Selection dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. Select the
name of the Classification Server from the Value field.

• You can also select Literal and then enter the name of the server in the Value field.
• You can also select Variable and then select a variable containing the server from the Value field.

Classify Subcategories Property

When the Action Property is Classify, this property determines whether Classification Server should
consider parent and child categories (ParentMode in Requests. You can choose one of three options:

• To use all screening rules for a selected category, select All Children.
• To use only the direct children of a selected category (excluding parents), select Direct Children.
• To individually select categories and rules, use Selected Categories.

Continue to select categories/rules in this fashion until you have selected all the ones you want to
use.

Language Property

Select the language of the incoming interaction. The categories and screening rules shown are
changed according to selected language. Only those roots associated (through their Annex General/
Language property) with the selected language are shown.

1. Click under Value to display the button.

2. Click the button to open the Language dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. Select the
Language from the Value field.

eServices Blocks

Composer Help 851

https://docs.genesys.com/Documentation/ES/8.5.1/Depl/parts

• You can also select Literal and then enter the name of the language in the Value field.
• You can also select Variable and then select a variable containing the language from the Value

field.

Relevancy Level Property

If the Classify Action is selected, select a variable or type a percentage indicating that the minimum
relevancy (confidence) to which each category must be greater than or equal to in order for
Classification Server to consider an interaction as belonging to that category (that is, you are setting
the threshold for relevance). You can change the default, but you cannot enter zero.

Screening Rules Property

Select the screening rules to be used when screening interactions.

1. Click under Value to display the button.

2. Click the button to open the Screening Rules dialog box.
3. Click Add.
4. Perform one of the following actions:

• If you are connected to Configuration Server, you can select screening rules.
• You can also select Literal and then enter the name of the screening rule in the Value field.
• You can also select Variable and then select a variable containing the screening rule name from the

Value field. If you use variables, you cannot select from folders. You can either select from folders
or specify variables, but you cannot do both.

If the category and screening rule identifiers do not sufficiently describe them, you can look up them
up in Configuration Manager (Business Attributes), or in Genesys Administrator, or in eServices
Knowledge Manager, where they were originally defined.

Tenant Property

If your environment has more than one Tenant, select a variable identifying the tenant in the
Configuration Database. The default is system.TenantID.

Enable Status Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 852

https://docs.genesys.com/Documentation/GA/8.5.2/user/CfgTenant

ORS Extensions Property

Starting with release 8.1.4, Composer blocks used to build routing applications (with the exception of
the Disconnect and EndParallel blocks) include the ORS Extensions property.

Samples
[+] Analyze Action Classify
REQUEST
'Version' [str] = "1.0"
'AppType' [str] = "90"
'AppName' [str] = "ClassificationServer2_sbbelovdt"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'Action' [str] = "Classify"
'Language' [str] = "English"
'Categories' [str] = "00016a6W8MUA002Q | 00057a9K3JNC02V7 | 0005Ba9QMHV30KCY"
'ParentMode' [str] = "3"
'RelevancyLevel' [str] = "10"
'IxnText' [str] = "You should transplant these irises into an area providing at least

6 hrs of direct sunlight a day."

bstr [bstr] = KVList:
'TenantId' [int] = 101

RESPONSE
'Version' [str] = "1.0"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'Categories' [lst] = KVList:
'How do I dig irises' [lst] = KVList:

'CtgId' [str] = "00057a9K3JNC038G"
'CtgName' [str] = "How do I dig irises"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/How do I dig irises"
'CtgRelevancy' [str] = "32"

'Why are they not blooming' [lst] = KVList:
'CtgId' [str] = "00057a9K3JNC038N"
'CtgName' [str] = "Why are they not blooming"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/Why are they not blooming"
'CtgRelevancy' [str] = "26"

'J2EBJ183K80HB6G2' [lst] = KVList:
'CtgId' [str] = "00016a6W8MUA005Y"
'CtgName' [str] = "J2EBJ183K80HB6G2"
'CtgRootName' [str] = "SBC_1_Root"
'CtgPath' [str] = "SBC_1_Root/J2EBJ183K80HB6G2"
'CtgRelevancy' [str] = "12"

'Sub_A' [lst] = KVList:
'CtgId' [str] = "0005Ba9QMHV30KDE"
'CtgName' [str] = "Sub_A"
'CtgRootName' [str] = "MySimpleTest"
'CtgPath' [str] = "MySimpleTest/Sub_A"
'CtgRelevancy' [str] = "100"

eServices Blocks

Composer Help 853

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

'19CSBDR3K82AXEGS' [lst] = KVList:
'CtgId' [str] = "00016a6W8MUA004K"
'CtgName' [str] = "19CSBDR3K82AXEGS"
'CtgRootName' [str] = "SBC_1_Root"
'CtgPath' [str] = "SBC_1_Root/19CSBDR3K82AXEGS"
'CtgRelevancy' [str] = "36"

'How should I prepare iris for shipping' [lst] = KVList:
'CtgId' [str] = "00057a9K3JNC038Y"
'CtgName' [str] = "How should I prepare iris for shipping"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/How should I prepare iris for shipping"
'CtgRelevancy' [str] = "19"

'Why did my irises change color' [lst] = KVList:
'CtgId' [str] = "00057a9K3JNC038T"
'CtgName' [str] = "Why did my irises change color"
'CtgRootName' [str] = "plants"
'CtgPath' [str] = "plants/iris/Why did my irises change color"
'CtgRelevancy' [str] = "25"

'CtgId' [str] = "0005Ba9QMHV30KDE"
'CtgName' [str] = "Sub_A"
'CtgRootName' [str] = "MySimpleTest"
'CtgPath' [str] = "MySimpleTest/Sub_A"
'CtgRelevancy' [str] = "100"

[+] Analyze Action Screen

REQUEST
'Version' [str] = "1.0"
'AppType' [str] = "90"
'AppName' [str] = "ClassificationServer2_sbbelovdt"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'Action' [str] = "Screen"
'Language' [str] = "English"
'Categories' [str] = ""
'Rules' [str] = ""
'RelevancyLevel' [str] = "15"
'ParentMode' [str] = "3"
'IxnText' [str] = "problem, accounts 1111-1111-1111-1111 and 2222-2222-2222-2222"

bstr [bstr] = KVList:
'TenantId' [int] = 101

RESPONSE
'Version' [str] = "1.0"
'Service' [str] = "Analyze"
'Method' [str] = "ClassifyScreenUniversal"
'Parameters' [lst] = KVList:

'ScreenRuleMatch' [str] = "true"
'Categories' [lst] = KVList:

'Neutral' [lst] = KVList:
'CtgId' [str] = "00006a69F6861XCW"
'CtgName' [str] = "Neutral"

eServices Blocks

Composer Help 854

'CtgRootName' [str] = "Sentiment"
'CtgPath' [str] = "Sentiment/Neutral"
'CtgRelevancy' [str] = "75"
'Screen' [lst] = KVList:

'ScreenForNeutralSentiment' [lst] = KVList:
'RuleId' [str] = "00006a69F6861XED"
'RuleName' [str] = "ScreenForNeutralSentiment"
'RuleOrder' [str] = "12"
'RuleRelevancy' [str] = "75"

'Positive' [lst] = KVList:
'CtgId' [str] = "00006a69F6861XCP"
'CtgName' [str] = "Positive"
'CtgRootName' [str] = "Sentiment"
'CtgPath' [str] = "Sentiment/Positive"
'CtgRelevancy' [str] = "85"
'Screen' [lst] = KVList:

'Tech support' [lst] = KVList:
'RuleId' [str] = "00003a01DST4006D"
'RuleName' [str] = "Tech support"
'RuleOrder' [str] = "400"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "85"
'SB_MultiScanTest' [lst] = KVList:

'RuleId' [str] = "0003Fa8RRCHA0030"
'RuleName' [str] = "SB_MultiScanTest"
'RuleOrder' [str] = "10"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "75"
'Actionable' [lst] = KVList:

'CtgId' [str] = "00006a69F6861XHN"
'CtgName' [str] = "Actionable"
'CtgRootName' [str] = "Action"
'CtgPath' [str] = "Action/Actionable"
'CtgRelevancy' [str] = "75"
'Screen' [lst] = KVList:

'Tech support' [lst] = KVList:
'RuleId' [str] = "00003a01DST4006D"
'RuleName' [str] = "Tech support"
'RuleOrder' [str] = "400"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "75"
'SB_MultiScanTest' [lst] = KVList:

'RuleId' [str] = "0003Fa8RRCHA0030"
'RuleName' [str] = "SB_MultiScanTest"
'RuleOrder' [str] = "10"
'FoundValues' [lst] = KVList:

'CardNo(1)' [str] = "1111-1111-1111-1111"
'CardNo(2)' [str] = "2222-2222-2222-2222"

'RuleRelevancy' [str] = "45"
'UnclearIfActionRequired' [lst] = KVList:

'CtgId' [str] = "00006a69F6861XJ3"
'CtgName' [str] = "UnclearIfActionRequired"
'CtgRootName' [str] = "Action"
'CtgPath' [str] = "Action/UnclearIfActionRequired"
'CtgRelevancy' [str] = "75"
'Screen' [lst] = KVList:

'UnclearIfActionRequired' [lst] = KVList:

eServices Blocks

Composer Help 855

'RuleId' [str] = "00006a69F6861XN2"
'RuleName' [str] = "UnclearIfActionRequired"
'RuleOrder' [str] = "10"
'RuleRelevancy' [str] = "75"

'CtgId' [str] = "00006a69F6861XCP"
'CtgRelevancy' [str] = "85"
'CtgName' [str] = "Positive"
'CtgRootName' [str] = "Sentiment"
'CtgPath' [str] = "Sentiment/Positive"

eServices Blocks

Composer Help 856

Chat Transcript Block
Use to create (but not send) an e-mail message that is generated from your site’s Standard Response
Library and which has the customer’s chat transcript attached. Use the Send Email block to send the
message out.

Tip
This block is only used for creating a chat transcript. For an example interaction
process diagram and workflow strategy that routes interactions to agent targets
skilled in handling chats, see Customizing_the_Chat_Routing_Strategy.

Use Case

1. A routing workflow is configured in Composer and deployed to route interactions to agents with a chat
Skill or an Agent Group specifically created to handle chat interactions.

2. The customer requests a chat, and the agent presses a button on his desktop to initiate a chat
interaction into the Genesys system. The context of the interaction includes information provided by
the agent desktop, including a customer ID and the subject of the chat.

3. The routing workflow uses information, such as the customer ID and the subject of the chat, to identify
additional customer details, such as customer name, from the Universal Contact Server database.

4. A customer engages in a chat interaction with the agent.
5. At the end of the chat conversation, the agent asks the customer if he wants to receive a chat

transcript.
6. If yes, the routing workflow creates (Chat Transcript block) and sends an e-mail message that includes

the chat transcript. The e-mail message uses text from the eServices Standard Response library, which
was retrieved based on the subject of the chat, and personalized to include the customer's first and last
name.

Special Note on Cc, From, and Exclude Addresses Properties

The Literal and Variable types can have a value set to an actual e-mail address, e.g., joe@test.com,
or refer to the name of a previously configured e-mail address from Configuration Server (e.g., if
“Tech Support” is configured as a Configuration Server E-mail Accounts Business Attribute, then “Tech
Support” can be the value for the Literal type and the platform will use that e-mail address).

eServices Blocks

Composer Help 857

https://docs.genesys.com/Documentation/GWE/8.5.0/Developer/CustomizeChatRouting
https://docs.genesys.com/Documentation/GA/8.1.4/user/CfgSkill
https://docs.genesys.com/Documentation/GA/latest/user/CfgEnumeratorValue#Business_Attribute_Values

Important
For the Create Email, Email Forward, Email Response, Send Email, Chat Transcript, and
CreateSMS blocks, Orchestration Server does not copy User Data from any Interaction
into an outgoing ESP request. Currently there is no attribute support to overwrite this
behavior. If User Data must be included as part of the above blocks, use External
Service blocks or SCXML State blocks to directly call the ESP methods
(\\CFGEmailServer\\Email\\Forward and \\CFGEmailServer\\Email\\Send).

The Chat Transcript block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Email Server Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Associate New Interaction Property

This property, introduced in Composer 8.1.420.xx for the Chat Transcript, Create Email, Create SMS,
Email Forward, and Email Response blocks, supports the Orchestration Server <ixn:createmessage>
tag associate attribute. See Using eServices Blocks, section Associate New Interaction. This property
requires Orchestration Server version 8.1.400.45+.

eServices Blocks

Composer Help 858

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements

Do Not Thread Property

Find this property's details under Common Properties.

Output Queue Property

Find this property's details under Common Properties.

Starting with Release 8.1.410.14, you can use a queue defined in referenced Projects. For more
information, see Adding an Interaction Queue.

CC Property

Find this property's details under Common Properties.

Exclude Email Addresses Property

Find this property's details under Common Properties.

Field Codes Property

Find this property's details under Common Properties.

From Property

Find this property's details under Common Properties.

Standard Response Property

Find this property's details under Common Properties.

Subject Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 859

To Property

Find this property's details under Common Properties.

Use Subject From SRL Property

Find this property's details under Common Properties.

Interaction ID Property

Find this property's details under Common Properties.

Output Result Property

Find this property's details under Common Properties.

Detach Property

Find this property's details under Common Properties.

Detach Timeout Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 860

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 861

Classify Interaction Block
Use to have Universal Routing Server instruct Classification Server to assign one or more category
codes (configured in Knowledge Manager as described in the eServices 8.1 User Guide) to a text-
based interaction. Once a category code is assigned, other types of processing can occur based on
the category code.

ECMAScript Functions

• For classification segmentation, a ClassifyInteraction ECMAScript function (containsCategoryName)
determines if a particular category name exists in the array of category objects represented by an
application variable. This variable can be the output of the “Classify Interaction” block, enabling the
Branching block to be used for segmentation based on category.

• Another ECMAScript function (attachCategory) allows you to manually attach Classification categories
to interactions, and then (optionally) segment interactions to different logical branches based on the
different categories. The category or categories to be attached to an interaction can be based on
classification applied to the interaction at a prior point in the routing workflow.

Both of the above functions are available in Expression Builder > Workflow Functions > Misc.

Classification Versus Screening

The primary difference between classification and screening (Screen Interaction block) is as follows:

• The result of screening for certain words or patterns is a Screening Rule name and the value of true or
false.

• The result of classification based on content analysis (you must have the Content Analyzer option
installed as described in the eServices 8.1 User Guide) is a category code, which can be associated with
a Standard Response or used for other purposes, such as segmentation.

For more information on screening and classification, see the chapter on IRD objects in the Universal
Routing 8.1 Reference Manual. Also see the Universal Routing 8.1 Business Process User's Guide.

Note: If your site’s categories are not yet defined in Knowledge Manager, you may wish to use the
Screen Interaction block, which performs word matching instead of using category codes.

Use Case

1. An e-mail arrives on a route point, initiating a routing workflow.
2. The routing workflow examines the content of the e-mail and attempts to classify the text based on

eServices Blocks

Composer Help 862

classification categories set up in Knowledge Manager.
3. An auto-response e-mail is created, using a standard response from the standard response library. The

response selected is based on the categorization of the email performed in step 2.
4. The auto-response email is sent to the customer.

The Classify Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Classification Categories Property

Use to select the location to store resulting classification categories after classification.

1. Click under Value to display the button.

2. Click the button to open the Classification Categories dialog box. For Type, select User Data or
Variable.If you select User Data, specify the User Data key for the classification results. If you select
Variable, select the variable that contains the User Data key for the classification results.

Categories Property

Use this property to select individual categories and sub-categories of th Root Category to be used in
the classification process.

1. Click under Value to display the button.

2. Click the button to open the Categories dialog box.

eServices Blocks

Composer Help 863

3. Click Add to open the Select Items dialog box.
4. From the Type dropdown menu, do one of the following:

• If you are connected to Configuration_Server, select Configuration Server. Select one or
more categories for the Value.

• Select Literal and enter the categories in the Value field. Use commas to separate the
categories.

• Select Variable and select the variable that contains the categories from the Value field.

Classification Data Property

Use this property to select whether to search for classification data in the interaction's User Data,
from a variable, or from the UCS database.

1. Click under Value to display the button.

2. Click the button to open the Classification Data dialog box.
3. For Type, select UCS, User Data or Variable. If you select UCS, don't specify fields. Data available as

part of the interaction is automatically picked up for classification by ORS. If you select User Data,
specify the key-value pairs. If you select Variable, select the variable that contains the key-value pairs.

Classification Server Property

Select the Application name for the Classification Server from those in the Configuration Database. If
a Classification Server is not selected, the platform will internally select one.

1. Click under Value to display the button.

2. Click the button to open the Application Selection dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• You can also select Literal or Variable from the Type dropdown menu. If you select Literal,
enter the name of the classification server in the Value field. If you select Variable, select
the variable from the Value field.

• If you are connected, select Configuration Server from the Type dropdown menu. Select
the name of the Classification Server from the Value field.

Confidence Level Property

Select a variable that contains a number from 1 to 100 that reflects the minimum relevance
percentage that each classification category must have in order for Classification Server to consider
an interaction as belonging to that category.

eServices Blocks

Composer Help 864

Root Category Property

Select the name of the top-level category to be used for the classification.

1. Click under Value to display the button.

2. Click the button to open the Root Category dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. A tree of
classification categories appears in the Value field. Next, select the name of the top-level
(root) classification category. This is a directory that appears in Configuration Manager in the
Business Attributes > Category Structure folder. For more information on Root folders,
see the Universal Routing 8.1 Reference Manual.

• You can also select Literal or Variable from the Type dropdown menu. If you select Literal,
enter the name of the root category in the Value field.If you select Variable, select the
variable that contains the root category from the Value field.

Subcategories Property

Click the down arrow and select one of the following:

• Do not include children of selected categories.
• Include immediate children of selected categories.
• Include all children (recursively) of selected categories.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 865

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 866

Create E-mail Block
Use this block to create an e-mail message to be sent out to a customer or another agent and to
specify the interaction queue where the outbound e-mail should be placed. The selected interaction
queue appears as a workflow-generated block in the interaction process diagram.

To create the e-mail text, you have the following options:

• Use text from your Standard Response Library (SRL). In this case, you must specify the SRL identifier
defined in eServices/Multimedia Knowledge Manager.

• Use text associated with the default/active Standard Response for a specified Knowledge Manager
Category code. In this case, you must specify the Category code defined in Knowledge Manager.

Category trees are a means of organizing and gaining access to the library of Standard Responses. In
the Universal Contact Server Database, each Standard Response must be associated with at least
one Category code. Content Analyzer can classify an incoming e-mail in terms of the Category tree.

See the eServices documentation, Knowledge Manager 8.1 Help for more information on Standard
Responses and Category codes.

Use Case

1. An inbound interaction initiates a routing workflow.
2. Based on the interaction the customer is identified and the User Data of the interaction is updated.
3. The User Data is then assigned to variables and is used to create an e-mail response with the First

Name, Last Name and the contact address of the customer.
4. The e-mail created for this customer uses the User Data to find an appropriate response from the

Standard Response Library as well. The Standard Response selected is based on some purpose inferred
from the customer's original e-mail.

Important
For the Create Email, Email Forward, Email Response, Send Email, Chat Transcript, and
CreateSMS blocks, Orchestration Server does not copy User Data from any Interaction
into an outgoing ESP request. Currently there is no attribute support to overwrite this
behavior. If User Data must be included as part of the above blocks, use External
Service blocks or SCXML State blocks to directly call the ESP methods
(\\CFGEmailServer\\Email\\Forward and \\CFGEmailServer\\Email\\Send).

eServices Blocks

Composer Help 867

Special Note on From and To Properties

The Literal and Variable types can have a value set to an actual e-mail address, e.g., joe@test.com,
or refer to the name of a previously configured e-mail address from Configuration Server (e.g., if
“Tech Support” is configured as a Configuration Server E-mail Accounts Business Attribute, then “Tech
Support” can be the value for the Literal type and the platform will use that e-mail address).

The Create E-mail block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Email Server Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Associate New Interaction Property

This property, introduced in Composer 8.1.420.xx for the Chat Transcript, Create Email, Create SMS,
Email Forward, and Email Response blocks, supports the Orchestration Server <ixn:createmessage>
tag associate attribute. See Using eServices Blocks, section Associate New Interaction. This property
requires Orchestration Server version 8.1.400.45+.

Create New Interaction Property

Select true or false to indicate whether a new interaction record should be created in the Universal
Contact Server Database for this outbound e-mail. The default is false.

eServices Blocks

Composer Help 868

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements

Do Not Thread Property

Find this property's details under Common Properties.

Output Queue Property

Find this property's details under Common Properties.

Starting with Release 8.1.410.14, you can use a queue defined in referenced Projects. For more
information, see Adding an Interaction Queue.

Field Codes Property

Find this property's details under Common Properties

From Property

Find this property's details under Common Properties.

Include Original Message Into Reply Property

Find this property's details under Common Properties.

Standard Response Property

Find this property's details under Common Properties.

Subject Property

Find this property's details under Common Properties.

To Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 869

Use Subject From SRL Property

Find this property's details under Common Properties.

Interaction ID Property

Find this property's details under Common Properties.

Related Interaction ID Property

Select a variable for the current interaction ID or keep the default, which is system.InteractionID. For
information on the value, see the Entry block, Variables property, System Variables.

Output Result Property

Find this property's details under Common Properties.

Detach Property

Find this property's details under Common Properties.

Detach Timeout Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 870

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 871

Create Interaction Block
Use this block to create an interaction record in the Universal Contact Server Database, for a
customer contact. This saves the current interaction being processed in the database.

Tip
For "native" Genesys interaction types such as e-mail and chat, interactions are
automatically created in the Universal Contact Server (UCS) database. The Create
Interaction block would be used primarily for creating interactions in UCS when there
are new interactions coming into the Genesys system through the Open Media
interface. This is the primary mechanism for making interaction data available to an
agent desktop application.

Use Case

1. An incoming fax initiates a routing strategy (routing workflow).
2. The fax server has OCR (character recognition) to extract the customer details from the fax. These are

identified and attached to the interaction.
3. The routing strategy creates an interaction in the UCS database, associated with this customer.

The Create Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Data MIME Type Property

Use this property for an interaction with binary content to specify the MIME Type for the binary
content. Click the down arrow and select one of the following MIME types or a variable that contains
the MIME type. This information helps Agent Desktop Application to choose the proper application to

eServices Blocks

Composer Help 872

process or display the binary part of the interaction. This field cannot be empty if the Data User Data
Key Property contains a value.

application/msword audio/mpeg message/sipfrag
application/octet-stream audio-mpeg4-generic message/tracking-status
application/postscript image/g3fax multipart/alternative
application/rtf image/gif multipart/form-data

application/vnd.ms-powerpoint
image/jpeg

multipart/mixed

application/vnd.ms-project image/tiff multipart/parallel
application/vnd.visio message/delivery-status multipart/voice-message
application/voicexml+xml message/http text/html
application/xml message/news text/plan
application/xml-dtd message/partial text/richtext
application/zip message/rfc822 text/xml
audio/basic message/sip

Data User Data Key Property

If the interaction contains binary data, select the variable that contains the UserData key whose
value is the interaction binary content.

Structured Text MIME Type Property

If the interaction contains structured text, use this property to specify the MIME type. Select the
variable that contains the MIME type for the interaction's structured text or select one of the
following:

• text/html
• text/plain
• text/rich text
• text/html

What you select here assists the Agent Desktop Application in choosing the proper application to
process or display this part of interaction. This field is mandatory if the Structured Text User Data Key
property contains a value.

eServices Blocks

Composer Help 873

Structured Text User Data Key Property

If the interaction contains structured text, select the variable that contains the User Data whose
value is the interaction structured text. The value will be stored in the Universal Contact Server
Database as interaction’s structured text.

Text User Data Key Property

If the interaction contains plain text, select the variable that contains the User Data key whose value
is the interaction plain text. The value will be stored in the UCS Database as the interaction's plain
text.

Exceptions Property

Find this property's details under Common Properties.

Also see ExceptionEvents for eServices/UCS Blocks. Exceptions supported: 201, 202, 203, 204, 502,
512, 701, 710, 716, 732.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 874

Orchestration Interaction ID Property

Select the variable that contains the interaction identifier for Orchestration Server.

Output Interaction ID Property

Select the variable that contains the identifier for the created interaction.

Bind With Contact Property

Select true to have Universal Contact Server look for a customer contact record and associate it with
the interaction. If a contact record is not found, it will be created.

Can Be Parent Property

Select true if this interaction can have child interactions.

Do Not Thread Property

Find this property's details under Common Properties.

Tenant Property

Find this property's details under Common Properties.

Universal Contact Server Property

Find this property's details under Common Properties.

Update Interaction User Data Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 875

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 876

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Create SMS Block
Use this block to create an outbound message, which can be sent out as a Short Message Service
(SMS) message to an external SMS Server. SMS refers to the common text messaging service
available on cellphones and other handheld devices. You can also specify the interaction queue where
the SMS message should be placed. This version of Composer supports native SMS, which means that
the SMS message is sent via SMS Server and not via an e-mail to SMS gateway.

Also see the Render Message block.

Important
For the Create Email, Email Forward, Email Response, Send Email, Chat Transcript, and
CreateSMS blocks, Orchestration Server does not copy User Data from any Interaction
into an outgoing ESP request. Currently there is no attribute support to overwrite this
behavior. If User Data must be included as part of the above blocks, use External
Service blocks or SCXML State blocks to directly call the ESP methods
(\\CFGEmailServer\\Email\\Forward and \\CFGEmailServer\\Email\\Send).

The Create SMS block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

SMS Server Property

To select an SMS Server for sending the message:

1. Select the SMS Server row in the block's property table.
2. Click under Value to display a down arrow.
3. Select an SMS Server from those in the Configuration Database.

eServices Blocks

Composer Help 877

Exceptions Property

Find this property's details under Common Properties.

Associate New Interaction Property

This property, introduced in Composer 8.1.420.xx for the Chat Transcript, Create Email, Create SMS,
Email Forward, and Email Response blocks, supports the Orchestration Server <ixn:createmessage>
tag associate attribute. See Using eServices Blocks, section Associate New Interaction. This property
requires Orchestration Server version 8.1.400.45+.

Interaction Queue Property

Select the interaction queue where the SMS Server should place the outbound SMS. Only the
interaction queues that have been created using Composer in the current Composer Project are
shown for the Configuration Server values. The interaction queues are sorted per parent Interaction
Process Diagram.

To define the output queue:

1. Click under Value to display the button.

2. Click the button to open the Select an Output Queue dialog box.
3. Click the Type down arrow and do one of the following

• If you are connected to Configuration Server, select Configuration Server and then select
an output queue as the Value. The Independent Objects > Same queue choice allows
you to put the outbound e-mail in the same interaction queue that initiated the current
interaction.

• Select Literal and then enter the name of the output queue as the Value.

4. Click OK.

Starting with Release 8.1.410.14, you can use a queue defined in referenced Projects. For more
information, see Adding an Interaction Queue.

Interaction Subtype Property

Select an Interaction Subtype code (defined in the Configuration Database Business Attributes
folder), which can represent an Acknowledgement, Autoresponse, or Outbound New Standard
Response subtype. The default is OutboundNew.

eServices Blocks

Composer Help 878

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UsingeServicesBlocks#Associate_New_Interaction

Message Destination Number Property

Enter the mobile telephone number of the person to whom the message is to be sent.

See the Getting and Using E-mail Address topic for more information. While the topic focuses on the
supplying a To e-mail address, the same ideas apply to getting a customer's mobile telephone
number with Context Services blocks and using it for this property.

Message Source Number Property

Enter the mobile telephone number from which the SMS message should appear to come.

Message Text Property

Use this property to specify the Short Message Server text.

1. Click under Value to display the button.

2. Click the button to open the Select SMS Text Message dialog box.
3. Select User Data, Literal or Variable from the Type dropdown menu.

If you select Literal, enter the text in the Value field.

• If you select User Data, enter the User Data keys in the Value field.
• If you select Variable, select the variable from the Value field that contains the text.

4. Click OK to close the dialog box.

Interaction ID Property

Find this property's details under Common Properties.

Output Result Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 879

Detach Property

Find this property's details under Common Properties.

Detach Timeout Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 880

Email Forward Block
Use to send an incoming e-mail to an external address, such as for agent collaboration. This block
combines the functionality of IRD's Forward E-mail, Redirect E-mail, and Reply E-mail from External
Resource objects. The Forward Type property specifies the type of functionality by allowing you to
select Forward, Reply to Customer, or Redirect.

• The difference between Forward and Redirect is as follows: Use the Forward functionality when there is
an expectation of getting a response back. Use the Redirect functionality when there is no expectation
of getting a response back.

• Reply To Customer works with the Forward functionality. It takes the resulting external resource reply
inbound e-mail as input, extracts the external resource reply text from it, creates a customer reply
outbound e-mail, and submits the e-mail to Interaction Server using the specified interaction queue.

Note: An "external resource" is a name for any object outside the contact center. It may be an
external agent or another contact center. Configure external e-mail addresses as E-Mail Accounts
Business Attributes in the Configuration Database.

Use Case for Forward and Reply to Customer

1. An e-mail about a product defect arrives to the contact center, initiating a routing workflow.
2. Based on content analysis, the contact center determines that it must be replied to by an outsource

partner responsible for supporting the defective product.
3. The routing workflow invokes the Forward functionality of this block, and the e-mail is sent to an

external address. The e-mail uses text from the Standard Response Library to indicate to the outsourcer
what the service-level agreement is on such customer inquiries.

4. The outsourcer partner replies to the e-mail with a response on the defective product.
5. The routing workflow then employs the Reply to Customer capability. It take the response from the

outsourcer partner, reformats it appropriately, and sends it as a response to the original customer
inquiry.

Use Case for Redirect

Use the redirect functionality to send an incoming e-mail to an external address without expecting a
response or when there is no need for further processing.

1. An inbound e-mail interaction initiates a routing workflow.
2. Based on a content analysis of the e-mail, the e-mail is re-directed to the Brokerage business unit that is

outside of the contact center.
3. The e-mail is handled directly by a broker (knowledge worker) in the Brokerage business unit. The

contact center does not expect a response, or to be involved in further processing of the email.

eServices Blocks

Composer Help 881

Special Note on Cc, From, and Exclude Addresses Properties

The Literal and Variable types can have a value set to an actual e-mail address, e.g., joe@test.com,
or refer to the name of a previously configured e-mail address from Configuration Server (e.g., if Tech
Support is configured as a Configuration Server E-mail Accounts Business Attribute, then Tech
Support can be the value for the Literal type and the Orchestration platform will use that e-mail
address.

The E-mail Forward block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Email Server Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Associate New Interaction Property

This property, introduced in Composer 8.1.420.xx for the Chat Transcript, Create Email, Create SMS,
Email Forward, and Email Response blocks, supports the Orchestration Server <ixn:createmessage>
tag associate attribute. See Using eServices Blocks, section Associate New Interaction. This property
requires Orchestration Server version 8.1.400.45+.

Do Not Thread Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 882

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UsingeServicesBlocks#Associate_New_Interaction

Forward Type Property

As described at the start of this topic, select one of the following:

• Forward—forward to an external resource with the expectation of getting a response back
• Reply to Customer—takes the reply inbound e-mail as input, extracts the reply text from it, and

creates a customer reply outbound e-mail
• Redirect—forward to an external resource with no expectation of getting a response back

Some of the properties under the Message Settings section may not be applicable based on the
Forward Type selected. Even if you are able to specify a value for all properties, values for those
properties that are not applicable are ignored. The table below provides you a list of the applicable
and non-applicable properties for each Forward Type:

Forward Type CC

Exclude
Email
Address Field Codes From

Include
Original
Message
Into Reply

Standard
Response Subject To

Forward Yes No Yes No Yes Yes Yes Yes

Reply To
Customer Yes Yes Yes Yes Yes Yes Yes Yes

Redirect Yes Yes Yes No Yes No Yes Yes

Note: The not applicable properties will also not work when using an External Service block, based
on the External Services Protocol.

Output Queue Property

Starting with Release 8.1.410.14, you can use a queue defined in referenced Projects. For more
information, see Adding an Interaction Queue.

Related Interaction ID

Select a variable for the current interaction ID or keep the default, which is system.InteractionID.
For information on the value, see the Entry block, Variables property, System Variables.

eServices Blocks

Composer Help 883

CC Property

Find this property's details under Common Properties.

Exclude Email Addresses Property

Find this property's details under Common Properties.

Tip
When the Forward Type property is set to Forward, the Exclude Email Address
property is not allowed. The Add button in the dialog box is disabled.

Field Codes Property

Find this property's details under Common Properties.

From Property

Find this property's details under Common Properties.

Include Original Message Into Reply Property

Find this property's details under Common Properties.

Standard Response Property

Find this property's details under Common Properties.

Subject Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 884

To Property

Find this property's details under Common Properties.

Interaction ID Property

Find this property's details under Common Properties.

Output Result Property

Find this property's details under Common Properties.

Detach Property

Find this property's details under Common Properties.

Detach Timeout Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 885

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 886

Email Response Block
Use to send an e-mail in response to incoming interaction resulting from inbound e-mail or an open
media request. This block combines the functionality of IRD’s Acknowledgement, Autoresponse, and
Create Notification objects.

Autoresponse Use Case

1. An inbound e-mail initiates a routing workflow.
2. URS prioritizes the interaction,
3. The interaction is screened and customers are segmented based on tier.
4. If the screened e-mail is identified as one that does not require any agent input, then the e-mail is

provided with autoresponse as an Re: with the text from to the original e-mail included
5. The next step in the routing workflow stops processing the interaction.

Acknowledgement Use Case

1. A Genesys user sends an e-mail request to create a ticket on specific problem involving a T-Server.
2. Genesys identifies the customer contact and sends out an acknowledgement e-mail.
3. The acknowledgement e-mail uses custom fields (Field Codes), personalizing a standard e-mail with the

customer's name.
4. The acknowledgment e-mail also contains the ticket number and contact information for the technical

support engineer assigned to the ticket .
5. The technical support engineer is also copied in on the email

Create Notification Use Case

Use Create Notification to create a notification e-mail that can be sent to a customer as a reply to an
inquiry. (e.g phone call, e-mail, SMS, Chat, etc). This e-mail may itself contain the response to the
inquiry or it may point the customer to the location of the information; for example, a page on the
enterprise website, a link to youtube, and so on. And the e-mail can be classified as either
Acknowledgement, Autoresponse or Notification. The response may be a template from knowledge
management but not necessarily. Use case:

1. A Customer logs into a bank web site using his username and password.
2. The bank web site provides a way to send an inquiry to customer support.

eServices Blocks

Composer Help 887

3. The customer sends an inquiry to the bank's customer support, asking about the status of a check he
had deposited yesterday through an ATM. He is wondering when the funds will be available to him
through his account.

4. The customer support analyst provides a response to the customer. This response is only available to
the customer through a secure log-in on the bank's web site, due to its sensitive nature.

5. The contact center also sends a notification email to the customer's Gmail address, telling him that
there is a response awaiting him on the bank's website, providing a URL to that part of the bank's web
site.

6. The customer logs into the bank's web site and retrieves the response to his inquiry.

Special Note on From and To Properties

The Literal and Variable types can have a value set to an actual e-mail address, e.g., joe@test.com,
or refer to the name of a previously configured e-mail address from Configuration Server (e.g., if
“Tech Support” is configured as a Configuration Server E-mail Accounts Business Attribute, then
“Tech Support” can be the value for the Literal type and the platform will use that e-mail address).

The E-mail Response block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Email Server Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 888

Associate New Interaction Property

This property, introduced in Composer 8.1.420.xx for the Chat Transcript, Create Email, Create SMS,
Email Forward, and Email Response blocks, supports the Orchestration Server <ixn:createmessage>
tag associate attribute. See Using eServices Blocks, section Associate New Interaction. This property
requires Orchestration Server version 8.1.400.45+.

Do Not Thread Property

Find this property's details under Common Properties.

Open Media Property

Select true or false to indicate if the e-mail response is a result of an incoming open media
interaction. Note: If you select true, this Email Server property above should reflect the e-mail server
that has been adapted to handle the appropriate media type.

Output Queue Property

Find this property's details under Common Properties.

Starting with Release 8.1.410.14, you can use a queue defined in referenced Projects. For more
information, see Adding an Interaction Queue.

Response Type Property

Select one of the following Interaction Subtypes:

• Acknowledgement
• Autoresponse
• Notification

For more information, see the Create Notification Use Case section above.

Some of the Properties under the Message Settings section may not be applicable based on the
Response Type selected. Even if you are able to specify a value for all properties, values for those
properties that are not applicable are ignored. The table below provides you a list of the applicable
and non-applicable properties for each Response Type:

eServices Blocks

Composer Help 889

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UsingeServicesBlocks#Associate_New_Interaction

Response Type CC
Exclude Email
Addresses

Field
Codes From

Include
Original
Message Into
Reply

Standard
Response Subject To

Autoresponse Yes Yes Yes Yes Yes Yes Yes Yes

Acknowledgement Yes Yes Yes Yes Yes Yes Yes Yes

Notification No No Yes Yes Yes Yes Yes Yes

Note: The not applicable properties will also not work when using an External Service block, based
on the External Services Protocol.

CC Property

Find this property's details under Common Properties.

Exclude Email Addresses Property

Find this property's details under Common Properties.

Field Codes Property

Find this property's details under Common Properties.

From Property

Find this property's details under Common Properties.

Include Original Message Into Reply Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 890

Standard Response Property

Find this property's details under Common Properties.

Subject Property

Find this property's details under Common Properties.

To Property

Find this property's details under Common Properties.

Use Subject From SRL Property

Find this property's details under Common Properties.

Interaction ID Property

Find this property's details under Common Properties.

Output Result Property

Find this property's details under Common Properties.

Detach Property

Find this property's details under Common Properties.

Detach Timeout Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 891

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 892

Find Interactions Block
Introduced in 8.1.440.18. Applicable for workflow diagrams only. Execution of this block causes ORS
to generate a request to Interaction Server for the method FindInteractions to get the list of
interactions matching some specific condition (Condition Property). This block is useful in complex
scenarios where you need to be able to find the targeted interaction among the pool of all currently
existing interactions in Interaction Server; for example:

• Where you need to make decisions regarding processing of one interaction based on data from another
interaction.

• If, while processing one interaction, you want to update another interaction.

The interaction you are looking for may be a parent interaction, an interaction from the same
customer, and so on.

The Find Interactions block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties. The following events are supported:

error.session.fetch
error.com.genesyslab.composer.invalid.requestdata
error.com.genesyslab.composer.missing.interactionid
error.com.genesyslab.composer.invalid.type
error.com.genesyslab.composer.unknown.tenant
error.com.genesyslab.composer.database.execution.failure
error.com.genesyslab.composer.invalid.condition

Condition Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 893

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add an ORS Extensions property. In order to view this property,
click the Show Advanced Properties button.

Have More Interactions

Select the variable to hold the Boolean value indicating whether more records are available.
Composer uses the variable as output for the block.

Interactions

Select the variable to hold the list of retrieved Interactions (JSON) object). Composer uses the
variable as output for the block.

Condition

Enter a WHERE clause or select a variable to hold the WHERE clause to be used in a SQL statement to
query interactions.
Example: MediaType= 'chat' and ParentId is NULL
If not specified, all interactions in the Tenant are returned.

Get Identifiers Only

Select true to receive only interaction IDs in the results. If false, the results include an interactions
list with full properties.

eServices Blocks

Composer Help 894

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ORSExtensions

Interaction Server

Select Configuration Server and the name (if connected to Configuration Server). You can also enter a
literal or select a variable to specify the Interaction Server Application object in the Configuration
Server.

Maximum Number of Interactions

Specify a positive integer value to limit the number of interactions returned in the result. If not
specified, one interaction will be returned in the result.

Order

Enter a literal or variable to specify an ORDER clause to be used in a SQL statement to query
interactions. If not specified, interactions are sorted by received_at and then by Id.

Tenant

Select the variable for the interaction Tenant. Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 895

Identify Contact Block
Use to identify a contact based on the user data of the current interaction.

Prior to using this block, set Context Services Preferences.

• For detailed information on how Universal Contact Server identifies customers, see the Context Services
User's Guide.

Also see:

• Getting and Using E-mail Addresses.
• Using the Identify Contact and Identify Customer Blocks.

Use Case

1. An inbound interaction initiates a routing workflow.
2. Based on user data attached to the interaction, the contact is identified from Universal Contact Server

(UCS), and the interaction's user data is updated.
3. The user data is then assigned to variables and is then used to provide an automated response that is

personalized with the First Name, Last Name and the contact address of the contact.

The Identify Customer block has the following properties. The behavior of some properties can vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under CommonPropertiesforWorkflowBlocks.

Block Notes Property

Find this property's details under CommonPropertiesforWorkflowBlocks.

Exceptions Property

Find this property's details under CommonProperties.

eServices Blocks

Composer Help 896

You can also define custom events.

Customer Count Property

Click the down arrow under Value to select a variable whose value is the number of customer
records returned by Universal Contact Server. This feature is for your convenience. It also serves the
purpose of retaining the original number of records returned in case the returned data is modified
through other blocks.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Interaction ID Property

Find this property's details under Common Properties.

Contact Count Property

Use to specify a variable to hold the number of matching contacts if more than one is found.

Contact Created Property

If no existing contact matches the data attached to an interaction, you can have a new contact
created in Universal Contact Server Database. Select the variable to hold the new contact
information.

eServices Blocks

Composer Help 897

Contact List Property

Select the variable to hold all matching contact records found.

Result Property

Find this property's details under Common Properties.

Variables Mapping Property

Use this property to map the JSON data returned by this block to variables. See the Variables Mapping
topic for details.

Create Contact Property

Select true or false. Based on attributes that match data attached to the interaction being processed
by the strategy, if no existing contact matches the data attached to an interaction, use this property
to have a new contact created in the Universal Contact Server database.

Return Unique Property

Select true or false. Use this property to have UCS return the list of matching Contact’s ID only if a
single matching contact record is found. By default it will return data for all matching contact records
found.

Tenant Property

Find this property's details under Common Properties.

Universal Contact Server Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 898

Update Interaction User Data Property

Select true or false. Use to update certain attributes of the contact from values (literal or application
variables) specified by the user instead of values from the user data. Also see Common Properties.

Update User Data Property

Select true or false. Use to update the UCS database record of the matching contact with information
from the current interaction’s user data. Also see Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 899

Render Message Block
Use the Render Message block to request Universal Contact Server to create message content. You
can create message content using text from either the Message Text to Render property, the Result
property, or User Data. This block causes Universal Routing Server to generate a request to Universal
Contact Server for the method RenderMessageContent. The primary reason for this block is to create
message content for use in the Create SMS block, which does not allow you to use either Standard
Response Library text or Field Codes when defining the message text.

Important! See Mandatory Data for UCS Blocks.

Accessing the Rendered Message

The results of this request to the Universal Contact Server can be accessed by the Composer
developer in two ways. You may:

• Assign the result to an application variable.
• Have the result attached to the current interaction.

Use Case

1. An inbound e-mail interaction initiates a routing strategy (routing workflow).
2. The e-mail is classified based on the email subject and keywords.
3. The routing workflow logic creates a message to send to the customer by SMS. The SMS message text

is rendered by pulling data from the Standard Response Library, using Field Codes to insert the
customer's name into the message text.

4. The SMS interaction is created in the routing workflow and then sent to the customer.

The Render Message block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 900

Exceptions Property

Find this property's details under Common Properties. Also see
Exception_Events_for_eServices_UCS_Blocks. Exceptions supported: 105, 201, 203, 510, 701, 710,
716, 732.

Interaction ID Property

Find this property's details under Common Properties.

Result Property

Click the down arrow under Value and select the variable to hold the rendered text.

• When the Message Text to Render property is Variable, Literal, UserData or UserDataVariable,
the Result variable holds the rendered text.

• When the Message Text to Render property is ConfigServer, the Result variable holds a JSON
object having the three properties: Subject, Text and StructuredText.

Field Codes Property

When using a standard response to render message text, use this property to assign values to Field
Code variables that have been defined in Knowledge Manager (as described in the eServices 8.1
User's Guide) and used in that standard response. Universal Contact Server requires values for Field
Codes when using standard responses that include Field Codes.

1. Click under Value to display the button.

2. Click the button to open the Field Codes dialog box.
3. Click Add. A second dialog box opens for specifying Field Codes and values.
4. Type the name of the Field Code.
5. Select Literal or Variable.

• If you select Variable, select the variable the contains the Field Code value.
• If you select Literal, enter the value for the Field Code.

eServices Blocks

Composer Help 901

Message Text to Render Property

Use to specify the content to be rendered using Universal Contact Server.

1. Click under Value to display the button.

2. Click the button to open the Message Text to Render dialog box.
3. The next step depends on the source for the rendered text.

• If you connected Configuration Server and wish to use a standard response, select
Configuration Server from the Type dropdown menu. In the Value field, select the name
of the standard response from the tree. Note: For a standard response to be selectable in
this dialog box, you must first define it in Knowledge Manager for the same tenant selected
when connecting to Configuration Server. You must also approve its use and make it active.
The Knowledge Manager procedures for setting the Acknowledgement and Approved flags,
and making the standard response Active are covered the eServices 8.1 User’s Guide. See
"Filling Out the Additional Tab" in the chapter on Knowledge Management Basics.

• To type the rendered text, select Literal and enter the text in the Value field.
• To have the rendered text taken from the interaction's User Data, select UserData. In the

Value field, enter the User Data keys.
• To have the rendered text taken from a variable in the User Data, select UserDataVariable.

In the Value field, select the name of the variable.
• To have the rendered text taken from a variable (Project or Workflow), select Variable. In

the Value field, select the name of the variable.

Tenant Property

Find this property's details under Common Properties.

Universal Contact Server Property

Find this property's details under Common Properties.

Update Interaction User Data Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 902

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 903

Screen Interaction Block
Use this block to filter a text-based interaction for specific content (specific words or patterns) based
on evaluation of one or more screening rules by Classification Server. You then have the option of
segmenting incoming interactions to different logical branches based on the result of the screening
query. Screening rules are created in Knowledge Manager as described in the eServices 8.1 User's
Guide.

Key-Value Pairs

If Classification Server finds a match, it returns a response that contains the following:

Key Value
ScreenRuleName The name of the screening rule.

Id The actual identifier of the screening rule in the
UCS Database.

ScreenRuleMatch True (if Classification Server finds a match), or False
(if it does not find a match).

Use Case

1. An e-mail arrives on a route point, initiating a routing workflow.
2. The e-mail is screened for an account number
3. If a screening rule match is found, the e-mail is provided with an auto-response and then queued to

specific queue.
4. If no screening rule match is found, the e-mail is moved to a workbin of the starter agent group.
5. If the e-mail processing or screening itself fails, then interactions are moved to an general interaction

queue.

The Screen Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 904

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Classification Categories Property

Use to select the location to store resulting classification categories after classification.

1. Click under Value to display the ... button.
2. Click the ... button to open the Classification Categories dialog box.
3. For Type, select User Data or Variable.

• If you select Variable, select the variable that contains the key-value pairs to add to the
interaction's User Data.

• If you select User Data, specify the key-value pairs to add to the interaction’s User Data.
The key-value pairs are added to the Interaction's User Data with a prefix of gdata:udata/
during runtime.

Key Value Pairs Property

Select the location to store the resulting key-value pairs after screening rules are applied.

1. Click under Value to display the ... button.
2. Click the ... button to open the Key-Value Pairs dialog box.
3. For Type, select User Data or Variable.

• If you select User Data, specify the key-value pairs to add to the interaction’s User Data.
The key-value pairs are added to the Interaction's User Data with a prefix of gdata:udata/
during runtime.

• If you select Variable, select the variable that contains the key-value pairs to add to the
interaction's User Data.

eServices Blocks

Composer Help 905

Matching Rules Property

Select the location to store the IDs of the matched rules and the keywords that matched after
screening rules are applied.

1. Click under Value to display the ... button.
2. Click the ... button to open the Matching Rules dialog box.
3. For Type, select User Data or Variable.

• If you select User Data, specify the key-value pairs to add to the interaction’s User Data.
The key-value pairs are added to the Interaction's User Data with a prefix of gdata:udata/
during runtime.

• If you select Variable, select the variable for storing the matched rules and keywords.

Result Type Property

Click the down arrow and select the type of screening result:

• All--Select to return screening rule IDs, key-value pairs, and categories.
• Rules--Select if you wish to apply all screening rules.
• Matching Pairs--Select to return matched pairs of Screening Rule IDs and specific strings of words in

the e-mail that matched the screening rules. Classification Server can return specific strings that were
matched during the screening process. For example a rule screening for credit card numbers could
return the following key-value pair: "Key_credit_number" "1111-2222-3333-4444"

• Categories--Select to return only the classification categories associated with the screening rules. This
can be used later in the strategy to select a Standard Response.

Classification Server Property

Select the Application name for the Classification Server from those in the Configuration Database. If
a Classification Server is not selected, the platform will internally select one.

1. Click under Value to display the ... button.
2. Click the ... button to open the Application Selection dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. Select
the name of the Classification Server from the Value field. Otherwise:

• You can select Literal and enter the name of the classification server in the Value field.
• You can select Variable and select the variable from the Value field.

eServices Blocks

Composer Help 906

Generate Outports Property

Use to segment interactions to take different paths. Select true or false. When set to true, Composer
will generate one outport for each selected screening rule. If the screening data matches the
screening rule, then the processing will continue via the corresponding screening rule.

Language Property

Click the down arrow to select the language of the incoming interaction. The selected language
determines which screening rules are shown. You must select a language in order for code to be
generated.

1. Click under Value to display the ... button.
2. Click the ... button to open the Language dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected and want to select a language defined as a Business Attribute in the
Configuration Database, select Configuration Server. A tree of languages appears in the
Value field for selection. Otherwise:

• You can select Literal and enter the name of the language in the Value field.
• You can select Variable and select the variable that contains the language from the Value

field.

Root Category Property

Select the name of the top-level category to be used for the classification.

1. Click under Value to display the ... button.
2. Click the ... button to open the Root Category dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. A tree of
classification categories appears in the Value field. Select the name of the top-level (root)
classification category. This is a directory that appears in Configuration Manager in the
Business Attributes > Category Structure folder. For more information on Root folders,
see the Universal Routing 8.1 Reference Manual. Otherwise:

• You can select Literal and enter the name of the root category in the Value field.
• You can select Variable and select the variable that contains the root category from the

Value field.

eServices Blocks

Composer Help 907

Screening Data Property

Use this property to select whether to search for screening data in the interaction's User Data, from a
variable, or from the UCS database. This property works with the Screening Rules property below.

1. Click under Value to display the ... button.
2. Click the ... button to open the Screening Data dialog box.
3. For Type:

• Select UCS to have Classification Server take the screening data from the UCS Database.
Leave the Value field empty.

• Select User Data to have Classification Server take screening data from the UCS Database.
Leave the Value field empty.

• Select Variable to have Classification Server take the screening data from a variable. Select
the variable.

Screening Rules Property

Use to specify the screening rules to apply on the screening data specified above.

1. Click under Value to display the ... button.
2. Click the ... button to open the Screening Rules dialog box.
3. Click Add to open the Select Items dialog box.
4. From the Type dropdown menu, do one of the following:

• If you are connected to Configuration Server, select Configuration Server. Select one or
more screening rules for the Value.

• Select Literal and enter the screening rule IDs in the Value field. Use commas to separate
the screening rule IDs.

• Select Variable and select the variable that contains the screening rule IDs from the Value
field.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 908

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 909

Send Email Block
Use this block to send an e-mail waiting in a queue that was previously created using the Create
Email block. Note: The Send Email block should only be used if the output queue (Create Email block)
property is set. If this property is not set, the Orchestration platform will automatically send the e-
mail via an internal Orchestration queue, and therefore the Send Email block is not needed.

Special Note on Cc, From, and Exclude Addresses Properties

The Literal and Variable types can have a value set to an actual e-mail address, e.g., joe@test.com,
or refer to the name of a previously configured e-mail address from Configuration Server (e.g., if Tech
Support is configured as a Configuration Server E-mail Accounts Business Attribute, then Tech
Support can be the value for the Literal type and the platform will use that e-mail address).

Important
For the Create Email, Email Forward, Email Response, Send Email, Chat Transcript and
CreateSMS blocks, Orchestration Server does not copy User Data from any Interaction
into an outgoing ESP request. Currently there is no attribute support to overwrite this
behavior. If User Data must be included as part of the above blocks, use External
Service blocks or SCXML State blocks to directly call the ESP methods
(\\CFGEmailServer\\Email\\Forward and \\CFGEmailServer\\Email\\Send).

The Send E-mail block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Email Server Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 910

E-mail to Send Property

Select the variable containing the e-mail to send.

Message Delivery Notification Property

Select true or false to indicate if the message being sent should include a request for a return
message indicating whether and how the original message was delivered.

• If one of the SMTP servers involved in the transport of the original e-mail fails to deliver it, the return
message will come into the system with Configuration Database Interaction Subtype InboundNDR. It
contains no additional information.

• If the original e-mail is successfully delivered, the return message will come into the system with a
Configuration Database Interaction Subtype InboundReport. It uses attached data to indicate delivery
statuses such as delayed, delivered, relayed, and so on.

For details on Interaction Subtype handling, see the E-mail Server Java: Advanced Topics section of
the Ongoing Administration and Other Topics chapter of the eServices/Multimedia 8.1 User's Guide.

Message Disposition Notification Property

Select true or false to indicate if the message should include a request for a return message
indicating what happened to the original message after it was delivered. For example, the return
message may indicate whether the original message was displayed, printed, deleted without
displaying, and so on.

Exceptions Property

Find this property's details under Common Properties.

CC Property

Find this property's details under Common Properties.

Exclude Email Addresses Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 911

From Property

Find this property's details under Common Properties.

Header Fields Property

Use this property to specify additional message headers through a list of key-value pairs of literal
values or application variables. Header fields are used to add/overwrite headers to the e-mail
message when it is sent. They are passed to E-mail Server and the latter will create the e-mail
message with these custom headers and will take the form of <headername>:<headervalue>.
Examples of typical header names are: Received, Return-Path, X-MIMETrack, Subject, Sender,
From, To, Cc, Bcc To enter the Header Fields property:

1. Click under Value to display the button.

2. Click the button to open the Header Fields dialog box.
3. Click Add to open the Key Value Pairs dialog box.
4. For Key, enter a key (see above description).
5. For Value, enter the literal value or select a variable for the value. The Header Fields dialog box reflects

your entry.

Subject Property

Use this property to override the subject specified in the Create E-mail block. Enter the Subject line of
the e-mail.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 912

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 913

Send SMS Block

Tip
For an example of how this block could be used, see How To Automate an SMS
Response to a Customer Call.

Use this block to send an Short Message Service (SMS) message created with the Create SMS block.
This version of Composer supports native SMS, which means that the SMS message is sent via SMS
Server and not via an e-mail to SMS gateway.

Important
The Send SMS block should only be used if the interaction queue (Create SMS block)
property is set. If this property is not set, the Orchestration platform will automatically
send the SMS via an internal Orchestration queue, and therefore the Send SMS block
is not needed.

For the Create Email, Email Forward, Email Response, Send Email, Chat Transcript, and
CreateSMS blocks, Orchestration Server does not copy User Data from any Interaction
into an outgoing ESP request. Currently there is no attribute support to overwrite this
behavior. If User Data must be included as part of the above blocks, use External
Service blocks or SCXML State blocks to directly call the ESP methods
(\\CFGEmailServer\\Email\\Forward and \\CFGEmailServer\\Email\\Send).

The Send E-mail block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 914

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SMSAfterCustomerCall
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SMSAfterCustomerCall

SMS Server Property

Select an SMS Server to send the message.

1. Click under Value to display the button.

2. Click the button to open the Select SMS Server dialog box.
3. The next step depends on whether you are connected to Configuration Server. Otherwise:

• If you are connected, select Configuration Server from the Type dropdown menu. Select
the name of the SMS Server object from the Value field.

• You can select Literal and enter the name of the server in the Value field.
• You can select Variable and select the variable from the Value field that contains the name

of the server.

SMS to Send Property

Select the variable containing the message to send.

Exceptions Property

Find this property's details under Common Properties.

Message Source Number Property

Use this property to override the Message Source Number specified in the Create SMS Block, which is
the mobile telephone number from which the SMS message should appear to come.

1. Click under Value to display the button.

2. Click the button to open the Select the SMS Message Source Number dialog box.
3. From the Type dropdown menu, do one of the following:

• If you are connected to Configuration_Server, select Configuration Server. Select a
Configuration Server Business Attribute for Value.

• Select Literal and enter the Cc address in the Value field.
• Select Variable and select the variable that contains the number from the Value field.

eServices Blocks

Composer Help 915

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 916

Set Agent State Block
Introduced in 8.1.440.18, this block is applicable for workflow diagrams only. Use this block to
dynamically manage agent resource states via ESP methods. Using this block, you can:

• Set an agent Do Not Disturb (DND) state (on/off) for an agent based on their Agent ID or Place ID.
• Set an agent media state (ready/not ready) based on Agent ID, Place ID, and Media Type.
• Force agent logout (printable or result) based on Agent ID and Place ID.

For background information on these states, refer to the Universal Routing 8.1 Business Process User
Guide, section Workforce and Resource Management.

The Set Agent State block has the following properties:

Name Property

This is the block name in the diagram. Find this property's details under Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks. There are no default
exceptions for this block.

Condition Property

Find this property's details under Common Properties for Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Workflow Blocks.

eServices Blocks

Composer Help 917

https://docs.genesys.com/Documentation/GDP/latest/AISDeveloper/Place,DNs,andMedia

Log Level Property

Find this property's details under Common Properties for Workflow Blocks.

Agent Property

This property is mandatory if the Place property is not configured. Specify the agent (CfgPerson) in
Configuration Server whose state is to be changed.

1. Click the ... under Value.
2. In the dialog box under Type, do one of the following:

• Select Configuration Server. If connected to Configuration Server, you can then select an
AgentEmployeeid under Value.

• Select Literal and manually enter the AgentEmployeeid.
• Select the variable that contains the AgentEmployeeid.

Interaction Server Property

Select the Interaction Server Application Object (InteractionServerAppName). This property is
mandatory if the Agent property is not configured. Specify the Place in Configuration Server whose
state is to be changed.

1. Click the ... under Value.
2. In the dialog box under Type, do one of the following:

• Select Configuration Server. If connected to Configuration Server, you can then select an
Interaction Server under Value.*

• Select Literal and manually enter the Interaction Server name.
• Select the variable that contains the Interaction Server name.

Method Property

Enter the name of the agent method to be invoked.

1. Click the ... under Value.
2. Select one of the following: SetAgentDNDState, SetAgentMediaState, or ForceLogout. Or select the

variable that contains one of these methods.

eServices Blocks

Composer Help 918

Parameters Property

Specify the list of input parameters (auto-populated based on method type).

1. Click ... under Value to open a dialog box.
2. Click Add in the dialog box.
3. Select the State. If the method is SetAgentDNDState, select on or off. If the method is

SelectAgentMediaState, select ready or notready. If the method is ForceLogout, select printable
or result. For ForceLogout, the State parameter is unavailable.

4. Click Add again.
5. Add parameter 1 name and value. Use the parameter information in the links below.
6. Click Add again to define parameter 2.
7. Continue defining parameters in this fashion and click OK when finished.

[+] SetAgentDNDState
Use the Set Agent DND State method to turn the Agent's DND status on or off. If this is set to on, all
of the agent’s media that are controlled by Interaction Server will be reported as not accepting any
interactions. If it is set to off, reported media status will be based on agent capacity rules. The State
parameter is required for setting the Agent's DND state.

Method SetAgentDNDState

Parameters

• ‘Place’ – specifies name of the place to change DND state on

• ‘Agent’ – specifies agent employee id to change DND state; one of the ‘Place’ or ‘Agent’ has to be specified

• ‘Tenant’ – Specifies tenant identifier; the tenant will be inferred from the tenant identifier of the strategy that invokes the service.
For multitenant clients, tenant identifier is mandatory.

• ‘State’ – specifies desired state; 1 – DND on, 0 – DND off

Limitations on method parameters

Parameter Scope Type Required Explanation

Tenant Any tenant id, associated with this IxnServer String or Int Yes tenant id

Place Any string corresponding to place_id belonging to the specified tenantString If absent or empty, the place is inferred from agent id.place id

Agent Any string corresponding to agent_id belonging to the specified tenantString If absent or empty ==> agent=anonymous, otherwise ragent id

State Ready or Not ready String or Int Yes 0=DNDOff 1=DNDOn

eServices Blocks

Composer Help 919

Error Codes

Error Code Description

106 Invalid request

201 Missing parameter <name>

206 Unknown tenant

213 Invalid type of <parameter name>

218 Unknown value of parameter 'State'

229 Neither 'Place' nor 'Agent' is specified in the request

230 This agent is not logged in

501 Place not found

502 Place disabled

503 Place busy

505 Agent disabled

507 Place not occupied

508 Place not occupied by specified agent

509 Place not occupied by anonymous

516 DND already on

517 DND already off

[+] SetAgentMediaState

eServices Blocks

Composer Help 920

Use the Set Agent Media State method to change the state of the specified
media to which the agent is logged on (if it is controlled by Interaction Server). If
the media are set to Not Ready, it will be reported as not accepting any
interactions. If the media are set to Ready, the status of the media will be
reported based on agent capacity rules. The Media Type parameter is required
for setting the Agent's media state. Select the media type from the predefined
list.

Method SetAgentMediaState

Parameters

• ‘Place’ – specifies name of the place to change media state on

• ‘Agent’ – specifies agent employee id to change media state; one of the ‘Place’ or ‘Agent’ has to be specified

• ‘Tenant’ – TBD, specifies tenant identifier; the tenant will be inferred from the tenant identifier of the strategy that invokes the
service. For multitenant clients, tenant identifier is mandatory.

• ‘MediaType’ – specifies name of the media to change state

• ‘State’ – specifies desired state; 1 – ready, 0 – not ready

Limitations on method parameters

Parameter Scope Type Required Explanation

Tenant any tenant id, associated with this IxnServer String or Int Yes tenant id

Place Any string corresponding to place_id belonging to the specified tenantString If absent or empty, the place is inferred from agent id.place id

Agent Any string corresponding to agent_id belonging to the specified tenantString If absent or empty ==> agent=anonymous, otherwise requiredagent id

State Ready or Not ready String or Int Yes 0=not ready, 1=ready

MediaType any media loaded on the specified place String Yes Media to be "ready"/"not ready"

Error Codes

Error Code Description

106 Invalid request

eServices Blocks

Composer Help 921

201 Missing parameter <name>

206 Unknown tenant

213 Invalid type of <parameter name>

218 Unknown value of parameter 'State'

229 Neither 'Place' nor 'Agent' is specified in the request

230 This agent is not logged in

501 Place not found

502 Place disabled

503 Place busy

505 Agent disabled

507 Place not occupied

508 Place not occupied by specified agent

509 Place not occupied by anonymous

514 Agent does not have the media

518 Agent is already ready for media

519 Agent is already not ready for media

[+] ForceLogout

Use the Force Logout method to log out a Place or an Agent from all media that
are controlled by Interaction Server. When this is done, the reported agent state
will not contain any media that are supported by Interaction Server. There are no
required parameters.

eServices Blocks

Composer Help 922

Method ForceLogout

Parameters

• ‘Place’ – specifies name of the place to be logged out

• ‘Agent’ – specifies agent employee id to be logged out; one of the ‘Place’ or ‘Agent’ has to be specified

• ‘Tenant’ – Specifies tenant identifier; the tenant will be inferred from the tenant identifier of the strategy that invokes the service.
For multitenant clients, tenant identifier is mandatory.

Limitations on method parameters

Parameter Scope Type Required Explanation

Tenant any tenant id, associated with this IxnServer String or Int Yes tenant id

Place any string corresponding to place_id belonging to the specified tenantString If absent or empty, the place is inferred from agent id.place id

Agent any string corresponding to agent_id belonging to the specified tenantString If absent or empty ==> agent=anonymous, otherwise requiragent id

4.2.1.3. Error Codes

Error Code Description

106 Invalid request

201 Missing parameter <name>

206 Unknown tenant

213 Invalid type of <parameter name>

218 Unknown value of parameter 'State'

229 Neither 'Place' nor 'Agent' is specified in the request

230 This agent is not logged in

501 Place not found

eServices Blocks

Composer Help 923

502 Place disabled

503 Place busy

505 Agent disabled

507 Place not occupied

508 Place not occupied by specified agent

509 Place not occupied by anonymous

Place Property

This property is mandatory if the Agent property is not configured. Specify the Place where the state
is to be changed.

1. Click the ... under Value.
2. In the dialog box under Type, do one of the following:

• Select Configuration Server. If connected to Configuration Server, you can then select a
PlaceName under Value.*

• Select Literal and manually enter the PlaceName.
• Select the variable that contains the PlaceName.

Tenant Property

Specify the Tenant DBID from Configuration Server (mandatory).

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

eServices Blocks

Composer Help 924

Enable Status Property

Find this property's details under Common Properties for Workflow Blocks.

eServices Blocks

Composer Help 925

Update Contact Block
Use this block to update customer profile information in the Universal Contact Server Database,
based on data attached to an interaction. You may specify certain information to update by specifying
certain key-value pairs that represent the data to update. If certain parameters are not specified,
then all contact attributes will be updated by default, based on all user data available. Important! See
Mandatory User Data For UCS Blocks. Also see the section on Contact Identification and Creation in
the eServices 8.1 User's Guide.

Use Case

1. A customer sends an e-mail to the contact center, initiating a routing workflow.
2. The routing workflow reads the user data from the e-mail.
3. The user data is used to identify that this customer is an existing contact in the UCS database based on

the customer's first and last name
4. The routing workflow does a comparison of the customer's e-mail address in the e-mail, with the one in

UCS database for this contact. They are different.
5. The routing workflow updates the contact information in the UCS database with the new email address

The Update Contact block has the following properties:

Name Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Context Services Exception Events. Also see Exception Events for
eServices UCS Blocks where the following exceptions are supported: 201, 203, 502, 510, 701, 710,
716, 730.

Interaction ID Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 926

Contact Attributes Property

Use this property to set the new contact attribute values.

1. Click under Value to display the button.

2. Click the button to open the Contact Attributes dialog box.
3. Click Add to open Configure Contact Attributes dialog box where you specify the attributes.
4. Click the down arrow opposite Name and select an attribute. You may select a user-defined attribute or

a predefined attribute, such as:

• Contact ID
• Customer ID
• Customer Segment
• E-mail Address
• First Name
• Last Name
• Phone Number
• PIN
• Title

5. Click the down arrow opposite Type and select Literal or Variable.
6. If you selected Literal, enter the Value field and click OK.
7. If you selected Variable, select the variable that contains the value and clickOK. The Name and Value

fields in the Configure Attributes dialog box reflect your entries.
8. Click Add again to continue entering customer attributes in this fashion.

Tenant Property Find this property's details under Common Properties.

Universal Contact Server Property

Find this property's details under Common Properties.

Use Contract Attributes Property

• Select true to have the new contact attribute values taken from the Contact Attributes property.
• Select false to have the new contact attributes values taken from the interaction’s User Data.

eServices Blocks

Composer Help 927

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Tenant Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 928

Update Interaction Block
Introduced in 8.1.440.18. Use to update properties of interaction(s) in the Interaction Server database
including interaction(s) that are not currently being processed in the workflow. When ORS executes
this block, it generates a request to Interaction Server for the method UpdateInteractions to
update the interaction user data for the specified interaction using attributes specified in the Delete
Attributes property or Update Interaction Attributes property.

The main use case is to update properties of the parent interaction (session or case). This object is
used mostly in conjunction with the Find Interactions block. For example, when you receive a reply
onto an outbound e-mail, you can find the parent interaction and change its status to indicate that a
reply was received.

Tip
Update Interaction sends a request to Interaction Server whereas Update Contact
sends a request to Universal Contact Server.

The Update Interaction block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 929

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Delete Attributes Property

Tip
The Read-Only attributes of Interactions cannot be deleted. If those attributes are
used in Delete Attributes, the following error will be displayed: Attempt to set/
change read-only property.

Use this property to specify the interaction attributes to be deleted.

1. Click under Value to display the ... button.
2. Click the ... button to open the Delete Attributes dialog box.
3. Click Add.
4. Click the down arrow opposite Value and select Literal or Variable.
5. If you selected Literal, enter the Value field.
6. If you selected Variable, select the variable that contains the value.
7. Click OK. The Delete Attributes dialog box reflects your entries.
8. If applicable, click Add again to continue entering attributes in this fashion.

Interaction ID Property

Select the variable that contains the Interaction ID. The default variable is system.InteractionID. This
is a required parameter that specifies the ID of the interaction to be updated. Find this property's
details under Common Properties.

eServices Blocks

Composer Help 930

Tenant Property

Find this property's details under Common Properties.

Interaction Server Property

Specify the Interaction Server for the method UpdateInteraction.

1. Click under Value to display the ... button.
2. Click the ... button to open the Application Selection dialog box.
3. Click Add.
4. Click the down arrow opposite Value and select Literal or Variable.
5. If you selected Configuration Server, select the Interaction Server from the drop-down of the Value field

and click OK.
6. If you selected Literal, enter the literal and click OK.
7. If you selected Variable, select the variable from the drop-down of the Value field and click OK.

Update Interaction Attributes Property

Use this property to specify the interaction attributes to be updated. For information on attributes
that can be updated, see the eServices Interaction Properties Reference Manual, Business Properties.

1. Click under Value to display the ... button.
2. Click the ... button to open the Contact Attributes dialog box.
3. Click Add to open Update Attributes dialog box where you specify key-value pairs.
4. Click the down arrow opposite Value and select Literal or Variable.
5. If you selected Literal, enter the Value field.
6. If you selected Variable, select the variable that contains the value.
7. Check the Value is numeric box if applicable.
8. Click OK. The Key and Value fields in the dialog box reflect your entries.
9. If applicable, click Add again to continue entering attributes in this fashion.

Enable Status Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 931

https://docs.genesys.com/Documentation/ES/8.1.4/IxnProps/BizProps#welcome

Update UCS Record
Introduced in 81.440.18. Use this block to update the properties of an interaction in the Universal
Contact Server database. Can be used for both interactions currently in process and interactions
already processed. The execution of this block by ORS causes ORS to generate a request to Universal
Contact Server for the method UpdateInteraction.

Use Case

1. A customer sends an e-mail to the contact center, initiating a routing workflow.
2. The routing workflow reads the user data from the e-mail.
3. The user data is used to identify that this customer is an existing contact in the UCS database based on

the customer's first and last name
4. The routing workflow does a comparison of the customer's e-mail address in the e-mail, with the one in

UCS database for this contact. They are different.
5. The routing workflow updates the contact information in the UCS database with the new email address.

The Update UCS Record block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties. Also see:Exception Events for eServices UCS
Blocks where the following exceptions are supported: 201, 203, 502, 510, 701, 710, 716, 730.

eServices Blocks

Composer Help 932

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Entity Type Property

You must select an Entity Type (other than Interaction) before you can enter the Update Entity
Attributes property. Click the down arrow and select from the Entity Type list. Select Email In, Email
Out, Chat, Phone Call, Callback, CoBrowse.

Interaction ID Property

Find this property's details under Common Properties.

Tenant Property

Find this property's details under Common Properties.

Universal Contact Server Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 933

Update Entity Attributes

Use this property to set the parameters to be passed when updating entity attributes.

1. Click under Value to display the button.

2. Click the button to open the Contact Attributes dialog box.
3. Click Add to open the Update Entity Attributes dialog box where you specify the attributes.
4. Click the down arrow opposite Value and select Literal or Variable.
5. If you selected Literal, enter the Value field and click OK.
6. If you selected Variable, select the variable that contains the value and click OK. The Name and Value

fields in the Update Entity Attributes dialog box reflect your entries.
7. Click Add again to continue entering Entity Attributes in this fashion.

[+] Entity Attributes
EmailIn Entity Attributes
BccAddresses
CcAddresses
EmailOutId
FromAddress
FromPersonal
Mailbox
ReplyToAddress
SendDate
ToAddresses
WhichRuleMatched

EmailOut Entity Attributes
BccAddresses
CcAddresses
FromAddress
FromPersonal
ReferenceId
ReplyToAddress
ReviewerId
SendDate
StandardResponseId
ToAddresses

Chat Entity Attributes
EstablishedDate
ReleaseDate

PhoneCall Entity Attributes
Duration
Outcome
PhoneNumber
TConnectionId

Callback Entity Attributes
Attempts
CallbackServerID
CallBackStatus

eServices Blocks

Composer Help 934

CallResult
CustomData
CustomerNumber
DesiredResponseType
DetailedDescription
DN
EndTime
Location
StartTime
TheType

Update Interaction Attributes Property

Use this property to set the parameters to be passed when updating interaction attributes.

1. Click under Value to display the button.

2. Click the button to open the Contact Attributes dialog box.
3. Click Add to open Update Interaction Attributes dialog box where you specify the attributes.
4. Click the down arrow opposite Value and select Literal or Variable.
5. If you selected Literal, enter the Value field and click OK.
6. If you selected Variable, select the variable that contains the value and clickOK. The Name and Value

fields in the Update Entity Attributes dialog box reflect your entries.
7. Click Add again to continue entering Interaction Attributes in this fashion.

[+] Interaction Attributes
Interaction Attributes
CanBeParent
CategoryId
ContactId
CreatorAppId
Custom
EndDate
ExternalId
IsCategoryApproved
IsSpam
Lang
OwnerId
ParentId
QueueName
StartDate
Status
StoppedReason
StructTextMimeType
StructuredText
Subject
SubtypeId
Text
TheComment

eServices Blocks

Composer Help 935

ThreadHash
ThreadId
Timeshift
TypeId
WebSafeEmailStatus

Enable Status Property

Find this property's details under Common Properties.

eServices Blocks

Composer Help 936

Using eServices Blocks
This page contains general information on working with eServices blocks.

Example Multimedia Workflow

In general, an interaction process diagram (IPD) for multimedia interactions works like this:

1. A media server (such as E-mail Server Java) directs Interaction Server to place an interaction into an
inbound interaction queue.

2. Using the Views property, the interaction is then taken out of the queue and submitted to a routing
workflow.

3. The workflow performs specialized processing and eventually routes the interaction to a target, but not
necessarily the final target. For example, an e-mail interaction may be placed in an agent queue for
construction of a response.

4. The target processes the interaction and places it into another queue where another workflow may
process it. For example, a workflow may send an agent’s draft e-mail response to a queue for Quality
Assurance checking.

5. The cycle of going from queue/view/workflow continues until processing is stopped or the interaction
reaches some final (usually an outbound) queue.

Example Diagram

The figure below shows a sample multimedia workflow diagram in Composer Design perspective.

eServices Blocks

Composer Help 937

For other sample diagrams, see the Sample Applications topic. The default.workflow shown above
works as follows:

• The Entry block defines a variable called Today.
• The Assign block gives a value to the Today variable. In Expression Builder this is defined as:

data.Today==(_genesys.session.day.Saturday)||(data.Today==_genesys.session.day.Sunday)

• The Branching block Conditions property contains an expression used for segmenting interactions
based on whether today is a week day or the weekend. The expression determines whether an

interaction goes to a queue for the weekend crew or whether it is routed to a target.
• The Stop block notifies Interaction Server to stop processing and whether to notify Universal Contact

Server about the interaction.

Associated IPD

The figure below shows the IPD containing the Workflow block that points to the workflow diagram
above. Three work-flow generated blocks are automatically generated in this example.

eServices Blocks

Composer Help 938

eService Preparation

Genesys eService/Multimedia lets you process non-voice interactions in your contact center. At the
center of the collection of components are:

• Interaction Server: Works with Universal Routing Server and Stat Server to process non-voice
interactions by executing interaction process diagrams.

• Universal Contact Server (UCS): Works with its database to deliver customer contact history and
information to the agent desktop.

• In addition, there are a number of other Multimedia servers that facilitate the handling of non-voice
media, including E-mail Server Java, SMS Server, and Chat Server.

This help system assumes you have already installed and configured the eService/Multimedia
components as described in the eService/Multimedia 8.1 Deployment Guide.

Working with Returned Data

A few Composer Route blocks will return data back to the application:

• Email Response (Output Result)
• Create Email (Output Result)
• Create SMS (Output Result)

eServices Blocks

Composer Help 939

• Identify Customer
• Render Message (Result Property)
• Query Customer (Result Property)

Each qualifying block will expose a output result property (or equivalent) that will specify an
application variable to store the results. These results will then be available in other blocks in the
application for further processing. The format of returned data is usually JSON. Any post-processing
work to be done on returned results can be done in the existing Assign block. It provides access to
ECMAScript functions and supports writing simple or complex expressions to extract values out of
JSON strings and arrays.

Mandatory User Data for UCS Blocks

When working with the Update Contact and Render Message blocks (which map to Universal Contact
Server services), certain properties must exist in the interaction User Data. These properties are:

• Update Customer Block ContactId

• Render Message Block ContactId (if some contact-related Field Codes (as described in the eServices
8.1 User's Guide) are used in the text to render); InteractionId (if some interaction-related Field
Codes are used in the text to render); OwnerEmployeeId (if some agent-related Field Codes are used in
the text to render).

As is the case with IRD, these properties are not set in the blocks themselves. Instead, the properties
are assumed to be put in the interaction's User Data by some other block earlier in the workflow,
such as the Identify Customer block or Create Interaction block with the Update User Data property
set to true. In case no other block does this, the User Data block may be used for this purpose.

Important
If those properties are not available, an explicit UCS error message (missing
parameter) shows in the Orchestration Server log.

Working with Child interactions

The Composer Create Email, Email Forward, and Create SMS blocks create new interactions as part of
block execution and these new interactions can be controlled using queue, detach and associate
attributes. Optionally, these interactions can be queued to start a new workflow strategy. For details
please refer to the comparison table below.

Detach Delay for New Interaction
While detaching a new interaction, in the case of an ACK or Response, it might take a few seconds to
receive the new interaction. During this time, the application "Detach" loop logic could exceed the

eServices Blocks

Composer Help 940

Orchestration Server scxml/max-state-entry-count value. As a workaround in this case, set the
ORS scxml/max-state-entry-count value higher than 150. 200 seems to be a optimal value.

Associate New Interaction
This property, introduced in Composer 8.1.420.14 for the Chat Transcript, Create Email, Create SMS,
Email Forward, and Email Response blocks, supports the Orchestration Server <ixn:createmessage>
tag associate attribute. This property requires Orchestration Server version 8.1.400.45+.

<ixn:createmessage> Attributes Behavior Comparisons

queue associate detach runtime
behavior comments

Queue specified true true

Session will get
interaction.added
and
interaction.present
events
for the new interaction.

New interaction
detached from the
session and does
not get pulled
automatically from
the queue. Use a
Queue Interaction
block to manually
queue the
interaction.

Queue specified true false

Session will get
interaction.added
and
interaction.present
events
for the new interaction.

ORS pulls the new
interaction from
the queue and
starts new session.

Queue specified false true

Session will not
get
interaction.added
and
interaction.present
events for the new
interaction.

1. ORS pulls the
new interaction
from the queue
and starts new
session.
2. Detach operation is
not possible in this case
since the interaction is
not associated with the
session. Error message:
No interaction with
specified ID'

Queue specified false false

Session will not
get
interaction.added
and
interaction.present
events for the new
interaction.

ORS pulls the new
interaction from
the queue and
starts new session.

No value true/false false
Session will not
get
interaction.added

Recommended
approach by
Platform

eServices Blocks

Composer Help 941

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements

queue associate detach runtime
behavior comments

and
interaction.present
events
for the new interaction.
Platform automatically
handles/sents the ixn
using internal queue.

No value true/false true

Session will not
get
interaction.added
and
interaction.present
events
for the new interaction.

Detach attempt
will result in error.
"Error message:
No interaction with
specified ID"

Note: If the "queue'" attribute is not specified the associate attribute does not have any effect at all.
Use the associate attribute to handle the interaction.

Detach - Handle interaction.deleted for the New Interaction
If you are using a Composer versions prior to 8.1.400.35, adding the interaction.deleted event in
the Entry block would add a "condition-less" transition. This might handle the interaction.deleted
event from the new interaction and ends/takes the error path for the workflow. Also, the
automatically added interaction.deleted handler in the block, while setting Detach property to
true, would ignore this new interaction.deleted event due to the interactionId condition check
for the original interaction.

As a workaround in this case, add the following changes to the diagram.

In the block:

1. Create a User variable to collect the new interaction’s interactionID.
2. Assign this new variable in the Output Result property to collect the result.
3. Open the Exceptions property in the block, and add the interaction.deleted event.
4. In the Configure Exceptions dialog, uncheck the Target box to make this a "target-less" transition.
5. Add the condition to check for the new interaction. (_event.data.interactionid == varChildIxn).

In the Entry Block:

Make sure the interaction.deleted event handler has the following condition set to handle the
interaction.deleted event only if the original interaction was deleted and not as a result of the
Detach operation:

_event.data.interactionid == system.InteractionID && (!_event.data.resultof ||
_event.data.resultof == 'deletion')

eServices Blocks

Composer Help 942

Handling eServices Switchovers
Starting with Composer 8.1.400.20, Composer default interaction process diagram (IPD) event
handlers use the interaction.present event (named interaction re-queued in the IPD Events
dialog) to handle eServices server switchover scenarios, such as a Chat Sever HA switchover. The
default behavior was changed to wait for another interaction.present event indicating that the
interaction is again available to the current session for processing.

Composer 8.1.400.19 and Earlier

In previous versions of Composer (8.1.400.19 and earlier), the default behavior was to end the
current session upon receiving interaction.notcontrolled. In such cases, upgrading to a newer version
of Composer (8.1.400.33 or higher) will not replace this handler in existing IPDs even though it will
add the handler for new IPDs.

Between Composer 8.1.400.20 and 8.1.400.32

To handle switchovers in versions between Composer 8.1.400.20 and 8.1.400.32, add the
interaction re-queued event in your IPD Events dialog and then Generate Code. If upgrading to
version 8.1.400.33 or higher, your event handlers are automatically upgraded to a "custom" set of
handlers and your old events will be retained. For more information, refer to Intra Version Upgrades.

Custom Events

If you are using a custom event (for example, interaction.notcontrolled) to handle eServices/
Interaction Server switchover or failover scenarios, please evaluate switching to the default event
handler in the Multimedia category set of event handlers in the Events dialog.

ORS resultof Attribute

If you decide to stay with interaction.notcontrolled, then Orchestration Server Release
8.1.400.17 offers a newly added resultof attribute to the interaction.notcontrolled event in your event
handler, which can be used to make the event handler more specific.

Examples:

_event.data.interactionid == system.InteractionID && (!_event.data.resultof ||
_event.data.resultof == 'deletion'

resultof attribute descriptions:

eServices Blocks

Composer Help 943

https://docs.genesys.com/Documentation/OS/latest/Developer/IxnIntfEvents#Asynchronous_Events
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/StartingaNewIPD#Events_Property
https://docs.genesys.com/Documentation/ES/8.1.4/User/ChatHA
https://docs.genesys.com/Documentation/OS/latest/Developer/IxnIntfEvents#Asynchronous_Events
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/StartingaNewIPD#Events_Property
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UpgradingProjectsandDiagrams#Intra_Version_Upgrades
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/StartingaNewIPD#Events_Property
https://docs.genesys.com/Documentation/OS/latest/Developer/IxnIntfEvents#Asynchronous_Events
https://docs.genesys.com/Documentation/OS/latest/Developer/IxnIntfEvents#Asynchronous_Events

detaching - interaction became notcontrolled because it was detached from a running session.

deletion - interaction became notcontrolled because it was deleted.

routing - interaction became notcontrolled because of ORS actions such as delivering to an agent,
placing in a queue, etc. So an event with resultof= routing is an expected event in a session
because it is a result of some actions of the strategy itself.

revoking - interaction being processed by ORS (pulled) is taken away from that ORS instance
explicitly (by agent, by media server, by Interaction Server due to inactivity) or implicitly (disconnect
from Interaction Server). In these cases, all previously pulled interactions are no longer considered as
such. So an event with resultof= revoking is a kind of unexpected event in a session. Ideally, a
session should be terminated upon receiving such event, but this is up to application developer.

eServices Blocks

Composer Help 944

How To: Automate an SMS Response to a
Customer Call
This topic presents a very simple example of the Genesys “Omnichannel” capability, coordinating
different media channels when a customer reaches out to your contact center. It will illustrate how
you might automatically generate and send an SMS to a customer who had just made a voice call to
your contact center, perhaps offering the caller a link to a survey or confirmation of the case number.

This example also shows how interactions from distinct media can be linked in a step-by-step
workflow created in Composer, the Genesys tool that allows you to model your business. Composer-
created workflows are executed by Orchestration Server, the Genesys engine that allows different
media (voice, email, chat, SMS, and so on) to be coordinated and thereby enhance the customer
experience. While the example here demonstrates a voice call synching with an SMS, you can also
use Composer for many other types of Omnichannel routing.

Why Would I Use This?

The Building Blocks

This workflow diagram below was built with the following Composer blocks:

1. Entry and Exit blocks
2. Play Application block
3. Target block
4. SCXML State block
5. Create SMS block
6. Send SMS block

eServices Blocks

Composer Help 945

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SMSAfterCustomerCall

The Workflow Diagram

This is the finished workflow diagram that we will explore. The configuration for each block is shown
further ahead. To start a diagram in Composer, select New > Java Composer Project, enter a
name, select Integrated Voice and Route (in this case), then click Finish.

The diagram creation process goes like this: You drag and drop blocks from Composer's palette of
blocks, configure the block properties, connect the blocks, Save, Validate, and Generate the code
(SCXML).

Important
After you configure a block's properties, be sure to select Save from the File menu.
Don't wait until you have configured all the blocks to save.

For more detail, see Creating a New Routing Project.

eServices Blocks

Composer Help 946

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreatingaNewRoutingProject

Configuring the Entry Block

Note the Entry block at the top of the above diagram and the Exit block at the bottom. Every diagram
starts with an Entry block and ends with an Exit block.

Workflow diagram-building blocks are contained in Composer's palette of blocks, which appears on
the side of the Composer UI.

Each block has configurable properties (fields) associated with it. Dragging and dropping a block from
the palette into the design area automatically opens a view for that block where you configure
properties associated with the block. The Properties view shown opposite is for the Entry block.
Selecting a block already placed in the design area also opens the Properties view for that block.

eServices Blocks

Composer Help 947

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/RoutingBlockPaletteReference
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/InterfaceOverview#Interface_Elements

Configuring Entry Block Variables

One function of the Entry block is to define variables. You open the dialog box shown on the left for
defining variables by clicking the button opposite Variables (see Properties view above). You have
the option of assigning values to predefined System and Application variables. Or you can define
your own User variables.

The Variables dialog box in this example shows two user-defined variables defined: SMS_Text and
PhoneNumber.

eServices Blocks

Composer Help 948

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/EntryBlockRouting#Variables_Property

Configuring the Play Application Block

The second block in the diagram is a Play Application block. This block executes an application or a
script on a device, such as an Interactive Voice Response unit (IVR).

In the example diagram, the Play Application block plays a voice recording to the calling customer. As
shown by the Resource property, the Play Application block plays the recording associated with the
ATT.callflow. This callflow would be part of the same Project file containing the workflow diagram
being described here.

eServices Blocks

Composer Help 949

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/PlayApplicationBlock
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ComposerProjectsandDirectories

Configuring the Target Block

The third block in the diagram is a Target block. This block routes a customer interaction to to an
agent based on the Target Type criteria you select. The Target block in our example diagram routes
based on agent Skill. The skill expression shown for the Targets property instructs to route the
interaction to an agent having an English Skill greater than "1".

eServices Blocks

Composer Help 950

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/TargetBlock
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/TargetBlock#Targets_Property

Configuring the SCXML State Block

The fourth block in the diagram is a SCXML State block. This block gives the option of including
custom code in the SCXML document that Composer generates based on the workflow diagram.

The SCXML State block in our example diagram contains Transitions 1 (a user-defined name) for
the Transitions Property used for transitioning from voice to SMS. Clicking the button opposite the
Transitions property shows Transition 1 defined as interaction.deleted.

[+] Background on SCXML
When you create a workflow diagram in Composer, the result is an SCXML-based
routing strategy. Orchestration Server (ORS) executes these SCXML-based
routing strategies. The ORS SCXML Engine supports a variety of Genesys-
developed flow control SCXML elements and methods, which gives the option of
creating more complex strategies. The Orchestration Server Developer's Guide
documents these Genesys-specific elements and methods. If you need more
information at this point, the <transition> element and interaction.deleted
used in the example SCXML State block, are defined in section "Interaction
Interface Action Elements" in the Orchestration Server Developer's Guide.

eServices Blocks

Composer Help 951

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SCXMLStateBlock
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SCXMLStateBlock#Transitions_Property

Note: The SCXMLState block has a Target previously defined for Transition 1 so it does not need
the Body property. Although not shown here, there could be an outport on the SCXML State block
connected to another block that could provide logic to be executed when interaction.deleted is
received.

Configuring the Create SMS Block

The fifth block in the diagram is a Create SMS block used to create an outbound message, which can
be sent out as a Short Message Service (SMS) text to an external SMS Server. SMS refers to the
common text messaging service available on cellphones and other handheld devices.

Block properties include the Message Text, Outbound Queue for the outbound message, the Message
Destination Number, and the Message Source Number.

The Message Text can be manually entered or be contained in variable. The example diagram uses
the SMS_Text variable previously defined in the Entry block.

eServices Blocks

Composer Help 952

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreateSMS
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreateSMS#Message_Text_Property
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreateSMS#Interaction_Queue_Property
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreateSMS#Message_Destination_Number_Property
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreateSMS#Message_Destination_Number_Property
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreateSMS#Message_Source_Number_Property
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SMSAfterCustomerCall

Configuring the Send SMS Block

The sixth block in the diagram is a Send SMS block. This block sends the SMS message created with
the Create SMS block to the SMS server.

Why Would I Use This?

There are number of reasons why you might want to configure this type of workflow where a calling
customer is sent a text message. A few examples are presented below.

[+] IVR Cannot Handle
Your IVR cannot handle a particular type of customer inquiry:

1. A customer calls into the contact center IVR triggering self-service.
2. The customer requests a transaction that is not possible via the IVR and the the customer call is placed

into a queue.
3. The customer abandons the queue.
4. An SMS is sent to the customer to start an SMS conversation with the contact center.
5. The customer can then reply via SMS when they are ready.
6. The SMS server can use its session capability to perform a SMS/chat with the customer or call the

eServices Blocks

Composer Help 953

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SendSMS

customer back when appropriate.

[+] Last Call Agent Unavilable
The agent who last handled this customer's call is unavailable:

1. A customer calls into contact center and the routing strategy identifies this customer as one with a high
risk of leaving.

2. The routing strategy is configured to allow the customer to be connected with the last called agent if
they call back within the next XX days/hours/weeks.

3. The customer is directed to a "churn" agent who is trained to handle the this type of high risk situation.
4. The customer is sent an SMS with the agent details to personalize the experience and allow the

customer to remember the details of the agent they last spoke with. As a result, if the customer calls
back and the last agent for valid business reasons is not available to assist, then the customer knows
exactly which agent they can request and a message can be left.

[+] Post-Call Survey
You might want to request a post-call survey:

1. A customer calls into contact center.
2. The routing strategy classifies the intention of the caller and identifies that the customer has a mobile

phone that can receive an SMS.
3. The routing strategy selects the ideal agent for the customer inquiry.
4. The customer is routed to the ideal agent.
5. The customer is sent an SMS with a link to a post-call survey.

Return to top.

eServices Blocks

Composer Help 954

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/SMSAfterCustomerCall#The_Building_Blocks

Common Properties for Workflow Blocks
The following properties are common to multiple blocks. Their descriptions are placed here to
minimize duplication of content:

Block Notes Property

You have the option of entering a comment (see example).

This property is the equivalent of the IRD Object Comments feature.

Categories Property

Use this property to select individual categories and sub-categories of the Root Category to be used
in the classification process.

1. Click under Value to display the ... button and open the Categories dialog box.
2. Click Add to open the Select Items dialog box.

Common Properties for Workflow Blocks

Composer Help 955

3. From the Type dropdown menu, do one of the following:

• If you are connected to Configuration_Server, select Configuration Server. Select one or more
categories for the Value.

• Select Literal and enter the categories in the Value field. Use commas to separate the
categories.

• Select Variable and select the variable that contains the categories from the Value field.

CC Property

Use this property to specify the CC addresses on the e-mail transmitting the chat transcript. The CC
property is not allowed in the Email Response block when the Response Type property is set to
Notification.

1. Click under Value to display the ... button and open the Select Cc Addresses dialog box.
2. Click Add to open the Select Items dialog box.
3. From the Type dropdown menu, do one of the following:

• If you are connected to Configuration_Server, select Configuration Server. Select a
Configuration Server E-mail Accounts Business Attribute for the Value.

• Select Literal and enter the Cc address in the Value field.
• Select Variable and select the variable that contains the Cc address from the Value field.
• Select Originating Email and then select the value as CC or To-all. Originating Email is not

applicable to the Email Forward (Forward type: Forward and Redirect), Send Email, and Chat
transcript blocks.

• Select User Data as the Type and EmailAddress for a value. User Data is not applicable for
the Send Email block.

5. If applicable, repeat the above steps to add another e-mail address.
6. Click OK to close the dialog box.

Condition Property

The Condition property indicates that the log will be active only if the given condition is true at
runtime. To provide a condition setting for a log:

1. Select the Condition row in the block's property table.
2. Type the condition to evaluate against.

For example, assume in Entry block, there is a variable "MyVar==3". Assume also that you would
like to log the session ID (GVPSessionID variable in Entry block) for all sessions where MyVar=3. In
this case you must set the condition to "AppState.MyVar=3". If this condition is true, then
GVPSessionID will be written to the log, otherwise it will be ignored.

Common Properties for Workflow Blocks

Composer Help 956

Destination Property

Use this property to specify the routing destination.

1. Click under Value to display the ... button and open the Destination dialog box.
2. Select one of the following:

• Block Reference. For Value, specify any Target or Route Interaction block in the diagram
where the Route property is set to False. When Destination is set to a Route Interaction
block, the block-generated SCXML code automatically uses the following Route Interaction
block properties: Queue For Existing Interaction and Queue For Outgoing Interaction.

• Literal. For Value, you can specify:

• An agent: <agent id>
• A place: <place id>
• A DN: <number>
• An e-mail address: <username>@<host> or _origin or _origin.all or _udata
• A customer number: <dn number>
• A target format addresses: <Target DN>

See the Orchestration Server Documentation Wiki for those literals that apply to multimedia
interactions only.

• Variable. If the variable contains a string, see Literal above. If the value is a JSON object,
Value can refer to:

• An agent: {agent: “<agent id>”, type:”A”}
• An agent group: {agent: “<name>”, type:”AG”}
• A place: {place: “<place id>”, type:”AP”}
• A place group: {place: “<name>”, type:”PG”}
• A DN: {dn: “<number>”, type:”Q or RP or DN”, switch:”<switch name>”}
• An interaction queue: {id: “<q name>”, type:”iq” }
• A workbin: {id: “<wb name>”, type:”wb”<owner>”}
• A customer number: {dn: “<number>”}
• A target format addresses: Resource Object from the queue.submit.done event (the

Target Block Resource Selected property).

See the Orchestration Server wiki for those literals that apply to multimedia interactions only.

• Configuration Server to select the from Switch//DN if connected.

• Resource to select a resource using properties that will form a JSON object.

Common Properties for Workflow Blocks

Composer Help 957

4. Click OK to close the Destination dialog box.

Detach Property

Use for multi-site routing. Controls whether the Orchestration Platform should <detach> an
interaction from the current session before sending the e-mail with the chat transcript. When this
property is set to true, the interaction is detached from the current session. The Chat Transcript block
will always <detach> the new interaction before continuing with the current interaction.

Detach Timeout Property

Use to specify how long to attempt to <detach> if an initial attempt fails with an invalidstate error.
Specify the timeout in milliseconds. If set to 0, no further attempt to detach is made. After the
timeout, if the <detach> is not successful, no further attempts will be made and the block will
attempt to reclaim the interaction back into the current session using <attach>.

Do Not Thread Property

Select true to instruct NOT to thread under another interaction (which is specified under key
ParentID in the User Data) in the contact’s history in the Universal Contact Server Database.

Email Server Property

Note: This property is not mandatory as the platform will choose an e-mail server if not provided.
Select the Application name for the E-mail Server that URS should notify about the e-mail (via
Interaction Server).

1. Click under Value to display the ... button and open the Application Selection dialog box.
2. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. Select the name of
the E-mail Server Java object from the Value field.

• You can also select Literal and enter the name of the e-mail server in the Value field.
• You can also select Variable and select the variable from the Value field.

Common Properties for Workflow Blocks

Composer Help 958

Enable Status Property

This property controls whether or not a block contributes code to the application. Diagrams visually
indicate when a block is disabled. You may wish to use this property if there is a need to temporarily
remove a block during debugging or, for other reasons during development, temporarily disable a
block. This saves the effort of having to remove the block and then add it back later. You can also
right-click a block and select Toggle Enable Status. The ORS Debugger skips over deactivated
blocks.

Exceptions Property

Use this property to define which exceptions or events to handle.

1. Click opposite Exceptions under Value.
2. Click the ... button to bring up the Exceptions dialog box. The sample below shows the dialog with the

interaction.deleted event selected.

Starting with 8.1.410.14, a resultof guard condition check is now made when processing eServices/
child interactions. The Entry block interaction.deleted event handlers are updated with the following
guard conditions:

• Current interaction deletion.
• The interaction.deleted event is from an interaction deletion and not from a detach operation.

Common Properties for Workflow Blocks

Composer Help 959

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/IxnIntfActionElements

_event.data.interactionid == system.InteractionID && (!_event.data.resultof ||
_event.data.resultof == 'deletion')

3. Click Add to add new exceptions/conditions.
4. For each exception, specify a unique name and an exception event. Also see handling eServices

Switchovers.

• Name--Composer uses the name of the exception to label the outport.
• Event--Use to select the specific exception event.
• Condition-- Added in 8.1.440.18. You have the option of entering a guard condition for this

exception, which you define in Expression Builder. The exception is selected only if the condition
evaluates to true.

• Target--If true, an exception port is created and the user can connect it to the block this exception
will transition to when it is executed. If false, the exception will not cause a change in the state
configuration when it is executed. The executable content contained in the exception will still be
executed, so the exception will function as a simple exception event handler.

• Body--(optional) Executable scxml code that will be executed when this event is received and any
specified condition evaluates to true. This code is executed before any other blocks that are
connected as this exception's event handlers.

5. When done with the dialog box, click OK.

Notes:

• Exceptions for Busy treatment blocks should be handled in the Target block to which they are connected
and not in the Busy treatment blocks themselves. Busy treatment exceptions are raised as the
error.queue.submit exception and not as exceptions listed in individual treatment blocks.

• Each block has its own predefined set of events on the Exceptions property dialog box. Genesys
recommends that you not remove any of the predefined events from the Supported list.

• Before generating code, each supported event must be handled by connecting its red node on the side
of the block to the inport (input node) of another block.

• The events in the Entry block are global in scope.
• Events defined in other blocks are local to that block only. When an event is thrown, if a handler for that

event is declared in the current block, that local event handler is called.
• If there is no local event handler for the event, but there is a global event handler declared in the Entry

block, then the global event handler from the Entry block is called.

Enable Status Property

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later. You can also right-click a block and select Toggle Enabled
Status.

Common Properties for Workflow Blocks

Composer Help 960

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/EServicesFailovers
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/EServicesFailovers

Exclude Email Addresses Property

When sending a response, you may not want the email to copy in all the addresses (To, From) in the
original email. Use this property to exclude specific email addresses that need to be removed from
the “To” and “Cc” fields. Exclude Email Address is not allowed in the Email Response block when the
Response type property is set to Notification and the Email Forward block with the Forward type
property set to Forward.

1. Click under Value to display the ... button and open the Exclude Addresses dialog box.
2. Click Add to open the Select Items dialog box.
3. From the Type dropdown menu, do one of the following:

• Select Literal and enter the address to exclude in the Value field.
• If you are connected to Configuration Server, select Configuration Server. Select a

Configuration Server E-mail Accounts Business Attribute for the Value.
• Select Variable and select the variable that contains the address to exclude from the Value

field.

5. If applicable, repeat the above steps to add another e-mail address.
6. Click OK to close the dialog box.

Field Codes Property

When using a standard response to render message text, use this property to assign values to Field
Code variables that have been defined in Knowledge Manager (as described in the eServices 8.1
User's Guide) and used in that standard response. Universal Contact Server requires values for Field
Codes when using standard responses that include Field Codes.

1. Click under Value to display the ... button and open the Field Codes dialog box.
2. Click Add. A second dialog box opens for specifying Field Codes and values.
3. Type the name of the Field Code.
4. Select Literal or Variable.

• If you select Literal, enter the value for the Field Code.
• If you select Variable, select the variable the contains the Field Code Value.

From Property

Use this property to specify the address to appear in the "From" field of the outbound e-mail. The
From property is not allowed in the Email Forward block when the Response Type property is set to
Forward or Redirect.

Common Properties for Workflow Blocks

Composer Help 961

1. Click under Value to display the ... button and open the Select From E-mail Address dialog box.
2. From the Type dropdown, you have the following options:

• If you are connected to Configuration Server, select Configuration Server from the
dropdown menu. Select the from address from the Value field in the form of an
Configuration Server E-mail Accounts Business Attribute.

• Select Literal from the dropdown menu and then enter the From address in the Value field.

• Select Originating Email and then select the value as To. Originating Email is not
applicable in the Email Response block of Response type: Notification, Email Forward block
of Forward type: Forward and Redirect

• Select Variable from the dropdown menu and then select the variable that contains the
from address.

4. Click OK to close the dialog box.

Include Original Message Into Reply Property

Select true or false to indicate if the text from the parent interaction copied into the forwarded e-
mail.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.

Can be used for "interaction-less" processing for scenarios where the InteractionId variable is not
automatically initialized, but instead must wait for an event. An example would be an SCXML
application triggered by a Web Service that does not add an interaction.

Background: Previous to 8.1.1, Composer did not expose an Interaction ID property. Instead, when
ORS started processing an interaction, a generated SCXML application automatically initialized the
system variable, InteractionId. This variable was then used internally by Routing and certain
eServices blocks when interacting with ORS.

With the introduction of support for Interaction-less processing, you can now define a specific event
(IPD Event property) to initialize InteractionId, or not define an event at all.

For scenarios with an interaction (IPD Diagram/Event=interaction.present for example), you may
keep the default value for the Interaction ID property. The default value is the system variable
InteractionId, which is initialized automatically in this case.

For other scenarios (any scenario where the system variable InteractionId is not set), you may choose
to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value

Common Properties for Workflow Blocks

Composer Help 962

3. And/or assign a meaningful value to the InteractionId system variable

Logging Details Property

Logging details contains the expression that will be logged at runtime by the ORS platform. If logging
details are specified, then logging is generated for the block; if no logging details are specified, no
logging is generated.

To create logging details:

1. Click the Logging Details row in the block's property table.
2. Click the ... button to open the Logging Details dialog box.
3. In the Logging Details dialog box, click Add to open Expression Builder.
4. Create an expression to be used for logging details, such as an expression based on the variables whose

content you wish to log.

Log Level Property

To assign a value to the Log Level property:

1. Select the Log Level row in the block's property table.
2. In the Value field, select one of the following from the drop-down list:

• Project Default. The block uses the project's default log level, which can be configured
through the project properties.

• Info. This is an Informational level to log application-specific data.
• Debug. Debug level is used for application debugging.
• Error. Error level is used to log error details.
• Warn. Warning level is used to flag any application warnings.
• Alarm. Alarm level is used to send the message as an alarm to the Genesys Management

Framework.

Language Property

To set the active language:

1. Select the Language row in the block's property table.
2. Click under Value to display a down arrow.
3. Select one of the following languages:

Common Properties for Workflow Blocks

Composer Help 963

• English (US)
• Spanish
• Mandarin
• Cantonese
• Vietnamese
• French
• French (Canada)
• German
• Italian
• Japanese
• Korean
• Russian

Name Property

The Name property is present in all blocks in Composer. The Name property is the first property for all
blocks. Use the Value field in the Name property row of the block's property table to name the block.

• Block names should conform to ECMAScript and SCXML identifier naming conventions. There is no limit
to the maximum number of characters.

• Names may consist only of numbers, letters, or initial underscores (_).
• Names should only begin with a letter or underscore.
• Except for the Entry and Exit blocks, you should give all blocks a descriptive name. For example, if an

Input block asks the caller to input an account number, then the name of the block could be
Input_Account_Number.

• The name of the block is used as the “Name” of the <form> tag that gets generated for that block.

To provide a name for a block:

1. Select the Name row in the block's property table.
2. In the Value field, type a block name that conforms to the restrictions above.

Orchestration Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property. Use this property to add
custom attributes into any/all states and sub-states for any block they are configured in. Add the ORS
Extensions property to the Properties view for a selected block by clicking the Show Advanced
Properties button.

Common Properties for Workflow Blocks

Composer Help 964

Show Advanced Properties

When creating a new diagram in Composer perspective, this button appears on the right side of the
Composer GUI, between the palette of blocks and the Properties view.

This property gives the ability to use any attribute Orchestration Server supports in addition to the
SCXML standard. For information on these attributes, see the attributes prefixed with "_" in the
SCXML Elements section of the Orchestration Server Developer's Guide. For example, you can specify
additional attributes to be added into the SCXML <state> element, which Orchestration Server can
then use to control persistence on a <state> level and for other functionality in the future.

Orchestration Options

Selecting Properties from the Project menu opens a dialog box showing the properties of the
selected Project or of the Project that contains the selected resource. Select Orchestration Options to
view other settings.

Output Queue Property

Select the output queue for the new interaction.

Only interaction queues that were created in the current Composer Project are shown for the
Configuration Server values. The interaction queues are sorted per parent Interaction Process
Diagram. To define the output queue:

1. Click under Value to display the ... button and open the Select an Output Queue dialog box.
2. Click the Type down arrow and do one of the following

• If you are connected to Configuration Server, select Configuration Server and then select
an output queue as the Value. The Independent Objects > Same queue choice allows
you to put the outbound interaction in the same interaction queue that initiated the current
interaction.

• Select Literal and then enter the name of the output queue as the Value.

4. Click OK.

Common Properties for Workflow Blocks

Composer Help 965

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef#SCXML_Elements
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/Persist

Output Result Property

Use this property to specify a variable where the new interaction will be saved. The results will then
be available in other blocks in the application for further processing.

The format of returned data is JSON. Any post processing work to be done on returned results can be
done in the existing Assign block which provides access to ECMAScript functions. It already supports
writing simple or complex expressions to extract values out of JSON strings and arrays.

Prompts Property

Use the Prompts property to specify the audio prompts that are played to the caller in a Play Message
or User Input block. You can specify prerecorded prompts, text, and several standard data types.

To add, delete, or arrange prompts:

1. Click the Prompts row in the block's property table.
2. Click the ... button to open the Prompts dialog box.

3. Click Add to enable Prompt Type, Interruptible, and Value fields.
4. From the Type drop-down list, select a Type: Announcement, RecordedAnnouncement,

FormattedDigits, or Text. See table below.
5. Interruptible—Select true or false. Indicates whether the caller can interrupt the message. Instructs

URS to send a message to T-Server indicating that the announcement is interruptible.
6. Value*—Enter data for the selected Type.

Place the audio files in the Resources\Prompts\{APP_LANGUAGE} folder under the Java Composer
Project. Audio files can be added to the project by copying and pasting from the Windows file system
into the Java Voice Project in the Project Explorer.

Note: By default, Genesys supplies .vox files only for mulaw 8Khz. If you are using any other audio
format for playback of audio files, replace the files with the corresponding audio files in the required
audio format.

Standard Response Property

Use this property to select the text from your eServices Knowledgement Mangement Standard
Response library. You can enter either a category code or a standard response identifier.

1. Click under Value to display the ... button and open the Select a Standard Response dialog box, which
organizes standard responses by caterories. Starting with 8.1.440.18, the dialog box for the eServices
blocks that contain a Standard Response property shows a category/standard response tree as defined
in eServices Knowledge Manager.

2. From the Type dropdown menu, do one of the following:

Common Properties for Workflow Blocks

Composer Help 966

https://docs.genesys.com/Documentation/ES/8.5.1/KMUser/categSR
https://docs.genesys.com/Documentation/ES/8.5.1/KMUser/categSR
https://docs.genesys.com/Documentation/ES/8.5.1/KMUser/categSR
https://docs.genesys.com/Documentation/ES/8.5.1/KMUser/KMoverview

• If you are connected to Configuration Server, select Configuration Server. Expand the
category. Then select the Standard Response identifier or category code. An example with a
category selected is shown below.

• Standard Response property dialog box also gives the option of using a literal or variable. If
you select Variable, select a variable containing one of the following:

• A category code from a variable whose value is set to an existing category code in the
form "'gdata:config\\CA.<id>'", where <id> is the category ID. Example: msgsrc=
gdata:config\\CA.00005a5FS3GW005G

• A standard response identifier in the form "'gdata:config\\SR.<id>'", where <id> is
the standard response identifier. Example: msgsrc=
gdata:config\\SR.00005a5FS3GW005A

4. If you select Literal, manually enter the category code or Standard Response identifier.
5. Click OK to close the dialog box.

Common Properties for Workflow Blocks

Composer Help 967

Subject Property

This property is enabled if the Use Subject From SRL property is set to false. Enter the subject to
appear in the Subject field of the outbound interaction.

Tenant Property

This mandatory property is set by default to Variable(TenantID), whose value is assigned by
Orchestration Server. To override this value, click the button to open the Tenant dialog box where you
can select another variable to contain the TenantID or enter the value as a literal.

Note: UCS will fail executing the requested task if passed the Tenant_Name instead of the TenantID.

To Property

Use this property to specify the address to which the interaction is to be sent. See the Getting Using
Email Addresses topic for information on getting the e-mail address of a customer using Context
Services blocks and using it in the To property. Also see the Note below.

1. Click under Value to display the ... button and open the Select To E-mail Address dialog box.
2. From the Type dropdown menu, you have the following options:

• If you are connected to Configuration_Server, select Configuration Server. Select the to
address from the Value field in the form of an Configuration Server E-mail Accounts
Business Attribute. Select User Data as the Type and EmailAddress for a value.

• Select Literal and enter the To address in the Value field.
• Select Originating Email (only for the Email Response block with Response Type as Auto

Response or Acknowledgement and only for the Email forward block with Forward type as
Reply to Customer) and then select the Value as From or To - all.

• Select Variable from the dropdown menu and then select the variable that contains the To
address.

4. Click OK to close the dialog box.

Universal Contact Server Property

Specify the Universal Contact Server to use.

1. Click under Value to display the ... button and open the Application Selection dialog box.
2. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. Select

Common Properties for Workflow Blocks

Composer Help 968

the name of the Universal Contact Server object from the Value field. If not connected:
• Select Literal and enter the name of the Universal Contact Server in the Value field.
• Or select Variable and select the variable from the Value field.

Update Interaction User Data Property

Select true to have the UCS returned values be attached to the interaction User Data in the form of
key-value pairs; otherwise select false.

When set to true, the following user data key-values are added to this interaction's user data:

• ContactCreated: true or false.
• NumberOfContactsFound: Number of contacts identified with the given User Data.
• ContactIdList: A string or an array of strings with the list of matching contact IDs. Note: if the

Return Unique property is set to true, ContactIdList is not returned if multiple contacts are
identified.

Update User Data Property

Select true to have the contact attribute values returned by the Universal Contact Server be part of
the User Data of the response.

Select false to have the contact attribute values returned by the Universal Contact Server be part of
the parameters of the response.

Universal Contact Server returns contact attribute values only when a unique contact is found/
created. Also note the following:

• If a unique contact is identified or created and this property is false, the contact attribute values
will also be returned in the parameter part of the ESP response and will be added in the
interaction's User Data as well.

• When this property is set to true AND if a unique contact is identified or created, Universal Contact
Server returns the contact attribute values in the User Data part of its response. The User Data
part of the response is automatically added to the interaction's User Data.

• If this property is set to false AND a unique contact is identified/created, the contact attribute
values are passed back to the Orchestration platform in the parameter part of the response. In that
case, you might choose to add them to the interaction's User Data by setting the Update
Interaction User Data property.

• Regardless of the value of the Update User Data property, Universal Contact Server ALWAYS returns
the contact ID in the User Data part of its response to Orchestration Server when a unique contact
is identified/created.

Common Properties for Workflow Blocks

Composer Help 969

Uri Property

The Uri property specifies the Location of the Method or File depending on the value of the Type
property.

To set a URL destination for the Uri property (Type property is set to URL):

1. Select the Uri row in the block's property table.
2. In the Value field, type a valid URL, or select a variable from the drop-down list.

To set a Project destination for the Uri property (Type property is set to ProjectFile):

1. Click the Uri row in the block's property table.

2. Click the button to open the Uri dialog box.
3. Select a workflow in the list.
4. Click OK to close the dialog box.

Use Subject From SRL Property

Select true or false to indicate whether to get the e-mail Subject from the Standard Response
Library.

Variables Mapping Property

Use this property to map individual contact attribute values to variables.

Note:

• Contact attribute values are returned only when a unique contact is identified.
• Only primary contact attribute values are returned.

To use variables mapping, open the Variables Mapping dialog box.

Common Properties for Workflow Blocks

Composer Help 970

Social Media Blocks
Two new social media blocks are introduced in Composer 8.1.450.04 to handle Twitter and Facebook
social media interactions and support easier integration with Conversation Manager. Using the new
Twitter and Facebook blocks, an organization's Twitter and Facebook handles can be monitored
through pre-defined events and messages filtered based on keywords to determine the next action.

In addition, users can also connect via the Facebook Messenger. The message is stored in the Contact
History to determine further action based on the day and time the message is received.

Configuring Social Media Accounts

For information on configuring social media accounts, see the eServices Social Media Solutions Guide,
Setting Up Social Engagement.

Twitter and Facebook Use Case

1. The user searches on Twitter or Facebook for the company’s handles and tweets or posts a message,
which could be related to an issue being faced or a query targeted to customer care.

2. The application monitors the Twitter and Facebook handles through pre-defined events and filter
messages based on keywords to determine the next action.

3. The application verifies if the corresponding contact already exists in the Contact History. The user is
identified in the Contact History by their Facebook or Twitter handle (if available).

4. If the user does not exist (that is, social handles are not associated with a registered user), the
application creates a user in the Universal Contact Database based on available data. Any further
messages and agent replies are stored under this user.

5. The application then verifies if the day is a normal operational day. If not, a special day message is sent
stating that the user’s query will be answered once the service is back online. The special day message
is sent as a public message or a private message.

6. The application has the ability to determine if the operating hours of the service match the current time
and day – if not, a standard message is sent in response stating that the query will be answered once
the service is back online. This message is sent as a public message or a private message.

7. In addition, it is possible to define an emergency message that will be sent either as a public message
or a private message, if the emergency process is activated.

8. If within operating hours on a regular day, the application searches for an available agent with the
correct skills.
1. If an agent is available, the interaction is routed to an agent.
2. If no agent is available, the interaction is queued until an agent becomes available.

3. The interaction is sent to the agent for an appropriate response.

Social Media Blocks

Composer Help 971

https://docs.genesys.com/Documentation/ES/latest/SMSolution/DepCloudDrivers

4. The agent decides if the interaction requires private comments.
1. If no private answer is required, the agent replies via the company’s Facebook page or Twitter

handle.
2. If private messaging is required, the interaction is moved out of the public comment space and

managed via private messaging (Twitter DM or FB Messenger).

Tip
Best practice for the agent is to respond to a public message with a public
response, indicating that the conversation might be moved to private
messaging, if required at a later stage.

3. The agent also has the ability to simply retweet or like the user comment, or create favorite, if
it is considered as general positive feedback and no specific answer or further action is required.

4. When the interaction is completed, the agent sets a disposition code to register the outcome for
reporting purposes.

5. In addition, the following strategies can also be implemented:
1. When a tweet or Facebook post mentioning the organization is posted, an automatic reply to the

tweet or Facebook post is triggered. If there is an error in posting the reply, the routing application
retries posting the reply for a predefined duration.

2. When a direct message is sent to the organization's Twitter handle, the interaction is routed to a
specific agent group.

3. When a positive tweet or Facebook post about the organization is posted, the routing application
automatically retweets or likes the message.

Facebook Messenger Use Case

1. The user sends a message via the Facebook Messenger, to the company (for example, after having
been asked by an agent to connect privately).

2. The message is stored with the customer contact in Contact History.
3. The application then verifies if the day is a normal operational day. If not, a special day message is sent

stating that the user’s query will be answered once the service is back online. The special day message
is sent via Facebook Messenger.

4. The application has the ability to determine if the operating hours of the service match the current time
and day – if not, a standard message is sent in response stating that the query will be answered once
the service is back online. This message is sent via Facebook Messenger.

5. In addition, it is possible to define an emergency message that will be sent via Facebook Messenger, if
the emergency process is activated.

6. If within operating hours on a regular day, the application searches for an available agent with the
correct skills.
1. If an agent is available, the interaction is routed to an agent.

Social Media Blocks

Composer Help 972

2. If no agent is available, the interaction is queued until an agent becomes available.

3. The interaction is sent to the agent for an appropriate response.
4. A Facebook chat session is established between the user and the agent.
5. When the interaction is completed, the agent sets a disposition code to register the outcome for

reporting purposes.

Sample Business Processes

For sample business processes, see the eServices Social Media Solutions Guide, Sample Business
Processes for Social Media.

Social Media Blocks

Composer Help 973

https://docs.genesys.com/Documentation/ES/latest/SMSolution/SamplesforSocialMedia
https://docs.genesys.com/Documentation/ES/latest/SMSolution/SamplesforSocialMedia

Twitter Block
Use the Twitter block to handle incoming Twitter interactions. Twitter handles can be monitored
through pre-defined events and messages filtered based on keywords to determine the next action.

The Twitter block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Social Media Blocks

Composer Help 974

Result Property

Click the down arrow under Value and select the variable to hold the raw data returned by the Social
Messaging Server.

Application Property

Specify the Application Name of the Social Messaging Server.

1. Click under Value to display the ... button.
2. Click the ... button to open the Application Selection dialog box.
3. Click the down arrow opposite Type and select Literal, Variable, or Configuration Server.
4. If you selected Configuration Server, select the Social Messaging Server application from the drop-down

of the Value field and click OK.
5. If you selected Literal or Variable, enter the literal or select a variable, and click OK.

Method Name Property

Select the method to be invoked. This is a mandatory field and the value can be a variable, literal, or
method name enum (SendMessage, DestroyMessage, GetUserInfo, RetweetTweet, FollowUser,
UnfollowUser, GetFriends, GetFollowState, CreateFavorite, DestroyFavorite,
GetMediaContent).

[+] The input and output parameters for the different methods are listed here (mandatory
parameters are in bold font).

Method Name Description Input Paramaters Output Paramaters

MergeItxData

This ESP request is used to
combine the attached data of
two Twitter interactions
related to the same post,
update attached data of
specified interaction, and
return the final attached data
subset that was added to the
specified Twitter interaction.

The necessity in such request
appears when the routing
business process detects that
there is more than one
interaction related to the
same post (for example, a
new comment(s) was added
while the interaction was
sitting in a Genesys
interaction queue). In this

_umsChannel,
_twitterMergeItxId _twitterMergedUserData

Social Media Blocks

Composer Help 975

Method Name Description Input Paramaters Output Paramaters

case, instead of delivering two
interactions to an agent, the
routing business process will
try to merge them and deliver
updated data to an agent.

SendMessage Request to send a Twitter
message.

_umsChannel,
_twitterMsgType,
_twitterMsgPlainText,
twitterInReplyToStatusId,
_twitterToAddr,
_twitterPictureName,
_twitterPictureBody

_twitterMsgId

DestroyMessage Request to destroy own status
or direct message.

_umsChannel,
_twitterMsgType,
_twitterMsgId

_twitterMsgId,
_twitterMsgPlainText

GetUserInfo Request to get information
about a Twitter user.

_umsChannel,
_twitterUserId

'_twitterUserName,
_twitterUserScreenName,
_twitterUserDescr,
_twitterUserCreatedAt,
'_twitterUserImageUrl,
_twitterUserLocation,
_twitterUserTimeZone,
_twitterUserFollowersCount,
_twitterUserFriendsCount,
_twitterUserStatusesCount,
_twitterUserIsFollower,
_twitterUserIsFollowee,
_twitterPlaceFullName,
_twitterIsFavorited, FirstName,
LastName

RetweetTweet Request to retweet a Twitter
message.

_umsChannel,
_twitterMsgId

_twitterMsgId,
_twitterMsgPlainText

FollowUser Request to follow another
Twitter user.

_umsChannel,
_twitterUserId

_twitterUserName,
_twitterUserScreenName,
_twitterUserDescr,
_twitterUserCreatedAt,
_twitterUserImageUrl,
_twitterUserLocation,
_twitterUserTimeZone,
_twitterUserFollowersCount,
_twitterUserFriendsCount,
_twitterUserStatusesCount,
_twitterUserIsFollower,
_twitterUserIsFollowee,
_twitterPlaceFullName,
_twitterIsFavorited, FirstName,
LastName

UnfollowUser Request to unfollow another
Twitter user.

_umsChannel,
_twitterUserId

_twitterUserName,
_twitterUserScreenName,
_twitterUserDescr,
_twitterUserCreatedAt,

Social Media Blocks

Composer Help 976

Method Name Description Input Paramaters Output Paramaters

_twitterUserImageUrl,
_twitterUserLocation,
_twitterUserTimeZone,
_twitterUserFollowersCount,
_twitterUserFriendsCount,
_twitterUserStatusesCount,
_twitterUserIsFollower,
_twitterUserIsFollowee,
_twitterPlaceFullName,
_twitterIsFavorited, FirstName,
LastName

GetFriends Request to get a list of friends
of a Twitter user.

_umsChannel,
_twitterUserId _twitterUserIdList

GetFollowState Request to get "a friend" and
"a follower" states of a user.

_umsChannel,
_twitterUserId

_twitterUserIsFriend,
_twitterUserIsFollower

CreateFavorite Request to set a Twitter
(status) message as favorite.

_umsChannel,
_twitterMsgId

_twitterMsgId,
_twitterMsgPlainText

DestroyFavorite Request to destroy a Twitter
(status) message as favorite.

_umsChannel,
_twitterMsgId

_twitterMsgId,
_twitterMsgPlainText

GetMediaContent
Request to get content of a
media attached to a direct
Twitter message.

_twitterMediaContentUrl _twitterMediaContentBin

Method Parameters Property

List of input parameters populated automatically based on the selected method in the Method
Name property. The automatically populated values can be edited, if required. You can also add the
new parameters by clicking the ADD button. The Method Parameters (key and value) can be
specified either as a literal or variable.

Composer supports special keys such as, TWITTER_CHANNEL (equivalent to
_genesys.ixn.interactions[system.InteractionID].udata['_umsChannel'] in the code
sample), which can be used to map values for the parameters.

Tip
Refer to the table in the Method Name Property section above for more information
on custom parameters.

Social Media Blocks

Composer Help 977

Service Timeout Property

Specify the timeout in seconds to invoke the ESP service on a timeout error. The default value is 10
seconds. You can specify the timeout value either as a literal or variable, but it must be a positive
integer.

Enable Status Property

Find this property's details under Common Properties.

[+] Twitter Block Code Sample
<state id="RetweetMessage">

<onentry>
<log expr="_sessionid + ': Inside Twitter Block: RetweetMessage'" />

<script><![CDATA[
App_RetweetMessage.content = {};
App_RetweetMessage.content.params = {
_umsChannel:

_genesys.ixn.interactions[system.InteractionID].udata['_umsChannel'],
_twitterMsgId:

_genesys.ixn.interactions[system.InteractionID].udata['_twitterMsgId']

};
]]></script>
<session:fetch requestid="App_RetweetMessage['requestid']"
srcexpr="'SocialMessagingServer' +'\\CFGSocialMS\\Twitter\\' +

'RetweetTweet'" attach_ixn_data="true" timeout="10" method="'esp'">
<content _expr="App_RetweetMessage.content" />
</session:fetch>
</onentry>
<transition event="session.fetch.done"

cond="_event.data.requestid==App_RetweetMessage['requestid']" target="$$_MY_PREFIX_$$.Exit1">
<log expr="'Composer Application:default Block: RetweetMessage'" />
<log expr="'Session FETCH DONE'" />
<log expr="'Data Fetched:' + _event.data.content" />
<script>storeEvent("RetweetMessage", _event);</script>
<script>App_RetweetMessage['data'] = eval('(' + _event.data.content +

')');</script>
</transition>

</state>

Social Media Blocks

Composer Help 978

Facebook Block
Use the Facebook block to handle incoming Facebook interactions. Facebook handles can be
monitored through pre-defined events and messages filtered based on keywords to determine the
next action.

The Facebook block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Find this property's details under Common Properties.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Social Media Blocks

Composer Help 979

Result Property

Click the down arrow under Value and select the variable to hold the raw data (JSON structure)
returned by the Social Messaging Server.

Application Property

Specify the Application Name of the Social Messaging Server.

1. Click under Value to display the ... button.
2. Click the ... button to open the Application Selection dialog box.
3. Click the down arrow opposite Type and select Literal, Variable, or Configuration Server.
4. If you selected Configuration Server, select the Social Messaging Server application from the drop-down

of the Value field and click OK.
5. If you selected Literal or Variable, enter the literal or select a variable, and click OK.

Method Name Property

Select the method to be invoked. This is a mandatory field and the value can be a variable, literal, or
method name enum (SubmitComment, DeleteObject, SubmitPost, SubmitPrivateMessage,
SubmitPrivateMessageFromLiveChatSession, ShareObject, ChangeObjectVisibility,
LikePublication, EditPublication).

[+] The input and output parameters for the different methods are listed here (mandatory
parameters are in bold font).

Method Name Description Input Paramaters Output Paramaters

MergeItxData

This ESP request is used to
combine the attached data of
two Facebook interactions
related to the same post,
update attached data of the
specified interaction and
return the final attached data
subset that was added to the
specified Facebook
interaction.

The necessity in such request
appears when the routing
business process detects that
there is more than one
interaction related to the
same post (for example, a
new comment(s) was added
while the interaction was
sitting in a Genesys

_umsChannel,
_facebookMergeItxId _facebookMergedUserData

Social Media Blocks

Composer Help 980

Method Name Description Input Paramaters Output Paramaters

interaction queue). In this
case, instead of delivering two
interactions to an agent, the
routing business process will
try to merge them and deliver
updated data to an agent.

GetComments
This ESP request is used to get
Facebook comments for
particular post, for a specified
time period.

_umsChannel,
_umsChannelMonitor,
_facebookPostId,
_facebookStartTime,
_facebookEndTime,
_facebookLimit,
_facebookOffset,
_facebookOrder, UserData
(any key)

_facebookXML

SubmitComment

This ESP request is used to
publish Facebook comments
for a particular post or a reply
on a particular comment.

The parameter
_facebookObjectId is
mandatory, and its value is
either a post ID or a comment
ID. If the parameter value is a
comment id, then a reply to a
comment will be published to
Facebook, otherwise a
comment to a post will be
published to Facebook.

_umsChannel,
_umsChannelMonitor,
_facebookPostId,
_facebookMessageText,
UserData (any key)

_facebookCommentId,
_facebookTargetObjectId

DeleteObject
This ESP request is used to
delete a Facebook object. This
object could be a post,
comment, or reply.

_umsChannel,
_umsChannelMonitor,
_facebookObjectId,
UserData (any key)

_facebookObjectId

SubmitPost
This ESP request is used to
publish a (new) Facebook
post.

_umsChannel,
_umsChannelMonitor,
_facebookSourceId,
_facebookMessageText,
_facebookPictureBody,
_facebookPictureName,
_facebookLink,
_facebookDescription,
_facebookTimelineVisibility,
UserData (any key)

Tip
An empty post could be
published if the
_facebookPictureBody or
_facebookLink
parameters are supplied.
Otherwise the
_facebookMessageText
parameter is mandatory.

_facebookPostId

Social Media Blocks

Composer Help 981

Method Name Description Input Paramaters Output Paramaters

SubmitPrivateMessage
This ESP request is used for
submitting Facebook
unsolicited outbound private
messages.

_umsChannel,
_umsChannelMonitor,
_facebookPMThreadId,
_facebookMessageText,
UserData (any key)

_facebookPMMessageId

SubmitPrivateMessageFromLiveChatSession

This ESP request is invoked by
Social Messaging Server, only
for live Facebook ChatSession
and should not be used by
other clients. As result, the
Facebook driver loaded within
Social Messaging Server
creates a Facebook private
message in the specified chat
thread.

_umsMsgPlainText,
_umsChannelMonitor,
_umsAttachedData

Important
The _umsAttachedData
parameter has the
following additonal
parameters:
_umsChannelMonitor,
_facebookPMThreadId,
_facebookLink,
_facebookDescription.

_facebookPMMessageId

ShareObject
This ESP request is used to
share a Facebook post, photo,
link to a web page or an HTTP
link to publicly available file.

_umsChannel,
_umsChannelMonitor,
_facebookObjectId,
_facebookMessageText,
_facebookDescription

_facebookPostId

ChangeObjectVisibility

This ESP request is used to
change Facebook post
visibility. However, note that
Facebook doesn’t allow to hide
Comments/Replies through
the Facebook API.

_umsChannel,
_umsChannelMonitor,
_facebookObjectId,
_facebookObjectType,
_facebookVisibility

_facebookObjectId

LikePublication

This ESP request is used to
like and unlike a Facebook
post, comment or reply. The
object will be liked/unliked on
behalf of the publish access
token owner specified in the
configured monitor specified
in the ESP request input
parameter
_umsChannelMonitor.

_umsChannel,
_umsChannelMonitor,
_facebookObjectId,
_facebookLikeObject

_facebookObjectId

EditPublication
This ESP request is used to
edit an existing Facebook
post, comment, or reply.

_umsChannel,
_umsChannelMonitor,
_facebookObjectId,
_facebookMessageText

_facebookObjectId

Method Parameters Property

List of input parameters populated automatically based on the selected method in the Method

Social Media Blocks

Composer Help 982

Name property. The automatically populated values can be edited, if required. You can also add the
new parameters by clicking the ADD button. The Method Parameters (key and value) can be
specified either as a literal or variable.

Composer supports special keys such as, FACEBOOK_CHANNEL (equivalent to
_genesys.ixn.interactions[system.InteractionID].udata['_umsChannel'] in the code
sample), which can be used to map values for the parameters.

Tip
Refer to the table in the Method Name Property section above for more information
on custom parameters.

Service Timeout Property

Specify the timeout in seconds to invoke the ESP service on a timeout error. The default value is 10
seconds. You can specify the timeout value either as a literal or variable, but it must be a positive
integer.

Enable Status Property

Find this property's details under Common Properties.

[+] Facebook Block Code Sample
<state id="Facebook1">

<onentry>
<log expr="_sessionid + ': Inside Facebook Block: Facebook1'" />

<script><![CDATA[
App_Facebook1.content = {};
App_Facebook1.content.params = {

_umsChannel:
_genesys.ixn.interactions[system.InteractionID].udata['_umsChannel'],

_umsChannelMonitor:
_genesys.ixn.interactions[system.InteractionID].udata['_umsChannelMonitor'],

_facebookPostId:
_genesys.ixn.interactions[system.InteractionID].udata['_facebookPostId'],

_facebookMessageText: 'Thanks'
};

]]></script>
<session:fetch requestid="App_Facebook1['requestid']"

srcexpr="'SocialMessagingServer_854' + '\\CFGSocialMS\\Facebook\\' + 'SubmitComment'"
attach_ixn_data="true" timeout="30" method="'esp'">

<content _expr="App_Facebook1.content" />
</session:fetch>
</onentry>
<transition event="session.fetch.done"

Social Media Blocks

Composer Help 983

cond="_event.data.requestid==App_Facebook1['requestid']" target="$$_MY_PREFIX_$$.Exit1">
<log expr="'Composer Application:default Block: Facebook1'" />
<log expr="'Session FETCH DONE'" />
<log expr="'Data Fetched:' + _event.data.content" />
<script>storeEvent("Facebook1", _event);</script>
<script>App_Facebook1['data'] = eval('(' + _event.data.content + ')');</script>

</transition>
</state>

Social Media Blocks

Composer Help 984

Other Workflow Functionality
• CommonPropertiesforWorkflowBlocks
• Variables Project and Workflow
• User Data
• CustomEvents
• Building Expressions
• SkillExpressionBuilder
• List Objects Manager
• Statistics Manager and Builder
• ORS Extensions
• ServiceLevelRouting
• Exception Events
• Universal Routing Server Functions

Other Workflow Functionality

Composer Help 985

Variables Project and Workflow
This page discusses Project, Workflow, and internal variables.

Types of Variables

As can be seen in the Application Variables dialog box, Composer uses the following types of
variables:

• System—Pre-defined system variables hold Project and application-related values. You cannot delete
system variables, but applications can modify their values.

• User—User-defined custom variables that you create by clicking the Add button in the Application
Variables dialog box shown below and selecting User. Applications can delete and modify these types
of variables.

• Project_Variables in the Project Variables dialog box, which opens when you click the Access
Project Variables button on the toolbar with the IPD in focus. Use Project variables when you need to
share information across different workflows. Once defined, Project variables are accessible for use in
expressions in Expression Builder.

For example, the Assign block allows you to assign entered values or values created in
ExpressionBuilder to variables. Once defined, those variables are accessible for use in expressions in
Expression Builder.

Block Properties as Variables

Many block properties can be specified as workflow variable. To name just a few:

• Target Block properties: Statistic, Timeout, Target Name (if type = Variable), Target Component
Selected, Target Object Selected, Target Selected, Virtual Queue Selected, Virtual Queue

• Play Application properties: Resource
• Play Sound Block properties: Resource, Duration
• Play Message Block properties: Prompts > Values field in Prompts dialog box
• User Input Block properties: Prompts > Values field in Prompts dialog box. AbortDigits, BackspaceDigits,

Collected Digits Variable, IgnoreDigits, Number of Digits, Termination Digits, ResetDigits, Resource,
StartTimeout, DigitTimeout, TotalTimeout, Verification Attempts, Verification Data

• Set Default Route Block: Destination property
• Route Interaction Block: Statistics property
• Subroutine Block: Parameters property
• Stop Interaction Block Reason to Stop Interaction Property

Other Workflow Functionality

Composer Help 986

• Context Services: All blocks have certain properties that allow you to select a variable.
• eService: All blocks have certain properties that allow you to select a variable.

Upgrading from Composer 8.0.2 or earlier
Prior to 8.0.3 release, Composer defined workflow variables in the data model of the SCXML
application so they were required to be accessed by prefixing the name of a workflow variable with
"_data.". For example, if you defined a workflow variable named var1, you would access it as
_data.var1. Starting with 8.0.3, Composer defined these variables in the ECMAScript scope so the
variable is accessed simply as var1.

Application Variables Dialog Box

Note: When using the ORS Debugger, are not displayed correctly in the variables view toolbar if the
value contains XML or variables that are of type E4X.

To define/view variables:

1. In the Properties tab, click opposite Variables under Value to display the button.
2. Select Project, System, or User Variables.
3. Click the arrow to display the selected type. An example dialog box is shown below.

Other Workflow Functionality

Composer Help 987

To add a new variable:

1. Click Add. Composer add a row for variable and generates a temporary name and number; for
example: var7.

2. Select the row and supply the Name, Type, Value, and Description fields.
3. Click OK.

System Variables

• system.Language—Holds the application language setting. The value should be the RFC 3066

Other Workflow Functionality

Composer Help 988

language tag of an installed language pack. Examples of valid RFC 3066 language tags include en-US
and fr-FR. This setting also acts as a default language for the application.

• system.CallID—Call identifier created by the switch. It is initialized
from _genesys.ixn.interactions[system.InteractionID].voice.callid (voice only).

• system.DNIS—Number that the caller dialed. It is initialized
from _genesys.ixn.interactions[system.InteractionID].voice.dnis (voice only).

• system.ANI—Caller's phone number. It is initialized
from _genesys.ixn.interactions[system.InteractionID].voice.ani (voice only).

• system.LastErrorEvent—Stores the last error that was handled in a block.
• system.LastErrorEventName—Stores the name of the error that was handled in a block.
• system.LastErrorDescription—Stores the description of the last error that was handled in a block.
• system.WebServiceStubbing— Flag to control Web Services Stubbing (1 = ON).
• system.TerminateIxnOnExit—Used to automatically stop an interaction that was not stopped by the

Route Interaction, Queue Interaction, or Stop Interaction block in a multimedia workflow. New workflow
entry blocks have this variable pre-populated with 1.

• system.TenantID—The current Tenant identifier. It is initialized from _genesys.session.tenantid or
from _genesys.ixn.interactions[system.InteractionID].tenantid (if available). See the Update
Contact, Identify Contact, Create Interaction, or Render Message block for more information.

• system.TenantName—The current Tenant name. It is initialized from _genesys.session.tenant.
• system.LastTargetComponentSelected—Target to which the interaction was routed definitively. See

the Target Component Selected property of the Target block.
• system.LastTargetObjectSelected—High-level target to which the interaction was routed definitively.

See the Target Object Selected property of the Target block.
• system.LastTargetSelected—DN and Switch name to which the interaction was routed definitively.

See the Target Selected property of the Target block.
• system.LastVirtualQueueSelected—The Alias of the Virtual Queue specified in the target list where

the interaction was routed. See the Virtual Queue Selected property of the Target block.
• system.LastSubmitRequestId—RequestId value of the last <queue:submit> execution. This variable

is automatically updated when a successful (queue.submit.done) or unsuccessful (error.queue.submit)
event is received. <queue:submit> is generated when using Target or RouteInteraction blocks.
<queue:submit> may also be used if using SCXMLState or BeginParallel blocks.

Operational Parameter Management (OPM): These parameters are defined and provisioned in
Genesys Administrator Extension (GAX)

• system.OPM—Used by the OPM Block (App_OPM is used in callflow diagrams).

• system.ThisDN— Initially set to the same value as system.DNIS. The value is updated by the
interaction party state changed event handler (see IPD/Events property below) to the value of
focusdeviceid. This variable becomes the default value for properties: ForceRoute/From,
SingleStepTransfer/From, Target/From.

• system.ParentInteractionID— In case of Transfer scenario, this variable is assigned the ID of the
parent interaction of the current interaction being processed.

• system.OriginatingSession— In case of context passing (see 'Pass Context' property description

Other Workflow Functionality

Composer Help 989

above), this variable holds the context of the originating session.

Outbound Contact Server (OCS) variables used by
[http://internalwiki.us.int.genesyslab.com/Outbound%20Common%20Blocks Outbound
blocks]:

• system.OCS_RecordURI— Its default value is set when the application starts executing from data
passed into the application by the GVP or Orchestration platform. For workflows (SCXML), it is initialized
from the userdata key "GSW_RECORD_URI". For callflows (VXML),
session.com.genesyslab.userdata.GSW_RECORD_URI is used. This variable points to the 'current'
record as determined by OCS and is provided to the application as a convenient way to communicate
actions back to OCS for the current record.

• system.OCS_URI— Holds the OCS resource path in the format "http(s)://<ocs host>:<ocs port>".
Its default value is deduced from OCS_Record_URI. The application can change this variable's value to
use a different OCS application for all Outbound blocks in the workflow. Any downstream blocks will use
the new value.

• system.OCS_Record— Holds the Record Handle deduced from the value of OCS_Record_URI.

Upgrading from Composer 8.1.1 or earlier

The system variables have been renamed in Composer 8.1.2 to improve the usability and to support
new features. When upgrading a workflow that was initially developed with Composer 8.1.1 or earlier,
the old set of system variables is kept, in addition to the new one, to ensure compatibility as some of
those variables might be used in the application (for block properties or even in ECMAScript code).
However, users are now encouraged to use the variables that are "system." prefixed.

Composer 8.1.1 Composer 8.1.2
ANI system.ANI
App_Language system.language
App_Last_Error_Description system.LastErrorDescription
App_Last_Error_Event system.LastErrorEvent
App_Last_Error_Event_Name system.LastErrorEventName
App_Last_Submit_Request_Id system.LastSubmitRequestId
App_Last_Target_Component_Selected system.LastTargetComponentSelected
App_Last_Target_Object_Selected system.LastTargetObjectSelected
App_Last_Target_Selected system.LastTargetSelected
App_Last_VirtualQ_Selected system.LastVirtualQueueSelected
App_RelativePathURL system.RelativePathURL
App_StartEvent system.StartEvent
App_Terminate_Ixn_On_Exit system.TerminateIxnOnExit
CallID system.CallID
COMPOSER_WSSTUBBING system.WebServiceStubbing
DNIS system.DNIS

Other Workflow Functionality

Composer Help 990

Composer 8.1.1 Composer 8.1.2
InteractionID system.InteractionID
Tenant_Name system.TenantName
TenantID system.TenantID

Project Variables

Project variables encompass all the workflows in a Project. These types of variables are defined in the
data model of the interaction process diagram (IPD) SCXML application and so are required to be
accessed by prefixing the name of a project variable with "_data.". For example, if you define a
project variable named var1, you would access it as _data.var1. Project variables are also accessible
in ExpressionBuilder. Select Project Variables and then Variables under the Data Subcategory.

Use Project variables when information needs to be shared across workflows in an IPD. For example, if
you want to get the e-mail address in one workflow and would like to create and send out an email in
another workflow present in the same project. Genesys suggests defining at least one appropriately
named Project variable like varProjectXYZ. Any properties that accept a variable will show this
variable prefixed with _data in their list.

To define a project variable in Composer Design perspective:

1. Click the default.ixprocess tab (or the tab for a renamed IPD) to bring it into focus (tab is highlighted).
2. Click the Access Project Variables toolbar button. This opens the Project Variables dialog box. An

example dialog box with one entry is shown below.

Other Workflow Functionality

Composer Help 991

1. Click Add. The variable Name, Type, Value, and Description fields become editable.
2. Name the variable.
3. Specify an initial value if appropriate.
4. Describe the variable.
5. Click OK.

Internal Variables Naming

Starting with 8.1.1, Composer changes its naming policy for internal variables, which are variables
that do not appear in any Variable edition dialog. They can be seen only in the generated SCXML
code. Composer uses those variables to temporarily store data during an application execution.

Most Composer users will not be affected by this change. However, it is possible that some advanced
users may have written applications that use those variables although they were not available "out-
of-the-box." In such cases, those users will need to upgrade their application to use the variables with
the new names.

Example
In 8.1.0, for a DB Data block named DBDataBlock Composer could declare in the SCXML application
the variables:

Other Workflow Functionality

Composer Help 992

App_DbDataBlock, App_DbDataBlockDBResult, App_DbDataBlockDBResultColumnNames,
App_DbDataBlock_cursor, App_DbDataBlock_mapping

In 8.1.1, for a DbData block named DbDataBlock Composer could declare in the SCXML application
only one variable named App_DbDataBlock.

Various properties of this variable will be used, such as App_DbDataBlock[‘requestid’],
App_DbDataBlock[‘data’], App_DbDataBlock[‘DBResult’],
App_DbDataBlock[‘DBResultColumnNames’], App_DbDataBlock[‘cursor’],
App_DbDataBlock[‘mapping’]

Attaching Results to User Data

While you can assign Classify object results to a variable, Genesys does not recommend this. The
recommended way of dealing with the classification results is to attach them to the interaction. Then
User Data will have the keys listed in the table below with the corresponding values returned by
Classification Server. As an example, User Data would have the following pairs after the attachment:

Parameter Value
CtgId 00001a05F5U900QW
CtgRelevancy 95
CtgName Cooking
CtgId_00001a05F5U900QW 95
CtgId_00001a05F5U900QX 85
CtgId_00001a05F5U900QY 75
CtgId_00001a05F5U900QZ 65

Other Workflow Functionality

Composer Help 993

User Data
To work with User Data in Composer, you can use:

• The Interaction Data block for voice applications.

• The User Data property of the External Service block if you wish to pass User Data to an external
service (routing and voice).

• The Entry block to access User Data (routing and voice).

For routing applications, you can use:

• The User Data block.

• The CreateEmail block, which lets you pick up standard response text from User Data.

• The CreateSMS block, which lets you pick up message text from User Data.

• The Identify Customer block, which provides an option to update the interaction’s User Data with the
parameters returned by Universal Contact Server (Contact attribute data).

• The Create Interaction block, which lets you create a new interaction record in UCS database based on
User Data.

• The ECMAScript block. The Script property lets you use Universal Routing Server User Data functions.
Open Expression Builder. Select URS Functions and then _genesys.ixn.deleteuData (to add a User
Data property or delete all properties) or _genesys.ixn.setuData (to add new or update existing User
Data).

Other Workflow Functionality

Composer Help 994

Hints

• A specific variable ‘xyz’ can be accessed directly; for example: _genesys.ixn.interactions[0].udata.xyz

• To write to User Data, use the setuData() function in an ECMAScript snippet. Usage is similar to the
example below.

var input = new Object();

input.xyz = InputValue1; // Specify a value for the key ‘xyz’.

input[‘my-key-nname’] = ‘value’; // Use this notation if the key or property name has
a hyphen in it. Note that‘my-key-nname’has hyphens.

Other Workflow Functionality

Composer Help 995

_genesys.ixn.setuData(input);

• Reading User Data is easier using the Assign block than with the ECMAScript block.

Mandatory Data for UCS Blocks

When working with the Update Contact and Render Message blocks (which map to Universal Contact
Server services), certain properties must exist in the interaction User Data.

For the Update Contact block, ContactId must exist.

For the Render Message block, ContactId (if some contact-related Field Codes (as described in the
eServices 8.1 User's Guide) are used in the text to render). Also InteractionId (if some interaction-
related Field Codes are used in the text to render)and OwnerEmployeeId (if some agent-related Field
Codes are used in the text to render).

As is the case with IRD, these properties are not set in the blocks themselves. Instead, the properties
are assumed to be put in the interaction's User Data by some other block earlier in the workflow,
such as the Identify Customer block or Create Interaction block with the Update User Data property
set to true. In case no other block does this, the User Data block may be used for this purpose.

If these properties are not available, an explicit UCS error message (missing parameter) shows in the
Orchestration Server log.

Retrieving multiple KV Pairs in a user data object

To retrieve multiple KV pairs in a user data object:

• Set the multivalued-prop-in-udata configuration option to true in Orchestration server.

The values can be accessed from Composer using:

• _genesys.ixn.interactions[_data.system.context.InteractionID].udata.<KeyName>._genesys_
Multivalue (for retrieving all values).

• _genesys.ixn.interactions[_data.system.context.InteractionID].udata.<KeyName>._genesys_
Multivalue[i] (for retrieving a specific value at an index i).

Callflow User Data

Also see Route Request block and Interaction Data.

Other Workflow Functionality

Composer Help 996

Custom Events
The Exceptions dialog box, which opens from the Exceptions property, contains an Event button
where you can define a custom event in addition to selecting a predefined event. Use this dialog box
to define which exceptions or events to handle.

1. In the block, click opposite Exceptions under Value.
2. Click the ... button to bring up the Exceptions dialog box.
3. In the Exceptions dialog box, click Event.
4. In the resulting dialog box, name the event and click OK. The event name appears in the Name

column.
5. When through in the dialog box, click OK.
6. Once a custom event is added to the list of exceptions in a block, you will see an exception port for this

event (or exception) on the block, which you can now connect to another block to handle that special
condition.

Other Workflow Functionality

Composer Help 997

Skill Expression Builder
You can route interactions to the most appropriately skilled agent using a skill expression or a
statistical expression. Skill Expression Builder lets you create both types of expressions, which
produce a result of true or false.

• For a video tutorial on defining Skills and other objects that can be used in Skill Expression Builder, see
Defining Agents, Agent Groups, and Skills.

• For a video tutorial on using Skills as routing targets, see Skills-Based Routing.

Using Skill Expression Builder

Open Skill Expression Builder from the Targets property in the Target block as follows:

1. If you have not already done so, connect to Configuration Server. Otherwise, when selecting a Target of
Type Skill, Skill and other Configuration Database objects will not be available for selection.

2. Set the Validate Skill Expressions preference.

3. Opposite the Targets property, click under Value to display the button.

4. Click the button. The Targets dialog box opens. An example completed dialog box is shown below.

Other Workflow Functionality

Composer Help 998

https://docs.genesys.com/Documentation/GA/8.1.4/user/CfgSkill

5. Click Add in the Targets dialog box.
6. Click under Type and select Skill.
7. Click under Name to open the Skill Expression Builder.
8. Expand the Skill folder, select a Skill. An example completed dialog box is shown below.

Other Workflow Functionality

Composer Help 999

Important
Starting with version 8.1.450.04, single quotes are not added automatically for multi-byte characters, if not
provided by the user in the expression.

You can also use variables and/or Statistics.

Variables
Valid and invalid examples are shown below.

site = 1 & english = 1 & account = 1 is not a valid expression
'site = 1 & english = 1 & account = 1' is a valid expression
Because Composer is able to validate 'site = 1 & english = 1 & account = 1', it

Other Workflow Functionality

Composer Help 1000

automatically adds the missing quotes
site = vsite & english = vlanguage & account = vaccount is not a valid expression
'site = ' + vsite + ' & english = ' + vlanguage + ' & account = ' + vaccount is a valid
expression

Statistics
The statistic name in a skill expression can be any agent statistic used in URS function SData, which returns the current value of
the statistic for a given target. For example, you may wish to have URS return the number of interactions waiting, so that if a
target is not available, the caller will hear the IVR announce the number of interactions ahead of him. The selected elements

appear under Expression. The statistic must be written in the format: $(statisticname). For example:
$(StatAgentLoggedIn)=1

9. Under Skill Expression on the left, define the Skill Expression. Skill Expressions are limited to
alphanumeric characters and underscores, cannot begin with a digit, and cannot exceed 126
characters.

10. Click OK.
11. Back in the Targets dialog box, you have the option of entering a threshold function for conditional

routing.

Skill Function
Beginning with release 8.1.530.17, a new category folder, Skill Function, is added to the Skill
Expression Builder. Currently, it contains the sitex() function.

You can use the sitex() function to route interactions to targets based on their location. For
example, sitex(GEO_LOCATION) & English > 0. For more information on the sitex() function,
refer to the sitex() function description in the URS documentation.

Important
GEO_LOCATION must be specified at the Application level in SIP Server. Routing based
on location using the sitex() function will work only in environments with SIP Cluster.

Other Workflow Functionality

Composer Help 1001

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ExpressionBuilder#Threshold_Functions
https://docs.genesys.com/Documentation/R/8.1.4/Ref/FunctionsUpdate
https://docs.genesys.com/Documentation/SIPC/latest/Solution/AgentReservation#scrollNav-3-3

Using Statistic

1. Expand Statistic. URS predefined statistics appear for selection.
2. Select a statistic.
3. Click a comparison symbol.
4. Create the expression using a combination of the comparison operators, functions, values, and

variables. an example is shown below:

$(RStatCallsInQueue) = 3 & $(RStatCost) = 2 | $(PositionInQueue)) >=6.

Note: Use of the RStatCost statistic requires that you have cost-based routing implemented at your
site. For a description of each statistic, consult the Universal Routing 8.1 Reference Manual.

5. Click the button to validate on the toolbar.
6. Click OK when through creating the expression to return to the Targets dialog box.

Comparison Symbols

The table below describes the comparison symbols used to evaluate a skill condition.

Symbol Interpretation

!=
Differs depending on the Data type: Skill–not equal
to the indicated level value. Statistic–not equal to
the indicated statistic value.

<

Differs depending on the Data type: Skill–less than
the indicated level value. Note: depending on how
you use this operator, it may result in including
agents that do not have the skill at all (skill name =
0). For example, with English < 8, the queue
functional module includes all agents with the
English skill less than 8, and also agents with no
English skill at all.
Statistic–less than the indicated statistic value

<=
Differs depending on the Data type:Skill–less than
or equal to the indicated level value. Statistic–less
than or equal to the indicated statistic value

=
Differs depending on the Data type: Skill–equal to
the indicated level value. Statistic–equal to the
indicated statistic value.

>
Differs depending on the data type: Skill–greater
than the indicated level value. Statistic–greater
than the indicated statistic value

>=
Differs depending on the Data type: Skill–greater
than or equal to the indicated level value.
Statistic–greater than or equal to the indicated

Other Workflow Functionality

Composer Help 1002

statistic value.

This is a value of the same data type as the Data name element. The value must already evaluate to
an integer. Float numbers are not supported. There are different limitations depending on the data
type:

• Skill value–This value represents the level of skill. For example; an agent could have an English skill
level greater than 3 (English > 3). An agent can be excluded from a skill by setting that agent’s skill
level for that skill to zero in the configuration layer (English=0).

• Statistic–This value represents the value of the statistic/metric. For example; an agent could be in
Ready state longer than 20 seconds ($(StatTimeInReadyState) > 20).

Logic Operators

Use the logic operators to evaluate multiple conditional expressions together. The following logic
operators are supported:

• AND (&)
• OR (|).

The AND and OR logic operators have the same priority. For example:

English >3 & $(StatAgentLoggedIn)=1

Variables and Literals

Starting with 8.1:

• Composer supports variables in skill expressions (they appear in the Skill Expression builder tree).
• You must enclose literal expressions in single quotes.

Background: Previously, Composer automatically added single quotes around the expression entered
by the user. Now that variables are supported, Composer must distinguish literal strings and
variables. As a result, you must enclose literal strings in single quotes.

Also see: Variables Project and Workflow and the Chat Transcript block.

Other Workflow Functionality

Composer Help 1003

List Objects Manager
Note:

• Starting with Composer 8.1.4, you can specify a List object as a routing target in the Targets property
of the Target block.

A List object contains strings of any nature (for example, DNIS or ANI strings), which can be used in
strategies. The strings can be as simple as 800 numbers or as complex as routing conditions.

For example, you may use a List object to create lists of toll-free numbers. Rather than reference
each individual 800 number in a strategy, you can logically group numbers together and name the
group. Then, when you need to add new numbers or edit numbers, you do not need to edit the
strategy, but only the List object properties.

Providing key-value pairs for a List element enables you to store information in the Configuration
Server Database and then retrieve it from the strategy.

You can specify a List Object variable when specifying targets in the Target selection block.

Creating List Objects

Composer supplies a List Objects Manager view to create List objects. To bring up the view and create
a List object:

1. If you have not already done so, connect to Configuration Server.
2. From the Window menu, select Show View > List Objects Manager. You can customize the Show

View menu to show List Objects Manager: Window > Customize Perspective.
3. Right-click the Transaction folder, select New Folder, and name the folder.

Other Workflow Functionality

Composer Help 1004

4. Right-click the new folder and select New List. Or use the Add New List button on the right.
5. In the Create New List Object dialog box, name and describe the List object and click OK.

• Right-click the name of the List object and select New List Item. The dialog box for defining a List
item opens.

6. On the toolbar, click the button to add a new item.
7. Under Details, enter a name in the Item field and click OK.

Other Workflow Functionality

Composer Help 1005

8. Continue adding rows in the List object in this fashion.
9. When through adding rows, in the List Object Managers tab, double-click a row.

10. When the row is selected in the List Object dialog box, click the button to add a new key.
11. Under Details, enter the Key and Value fields.
12. Click OK.
13. Continue adding key-values to rows in this fashion.

Sample

Besides individual items, parts of expressions (or an entire expression) can be stored outside of a
strategy inside a List object. The sample below is a List object that contains routing information that
URS can use to decide when to borrow and lend agents among business lines.

In this sample:

• An IVR has identified customers as wanting information on the MC, VISA, or DISCOVERY business line.
• The requested business line information has been passed to the calling strategy.
• The strategy has segmented interactions to take different paths based on the requested business line.

Other Workflow Functionality

Composer Help 1006

• If all agents serving the requested business line are busy, URS can use information in the List object to
borrow agents from other business lines.

Expression Builder Functions for List Objects

In Expression Builder, two URS functions can be used to access List Objects:

• _genesys.session.listLookupValue

• .genesys.session.getListItemValue

Other Workflow Functionality

Composer Help 1007

Refer to Universal Routing SCXML API Reference help file for details on these functions (Help >
Contents).

Other Workflow Functionality

Composer Help 1008

Statistics Manager and Builder
When using the Target object in a strategy, the Statistics property lets you route based on the value
of a statistic. The statistic can be a URS Predefined statistic (as described in the Universal Routing 8.1
Reference Manual) or a statistic that you create yourself with Statistics Builder. Once you create a
statistic, that statistic becomes available for selection in the Target object.

Using Statistics Manager

The Statistics Manager view lets you easily create, delete, and organize created statistics into folders.

You can connect to Configuration Server before or after opening the Statistics Manager view. When
not connected, the view shows the message: Configuration Server is not connected. You must set
the option to use URS Predefined statistics if you want to use the URS predefined statistics in a
workflow and if those statistics do not already exist in Configuration Server.

To bring up the Statistics Manager view:

1. Click the Statistics Manager button on the main toolbar. Alternative methods: Select Window >
Show View > Statistics Manager. You can customize the Show View menu to show Statistics
Manager:Window > Customize Perspective. The Statistics Manager view appears along the bottom
of the Composer window listing URS predefined statistics.

StatisticsMgr.gif

2. In the Statistics Manager view, you can do the following:

• Double-click a statistic to edit with Statistics Builder.
• Right-click a folder under Name and select New Statistic. Or with a folder selected, click

the Add New Statistics button.

Other Workflow Functionality

Composer Help 1009

• Create a new folder by clicking the Add New Folder button.

• To delete a statistic that you have created, select the statistic and click the button to
delete. Or right-click the statistic and select Delete. Note: You cannot delete any of the URS
predefined statistics.

Using Statistics Builder

An example Statistics Builder dialog box is shown below.

Other Workflow Functionality

Composer Help 1010

To create a new statistic:

1. Enter a Name for the statistic.
2. Enter a Description for the statistic
3. Select the Category for the statistic, which tells Stat Server how to calculate the statistic. For

information on statistical categories, see the “Statistical Categories” chapter of the Framework Stat
Server User’s Guide.

4. Enter a Filter name (optional). Filters enable you to exclude interactions based on certain criteria
specified in a logical condition. They enable you to restrict the Stat Server actions that are taken into
account during the computation of aggregate values. In a filtered statistic, only those actions are
considered that satisfy a filter condition on certain attributes of T-Events. For more information, see

Other Workflow Functionality

Composer Help 1011

Filters Section in the “Statistic Configuration Options” chapter of the Framework Stat Server User’s
Guide. If you enter a Filter name that does not exist, the object will be created with the Statistic when
you click OK.

5. Select the appropriate radio button to configure one of the following types of statistics:

• Queue/Routing Point
• Agent/Group
• Campaign

6. Select from Main Mask and Relative Mask. A mask is a list of actions or statuses that apply to the
statistic category. Depending on the type of statistic you select (Queue/Routing Point, Agent/Group,
or Campaign), the Mask listing shows different actions or statuses. Where several masks are listed,
you may select all of them. For lists of actions and statuses, see the chapters on “Stat Server Actions”
and “Object Statuses” in the Framework Stat Server User’s Guide.

7. Enter Interval: Last Second. Refers to the time interval used for calculating historical aggregate
values for statistics. Clients, such as CCPulse+, specify which defined time profile to use when
requesting their statistics. Options are Last Seconds, Last Calls, Growing Window, and Since
Login. For more information on intervals, see the Time Profiles section in the “Statistic Configuration
Options” chapter of the Framework Stat Server User’s Guide. Note: In most routing decisions, the
interval over which statistics are measured (if applicable) should have a fixed length. The Growing
Window option is intended for exceptional cases and should be used infrequently.

8. Java. You have the option to enter:

• Extension—Stat Server architecture includes support for pluggable statistical modules
written in Java. This enables you to dynamically extend Stat Server functionality with new
statistical types (residing in Stat Server’s Java Extensions [SSJE]) and to have Stat Server
supply them to Genesys applications. It is through this functionality that Stat Server
processes information from Interaction Server. For more information on this field, see the
Framework Stat Server User's Guide.

• Subcategory—The name of the Java subclass that implements statistic calculation.

9. Click OK.

Other Workflow Functionality

Composer Help 1012

Orchestration Extensions
Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property. Use this property to add
custom attributes into any/all states and sub-states for any block they are configured in. Add the ORS
Extensions property to the Properties view for a selected block by clicking the Show Advanced
Properties button.

Show Advanced Properties

When creating a new diagram in Composer perspective, this button appears on the right side of the
Composer GUI, between the palette of blocks and the Properties view.

This property gives the ability to use any attribute Orchestration Server supports in addition to the
SCXML standard. For information on these attributes, see the attributes prefixed with "_" in the
SCXML Elements section of the Orchestration Server Developer's Guide. For example, you can specify
additional attributes to be added into the SCXML <state> element, which Orchestration Server can
then use to control persistence on a <state> level and for other functionality in the future.

Orchestration Options

Selecting Properties from the Project menu opens a dialog box showing the properties of the
selected Project or of the Project that contains the selected resource. Select Orchestration Options to
view other settings.

Other Workflow Functionality

Composer Help 1013

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef#SCXML_Elements
https://docs.genesys.com/Documentation/OS/8.1.4/Deployment/Persist

Service Level Routing
Genesys uses Business Priority Routing as an umbrella term to describe a set of capabilities enabling
contact centers to achieve Service Level optimization by its ability to take various factors
consideration when making routing decision. For example, you may want to specify a Service Factor
for a certain types of of customer (gold) and distribute 60% of these customer interactions in less
than 10 seconds to a specific agent group. In addition, you can further refine target selection by
specifying "best fit" skills and by selecting the minimum or maximum value of a statistic for a Stat
Server(for example, StatTimeInReadyState). You can select the interaction with greatest risk to
Service Objective as the highest routing priority for an agent, without the need for complex strategy
writing.

The contact center administrator defines Business Attributes in business friendly terms within
Configuration Database (using Genesys Administrator), and the Composer workflow (strategy) writer/
developer associates each interaction with these predefined attributes. Some example Business
Attributes you can define include:

• Customer Segment
• Service Type
• Media Type
• Service Objective

You also can create workflows to fine-tune interaction prioritization using a straight-forward
numbering system. For example, you can use:

• What-If Wait Time - Interaction is selected by evaluating a “what-if” scenario, such as how much
longer will the interaction wait be if this routing opportunity is missed. Router then routes the
interaction with the longest what-if wait time first. What-if Wait Time balances routing priority in
overstaffed and understaffed queues.

• Service Objective Risk Factor - Calculates the risk factor and selects the interaction among various
virtual queues with highest risk to service objective as highest routing priority. Service Objective Risk
Factor enables best possible chance that all service level objectives for all interactions are met, without
having to add more agents.

• Age of Interaction, which is the cumulative time a customer has spent since reaching the first routing
point -- is known and tracked. With Age of Interaction, customers who call in and have multiple
department or agent collaboration needs are not penalized by having to re-queue upon transfer. More
about Age of Interaction below.

The use of these factors in routing strategies greatly enhances the contact center's ability to be more
business-oriented and strategic to its organization. It improves the chance that all interactions (with
varying Service Level goals are handled within their assigned Service Level objectives based on their
value to the organization.

Other Workflow Functionality

Composer Help 1014

Age of Interaction

Age of interaction can be commenced from your point of choice. It could be from before the customer
enters self-service in the IVR, or as the customer exits the IVR to reach a human. If it is stamped/
commenced from prior to the IVR, the priority is set as if the customer has been in queue the entire
time (even though reporting does not necessarily show that customer in queue). This means your
business can promote self-service capabilities and mention to the customer that we will keep their
position in queue while they are self serving.

The commenced point does not have to be changed when the call RONAs or is rejected by an agent.
This means that automatically the interaction is placed back into the same position in queue as it was
previously (for example, in the front) without any extra coding required. Age of Interaction also useful
when the customer enters the contact center, speaks with an agent, and then needs to be
transferred to another queue. This capability keeps their priority as if they have been in their transfer
queue the entire time since they entered the contact center. This reduces agent time if they perform
a warm transfer and enhances the customer experience.

Even in a blind transfer scenario to queue this significantly improves the customer experience, is
simple to implement, uses business-friendly language, prevents priority locks, and should be your go-
to choice for all of our customers. And then add another layer of capabilities on top or deviate when
the business requirements dictate.

Configuring Service Level Routing

1. Configure the Service Type Business Attribute. Add Service Types required, i.e. Service, Active Trader,
and so on.

2. Configure the Customer Segment Business Attribute. Add Customer Segments required, i.e. High Net
Worth, Mass Affluent, and so on.

3. Configure Objective Table. Name the table. Set type = default. Add Objective Records:
• Media Type = type of media
• Service Type = one of the defined service types from #1
• Customer Segment = one of the defined customer segments from #2
• Objective Goal = time in seconds you want call routed by
• Objective Delta = Service Objective Delta defined for this Record. Defines the step for Service

Objective Goal deviation.

4. In the workflow Configure an ECMA script with the findServiceObjective function. The true parameter at
the end of the findServiceObjective function attaches the Service Type, Customer Segement and
Service Objective to the call. See the data snippet below:
'CustomerSegment' 'default'
'ServiceType' 'default'
'ServiceObjective' '100'
vSvcObjective=_genesys.queue.findServiceObjective(system.InteractionID, '<name of
Objective Table',
0,'<Service Type>' ,'<Customer Segment>' , true);

The return value of from the above function is the Objective Goal defined in #3. The function below defines how the functional

Other Workflow Functionality

Composer Help 1015

module handles interactions with the same priorities. By default, interactions with the same priority are ordered according to the
time the interaction began to wait for some target.

genesys.queue.priorityTuning(_data.ixnid, <useAge> = true|false, <usePredict> = true|
false,
<useObjective> = true|false);

TIP: The Service Objective, Service Type and Customer Segment don’t have to be created in the Configuration Database. They
just have to be attached to the interaction prior to calling priority tuning. For example:

'CustomerSegment' 'default'
'ServiceType' 'default'

'ServiceObjective' '100'

Please also be mindful that Genesys does not support what-if/usePredict for eServices/Interaction Server Media Types.

Other Workflow Functionality

Composer Help 1016

Exception Events
Certain callflow exception events and routing exception events application blocks have an Exceptions
property. The Properties view for the routing Entry block is shown below as an example.

Clicking the button opens an Exceptions dialog box where you can select events to be
supported. The voice Entry block also has an Exceptions property with a different set of exceptions
that can be supported.

Exception Support Levels

Exceptions can be configured at two levels:

1. At the top level in the Entry block using the Exceptions property.
2. At the individual block-level for local exception handling using the Exceptions property. These block

level exceptions may not be present in all blocks.

To support any of these exceptions globally throughout your application:

1. Select the Entry block's Exceptions property.
2. Select an event from the Not Supported pane, and then click the > button to move the event to the

Supported pane.

Note: If the same exception is defined at the top level and the block level, the block-level exception
takes precedence for that block.

Callflow Event Handling Guidelines

1. For Main callflow:
• Always handle the default event handlers--disconnect, error, and all.

Other Workflow Functionality

Composer Help 1017

• If selecting a specific error event type, always place it before any other errors. For example,
error.badfetch.http must be placed before error.badfetch, which must be placed before the
error event in the application.

• Select specific handlers like error.badfetch only if the application has to handle that
exception differently than the generic error or all event handler.

2. For Subcallflows:

• Unless special processing is required at the local level, it is best to handle events at the
global level in the Main callflow.

Exception Handling

This section discusses Event Handling and provides some guidelines. The VXML/SCXML interpreters
throw exceptions when they encounter errors or conditions for which exceptions are needed so that
the condition may be communicated back to the VXML/SCXML application. For example, for voice
applications, events such as NOINPUT or NOMATCH in an Input block fall under this category.
Composer exposes exceptions at two levels:

• the block level
• the overall callflow level

Any exceptions exposed at the block level can be handled at the block level itself. If the exception is
thrown, control does not wind its way all the way back to the Entry block. For example: the DB Data
block exposes a dbconnectionerror exception if connection to a database fails. This exception is
thrown and handled at the block level itself: <form id="DBData1"> <block> <data
name="DBData1Data" src="../include/dbrequest.aspx" method="post"
namelist="AppStateString db_query db_name db_timeout" /> … <throw
event="error.com.genesyslab.composer.dbconnectionerror"

messageexpr="DBData1Data.errorMsg" /> </block> <catch
event="error.com.genesyslab.composer.dberror"> <!--handle exception here--> </catch>
</form> The Entry blocks for routing and voice applications also expose a number of exceptions.
These are handled in the Entry block itself. The following are some recommendations about good
practices in handling exceptions for callflows.

• For the Main callflow, always handle the default event handlers--disconnect, error, and all.

• If selecting a specific error event type, always place it before any other errors. For example,
error.badfetch.http must be placed before error.badfetch, which must be placed
before the error event in the application.

• Select specific handlers like error.badfetch only if the application has to handle that
exception differently than the generic error or all event handler.

• For Subcallflows, it is straightforward to handle exceptions that Composer does not expose directly. Any
exceptions that are not listed explicitly are thrown as the all exception. A branching block can be
added to this exception path and a different execution path can be chosen based on the contents of the
exception. The conceptual diagram below shows this approach:

Other Workflow Functionality

Composer Help 1018

The branch condition will look something like this (variables are described in the Entry block):

Other Workflow Functionality

Composer Help 1019

Unless special processing is required at the local level, it is best to handle events at the global level
in the Main callflow.

Exception Event Descriptions

The table below names and describes Composer exception events for both callflows and workflows.
For callflow VXML events, additional information on events can be found in the GVP 8.1 Legacy
Genesys VoiceXML 2.1 Reference Manual.

Exception Event Name Description

all
This is a generic catch-all exception handler that
will catch any exception not handled by the Entry
block. It should be the last catch handler in the
sequence of exceptions for a block.

cancel
The caller has requested to cancel playing of the
current prompt. (Available when the Universals
property includes Cancel.)

com.genesyslab.composer.toomanynoinputs
Occurs when the number of no inputs exceeds the
maximum retries in Menu, Input, and Record
blocks, and blocks do not have local noinput
exception ports.

com.genesyslab.composer.toomanynomatches
Occurs when the number of no matches exceeds
the maximum retries in Menu, Input, and Record
blocks, and blocks do not have a local nomatch
exception port.

com.genesyslab.externalmessage For handling asynchronous external events.

Other Workflow Functionality

Composer Help 1020

(Available when
com.genesyslab.externalevents.enable is set to
true.)

connection.disconnect.hangup The caller hangs up. Applies at any time except
during blind transfers.

connection.disconnect.transfer The call was "blind transferred" to another line and
will not return.

error The platform encountered any error, such as
error.noresource.

error.badfetch A fetch of a resource failed due to semantic errors
in the VoiceXML page.

error.badfetch.badxmlpage The page that was fetched is an invalid XML page.
error.badfetch.grammar.load The platform failed to load a grammar.
error.badfetch.grammar.syntax A grammar has a syntax error.
error.badfetch.grammar.uri The platform failed to fetch a grammar uri.

error.badfetch.http A fetch of a resource failed, and the platform
returned an HTTP Response failure code.

error.com.genesyslab.composer.badfetch Bad request.
error.com.genesyslab.composer.badgateway Bad gateway.

error.com.genesyslab.composer.customernotfound

Context Services Identify Customer Block, Suppress
Customer Not Found Exception Property:
If set to false (default), this exception is raised when no
matching customer is found.

error.com.genesyslab.composer.dbconnectionerror
This error indicates that there was an error
encountered while attempting to connect to the
database.

error.com.genesyslab.composer.dberror
All database errors (other than dbtimeout and
dbconnectionerror) result in this exception. The
error text associated with this exception will
contain the exact error returned by the database.

error.com.genesyslab.composer.dbtimeout
This error indicates that there was a timeout while
waiting for query results to be received from the
database. The timeout period is controlled by the
Timeout property

error.com.genesyslab.composer.dbemptyresultset

This error indicates that the query or a stored
procedure execution resulted in an empty result
set, i.e., No records were returned. If the
application will handle this condition and the
exception is not required to be thrown then it can
be suppressed using the Suppress Empty Result
Set Exception property.

error.com.genesyslab.composer.forbidden Forbidden plus specific error message from the
server.

error.com.genesyslab.composer.invalidkey
This is the event error for handling an invalid key
name. For example, the userdata key being
accessed by the Interaction Data block is not a
valid key.

Other Workflow Functionality

Composer Help 1021

error.com.genesyslab.com.composer.notautorized Not authorized.
error.com.genesyslab.com.composer.notfound Not found.

error.com.genesyslab.composer.operationtimeout
This error occurs when the request for Userdata,
AccessNumGet, or Statistics times out at the
Iserver.

error.com.genesyslab.composer.receiveerror This error occurs when the Iserver is down at the
udata(getstat,AccessNumget) request.

error.com.genesyslab.composer.recordCapture.failure Error occurred while saving the recorded file on the
Web server side.

error.com.genesyslab.composer.servererror

This error occurs when there is an error in
processing the request for the server side blocks
such as "Invalid parameters" or "Web server is
down."
For Context Services blocks: Internal Server Error plus specific
error message from the server.

error.com.genesyslab.composer.serviceunavailable Service unavailable.

error.com.genesyslab.composer.webservice.batchfetchFor attribute descriptions, see the SCXML Language
Reference

error.com.genesyslab.customernotfound For attribute descriptions, see the SCXML Language
Reference

error.com.genesyslab.composer.unsupported

This error occurs when the CTI applications
designed for CTIC supported features like
AccessNumget, Statistics, Interaction-Delete,

Replace are called against a SIP Server
environment.

error.com.genesyslab.subdialog.maxdepthexceeded Error when subdialog depth limit is exceeded.

error.connection

This is the base exception for any connection-
related error. For example,
error.connection.protocol.nnn is thrown when the
protocol stack for the connection raised an
exception in the case of a bridged transfer.
This error can be caught using this base exception.

error.connection.baddestination The destination URI is malformed in the Transfer
block.

error.connection.noauthorization The caller is not allowed to call the destination,
after initiating a transfer using the Transfer block.

error.connection.noresource The platform could not allocate resources to place
the call initiated by the Transfer block.

error.connection.noroute
The platform was not able to route the call to the
destination, in a case where the destination URI
(phone number) has the correct format.

error.dialog.collect For attribute descriptions, see the SCXML Language
Reference.

error.dialog.continue For attribute descriptions, see the SCXML Language
Reference.

Other Workflow Functionality

Composer Help 1022

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

error.dialog.createann For attribute descriptions, see the SCXML Language
Reference.

error.dialog.deleteann For attribute descriptions, see the SCXML Language
Reference.

error.dialog.play
This indicates that an error occurred while trying to
perform the <play> request.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.playandcollect
This indicates that an error occurred while trying to
perform the <playandcollect> request.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.playandverify For attribute descriptions, see the SCXML Language
Reference.

error.dialog.playsound
This indicates that an error occurred while trying to
perform the <playsound> request.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.remote For attribute descriptions, see the SCXML Language
Reference.

error.dialog.setdialogdefaultdest
This indicates that an error occurred while trying to
perform the <setdialogdefaultdest> request.
For attribute descriptions, see the SCXML Language Reference .

error.dialog.start

This indicates that an abnormal condition occurred
while trying to perform the start request. This
event will be sent as a result of a timeout of the
request as well as problems with the request itself.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.stop
This indicates that an error occurred while trying to
perform the <stop> request.
For attribute descriptions, see the SCXMLLanguage Reference

error.interaction.redirect For attribute descriptions, see the SCXML Language
Reference.

error.msgbased.createmessage This event is sent when the <createmessage>
request has failed for some reason.

error.msgbased.sendmessage This event is sent when the <sendmessage>
request has failed for some reason.

error.noresource
The specified language is not supported by the
TTS/ASR server, or the TTS/ASR server/service is
down.

error.noresource.recording
Occurs when MCP fails to start the GIR recording
for any reason. For callflow VXML events, additional
information on events can be found in the GVP 8.1
Legacy Genesys VoiceXML 2.1 Reference Manual.

error.queue.cancel For attribute descriptions, see the SCXML Language

Other Workflow Functionality

Composer Help 1023

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

Reference.

error.queue.default For attribute descriptions, see the SCXML Language
Reference.

error.queue.query For attribute descriptions, see the SCXMLLanguage
Reference.

error.queue.start For attribute descriptions, see the SCXML Language
Reference.

error.queue.stop For attribute descriptions, see the SCXML Language
Reference.

error.queue.submit

This indicates that an abnormal condition occurred
while trying to perform the submit request. This
event will be sent as a result of a timeout of the
request as well as problems with the request or
interaction itself.
Busy treatment exceptions are raised as the error.queue.submit
exception and not as exceptions listed in individual treatment
blocks. See the routing application Target block for more
information.

error.queue.update For attribute descriptions, see the SCXML Language
Reference.

error.semantic See the GVP 8.1 Legacy Genesys VoiceXML 2.1
Reference Manual.

error.session.fetch An error occurred while trying to perform the fetch
of a resource in a workflow.

error.session.start For attribute descriptions, see the SCXML Language
Reference.

error.session.terminate For attribute descriptions, see the SCXML Language
Reference.

error.unsupported The platform encounters any error of type
unsupported, such as error.unsupported.builtin.

error.unsupported.builtin The built-in grammar is not supported by the
platform or the ASR engine.

error.unsupported.format An unsupported grammar format or audio format is
encountered.

error.unsupported.language The platform does not support the language for
either speech synthesis or speech recognition.

error.unsupported.objectname The requested object is not supported.

error.unsupported.receive
The application’s access to messaging is disabled
in MCP. This may be received as a VXML event for
<receive> blocks.

error.unsupported.send

The application’s access to messaging is disabled
in MCP. This may be received as a VXML event for
<send> blocks.
Note: This will be applicable to all blocks that use <send>, such
as the Interaction Data block.

error.unsupported.transfer This is the base exception for any unsupported

Other Workflow Functionality

Composer Help 1024

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

transfer settings.

error.unsupported.transfer.blind
The platform (configuration) does not support blind
transfers, and the application specifies that it
wants to do a blind transfer.

error.unsupported.transfer.consultation
The platform does not support consultative
transfers, and the application specifies that it
wants to do a consultative transfer.

error.unsupported.transrec.type The platform does not support the media format.

error.unsupported.uri The platform does not support the URI format (for
example, fax://...).

exit The caller has asked to exit. (Available when the
universals property includes exit).

help The caller has asked for help. (Available when the
universals property includes help).

maxspeechtimeout The caller input was too long, exceeding the
property maxspeechtimeout.

noinput
The application expects voice or DTMF input, but it
has received none from the caller within the
timeout interval.

nomatch The caller input something, but it was not
recognized.

Exception Events for eServices UCS Blocks

The following eService blocks for Universal Contact Server use the exception events listed below:

• Identify Customer
• Update Customer
• Create Customer

See the individual block topics for the list of supported exceptions.

Exception Event Name Error Code Error Description
error.com.genesyslab.composer.badfetch400 Bad Request.
error.com.genesyslab.composer.notfound404 Not Found.

error.com.genesyslab.composer.servererror500 Internal Server Error + specific
error message from Composer.

error.com.genesyslab.composer.notext105
No text found in standard
response : <UCS error
message>.

error.com.genesyslab.composer.missingparameter201 Missing parameter name.

error.com.genesyslab.composer.incompatibleparameter202 Parameter ‘1’ and ‘2’ are not
allowed.

error.com.genesyslab.composer.invalidparametertype203 Incorrect type for parameter

Other Workflow Functionality

Composer Help 1025

<parameter_name>, expected
type 1 but was type 2.

error.com.genesyslab.composer.invalidparametervalue204
Incorrect value for parameter
<parameter_name>, expected
value 1 but was value 2.

error.com.genesyslab.composer.invalidmessagetype502 Invalid third party message type.
error.com.genesyslab.composer.objectnotfound510 Object not found in database.

error.com.genesyslab.composer.incorrectsubtype512
Incorrect subtype for interaction

<interaction_name>, expected
type 1 but was type 2.

error.com.genesyslab.composer.servererror701 Unexpected error exception
message.

error.com.genesyslab.composer.dberror710 Connection to database failed.

error.com.genesyslab.composer.serveroverloaded716 Server overloaded, request
rejected.

error.com.genesyslab.composer.noattributes730 No searchable attribute.
error.com.genesyslab.composer.invalidtenant732 Invalid Tenant <tenant_name>.

Other Workflow Functionality

Composer Help 1026

Working with URS Functions
• You can use SCXML State blocks to work with URS http functions, such as FindConfigObject. For an

example code snippet, see Using the SCXML State Block.

• Starting with 8.1.440.18, Composer supplies a URS Function block.

Other Workflow Functionality

Composer Help 1027

https://docs.genesys.com/Documentation/R/latest/Ref/FunctionsUpdate#FindConfigObject

Working with URS API Calls
You can use SCXML State blocks to work with Universal Routing Server HTTP functions. This example
uses following URS functions:

• FindConfigObject - To find object information in the Configuration Database.
• trek/exec - To register and change agent status.

See Using the SCXML State Block.

Other Workflow Functionality

Composer Help 1028

Common Voice & Route Functionality
This section describes the Functionality that can be used for both Orchestration routing and GVP
voice applications.

Note: Composer does not support copying blocks from a callflow to a workflow or vice-versa.

You can also create Custom Blocks.

Special Note on Entry and Exit Blocks

These two blocks are also present on the palette for both routing and voice applications. The Entry
block for routing applications has a different set of events than the Entry block for voice applications.

Link Tools

Routing and voice applications use the same link tools:

• Outlinks
• Exception Links

Composer Help Wiki URL

The URL to the Composer Help wiki is configurable by using the Online Wiki URL field: Window >
Preferences > Help. The default works with English but if, for example, Japanese pages were
available in a different location, then you could change the URL accordingly.

Common Voice & Route Functionality

Composer Help 1029

Code Generation
The process of generating code creates a properly-formatted VoiceXML file from a callflow diagram
built with Composer or a SCXML file from a workflow diagram. Static pages (pure VXML or SCXML
code) are generated in the src-gen folder of the Composer Project.

Generating Code

You can generate code in a couple of ways:

• Select Diagram > Generate Code.

• Click the Generate Code icon on the upper-right of the Composer main window when the callflow/
workflow canvas is selected.

Note: If your project uses Query Builder or Stored Procedure Helper-generated queries in DB Data
Blocks, the process of code generation creates one SQL file in the db folder for each such DB Data
block. These SQL files will be used at runtime and should not be deleted.

Code Generation of Multiple Callflows

When using the Run as Callflow function, Composer automatically generates the VXML files from the
diagram file that you want to run. When generating code, with the generate code function for a Java
Composer Project that has multiple callflows, Composer attempts to generate the VXML for all the
callflows before running (because the application might move between multiple callflows for
subdialogs).

However, if one of the callflows has an error, Composer provides the option to continue running the
application anyway, because the erroneous callflow may be a callflow that ia not used by the one
being run (if there are two or more main callflows, for example). When this happens, the VXML files
are basically out of sync with the diagram files and this may affect execution. Genesys recommends
that you fix all errors before running the application.

Generate All

Use the 'Generate All' feature to generate VoiceXml and SCXML code for all the Diagram files
(Callflows, Workflows and IPD) present in a Composer Project.

Generate All can be invoked in two ways.

• Select Project > Generate All.

Common Voice & Route Functionality

Composer Help 1030

• Click the Generate All icon on the upper-right of the Composer main window toolbar.

Common Voice & Route Functionality

Composer Help 1031

Custom Blocks
A custom block can be thought of as a pre-filled template for a block. Note that when creating a
custom block, accessing system resources (include/jsp) across Projects is not supported.

To create a custom block:

1. Add the block to use as the pre-filled template.
2. Fill out the properties to be the basis of the template.
3. Right-click the block to bring up a shortcut menu.
4. From the shortcut menu, select Add as custom tool. Note this option is not available for the IPD

blocks. The Custom Tooling dialog box opens. A sample is shown below.

5. Opposite Create in:, Leave Custom to place the block in the Custom category on the palette. Or click
the down arrow and select another palette drawer.

6. If you wish to upload an icon or graphic for the custom block, click Select to open the Custom Icon
Library dialog box. Select an icon, and click OK. The selected icon appears in the dialog box.

7. Click OK in the Custom Tooling dialog box. Composer adds the block to the palette in the selected
category.

Note: Custom Entry and Exit icons do not appear on the palette. It still shows the default Entry/Exit
icons.

Common Voice & Route Functionality

Composer Help 1032

Using a Custom Block

Use the block as you would any others. Fields defined as relevant in the Block Data Map are
automatically populated in the Properties tab based on the state of the original block when you made
the tooling.

• Note: When you create a new block, you must add a mapping to define which fields should be template-
aware.

Changing Existing Custom Blocks To change an existing custom block:

1. Within the palette, right-click a custom block and select Customize… from the context menu. This opens
the Customize Palette dialog box.

2. Navigate to/select the block you want to change.

3. You can:

• Change the label.
• Edit the description.
• Delete the block entirely.

Common Voice & Route Functionality

Composer Help 1033

Deleting a Custom Block

To delete a custom block:

1. Within the palette, right-click a custom block and select Customize… from the context menu. This
opens the Customize Palette dialog box shown above.

2. Navigate to/select the block you want to delete.
3. Click the Delete button at the top of the Customize Palette dialog box.
4. Click OK.

Hiding the Custom Category

To hide the Custom category on the palette:

1. In the Customize Palette dialog box (see above steps), select the Custom folder.
2. Click the Hide checkbox. Later, if you need the Custom category back on the palette, select the Custom

folder and un-click Hide.
3. Click OK.

Import/Export of Custom Blocks

To import or export a custom block so that it can be shared across multiple users/Composer
installations:

1. Select the custom block in the palette.
2. From the Diagram menu, select:

• Import Custom Blocks… to open the Select Custom Tooling Definition dialog box. Browse
to the location for the previously exported custom block file, which will have a *.ctooling
extension, select the file, and click OK.

• Export Custom Blocks... to open the Create Custom Tooling Definition dialog box. Name
the file, keep the file type as custom tooling, and click OK. The custom block is saved as file
with a *.ctooling extension.

Common Voice & Route Functionality

Composer Help 1034

Customization Manager

Purpose

Use Customization Manager to store/manage various aspects of your Composer installation that you
have customized. You can store/manage the workflow and callflow diagram templates that you
create as described in the Diagram Templates topic. topic.

Interface

The user interface takes the form of the Customization Manager view. To display this view:

1. Select Window > Show View > Other.
2. In the resulting Show View dialog box, select Customization Manager and click OK. A Customization

Manager view appears at the bottom of the Composer window listing registered plug-ins. An example
is shown below.

Managing Templates

You can use this view to manage the workflow and callflow diagram templates that you create as
described in the Saving Diagrams as Templates topic. To manage diagram templates:

1. Right-click a callflow or workflow diagram to bring up a menu.

Common Voice & Route Functionality

Composer Help 1035

2. Select from the following:

• Edit--Use to edit a selected diagram template.
• Delete-Use to delete a selected diagram template
• Add a New File--Use to import a callflow or workflow diagram.
• Save Selected Item to Disk--Use to save a selected diagram to a disk.
• Refresh

Customizer Preferences

To bring up Customizer Preferences:

1. Click the Window menu.
2. Select Preferences.
3. Expand Composer.
4. Select Customizer Preferences. The Customizer Preferences dialog box opens. The Callflow Diagram

Editor and Workflow Diagram Editor customization plug-ins are display only and can be used for
debugging.

Common Voice & Route Functionality

Composer Help 1036

The Customizer Preferences dialog box:

• Reports on the location of the storage area (cstore directory) on disk. Diagrams that you save as
templates are stored here.

• Lists registered plug-ins as shown in the Customization Manager view.
• Allows you to suppress confirmation dialogs associated with plug-ins. If checked, it suppresses the

success/failure indicator message when you save a diagram as a template.

Common Voice & Route Functionality

Composer Help 1037

Diagram Preferences
Select Window> Preferences > Composer > Composer Diagram. The following preferences for
diagrams can be set in the Preferences dialog box:

Global Settings

1. Select or clear the check box for each of the following diagram global settings:

• Show Connection Ports. If enabled, connection ports (both exception ports and out ports)
are always displayed on blocks. This makes it convenient to draw links between blocks and
to get immediate feedback on how many ports each block provides. However, in this case,
the ability to reposition connections on a block is not available. If switched off, connection
ports are not displayed by default, but repositioning or finer control over connection link
placement becomes available. Note: This preference applies to all projects and is not
available for individual projects.)

• Show popup bars. If enabled, this setting displays basic blocks from the blocks palette in a
pop-up bar if you hover your mouse on the diagram for one or two seconds without clicking.
Note: blocks are shown in icon view only.)

• Enable animated layout. If enabled, causes diagrams to gradually animate to their
location when the Diagram \> Arrange \> Arrange All menu option is clicked.

• Enable animated zoom. If enabled, while using the zoom tools, shows a gradual transition
between the initial and final state of the diagram on the canvas. If off, the zoom is
instantaneous. Similar behavior for animated layout when the Diagram \>\> Arrange \>\>
Arrange All menu option is clicked.

• Enable anti-aliasing. If enabled, improves the appearance of curved shapes in the
diagram. You can see its effect on the circles in the Entry and Exit blocks.

• Show CodeGen success message. If unchecked, then the confirmation dialog at the
completion of code generation will not be shown.)

• Prompt to Save Before Generating Code. If checked, when you generate code for an
unsaved diagram, a prompt appears indicating the diagram has been modified and asking if
you want to save the changes before generating code. The dialog box also contains a
checkbox: Automatically save when generating code and do not show this message again.

• Show Validation success message. If unchecked, then the confirmation dialog at the time
of Validation will not be shown.)

• Enable Validation for Prompt Resources. This preference is used for voice applications.
If unchecked, then a validation check for missing prompts is not performed at the time of
Validation.

• Interaction Process Diagram. If unchecked, Composer will save Interaction Process
Diagrams before publishing.

• Prompt to delete Published objects when Interaction Process Diagram is deleted. If
unchecked, Composer will attempt to delete any Published objects when an Interaction
Process Diagram is deleted. If Composer is not connected to Configuration Server, object

Common Voice & Route Functionality

Composer Help 1038

deletion will not work.
• Parameters auto synchronization (available starting with 8.1.410.14). This option

reduces developer coding time by enabling Composer to automatically declare variables in a
Main diagram to match input/output variable names in Subdialog block/Subroutine diagrams
and to automatically perform the mapping. This feature is available for both user and
system variables. For example, if a Subroutine diagram returns a variable called “xyz” and if
Composer automatically declares “xyz” in the Main diagram to hold the output, then you do
not have to manually do the mapping. If enabled, you are prompted for auto-
synchronization whenever there is a need to change parameters names or add new
variables in the dialogs.
Scenarios:
1. Subdialog or Subroutine Diagram: Entry Block—The auto-synchronization process will

synchronize any newly added/updated variables and existing variables in the
Subdiagram. If you add a new Input type variable, a prompt appears asking whether to
add a corresponding Input parameter. You are also prompted to select or add the Input
source variable in all the called Subroutine diagrams. New parameter naming in the
calling Subdialog block is the same as the Input variable added in the Entry Block. If the
Subroutine diagram is called from many diagrams, Composer provides a variable
selection option for the called diagrams.

2. Main callflow Diagram: Entry Block—If you add a new Input type variable, a prompt
appears asking whether to add the corresponding input parameter. You are also
prompted to select or add an Input source variable in all the called Play Application
blocks. New Parameter naming in the calling Play Application block is the same as the
Input variable added in the Entry Block. If the Main diagram was called from multiple
Play Application blocks, a variable selection option for all the called blocks is provided.

3. Subdialog or Subroutine diagram: Exit Block—If you change or delete a return parameter,
a prompt appears on whether to delete the Output parameter and/or the missing ones in
case of a change in all the called Subroutine or Subcallflow diagrams.

4. The auto-synchronization parameter option also applies when there is a change in a
configured Subroutine diagram. The auto-synchronization dialog confirmation appears as
soon as a Subroutine diagram is added/updated. If the confirmation dialog is selected, it
automatically synchronizes the Subroutine parameters to the Main diagram. This auto-
synchronization prompt always appear even though the same diagram is updated again.
When Output parameters are added in the Exit block, parameter synchronization also
occurs.

5. Application URL for Publish and Debugging. Select Use IP Address or Use Host
Name.

Notes:

Composer creates unique names for auto-sync variables, such as <SubBlockName>_<VariableName>.
SubBlockName is the name of the Subroutine/ Subdialog / Play Application blocks where the Subroutine diagram is
being invoked. VariableName is the input variable name created in a Subroutine diagram.

2. Click Apply.

Colors and Fonts

1. Select Appearance under Composer Diagram.

Common Voice & Route Functionality

Composer Help 1039

2. Click Change and make selections to change the default font if you wish.
3. Click the appropriate color icon beside any of the following and make selections to change color:

• Font color
• Fill color
• Line color
• Note fill color
• Note line color

4. Click Apply.

Connections

1. Select Connections under Composer Diagram.
2. Select a line style from the drop-down list:

• Oblique
• Rectilinear

3. Click Apply.

Pathmaps

1. Select Pathmaps under Composer Diagram.
2. Click New to add a path variable to use in modeling artifacts, or If the list is populated, select the check

box of a path variable in the list.
3. Click Apply.

Printing

1. Select Printing under Composer Diagram.
2. Select Portrait or Landscape orientation.
3. Select units of Inches or Millimetres.
4. Select a paper size (default is Letter).
5. Select a width and height (for inches, defaults are 8.5 and 11; formillimeters, defaults are 215.9 and

279.4).
6. Select top, left, bottom, and right margin settings (for inches, defaults are 0.5; for millimeters, defaults

Common Voice & Route Functionality

Composer Help 1040

are 12.7).
7. Click Apply

Rulers and Grid

You can make use of rulers and grids when creating diagrams. Rulers and grids can provide a
backdrop to assist you in aligning and organizing the elements of your callflow diagrams.

1. Select Rulers and Grid under Studio Diagram.
2. Select or clear the Show rulers for new diagram check box (not selected by default).
3. Select ruler units from the drop-down list:

• Inches
• Centimeters
• Pixels

4. Select or clear the Show grid for new diagrams check box (not selected by default).
5. Select or clear the Snap to grid for new diagrams check box (selected by default).
6. Type a value for grid spacing (for inches, the default is 0.125; for centimeters, the default is 0.318; for

pixels, the default is 12.019).
7. Click Apply.

Common Voice & Route Functionality

Composer Help 1041

Exception Events
Certain callflow exception events and routing exception events application blocks have an Exceptions
property. The Properties view for the routing Entry block is shown below as an example.

Clicking the button opens an Exceptions dialog box where you can select events to be
supported. The voice Entry block also has an Exceptions property with a different set of exceptions
that can be supported.

Exception Support Levels

Exceptions can be configured at two levels:

1. At the top level in the Entry block using the Exceptions property.
2. At the individual block-level for local exception handling using the Exceptions property. These block

level exceptions may not be present in all blocks.

To support any of these exceptions globally throughout your application:

1. Select the Entry block's Exceptions property.
2. Select an event from the Not Supported pane, and then click the > button to move the event to the

Supported pane.

Note: If the same exception is defined at the top level and the block level, the block-level exception
takes precedence for that block.

Callflow Event Handling Guidelines

1. For Main callflow:
• Always handle the default event handlers--disconnect, error, and all.

Common Voice & Route Functionality

Composer Help 1042

• If selecting a specific error event type, always place it before any other errors. For example,
error.badfetch.http must be placed before error.badfetch, which must be placed before the
error event in the application.

• Select specific handlers like error.badfetch only if the application has to handle that
exception differently than the generic error or all event handler.

2. For Subcallflows:

• Unless special processing is required at the local level, it is best to handle events at the
global level in the Main callflow.

Exception Handling

This section discusses Event Handling and provides some guidelines. The VXML/SCXML interpreters
throw exceptions when they encounter errors or conditions for which exceptions are needed so that
the condition may be communicated back to the VXML/SCXML application. For example, for voice
applications, events such as NOINPUT or NOMATCH in an Input block fall under this category.
Composer exposes exceptions at two levels:

• the block level
• the overall callflow level

Any exceptions exposed at the block level can be handled at the block level itself. If the exception is
thrown, control does not wind its way all the way back to the Entry block. For example: the DB Data
block exposes a dbconnectionerror exception if connection to a database fails. This exception is
thrown and handled at the block level itself: <form id="DBData1"> <block> <data
name="DBData1Data" src="../include/dbrequest.aspx" method="post"
namelist="AppStateString db_query db_name db_timeout" /> … <throw
event="error.com.genesyslab.composer.dbconnectionerror"

messageexpr="DBData1Data.errorMsg" /> </block> <catch
event="error.com.genesyslab.composer.dberror"> <!--handle exception here--> </catch>
</form> The Entry blocks for routing and voice applications also expose a number of exceptions.
These are handled in the Entry block itself. The following are some recommendations about good
practices in handling exceptions for callflows.

• For the Main callflow, always handle the default event handlers--disconnect, error, and all.

• If selecting a specific error event type, always place it before any other errors. For example,
error.badfetch.http must be placed before error.badfetch, which must be placed
before the error event in the application.

• Select specific handlers like error.badfetch only if the application has to handle that
exception differently than the generic error or all event handler.

• For Subcallflows, it is straightforward to handle exceptions that Composer does not expose directly. Any
exceptions that are not listed explicitly are thrown as the all exception. A branching block can be
added to this exception path and a different execution path can be chosen based on the contents of the
exception. The conceptual diagram below shows this approach:

Common Voice & Route Functionality

Composer Help 1043

The branch condition will look something like this (variables are described in the Entry block):

Common Voice & Route Functionality

Composer Help 1044

Unless special processing is required at the local level, it is best to handle events at the global level
in the Main callflow.

Exception Event Descriptions

The table below names and describes Composer exception events for both callflows and workflows.
For callflow VXML events, additional information on events can be found in the GVP 8.1 Legacy
Genesys VoiceXML 2.1 Reference Manual.

Exception Event Name Description

all
This is a generic catch-all exception handler that
will catch any exception not handled by the Entry
block. It should be the last catch handler in the
sequence of exceptions for a block.

cancel
The caller has requested to cancel playing of the
current prompt. (Available when the Universals
property includes Cancel.)

com.genesyslab.composer.toomanynoinputs
Occurs when the number of no inputs exceeds the
maximum retries in Menu, Input, and Record
blocks, and blocks do not have local noinput
exception ports.

com.genesyslab.composer.toomanynomatches
Occurs when the number of no matches exceeds
the maximum retries in Menu, Input, and Record
blocks, and blocks do not have a local nomatch
exception port.

com.genesyslab.externalmessage For handling asynchronous external events.

Common Voice & Route Functionality

Composer Help 1045

(Available when
com.genesyslab.externalevents.enable is set to
true.)

connection.disconnect.hangup The caller hangs up. Applies at any time except
during blind transfers.

connection.disconnect.transfer The call was "blind transferred" to another line and
will not return.

error The platform encountered any error, such as
error.noresource.

error.badfetch A fetch of a resource failed due to semantic errors
in the VoiceXML page.

error.badfetch.badxmlpage The page that was fetched is an invalid XML page.
error.badfetch.grammar.load The platform failed to load a grammar.
error.badfetch.grammar.syntax A grammar has a syntax error.
error.badfetch.grammar.uri The platform failed to fetch a grammar uri.

error.badfetch.http A fetch of a resource failed, and the platform
returned an HTTP Response failure code.

error.com.genesyslab.composer.badfetch Bad request.
error.com.genesyslab.composer.badgateway Bad gateway.

error.com.genesyslab.composer.customernotfound

Context Services Identify Customer Block, Suppress
Customer Not Found Exception Property:
If set to false (default), this exception is raised when no
matching customer is found.

error.com.genesyslab.composer.dbconnectionerror
This error indicates that there was an error
encountered while attempting to connect to the
database.

error.com.genesyslab.composer.dberror
All database errors (other than dbtimeout and
dbconnectionerror) result in this exception. The
error text associated with this exception will
contain the exact error returned by the database.

error.com.genesyslab.composer.dbtimeout
This error indicates that there was a timeout while
waiting for query results to be received from the
database. The timeout period is controlled by the
Timeout property

error.com.genesyslab.composer.dbemptyresultset

This error indicates that the query or a stored
procedure execution resulted in an empty result
set, i.e., No records were returned. If the
application will handle this condition and the
exception is not required to be thrown then it can
be suppressed using the Suppress Empty Result
Set Exception property.

error.com.genesyslab.composer.forbidden Forbidden plus specific error message from the
server.

error.com.genesyslab.composer.invalidkey
This is the event error for handling an invalid key
name. For example, the userdata key being
accessed by the Interaction Data block is not a
valid key.

Common Voice & Route Functionality

Composer Help 1046

error.com.genesyslab.com.composer.notautorized Not authorized.
error.com.genesyslab.com.composer.notfound Not found.

error.com.genesyslab.composer.operationtimeout
This error occurs when the request for Userdata,
AccessNumGet, or Statistics times out at the
Iserver.

error.com.genesyslab.composer.receiveerror This error occurs when the Iserver is down at the
udata(getstat,AccessNumget) request.

error.com.genesyslab.composer.recordCapture.failure Error occurred while saving the recorded file on the
Web server side.

error.com.genesyslab.composer.servererror

This error occurs when there is an error in
processing the request for the server side blocks
such as "Invalid parameters" or "Web server is
down."
For Context Services blocks: Internal Server Error plus specific
error message from the server.

error.com.genesyslab.composer.serviceunavailable Service unavailable.

error.com.genesyslab.composer.webservice.batchfetchFor attribute descriptions, see the SCXML Language
Reference

error.com.genesyslab.customernotfound For attribute descriptions, see the SCXML Language
Reference

error.com.genesyslab.composer.unsupported

This error occurs when the CTI applications
designed for CTIC supported features like
AccessNumget, Statistics, Interaction-Delete,

Replace are called against a SIP Server
environment.

error.com.genesyslab.subdialog.maxdepthexceeded Error when subdialog depth limit is exceeded.

error.connection

This is the base exception for any connection-
related error. For example,
error.connection.protocol.nnn is thrown when the
protocol stack for the connection raised an
exception in the case of a bridged transfer.
This error can be caught using this base exception.

error.connection.baddestination The destination URI is malformed in the Transfer
block.

error.connection.noauthorization The caller is not allowed to call the destination,
after initiating a transfer using the Transfer block.

error.connection.noresource The platform could not allocate resources to place
the call initiated by the Transfer block.

error.connection.noroute
The platform was not able to route the call to the
destination, in a case where the destination URI
(phone number) has the correct format.

error.dialog.collect For attribute descriptions, see the SCXML Language
Reference.

error.dialog.continue For attribute descriptions, see the SCXML Language
Reference.

Common Voice & Route Functionality

Composer Help 1047

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

error.dialog.createann For attribute descriptions, see the SCXML Language
Reference.

error.dialog.deleteann For attribute descriptions, see the SCXML Language
Reference.

error.dialog.play
This indicates that an error occurred while trying to
perform the <play> request.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.playandcollect
This indicates that an error occurred while trying to
perform the <playandcollect> request.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.playandverify For attribute descriptions, see the SCXML Language
Reference.

error.dialog.playsound
This indicates that an error occurred while trying to
perform the <playsound> request.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.remote For attribute descriptions, see the SCXML Language
Reference.

error.dialog.setdialogdefaultdest
This indicates that an error occurred while trying to
perform the <setdialogdefaultdest> request.
For attribute descriptions, see the SCXML Language Reference .

error.dialog.start

This indicates that an abnormal condition occurred
while trying to perform the start request. This
event will be sent as a result of a timeout of the
request as well as problems with the request itself.
For attribute descriptions, see the SCXML Language Reference.

error.dialog.stop
This indicates that an error occurred while trying to
perform the <stop> request.
For attribute descriptions, see the SCXMLLanguage Reference

error.interaction.redirect For attribute descriptions, see the SCXML Language
Reference.

error.msgbased.createmessage This event is sent when the <createmessage>
request has failed for some reason.

error.msgbased.sendmessage This event is sent when the <sendmessage>
request has failed for some reason.

error.noresource
The specified language is not supported by the
TTS/ASR server, or the TTS/ASR server/service is
down.

error.noresource.recording
Occurs when MCP fails to start the GIR recording
for any reason. For callflow VXML events, additional
information on events can be found in the GVP 8.1
Legacy Genesys VoiceXML 2.1 Reference Manual.

error.queue.cancel For attribute descriptions, see the SCXML Language

Common Voice & Route Functionality

Composer Help 1048

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

Reference.

error.queue.default For attribute descriptions, see the SCXML Language
Reference.

error.queue.query For attribute descriptions, see the SCXMLLanguage
Reference.

error.queue.start For attribute descriptions, see the SCXML Language
Reference.

error.queue.stop For attribute descriptions, see the SCXML Language
Reference.

error.queue.submit

This indicates that an abnormal condition occurred
while trying to perform the submit request. This
event will be sent as a result of a timeout of the
request as well as problems with the request or
interaction itself.
Busy treatment exceptions are raised as the error.queue.submit
exception and not as exceptions listed in individual treatment
blocks. See the routing application Target block for more
information.

error.queue.update For attribute descriptions, see the SCXML Language
Reference.

error.semantic See the GVP 8.1 Legacy Genesys VoiceXML 2.1
Reference Manual.

error.session.fetch An error occurred while trying to perform the fetch
of a resource in a workflow.

error.session.start For attribute descriptions, see the SCXML Language
Reference.

error.session.terminate For attribute descriptions, see the SCXML Language
Reference.

error.unsupported The platform encounters any error of type
unsupported, such as error.unsupported.builtin.

error.unsupported.builtin The built-in grammar is not supported by the
platform or the ASR engine.

error.unsupported.format An unsupported grammar format or audio format is
encountered.

error.unsupported.language The platform does not support the language for
either speech synthesis or speech recognition.

error.unsupported.objectname The requested object is not supported.

error.unsupported.receive
The application’s access to messaging is disabled
in MCP. This may be received as a VXML event for
<receive> blocks.

error.unsupported.send

The application’s access to messaging is disabled
in MCP. This may be received as a VXML event for
<send> blocks.
Note: This will be applicable to all blocks that use <send>, such
as the Interaction Data block.

error.unsupported.transfer This is the base exception for any unsupported

Common Voice & Route Functionality

Composer Help 1049

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

transfer settings.

error.unsupported.transfer.blind
The platform (configuration) does not support blind
transfers, and the application specifies that it
wants to do a blind transfer.

error.unsupported.transfer.consultation
The platform does not support consultative
transfers, and the application specifies that it
wants to do a consultative transfer.

error.unsupported.transrec.type The platform does not support the media format.

error.unsupported.uri The platform does not support the URI format (for
example, fax://...).

exit The caller has asked to exit. (Available when the
universals property includes exit).

help The caller has asked for help. (Available when the
universals property includes help).

maxspeechtimeout The caller input was too long, exceeding the
property maxspeechtimeout.

noinput
The application expects voice or DTMF input, but it
has received none from the caller within the
timeout interval.

nomatch The caller input something, but it was not
recognized.

Exception Events for eServices UCS Blocks

The following eService blocks for Universal Contact Server use the exception events listed below:

• Identify Customer
• Update Customer
• Create Customer

See the individual block topics for the list of supported exceptions.

Exception Event Name Error Code Error Description
error.com.genesyslab.composer.badfetch400 Bad Request.
error.com.genesyslab.composer.notfound404 Not Found.

error.com.genesyslab.composer.servererror500 Internal Server Error + specific
error message from Composer.

error.com.genesyslab.composer.notext105
No text found in standard
response : <UCS error
message>.

error.com.genesyslab.composer.missingparameter201 Missing parameter name.

error.com.genesyslab.composer.incompatibleparameter202 Parameter ‘1’ and ‘2’ are not
allowed.

error.com.genesyslab.composer.invalidparametertype203 Incorrect type for parameter

Common Voice & Route Functionality

Composer Help 1050

<parameter_name>, expected
type 1 but was type 2.

error.com.genesyslab.composer.invalidparametervalue204
Incorrect value for parameter
<parameter_name>, expected
value 1 but was value 2.

error.com.genesyslab.composer.invalidmessagetype502 Invalid third party message type.
error.com.genesyslab.composer.objectnotfound510 Object not found in database.

error.com.genesyslab.composer.incorrectsubtype512
Incorrect subtype for interaction

<interaction_name>, expected
type 1 but was type 2.

error.com.genesyslab.composer.servererror701 Unexpected error exception
message.

error.com.genesyslab.composer.dberror710 Connection to database failed.

error.com.genesyslab.composer.serveroverloaded716 Server overloaded, request
rejected.

error.com.genesyslab.composer.noattributes730 No searchable attribute.
error.com.genesyslab.composer.invalidtenant732 Invalid Tenant <tenant_name>.

Common Voice & Route Functionality

Composer Help 1051

Expression Builder
Use for both voice callflows and routing workflows to build expressions for branching and conditional
routing decisions. You create an expressions in Expression Builder by:

• Selecting the function, variable, or JavaScript in the right pane and editing in the left pane.
• Manually creating expressions in the top left pane.
• Optionally using ECMAScript expressions that can use the Genesys SCXML engine and/or Orchestration

Extensions.
• Assigning expressions to variables using various blocks.

Important
Any functions not listed in the Expression Builder must not be used as they are
internal functions and may change in the future without notice.

Also see Skill Expression Builder used for routing applications.

Opening Expression Builder

Expression Builder opens from the many blocks, which include but are not limited to:

• Assign--Assign Data Property
• Branching--Conditions Property
• ECMAScript (for workflows)--Script Property
• Entry--Variables Property
• Log--Logging Details Property
• Looping--Exit Expression Property

Data Categories Accessed

The right pane contains the following categories of data:

• Project Variables
• Workflow Variables (if accessed from a workflow)
• Callflow Variables (if accessed from a callflow)

Common Voice & Route Functionality

Composer Help 1052

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/OrchExt
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/OrchExt

• Workflow Functions (if accessed from a workflow)
• Callflow Functions (if accessed from a callflow)
• JavaScript (Array, Boolean, Date, Math, Number, String functions)
• Orchestration Server Functions
• Context Services
• Configuration Server

Note: Depending on the calling context (IPD, workflow editing, callflow editing), some of the above
categories may be hidden.

Expression Builder Toolbars

This section discusses the editing toolbar the top of Expression Builder as well as supported
Operators.

Editing Toolbar
Expression Builder has an editing toolbar with buttons representing copy, cut, paste, delete, undo,
redo, and validate . After you entering an expression and click the button to validate, syntax
messages appear under the Expression Builder title. In the figure below, the syntax message is: No
syntax error was found.

Common Voice & Route Functionality

Composer Help 1053

Operators
Expressions can consist of comparisons joined by AND (&) and OR (|), which have the same priority.
URS uses integer arithmetic in its calculations, such as for expression evaluation. For this reason, you
must always create expressions based on integer arithmetic, not float. When an expression contains
more than one logical comparison, the logical operation to the left has precedence over the operation
to the right. Use parentheses to overrule this precedence. When the order of logical operations is not
explicitly specified by parentheses, the operation to the left has precedence over the operation to the
right. For example: Portuguese > 5 | Africa = 7 & SpTours >3 is equivalent to (Portuguese >
5 | Africa = 7) & SpTours > 3 Each comparison consists of two data values that are compared
against each other. The table below shows the operators used in logical expressions.

Symbol Meaning Example

== use for comparison (e.g. x==y to
compare is x equal to y) see example screen shot

=
equal to
done for assignment (e.g. x=y to assign x
equal to y)

Day = Monday

!= not equal to Day != Sunday

Common Voice & Route Functionality

Composer Help 1054

&
Single & is an AND operators
which manipulates internal bits
of integers

&&
&& and || are used for
comparisons to build boolean
(true/false) expressions

|| see && see example screen shot
> greater than Time > 9:00
>= greater than or equal to Day >= Monday
< less than Time < 16:00
<= less than or equal to Day <= Friday

Mathematical Symbols Allowed
The allowed mathematical symbols in expressions are restricted to those symbols for addition,
subtraction, division, and multiplication (+, -, /, *). These symbols work with numeric values only, so
any participating String argument is automatically converted to a number.

Examples of Expressions

The table below shows example expressions.

Example Interpretation
Day=Saturday|Day=Sunday If the day is Saturday or Sunday

Time<=5:00 |Time>=18:00
If the time is less than or equal to 5:00 (5:00 AM) or
greater than or equal to 18:00 (6:00 PM); in other
words, if the time is between 6:00 PM and 5:00 AM.

Day>=Monday&Day<=Friday & ANI!=8004154732 If the day is a weekday and the ANI is not
8004154732

SData[1123@SF.A,StatTimeInReadyState]>120 If agent 1123 has been in Ready state for more
than 120 seconds

UData[Acct]>=9000
If the value associated with the key Acct in the
Interaction data structure is equal to or greater
than 9000

Creating Expressions

Note: Expressions entered in the Expression Builder could be used directly as a value for an
attribute, hence single quotes are recommended.

Assume you wish to create the expression shown in the Expression field below.

Common Voice & Route Functionality

Composer Help 1055

In the above figure, the expression (Today ==_genesys.session.day.Saturday) || (Today ==
_genesys.session.day.Sunday) was created as follows:

• In the left text field under the toolbar, type an open parenthesis (().
• If you already defined the "Today" variable, select it under Workflow variables or Project variables.

Otherwise, if not yet defined, type "Today" (no quotes) in the text after the open parenthesis.
• Type "==" (no quotes) in the text.
• In the right text box, expand:

Orchestration Server Functions _genesys genesys.session.day

• Double-click Saturday.
• In the left text field, type a close parenthesis ())
• Click the || Operators button. Repeat the above steps except, at the end before the close parenthesis,

select _genesys.session.day.Sunday.

Note: You may also use the search field on the right side to filter items that include Saturday

Usage of Variables in Expressions

Note: The steps for using variables in Expression Builder varies slightly depends on whether you are
creating a voice callflow or a routing workflow.

• If creating a voice callflow, the right selection area contains Callflow Variables.
• If creating a routing workflow, the selection area contains Workflow Variables.

Common Voice & Route Functionality

Composer Help 1056

Using Variables in a Callflow
Assume you wish to use variables in a callflow to create the following:
AppState.goldFixInUSDAppState.ConversionRateResponseAppState.ConversionRateResult The
figure below shows the entry in Expression Builder.

Assume you have already defined these variables in the Entry object. The above entry could then be
created as follows:

1. The right selection area lists Callflow Variables, Java Script, and Context Services.
2. Expand Callflow Variables#Expand User to view variables defined in the Entry block.
3. To place the variables in the Expression field at the top of Expression Builder, double-click

goldFixInUSD,ConversionRateResponse, and ConversionRateResult. The AppState VoiceXML
Data Model Object will be appended automatically to variables used inside Expression Builder. The code
inside the Expression field will be directly substituted within the generated VoiceXML code.

4. Continue creating the expression.

Expression Builder Data Categories

Expression Builder accesses various categories of data Including Orchestration Server and Universal
Routing Server functions. The folders shown on the right depend on whether you are working with a
callflow or workflow. The figure below shows Expression Builder Data Categories when working with a

Common Voice & Route Functionality

Composer Help 1057

workflow.

Project variables
Use Project variables when you need to share information across different workflows.

Workflow variables
Use Workflow variables when you need to share information across different blocks in the same
workflow.

Workflow functions
Use the Workflow functions category when creating routing workflows. Selecting a function displays a
description. For example, selecting deCodeBinary(array) : string (available starting with
8.1.410.14) displays the function description underneath.

Common Voice & Route Functionality

Composer Help 1058

See the Orchestration Server wiki for information on functions available for use in Composer when
building routing workflows. Notes: Functions getCallType and getIxnMediaType can be used to
identify the call type and/or media type for the purpose of segmenting incoming interactions.

• getCallType(ixnID)--This function gets the call type _genesys.ixn.interactions[].voice.type for
the specified interaction. If the ixnID is not specified, it will return the calltype for the current
interaction.

• getIxnMediaType(ixnID)--This function gets the correct media type ENUM from
_genesys.FMName.MediaType for the specified ixnID. If ixnID is not specified, the current interaction id
will be used. If the interaction's media type cannot be determined or the specified ixnID does not exist,
the function will return undefined.

Common Voice & Route Functionality

Composer Help 1059

Use Case: A call arrives on a routing pointing, initiating a routing workflow. The workflow checks for
the call type. If the call type is outbound, then the call is immediately moved to the front of the
queue and routed to an available agent. If the call type is inbound, the call is assigned a priority and
routed based on the desired service level. For information on the other functions, see eServices
Blocks.

Callflow functions
Note: Function getSIPHeaderValue(headername) returns the SIP header value associated with the
given SIP headername. You may wish to use this function with the Assign block.

JavaScript
Use JavaScript to access those functions categorized as follows: Array, Boolean, Date, Math, Number,
String.

Context Services
Use Context Services when creating expressions that use attributes associated with this optional
capability of Universal Contact Server Database.

Configuration Server
This category is displayed for workflows when the Expression Builder is called from the ECMAScript
and Branching blocks. If connected to Configuration Server, Composer can fetch standard responses
and category codes.

Standard Response Library
This category allows you to access pre-written responses for customers that have been defined in

Common Voice & Route Functionality

Composer Help 1060

Knowledge Manager (as described in the eServices 8.1 User's Guide).

Orchestration Server and URS Functions

Composer's Expression Builder provides access to many Orchestration Server and Universal Routing
Server (URS) functions. For more information see Using URS Functions.

Threshold Functions

Universal Routing Server's threshold functions can be used for conditional routing. For example, the
threshold functions can be used in the Target block for a type of conditional routing called "share
agents by service level agreement routing." This type of routing enables a business user that
manages multiple business lines to define the triggering conditions and constraints that allow agents
to be shared among business lines. By constructing a single threshold expression, you can define the
triggering conditions for borrowing agents from other business lines as well as the conditions that
apply to the lending business line.
Threshold is an analog of the URS strategy function SetTargetThreshold as defined in Universal
Routing 8.1 Routing Application Configuration Guide. It defines additional conditions the target must
meet to be considered as valid target for routing. The threshold functions are available in Composer's
Expression Builder:

• acfgdata(Application name, folder, property, default value). Use this function to affect
routing conditions based on external data stored in properties of Configuration Database Application
objects (ApplicationConFigDATA). Returns a numeric value for a specified Application option. If an
Application has no such option then the default value is returned. Return value type: FLOAT. Example:
sdata(Group2.GA, StatAgentsAvailable)>acfdata(URS, default, MinNumOfRdyAgents, 2)

Common Voice & Route Functionality

Composer Help 1061

• callage. Use this function to return the age of an interaction in seconds. Use for time-based routing
conditions, such as a call that can only be routed if it waits more then 60 seconds. Return value type:
FLOAT.

• lcfgdata(list name, item, attribute, default value). Use this function to affect routing
conditions based on external data stored in List objects. Returns a numeric value for a specified
attribute of a List object’s item If a List object has no such item or attribute, the default value is
returned. Works like acfgdata, but uses a List object (ListConFigDATA) instead of an Application.
Return value type: FLOAT.

• sdata(target, statistic). Use this function to affect routing conditions based on statistics. Specify
targets and statistics just like for the SData[] function described in the Universal Routing 8.1 Reference
Manual. You can use the URS predefined statistics (see Statistics Manager and Builder), such as:
PositionInQueue, CallsWaiting, and InVQWaitTime. Return value type: FLOAT. Example:
sdata(Group2.GA, StatAgentsAvailable)>2

Example Threshold Expression

A threshold expression is text string very similar to the regular expressions used for branching, but
uses the threshold functions. In the example below, sdata and lcfgdata are the predefined threshold
functions.

In this example, both the borrowing and lending conditions are defined in a single threshold
expression:

For detailed information on using the threshold functions, see Universal Routing 8.1 Routing
Application Configuration Guide and threshold attribute in the Orchestration 8.1.3 Developers
Guide.Queue_Interface#Attribute_Details

Common Voice & Route Functionality

Composer Help 1062

GetMediaTypeName Function
This function returns the name of media type associated with interaction as defined in the
Configuration Database. Located in Expression Builder as follows: _genesys.ixn.mediaType
Expression Builder lists the Media type enumerators supported by the URS platform. The main
difference between this function and IRD’s getMediaTypeName function is that

• The IRD function takes a parameter for (the current interaction media type) and returns a String name
of the media type

Whereas:

• Composer’s function getIxnMediaType(ixnID) takes a parameter of any interaction and returns a
ENUM type _genesys.FMName.MediaType of the media type. Returns the media type of the given
interaction (ixnID), otherwise the current interaction.

User defined JavaScript Functions
Expression Builder shows the user defined JS methods under 'User Functions' category to list user
defined JS methods for easy access.

• For Callflow diargams, JavaScript files added in the Scripts property of the Entry BlockScripts are
considered.

• For Workflow diargams, JavaScript files added inside the include/user folder are considered.

Common Voice & Route Functionality

Composer Help 1063

GAX Server Preferences
See GAX Server Preferences for voice applications.

Common Voice & Route Functionality

Composer Help 1064

https://docs.genesys.com/Documentation/Composer/8.1.3/Help/GAXServerPreferences

Getting Using Email Addresses
This topic describes several ways to get the e-mail address of a customer using Context Services
blocks and using it in the To property of the Create Email block.

Getting a Customer Email Address

There are two ways to get a customer's e-mail address from the Context Services server:

• Use the Query Customer block. If the Customer ID is unknown, first follow steps 1 and 2 below. Then,
follow the steps 3 and 4.

• Use the Identify Customer block. Follow step 1 and set the property Get Attributes to Yes. Then follow
step 4 and change the ECMAScript expression to _data.EmailAddress=
_data.CustomerData[0].EmailAddress

Identifying a Customer

1. Identifying a Customer. A customer ID is necessary to use the Query Customer block. If the
customer ID is unknown, you may use the Identify Customer block to get the Customer ID. In the
example below, we are trying to identify a customer by the last name. The result of the request is
stored in the CustomerData variable.

2. Getting the Customer ID. An ECMAScript block is used to extract the Customer ID after identifying
the customer. The variable CustomerID is used.

Common Voice & Route Functionality

Composer Help 1065

3. Querying the customer profile.The CustomerID variable is used in a Query Customer block. The
result (JSON) is put in the CustomerData variable.

With the default Context Services schema, EmailAddress is a field of the customer profile. The
CustomerData content sample:
{"EmailAddress":"Roger.Rosen@genesyslab.com","FirstName":"Roger","PhoneNumber":["+1.219.12345678","+1.832.67890123"],"LastName":"
Rosen ","customer_id":"00001a5GD0A80040"}

4. Extracting the e-mail address field. You can then use a simple expression in an ECMAScript block to
extract the e-mail address. The example below illustrates how to use Expression Builder to extract the
e-mail address from the Core customer profile when using the default Context Services schema.

Common Voice & Route Functionality

Composer Help 1066

Using the E-mail Address in the To Field

In the Create Email block, when defining the To property, select the Type as Variable and select the
variable that was previously used to save the e-mail address (data.EmailAddress) from above.

Common Voice & Route Functionality

Composer Help 1067

Using Variables Mapping for E-mail Addresses

With the Variables Mapping feature, getting an e-mail address is easy. When Customer ID is unknown:

• Set the Identify Customer/Get Attributes property to "Yes"
• Set the Identify Customer/Variables Mapping property to map the variable "EmailAddress" to the

Context Services attribute "EmailAddress"

When Customer ID is known:

• Set the Query Customer/Variables Mapping property to map the variable "EmailAddress" to the Context
Services attribute "EmailAddress"

No additional ECMAScript block is needed. The "EmailAddress" variable will automatically be assigned
the customer's email address.

Common Voice & Route Functionality

Composer Help 1068

Import and Export
Composer provides several import options as described in this topic.

Importing External Files into Your Composer Project

If you have files, such as pre-recorded audio prompts for your application, that you would like to add
to a Composer Project, you can add the files to the appropriate folder (such as the Resources\
Prompts\en-US folder for audio prompt files) by dragging and dropping the files from Windows
Explorer. Or, you can use the Composer Import function as follows:

1. Select File > Import, expand the General folder, then select File System and click Next.
2. In the Import File System dialog box, click the From directory Browse button to navigate to the folder

that contains your audio prompt files.
3. Select the files and folders to import.
4. Click the Into folder Browse button and navigate to the location within an existing Composer Project

(preferably within the Resources folder) where the files will be stored.
5. If you know you want to overwrite the resources in the selected folder, select the Overwrite existing

resources without warning check box.
6. Select either Create complete folder structure or Create selected folders only as your situation dictates.
7. Click Finish to launch the import.

Use the Resource Type in the Prompt Settings dialog box of your Prompt block to add an audio file
into the actual prompts of your application.

Importing Composer Projects into Your Workspace

Eclipse provides import and export options for copying Projects. Use the Import Wizard to copy the
Composer Project from any other location into your workspace.

1. Select File > Import, expand the General folder, then select Existing Projects into Workspace and click
Next.

2. Specify the path of the location from where you want to import the Project.
3. All Projects in the workspace will be shown in the Projects list. Select the ones that you wish to copy.

Select the check box at the bottom to copy the files into your current workspace.
4. Click Finish to import the Composer Project.

Common Voice & Route Functionality

Composer Help 1069

Importing a CallFlow or Workflow Diagram Template

Diagrams saved as templates can be imported from the file system. See Diagram Templates for
more information.

Exporting Application Prompts

You can export all the prompts from your Composer Project as XML or CSV files. This is very useful
when sending the voice scripts to a Recording Studio where audio files would be recorded.
Developers can also make good use of this feature for doing a quick review and sanity check of all
application prompts.

1. Select File > Export, expand the Composer folder, then select Export Prompts Listing and click Next.
2. Select the Composer Project whose prompts you wish to export, the format for the export (XML or CSV),

and the destination location. A file with the same name as the name of your Composer Project will be
created in the destination location. The file extension will depend upon the format of the export
selected.

3. Click Finish to begin the export.

Exporting a Composer Project as a WAR File

Exporting a Composer Project as a .war file is the first required step to deploy the voice application on
your Production Web Application Server. Therefore, this subject is covered under Deploying Voice
Applications. Note: When you export a Project to a .war file, SQL files are not generated from DB
Data blocks. Generate code once before exporting a project. Note: The following folders are not
needed after export:

• simulation
• Callflows
• Debugging-results

Exporting Composer Projects to an Archive File

To export to an archive:

1. Select File > Export, expand the General folder, then select Archive File and click Next.
2. Select the Composer Project(s) to save as an archive.
3. Navigate to a destination for the archive file.
4. Under Options, save as a .zip or .tar file, create a directory structure or only selected directories, and

decide whether to compress the contents of the archive file.

Common Voice & Route Functionality

Composer Help 1070

5. Click Finish to begin the export.

Note: The following folders are not needed after export:

• simulation
• Callflows
• Debugging-results

Diagrams saved as templates can exported to another user's Composer. See Exporting a Diagram
Template to the File System for more information. When a Project is exported, Composer creates an
entry in its logs. You can find the log file in: <workspace folder>\.metadata\.log This location is fixed.
You cannot move the log file to another location.

Application Reporting

Composer applications can generate reports that can be displayed in the Reporting Server. You need
the Reporting Server to be installed in your GVP setup to get application reports. The Reporting
blocks can be used to send IVR-related reports from Composer-generated applications. To enable
application reporting, use the EnableReports variable. Use the VAR Call Browser in Genesys
Administrator to access the reported data that is generated by the Reporting blocks when
EnableReports is set to true. Note: Refer to Reporting Server and Genesys Administrator
documentation for more details on Voice Application Reporting concepts.

Importing and Exporting Diagram Templates

Diagrams saved as templates can exported to/imported from the file system. See Using Diagrams as
Templates for more information.

Common Voice & Route Functionality

Composer Help 1071

Link Tool
The figure below shows examples of using the link tools:

In the above example, the red links (going from the Menu block to the Prompt block) result from using
the Exception Link tool to connect the two blocks. The black links (going from the Menu block to the
Record block and the Log link) result from using the Outlink tool.

Link Tools Detail

The table below contains detailed information on the tools used for connecting blocks.

Use the Outlink tool to connect blocks by selecting the tool and dragging from the
source block to a target block. You can also connect blocks without using the Outlink tool. Simply
start the drag operation from the source block’s outport and drop into the target block. In both cases,
the link can be dropped on top of the target block or to the connection port of the target block.

Use the Exception link tool for exception handling. When you define exceptions for a
block in the dialog box that opens from the Properties tab, this creates the same number of exception
ports on the block. Use to draw connections from an exception port to a another block.

Common Voice & Route Functionality

Composer Help 1072

Locales
A locale defines a language and region identifier that you want to work with. Composer lets you
define default, active, and custom locales during Project creation or through the Project properties.
The locales defined in each Composer project can be used in callflow diagrams, workflow diagrams,
and Grammar Builder. When using Grammer Builder, you specify locales, which are the languages
that a grammar file will support. The Grammar builder wizard uses the active locales for the
Composer Project. Callflow diagrams use the default locale selection for the following Entry block
variables:

• APP_LANGUAGE
• ASR_LANGUAGE

Workflow diagrams use the default locale selection for the following Entry block variable:

• system.Language.

• For additional local settings, see the figure in topic Project Properties dialog box.

Changing Locales at the Project Level

The Project locales may be changed at the Project Properties at any time.

1. In the Project Explorer, right-click the Composer Project and select Properties.
2. Select the Locales section.
3. Enable the check boxes to set active locales for the Project.
4. Select Set as Default.
5. You can also select existing diagrams to update with the default language locale.

Common Voice & Route Functionality

Composer Help 1073

Changing the Default Locale

To set the default locale, highlight the row in the Project Locales list and click Set as Default. Any
new callflows or workflows will inherit this new default locale. You may optionally update existing
callflow and workflow Entry block language variables to the desired default language. The callflow/
workflow language variables (APP_LANGUAGE and ASR_APP_LANGUAGE/system.Language) will be
updated.

1. After selecting the default locale language, select the box Select existing Composer diagrams with
the default locale language.

2. Click OK. The Diagram Locale Update dialog box opens.

Common Voice & Route Functionality

Composer Help 1074

3. Select the diagrams to be updated with the default locale language.
4. Click OK.

Locales Supported

The Locales dialog box lists the following locales for selection:

Common Voice & Route Functionality

Composer Help 1075

Defining Custom Locales

There are two methods to define locales not already pre-defined in Composer:

• When creating a new Project via the New Composer Project wizard. Select File > New > Java

Common Voice & Route Functionality

Composer Help 1076

Composer Project or File > New > .NET Composer Project. The Define Composer Project Locales
page appears after the option to select a template. Click Add Custom to open the Add Custom Locale
dialog box shown below.

• For an existing Project, right-click the Composer Project in the Project Explorer, select Properties,
select the Locales, and then click Add Custom. This opens the Add Custom Locale dialog box shown
below.

1. Enter the Language Name.
2. Enter the Country/Region Name.
3. Enter the Locale ID by specify the two-letter language codes. Examples:

• en-IN (which represents English-India)
• en-SC (which represents English-Scottish
• en-IE (which represents English-Irish))

4. Click OK. After clicking OK, the custom locale is listed for selection on the Locales properties page.
Adding a custom locale also activates the Delete Custom Locale button on that page.

5. Create the processing logic. See Processing Prompts Other Than en-US.

Locales Other than United States

When Composer is first installed, the default locale is set to English (en-US). Composer bundles a
sample set of prompt file resources specifically for en-US, which is located in the following Composer
Project directory ../Resources/Prompts/en-US/ The prompt audio resources located in this

Common Voice & Route Functionality

Composer Help 1077

directory are used when processing a prompt. such as a prompt for a date/time, and so on. Composer
provides the business logic to process prompts for locale United States -- English (en-US). This file is
located in the Composer project location: ../Resources/Prompts/en-US/en-US.js

Processing Prompts Other Than en-US

When using locales other than en-US in a callflow application, you must define your own prompt
business logic. Certain steps are needed to ensure that the prompts will process correctly. The steps
are as follows:

1. Under each locale directory (../Resources/Prompts/<locale>/), create a JavaScript locales file with
the locale’s ID as its file name. A sample locale template JavaScript file is provided with instructions
located under the Composer Project: ../Resources/Prompts/xx-XX.js.For example:..Resources/
Prompts/es-MX/es-MX.js

2. Define the contents of the locale file created in previous step:

The function name must be of format xxXXPlayBuiltinType, where xxXX is the locale ID without the
hyphen; for example: es-MX = esMPlayBuiltinType In the PlayBuiltinType function, define the
business logic for processing the prompt for that particular locale.

Note: When declaring other functions in the JavaScript locale file, the function names must not
duplicate the function names in other JavaScript locale files. Composer recommends pre-pending the
locale ID to the function names, i.e., for locale es-MX use esMXMyFunctionName).

Important
Composer ships only with a sample set of prompt file resources specifically for en-US.
Composer auto-generates only English language .vox files as part of a Project that is
configured for en-US and does not do this for other languages.

Common Voice & Route Functionality

Composer Help 1078

Developing Multi-Lingual Applications

This section provides information on how you can build multilingual applications in Composer. How
Can I Work with Multiple Languages in a Composer Project? A Composer Project has a working
set of active language locales that maybe used in an application. These language locales can
essentially be used within a Composer application. You may set the Project locales in two ways.

1. During the creation of a Composer Project, the new Composer Project wizard lets you select the default
and active locales within the Project.

2. Once a Composer Project is created, you may also modify the working set of language locales through
the Project properties under the Locales section.

How Can I Change the Language for an Application at Runtime? For a multilingual application,
if the application needs to change the language for the prompts and grammars based on your input
or other settings, use the following steps:

1. On the callflow diagram, the Entry block variables property will contain the variable APP LANGUAGE .
Set the value of this variable to the correct TTS language value.

2. Place the appropriate blocks and links on the diagram. To switch to another language in the callflow, use
the Set Language block.

3. The blocks subsequent to the Set Language block will then be of the switched language. When using
Prompt blocks, the prompt resources located in the appropriate language locale directory will be used.
For example:

• United States -- English (en-US) will use resources from ../Resources/Prompts/en-US/

• France -- French (fr-FR) will use resources from ../Resources/Prompts/fr-FR/

If you are using a TTS engine and/or an ASR engine, you must have the language packs for the TTS
vendor and/or the ASR vendor installed on the TTS and/or ASR servers. Why does my application fail
to play prompts of different locales? When Composer is first installed, the default locale is set to
English (en-US). Composer provides the business logic to process prompts for en-US. In a callflow
application, when using locales other than en-US, some steps are needed to ensure that the prompts
will process correctly. See the Using Non-U.S. Locales below for more information.

Multi-Lingual Application Prompts
You can create applications that play a prompt type resource in one language (for example:
../Resource/Prompts/en-US/), switch the language using Set Language block, then play another

prompt type resource using a different language (for example: .../Resource/Prompts/es-MX/).
Multi-Lingual Application Prompts Using Composer 8.0.4 and Later To create a multi-lingual
application prompts:

1. Create a multilingual callflow diagram where the language is being switched using the Set Language
block and the prompts are set accordingly.

2. Generate the code for the callflow diagram file. The VXML is generated.
3. Under each locale directory (..Resources/Prompts/<locale>/), create a JavaScript locales file with the

locale’s ID as its file name. Use the template locales file provided in the Project Explorer (..Resources/
Prompts/xx-XX.js) and follow its instructions about creating the corresponding locales .js file; for

Common Voice & Route Functionality

Composer Help 1079

example: ..Resources/Prompts/es-MX/es-MX.js

4. In the prompts locale file, created in previous step, implement the following content:

• Create the language object function. The function name must be of format
‘xxXXPlayBuiltinType’, where ‘xxXX’ is the locale ID without the hyphen. For example: es-MX
-> esMXPlayBuiltinType

• In the language object function, implement the main function as shown below and define the
business logic for processing the prompt.

5. Run the application

Using 8.0.3 or Older Composer Projects To upgrade an existing multi-lingual application with the
en-US locale:

1. In the Project Explorer, right-click the Project and select Upgrade to Composer 8.1.
2. (Optional) If you have previously modified PlayBuiltinType.js, copy over any changes. The resource

‘../Resources/Prompts/en-US/PlayBuiltinType.js’ has already been upgraded. Previous
Composer Project files are archived in the archive folder during an upgrade.

3. Under each locale directory ‘..Resources/Prompts/<locale>/’, create a JavaScript locales file with the
locale’s ID as its file name. Use the locales template file provided in the Project Explorer
(..Resources/Prompts/xx-XX.js). Follow its instructions about creating the corresponding locales .js
file; for example: ..Resources/Prompts/es-MX/es-MX.js

4. In the prompts locale file created in previous step, implement the following content:

• Create the language object function. The function name must be of format
‘xxXXPlayBuiltinType’, where ‘xxXX’ is the locale ID without the hyphen. For example: es-MX
-> esMXPlayBuiltinType

• In the language object function, implement the main function as shown as shown above in
step 4.b. for Composer 8.0.4 and Later and define the business logic for processing the
prompt.

Common Voice & Route Functionality

Composer Help 1080

Non en-US Locales

To upgrade an existing multi-lingual application with non en-US locales:

1. In the Project Explorer, right-click the Project and select Upgrade to Composer 8.0.4.
2. Under each locale directory ‘..Resources/Prompts/<locale>/’, create a JavaScript locales file with the

locale’s ID as its file name. Use the template locales file provided in the Project Explorer (..Resources/
Prompts/xx-XX.js) and follow its instructions about creating the corresponding locales .js file; for
example: ..Resources/Prompts/es-MX/es-MX.js

3. In the prompts locale file created in the previous step, implement the following content:

• Create the language object function. The function name must be of format
‘xxXXPlayBuiltinType’, where ‘xxXX’ is the locale ID without the hyphen. For example: es-MX
-> esMXPlayBuiltinType

• In the language object function, implement the main function with the business logic for
processing the prompt inline.

Common Voice & Route Functionality

Composer Help 1081

Time Zone Preferences
Composer displays all date/time elements in the user-preferred time zone with the time zone
identifier. You can change the preferred time zone in Window > Preferences > Composer >
Context Services.

Common Voice & Route Functionality

Composer Help 1082

Using User Data

Blocks for User Data

To work with User Data in Composer, you can use:

• The Interaction Data block for voice applications.

• The User Data property of the External Service block if you wish to pass User Data to an external
service (routing and voice).

• The Entry block to access User Data (routing and voice).

For routing applications, you can use:

• The User Data block.

• The Create Email block, which lets you pick up standard response text from User Data.

• The Create SMS block, which lets you pick up message text from User Data.

• The Identify Customer block, which provides an option to update the interaction's User Data with the
parameters returned by Universal Contact Server (Contact attribute data).

• The Create Interaction block, which lets you create a new interaction record in UCS database based on
User Data.

• The ECMAScript block. The Script property lets you use Universal Routing Server User Data functions.
Open ExpressionBuilder. Select URS Functions and then _genesys.ixn.deleteuData (to add a User Data
property or delete all properties) or _genesys.ixn.setuData (to add new or update existing User Data).

Common Voice & Route Functionality

Composer Help 1083

Hints

• A specific variable 'xyz' can be accessed directly; for example: _genesys.ixn.interactions[0].udata.xyz

• To write to User Data, use the setuData() function in an ECMAScript snippet. Usage is similar to the
example below.

var input = new Object();

input.xyz = InputValue1; // Specify a value for the key 'xyz'.

input['my-key-nname'] = 'value'; // Use this notation if the key or property name has
a hyphen in it. Note that'my-key-nname'has hyphens.

Common Voice & Route Functionality

Composer Help 1084

_genesys.ixn.setuData(input);

• Reading User Data is easier using the Assign block than with the ECMAScript block.

Mandatory Data for UCS Blocks

When working with the Update Contact and Render Message blocks (which map to Universal Contact
Server services), certain properties must exist in the interaction User Data.

For the Update Contact block, ContactId must exist.

For the Render Message block, ContactId (if some contact-related Field Codes (as described in the
eServices 8.1 User's Guide) are used in the text to render). Also InteractionId (if some interaction-
related Field Codes are used in the text to render)and OwnerEmployeeId (if some agent-related Field
Codes are used in the text to render).

As is the case with IRD, these properties are not set in the blocks themselves. Instead, the properties
are assumed to be put in the interaction's User Data by some other block earlier in the workflow,
such as the Identify Contact block or Create Interaction block with the Update User Data property set
to true. In case no other block does this, the User Data block may be used for this purpose.

If these properties are not available, an explicit UCS error message (missing parameter) shows in the
Orchestration Server log.

Callflow User Data

Also see the following blocks used for callflows:

• Interaction Data
• Route Request

Common Voice & Route Functionality

Composer Help 1085

Variables Mapping
The Context Services blocks listed below support variables mapping.

• Identify Customer
• Query Customer
• Query Services
• Query States
• Query Tasks

In addition, the eServices block, Identify Contact, also supports variables mapping.

Each of the above blocks can return data as JSON objects, which can then be stored in callflow/
workflow variables. When your application needs to access a property in the JSON object, you must
use an Assign block to copy the property value into a variable where it can be accessed. Variable
mapping allows you to specify the variables for certain properties of the resulting JSON object and, at
run time, populate the variables with the property values.

When the returned data is an array of JSON objects, the variables are populated with the property
values of the first item in the array. In cases where an application needs to iterate over each of the
items in the array and also populate the variables with data from each item, use the Looping block
with a reference to the block responsible for the retrieving the data.

To set up variable mapping for a block, use the Variables Mapping dialog box, which opens from the
Variables Mapping block property in one of the Context Services blocks listed above.

1. Click under Value to display the button.

2. Click the button to open the Variables Mapping dialog box.
3. Click Add to open the Configure Variables Mapping dialog box.
4. Click the down arrow opposite Variable and select the variable into which the value needs to be stored.
5. Opposite Mapping, you can specify it in two ways:

• Type in the property path to access the JSON property.
• Select from a tree. Since the property hierarchy specification may be tedious and prone to

errors, a mapping selector tree is provided below the Mapping text field. Clicking on any
node within the tree will update the Mapping text field with the JSON property hierarchy of
the selected node. If the selected node is an element within a JSON Array, then the mapping
will display a [] implying that the hierarchy contains an array. Leaving the [] will
automatically default to [0] in first item of the array.

6. Click OK. The Variables Mapping dialog box reflects the assignment.
7. Click Add again to map another variable.
8. You may continue assigning customer attributes to variables in this fashion.

Common Voice & Route Functionality

Composer Help 1086

Common Blocks & Functionality
This topic describes the blocks and functionality that can be used for both Orchestration routing and
GVP voice applications.

Common Blocks

Composer provides the following Common blocks:

• Assign Block. Use to assign a computed value/expression or an entered value to a variable.
• Branching Block. Use as a decision point in a callflow or workflow. It enables you to specify multiple

application routes based on a branching condition. Depending on which condition is satisfied, the call
follows the corresponding application route.

• Context Services Blocks. If the Context Services capability is enabled at your site, you can use the
following Context Services blocks to create callflows/workflows that extract customer data elements
from the UCS Database and apply this knowledge when creating routing or voice applications.

• Log Block. Use to record information about an application. For example, you can log caller-recorded
input collected while an application is running or error messages.

• Looping Block. Use to iterate over a sequence of blocks multiple times.
• Outbound Common Blocks. Support Genesys Outbound Contact.
• Server-Side Blocks. These blocks provide the ability to interact with internal and external custom

server-side pages, Web Services, and URLs. These blocks can be used to exchange data like VoiceXML
and SCXML variables, JSON strings between GVP interpreter, and custom server-side pages.

Common Functionality

These topics describe the Functionality that can be used for both Orchestration routing and GVP voice
applications.

• Code Generation
• Custom Blocks
• Customization Manager
• Diagram Preferences
• Exception Events
• Expression Builder
• Genesys Administration Extension Preferences
• Getting Using Email Addresses

Common Blocks & Functionality

Composer Help 1087

• Import and Export
• Link Tool
• Locales
• Time Zone Preferences
• User Data
• Variables Mapping

Note: Composer does not support copying blocks from a callflow to a workflow or vice-versa.

Special Note on Entry and Exit Blocks

These two blocks are also present on the palette for both routing and voice applications. The Entry
block for routing applications has a different set of events than the Entry block for voice applications.

Link Tools

Routing and voice applications use the same link tools:

• Outlinks
• Exception Links

Composer Help Wiki URL

The URL to the Composer Help wiki is configurable by using the Online Wiki URL field: Window >
Preferences > Composer >Help. The default works with English but if, for example, Japanese
pages were available in a different location, then you could change the URL accordingly.

Common Blocks & Functionality

Composer Help 1088

Context Services Common Blocks

Important
Starting with 8.1.440.18, Composer supports Context Services 8.5, which adds
support for Genesys Mobile Services. For more information, see Context Services 8.5
Support.

Customer Profile Management Blocks

• Create Customer Block to create a callflow/workflow that includes the capability to create a customer
profile through Context Services.

• Identify Customer Block to identify a customer in the database based on search criteria, which can
be customer profile core data or customer profile extension data. If the customer is found, then Context
Services can provide data that can be used to personalize offer or to resume/modify a service in
process.

• Query Customer Block to look up a customer's core profile and profile extension attributes. Use the
CustomerID to specify which customer you want to return data for. Composer stores the returned
results in an application variable.

• Update Customer Block to update the customer profile in the database used for Context Services.
You can update customer profile core data or customer profile extension data.

Service Management Blocks

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
• Associate Service Block to associate an anonymous service record with a customer whose profile

exists in the database used for Context Services.
• Complete Service Block to mark an active service as completed. You can also use this block to pass

additional state-related data to the database. For example, when completing a service state, such as
"Callback pending," the disposition could be "unsuccessful - no answer."

Context Services Common Blocks

Composer Help 1089

• Complete State Block to mark the completion of a specified state in the context of a service in the
database used for Context Services.

• Complete Task Block to mark the application as completing a specified task within a service/state.
• Enter State Block to mark the entry of the application into a specified state in the context of a

service.
• Query Services Block to query the database for a list of services associated with a particular

Customer ID or, in case of unassociated services, the Contact Key. Composer stores the result in an
application variable. You can query for active services, completed services, both active and completed
services.

• Query States Block to query the database used for Context Services for active and completed states
data for a specified service. You can also query for other types of service states such as user-defined
service states.

• Query Tasks Block to query the database used for Context Services for active and completed tasks
within a state for a specified service.

• Start Service Block to communicate the creation or start of a service in the database. The service
may or may not be immediately associated with a customer. For example, an application, such as a
routing workflow, may not know the customer's identity when the service is started so the service may
be started anonymously. Once the customer is known and identified, the workflow may associate the
anonymous service with the customer.

• Start Task Block to mark the application as entering a specified task within a service/state.

Also see:

• Common Properties Context Services
• Online and Offline Modes
• Runtime Configuration
• Context Services Exception Events

Context Services Common Blocks

Composer Help 1090

Context Services 8.5 Support
Starting with 8.1.440.18, Composer supports Context Services 8.5, which adds a group of additional
capabilities that Genesys Mobile Engagement (GMS) provides. As a result, Composer 8.1.440.18
support for Context Services 8.5 divides into two parts:

• Support for a customer profile model (customer profile blocks) which is served by the Universal Contact
Server API. Customer profile blocks continue to store data in the UCS Database.

• Support for a service model (services/states/tasks blocks), which is served by the GMS API (starting with
UCS 8.5/GMS 8.5.1) as described in the Context Services 8.5 User's Guide. In Context Services 8.5,
service data is stored in the Genesys Mobile Services Cassandra database. For more on this, see the
migration section in the Context Services 8.5 User's Guide.

The Composer 8.1.440.18 Context Services Preferences dialog box reflects the customer profile and
service management models.

Context Services Common Blocks

Composer Help 1091

https://docs.genesys.com/Documentation/CS/latest/User/Welcome
https://docs.genesys.com/Documentation/CS/latest/User/MigrateServicesFrom81to85

Context Services and Composer
Starting with 8.1.440.18, Composer adds support for Context Services 8.5. See Context Services 8.5
and Composer.

You can use Composer's Context Services blocks for:

1. Service personalization. You can create callflows/workflows that alter the customer experience based
on information known about the customer.

2. Offer personalization. When managing conversations, routing workflows can use the results of
previous offers made to the customer to decide whether a new offer should be presented.

3. Service resumption. Workflows can leverage service state/task information to continue a customer
service that was not completed in an earlier interaction.

4. Enhanced reporting.

A Context Services Project template is included with this release.

You can access Context Services attributes through Expression Builder.

Customer Profile Core

As described in the Context Services User's Guide, the customer profile contains a core set of
customer characteristics available "out-of-the-box" from Context Services. Use the Query Customer
block to request (and assign to variables) the following types of customer profile information:

• Last agent used. Allows an application to route an interaction to the agent that last processed the last
interaction for this customer.

• Language preference. Allows an application to use the customer’s preferred language when
communicating with them. This can be used in a voice Self-Service dialog, in e-mail responses, or in
routing to an agent that speaks the language.

• Preferred agent. Allows an application to route to the customer's preferred agent if available.
• Contact media preference. Allows the application to use the customer preferred media when

sending notifications or initiating any outbound contact with the customer. For example, use e-mail
first, home phone next, commonly used web pages, and so on.

Customer Extension Data

You can extend customer profile core data with specific types of data that your business wants to
include (Create Profile Extension message). For example, assume your business introduces an
automated newsletter. You then might wish to add a profile extension to record customer preferences
for receiving the newsletter, along with the preferred e-mail format (text or html).

Context Services Common Blocks

Composer Help 1092

Use the Update Customer Block block to update customer profile extension data.

In order for extension data to be available for selection in Composer, the data must already be
defined for UCS Context Services using its HTTP interface.

Note: Composer supports multi-valued extensions starting with Universal Contact Server 8.0.2.

Identification Keys

One of the core features of the Context Services API is the ability to identify customers based on one
or more attributes of the customer, known as Identification Keys. Each identification key consists of
one or more attributes of the core customer profile, or of any defined extension. An attribute must be
specified as an Identification Key to be usable in customer identification.

Authentication Support

Composer supports username/password authentication for VXML and SCXML-generated applications.

For Orchestration applications, username and password values are configured in the
EnhancedRouting ScriptConfiguration Server object: (ApplicationParms/
context_management_services_password and ApplicationParms/
context_management_services_username).

For design-time access to Context Services, you can specify these values in Context Services
Preferences. Composer can then use them to authenticate with Context Services when it connects to
Context Services for retrieving profile objects, extensions, etc. Composer updates values specified in
these preferences when diagrams are published to Configuration Server.

For voice applications, username and password values are configured in the Voice Platform IVRProfile
Configuration Server object (gvp.service-parameters/voicexml.cms_username and gvp.service-
parameters voicexml.cms_password).

Note: Service parameter values must be prefixed with fixed, undefined or default. Else, Resource
Manager throws an invalid error. For example, voicexml.cms_username=fixed,cs.

Also see Business Rules Block Runtime Configuration.

Context Services Common Blocks

Composer Help 1093

Associate Service Block
Use the Associate Service block to associate an anonymous service record with a customer whose
profile exists in the database used for Context Services.

Note: This method can be called more than once in a callflow/workflow. However, subsequent
invocations override earlier associations. Therefore, if a service, that is associated with a customer, is
again associated with a different customer, the earlier association will be replaced and the service
will only be associated with the customer specified in the latest call.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Associate Service block has the following properties. The behavior of some properties can vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Customer ID Property

Click the down arrow under Value and select a variable that contains the Customer Identifier for the
anonymous service.

Context Services Common Blocks

Composer Help 1094

Extensions Property

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

You can also define custom events.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Application ID Property

Find this property's details under Common Properties Context Services.

Application Type Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1095

Estimated Duration Property

Use this property to specify the estimated service duration (in seconds).

1. Click under Value to display the button.

2. Click the button to open the Estimated dialog box.
3. Select Literal or Variable from the Type dropdown menu.

• If you select Literal, enter the estimated service duration in seconds.
• If you select Variable, select the name of the variable.

4. Click OK to close the dialog box.

Media Type Property

Find this property's details under Common Properties Context Services.

Resource ID Property

Find this property's details under Common Properties Context Services.

Resource Type Property

Find this property's details under Common Properties Context Services.

Service ID Property

Find this property's details under Common Properties Context Services.

Service Type Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1096

Use Server Timestamp Property

Find this property's details under Common Properties Context Services.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1097

Complete Service Block
Use this block in a callflow/workflow to mark an active service as completed in the Universal Contact
Server Database used for Context Services.

You can also use this block to pass additional state-related data to the database. For example, when
completing a service state, such as "Callback pending," the disposition could be "unsuccessful - no
answer."

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Complete Service block has the following properties. The behavior of some properties will vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

You can also define custom events.

Context Services Common Blocks

Composer Help 1098

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Application ID Property

Find this property's details under Common Properties Context Services.

Application Type Property

Find this property's details under Common Properties Context Services.

Disposition Code Property

Find this property's details under Common Properties Context Services.

Disposition Description Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1099

Media Type Property

Find this property's details under Common Properties Context Services.

Resource ID Property

Find this property's details under Common Properties Context Services.

Resource Type Property

Find this property's details under Common Properties Context Services.

Service ID Property

Find this property's details under Common Properties Context Services.

Use Server Timestamp Property

Find this property's details under Common Properties Context Services.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1100

Complete State Block
Use this block in a callflow/workflow to mark an active service as completed in the Universal Contact
Server Database used for Context Services.

You can also use this block to pass additional state-related data to the database. For example, when
completing a service state, such as "Callback pending," the disposition could be "unsuccessful - no
answer."

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Complete Service block has the following properties. The behavior of some properties will vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
WorkflowBlocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Find this property's details under Common Properties ContextServices.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

You can also define custom events.

Context Services Common Blocks

Composer Help 1101

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Application ID Property

Find this property's details under Common Properties Context Services.

Application Type Property

Find this property's details under Common Properties Context Services.

Disposition Code Property

Find this property's details under Common Properties Context Services.

Disposition Description Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1102

Media Type Property

Find this property's details under Common Properties Context Services.

Resource ID Property

Find this property's details under Common Properties Context Services.

Resource Type Property

Find this property's details under Common Properties Context Services.

Service ID Property

Find this property's details under Common Properties Context Services.

Use Server Timestamp Property

Find this property's details under Common Properties Context Services.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1103

Create Customer Block
Use to create a callflow/workflow that includes the capability to create a customer profile through
Context Services. Example use cases:

• The application queried Context Services, which did not have a record for this customer.
• The application wants to create customer preference data (last agent used, language preference,

preferred agent, contact media preference and ordering, contact address information, etc.) to optimize
and personalize the any future processing associated with the customer.

In order to use this block in a callflow, you must have Media Control Platform (MCP) 8.1.300.76+
installed.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Create Customer block has the following properties. The behavior of some properties can vary
depending on whether you are in online or offline mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Profile Data Property

Use this property to enter key-value pairs corresponding to the customer profile.

Context Services Common Blocks

Composer Help 1104

1. Click under Value to display the button.

2. Click the button to open the Configure Profile Data dialog box.
3. Click Add to open the Add Extension dialog box.
4. Click the down arrow, select core or an extension, and click OK. The Configure Profile Data dialog box

adds Name and Value fields and a second Add button.
5. Click the second Add on the right to open the Add Attribute dialog box.

• If you selected core, select a customer profile predefined value for Attribute. Opposite Type, select
literal if you wish to enter the value now or variable if the value is contained in a variable. Opposite
Value, enter the value or select a variable and click OK.

• If you selected a customer profile extension, select a user-defined extension for Attribute. Opposite
Type, select literal if you wish to enter the value now or variable if the value is contained in a variable.
Opposite Value, enter the value or select a variable and click OK.

The Name and Value fields in the Configure Profile Data dialog box reflect your entries.

1. Click Add again to continue entering customer attributes in this fashion.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Context Services Common Blocks

Composer Help 1105

Enable Status Property

Find this property's details under Common Properties.

Customer ID Property

Click the down arrow under Value and select a variable that contains the Customer Identifier for the
anonymous service.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1106

Complete Task Block
Use this block in a callflow/workflow to mark the application as completing a specified task within a
service/state.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Complete Task block has the following properties. The behavior of some properties will vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Extensions Property

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Context Services Common Blocks

Composer Help 1107

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Application ID Property

Find this property's details under Common Properties Context Services.

Application Type Property

Find this property's details under Common Properties Context Services.

Disposition Code Property

Find this property's details under Common Properties Context Services.

Disposition Description Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1108

Media Type Property

Find this property's details under Common Properties Context Services.

Resource ID Property

Find this property's details under Common Properties Context Services.

Resource Type Property

Find this property's details under Common Properties Context Services.

Use Server Timestamp Property

Find this property's details under Common Properties Context Services.

Service ID Property

Find this property's details under Common Properties Context Services.

State ID Property

Find this property's details under Common Properties Context Services.

Task ID Property

Click the down arrow under Value and select a variable that contains the ID of the task.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1109

Enter State Block
Use the Enter State block to mark the entry of the application into a specified state in the context of
a service.

Service State Definition

Throughout their lifecycle, business services to customers proceed through a series of well-defined
states (see list below). In order to personalize and properly orchestrate a service to a customer,
Universal Contact Server must record when each of these predefined states is entered. For example,
a company might have the following service states:

• Customer identification
• Service identification
• Assign service agent
• Waiting for service agent
• Offering another service while waiting for agent
• Offering callback
• Callback pending
• Delivering service
• Waiting for customer input
• Offering another service while delivering service

To implement these states you could create a State Business Attribute and map the above
State.types to it. The list of Business Attribute values will then be available from the State Type
property of this block. Note: The exact sequence of states depends entirely on the way in which the
customer service application (such as an IVR or Agent Desktop application) is written.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Enter State block has the following properties. The behavior of some properties will vary
depending on whether you are in offline or online mode.

Context Services Common Blocks

Composer Help 1110

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Extensions Property

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Context Services Common Blocks

Composer Help 1111

State ID Property

Find this property's details under Common Properties Context Services.

Application ID Property

Find this property's details under Common Properties Context Services.

Application Type Property

Find this property's details under Common Properties Context Services.

Estimated Duration Property

Find this property's details under Common Properties Context Services.

Media Type Property

Find this property's details under Common Properties Context Services.

Resource ID Property

Find this property's details under Common Properties Context Services.

Resource Type Property

Find this property's details under Common Properties Context Services.

Use Server Timestamp Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1112

Service ID Property

Find this property's details under Common Properties Context Services.

Previous State ID Property

Use this property to specify the ID of the state that came before this one.

1. Click under Value to display the button.

2. Click the button to open the Previous State ID dialog box.
3. Select Literal or Variable from the Type dropdown menu.

• If you select Literal, enter the Previous State ID associated with the service.
• If you select Variable, select a variable that contains this information.

State Type Property

Use this property to filter for specific service state types.

1. Click under Value to display the button.

2. Click the button to open the State Type Selection dialog box.
3. Select one of the following from the Type dropdown menu:

• Context Services. Select the State Type identifier for Value. If Context Services attributes have been
mapped to Configuration Server Business Attributes, you can select a State Type DB ID.

• Literal. Enter the State Type ID.
• Variable. Select the variable that contains the State Type ID.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1113

Identify Customer Block
Use this block to identify a customer in the database based on search criteria, which can be customer
profile data or customer extension data. If the customer is found, then Context Services can provide
data that can be used to personalize offer or to resume/modify a service in process.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.

Prior to using this block, set Context Services Preferences. For detailed information on how Universal
Contact Server identifies customers, see the Context Services User's Guide. For an example of how to
use this block, see the Getting and Using E-mail Addresses topic.

The Identify Customer block has the following properties. The behavior of some properties can vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Extensions Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1114

Get Attributes Property

Use this property to control whether only matching Customer IDs are returned (No) or whether all
profile attributes are returned (Yes).

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks.

You can also define custom events.

Suppress Customer Not Found Exception Property

• If set to true, no exception will be raised when no customer is found. The Customer Data array will be
empty. See the Customer Data property below.

• If set to false (default), the error.com.genesyslab.composer.customernotfound exception is raised
when no matching customer is found.

Customer Attributes Property

Use this property to specify a list of attributes which will be used to search for the customer. To
specify customer attributes:

1. Click under Value to display the button.

2. Click the button to open the Customer Attributes dialog box.
3. Click Add in the dialog box to open the Customer Attribute dialog box.
4. Opposite Extension, click the down arrow and select either Core (for customer profile core data) or a

customer profile extension data.

• If you select Core, select a core attribute from the Attribute dropdown menu. For example,
you might select Core and then CustomerSegment.

• If you select an extension, select the extension attribute name from the Attribute dropdown
menu.

Note: In offline mode, for both core and extension data, there is an additional field ‘’Attribute Type”
where you must choose between string, Boolean, integer, long, double, date, datetime, or currency
depending on the customer profile attribute definition.

5. Click the down arrow opposite Type and select Literal or Variable.

Context Services Common Blocks

Composer Help 1115

• If you select Literal, then for Value, enter the value of the attribute. For example, if you are
looking for a customer having LastName=Rosen, you would key in Rosen.

• If you select Variable, select the variable under Value.

6. Click OK to close the Customer Attribute dialog box. The Customer Attributes dialog box reflects your
entries. You can also use this dialog box to edit and remove entries.

Identification Key Property

Use this property to specify the name of the key to be used for lookups. If specified, speeds the
lookup. The key can be contained in a variable.

1. Click under Value to display the button.

2. Click the button to open the Identification Key dialog box.
3. Opposite Type, click the down arrow and select one of the following:

• Context Services. Then click the Value down arrow and select the key. If Context Services
attributes have been mapped to Configuration Server Business Attributes, you can select an
Identification Key name for Value.

• Variable. Select the name of the variable.
• Literal. Enter the name of the key.

Customer Count Property

Click the down arrow under Value to select a variable whose value is the number of customer records
returned by Universal Contact Server. This feature is for your convenience. It also serves the purpose
of retaining the original number of records returned in case the returned data is modified through
other blocks.

Customer Data Property

Click the down arrow under Value to select a variable whose value will be the JSON array containing
data returned.

If no matching customers are found, an empty array is returned and an exception will be thrown
unless the Suppress Customer Not Found Exception property is set to true.

Variables Mapping Property

Variables Mapping Property Use this property to map the JSON data returned by this block to

Context Services Common Blocks

Composer Help 1116

variables. See the Variables Mapping topic for details.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Using the Identify Contact and Identify Customer Blocks

• You may use the blocks Identify Contact (UCS – ESP protocol) or Identify Customer (UCS Context
Services, if Context Services is enabled – REST protocol).

• In either case, the customer record is fetched into the Composer SCXML application.
• To have the customer data also available in Interaction Workspace, you need to have that customer

data stored into the interaction's user data, so Interaction Workspace can access it.
• If using the Identify Customer block, you can then use a User Data block to update the interaction's user

data according to your needs.
• If using the Identify Contact block, the generated SCXML code automatically copies the user data part of

the UCS response to the interaction's user data.
• If the Update Interaction User Data property value is true, it also automatically copies the parameters

Context Services Common Blocks

Composer Help 1117

part of the UCS response to the interaction's user data.

Context Services Common Blocks

Composer Help 1118

Query Customer Block
Use this block to look up a customer's core profile and profile extension attributes. Use the
CustomerID to specify which customer you want to return data for. Composer stores the returned
results in an application variable. For an example of how to use this block, see the Getting and Using
E-mail Addresses topic.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Query Customer block has the following properties. The behavior of some properties can vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

You can also define custom events.

Note: The error.com.genesyslab.composer.customernotfound exception is raised if no customer with
the specified customer ID is found.

Context Services Common Blocks

Composer Help 1119

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Customer ID Property

Click the down arrow under Value and select a variable to specify the Customer Identifier.

Include Extensions Property

Select a variable or from the list of extensions to specify which customer profile extension attributes
are returned as part of the query operation.

1. Click under Value to display the button.

2. Click the button to open the Extensions dialog box.
3. Click Add to open the Extension dialog box.
4. Opposite Type, click the down arrow and select one of the following:

• Context Services. Select an extension attribute already defined in the database for Value.
Note: Composer supports multi-valued extensions starting with Universal Contact Server
8.0.2.

• Variable. Select the variable that contains the extension.
• Literal. Enter the name of the extension attribute.

Context Services Common Blocks

Composer Help 1120

5. Click OK. The Extensions dialog box lists the extension attribute or the name of the selected variable.
You can also use this dialog box to edit and remove extensions.

Result Property

Click the down arrow and select a variable whose value contains the JSON data returned by the
Context Services web service. These results will then be available in other blocks in the application
for further processing.

Any post processing work to be done on returned results can be done in the existing Assign block
which provides access to ECMAScript functions. It already supports writing simple or complex
expressions to extract values out of JSON strings and arrays.

Variables Mapping Property

Find this property's details under Common Properties Context Services.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1121

Query Services Block
Use this block to query the Universal Contact Server Database for a list of services associated with a
particular Customer ID or, in case of unassociated services, the Contact Key. Composer stores the
result in an application variable. You can query for:

• Active services
• Completed services
• Both active and completed services

Use Case

service/state history is primarily meant to support service personalization and resumption. For
example, a given application is using a state to record the fact that the system is waiting for the
customer to fax in a signed authorization to complete a transaction. When the customer calls into
the IVR to verify some recent activities, the IVR application queries the service state history and is
informed that a service is waiting on a fax to arrive.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Query Services block has the following properties: Note! The behavior of some properties can
vary depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for

Context Services Common Blocks

Composer Help 1122

Workflow Blocks.

Service Elements Property

Use this property to indicate whether information on completed service elements/tasks should be
included in the returned results.

1. Click under Value to display the button.

2. Click the button to open a dialog box.
3. Check one or more of the following:

• Active Services
• Completed Services
• Active Tasks
• Completed Tasks

Extensions Property

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Context Services Common Blocks

Composer Help 1123

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Service Data Property

Click the down arrow and select a variable to contain the output data for matching services. The
output of the Query Service block will be in JSON format. You will need to use the Assign block and
EMCAScript in Expression Builder to parse the JSON. Below is an example of a small ECMAScript that
will take the output of the Query Service block, which has been put into an application variable
"QueryServices," and retrieves the service_id for the customer, if it any active services exist. It puts
that service_id value into a workflow application variable called "serviceid". if
(QueryServices.length > 0) { serviceid = QueryServices[0].service_id; } else {
serviceid = 'new service'; } Note: You can also do the same things with Composer's Variables
Mapping feature. It is easier (and it saves an ECMAScript block) to simply use the Variables Mapping
property to map "service_id" to the application variable "serviceid".

Variables Mapping Property

Use this property to map the JSON data returned by this block to variables. See the Variables Mapping
topic for details.

Identifier Property

Use this property to identify the customer. Choose the Customer ID (for associated services) or the
Contact Key (for unassociated services).

1. Click under Value to display the button.

2. Click the button to open the Identifier dialog box.
3. Select one of the following buttons:

• Customer Identifier (for associated services).
• Contact Key (for anonymous services)

1. Click the down arrow opposite Type and select the source:

Context Services Common Blocks

Composer Help 1124

• Literal. Then enter the attribute, such as CustomerID.
• Variable. Then select the variable that contains the Contact Key or Customer ID.

Service Status Property

Use this property to choose the Composer method to call.

1. Click under Value to display the button.

2. Click the button to open the Service Status Selection dialog box.
3. Opposite Type, select one of the following:

• Variable. Then click the Value down arrow and select a variable with a value of
"Completed", "Active", or "All".

• Literal. Then select one of the following:Completed', Active, 'All

Service Type Property

Find this property's details under Common Properties Context Services.

Service Completed After Property

Use this property to filter for services completed on or after the given date/time.

1. Click under Value to display the button.

2. Click the button to open the Service Completed After dialog box.
3. Click the down arrow opposite Type and select one of the following:

• Literal. Click arrows to select the Date and Time or manually enter.
• Variable. Select the variable whose value must be formatted with the ISO 8601 UTC pattern

YYYY-MM-DDTHH:mm:ss.SSSZ (for example: 2010-03-15T11:33:48.000Z).

Also see the Time Zone Preferences topic.

Service Completed Before Property

Use this property to filter for services completed prior to the given date/time. If using a variable for
this property, the variable value must follow the ISO 8601 UTC pattern: [YYYY]-[MM]-
[DD]T[HH]:[mm]:[ss].[SSS]Z.

Context Services Common Blocks

Composer Help 1125

1. Click under Value to display the button.

2. Click the button to open the Service Completed Before dialog box.
3. Click the down arrow opposite Type and select one of the following:

• Literal. Click arrows to select the Date and Time or manually enter.
• Variable. Select the variable whose value must be formatted with the ISO 8601 UTC pattern

YYYY-MM-DDTHH:mm:ss.SSSZ (for example: 2010-03-15T11:33:48.000Z).

Also see the Time Zone Preferences topic.

Service Started After Property

Use this property to filter for services started on or after the given date/time.

1. Click under Value to display the button.

2. Click the button to open the Service Started After dialog box.
3. Click the down arrow opposite Type and select one of the following:

• Literal. Click arrows to select the Date and Time or manually enter.
• Variable. Select the variable whose value must be formatted with the ISO 8601 UTC pattern

YYYY-MM-DDTHH:mm:ss.SSSZ (for example: 2010-03-15T11:33:48.000Z).

Also see the Time Zone Preferences topic.

Service Started Before Property

Use this property to filter for services started prior to the given date/time.

1. Click under Value to display the button.

2. Click the button to open the Service Started Before dialog box.
3. Click the down arrow opposite Type and select one of the following:

• Literal. Click arrows to select the Date and Time or manually enter.
• Variable. Select the variable whose value must be formatted with the ISO 8601 UTC pattern

YYYY-MM-DDTHH:mm:ss.SSSZ (for example: 2010-03-15T11:33:48.000Z).

Context Services Common Blocks

Composer Help 1126

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1127

Query States Block
Use this block to query the database used for Context Services for active and completed states data
for a specified service. You can also query for other types of service states such as user-defined
service states.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Query States block has the following properties. The behavior of some properties can vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Extensions Property

Find this property's details under Common Properties Context Services.

State Elements Property

Use this property to indicate whether information on completed states and/or active tasks for this
service state should be included in the returned results.

Context Services Common Blocks

Composer Help 1128

1. Click under Value to display the button.

2. Click the button to open a dialog box.
3. Check one or more of the following:

• Active Tasks
• Completed Tasks

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

States Data Property

Click the down arrow under Value and select a variable to contain the matched state information.

Context Services Common Blocks

Composer Help 1129

Variables Mapping Property

Find this property's details under Common Properties Context Services.

Service ID Property

Find this property's details under Common Properties Context Services.

State Status Property

This property controls whether Active, Completed, or All States are returned.

1. Click under Value to display the button.

2. Click the button to open the State Status dialog box.
3. Opposite Type, select Variable or Literal.

• If you select Variable, click the Value down arrow and select a variable that contains the
name of the method to call.

• If you select Literal, click the Value down arrow and select one of the following:
Completed, Active, or All.

State Types Property

Use this property to filter for other service state types, such as user-defined service states.

1. Click under Value to display the button.

2. Click the button to open the State Types dialog box.
3. Click Add to open the Add dialog box.
4. Opposite Type, click the down arrow and select one of the following:

• Context Services. Select a State Types identifier for Value. If Context Services attributes
have been mapped to Configuration Server Business Attributes, you can select a State Types
DB ID. If no Business Attribute is mapped in the UCS configuration, then UCS accepts any
integer value which could represent a state type defined in an external client-specific
database.

• Literal. Then enter a preconfigured state type from the Configuration Database.
• Variable. Then select the variable that contains the state type.

5. Click OK. The State Types dialog box reflects your entry. You can also use this dialog box to edit and

Context Services Common Blocks

Composer Help 1130

remove state types.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1131

Query Tasks Block

Use this block to query the Universal Contact Server Database used for Context Services for active
and completed tasks within a service for a specified service.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Query Tasks block has the following properties. The behavior of some properties will vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Extensions Property

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Context Services Common Blocks

Composer Help 1132

Task Data

Click the down arrow and select a variable to hold the output data for matching tasks.

Variables Mapping Property

Find this property's details under Common Properties Context Services.

Service ID Property

Find this property's details under Common Properties Context Services.

State ID Property

Click the down arrow under Value and select a variable that contains the ID of the newly entered/
created state.

Task Status Property

This property controls whether Active, Completed, or All tasks are returned.

1. Click under Value to display the button.

2. Click the button to open the Task Status dialog box.
3. Opposite Type, you can:

• Select Variable and select a variable that contains the name of the method to call.
• Select Literal and select one of the following: Completed, Active, or All

Task Type Property

Use this property to filter for specific task types.

1. Click under Value to display the button.

2. Click the button to open the Task Types dialog box.
3. Click Add to open the Add dialog box.

Context Services Common Blocks

Composer Help 1133

4. Opposite Type, click the down arrow and select one of the following:

• Context Services. Select a Task Type identifier for Value. If Context Services attributes
have been mapped to Configuration Server Business Attributes, you can select a Task Types
DB ID. If no Business Attribute is mapped in the UCS configuration, then UCS accepts any
integer value which could represent a task type defined in an external client-specific
database.

• Literal. Then enter a pre-configured task type from the Configuration Database.
• Variable. Then select the variable that contains the task type.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1134

Start Service Block
Use this block to communicate the creation or start of a service in the Universal Contact Server (UCS)
Database. The service may or may not be immediately associated with a customer. For example, an
application, such as a routing workflow, may not know the customer's identity when the service is
started so the service may be started anonymously. Once the customer is known and identified, the
workflow may associate the anonymous service with the customer.

Service Definition

Data residing in the UCS Database includes service data. A service may be seen as a communication
or series of communications between a customer and an enterprise, and possibly also between
various parts of the enterprise. A service has a temporal beginning and end. It may span multiple
interactions and include interactions of various media types (voice, e-mail, and so on).

The scope of a given service is completely defined by your enterprise and the way its customer
service applications are written (for example, an IVR or Agent application).

States and Tasks

As described in the Context Services User's Guide, services are composed of any number of states,
and states in turn can be composed of any number of tasks. Services, states, and tasks are each
different types of Service Elements, which exist over an application-defined lifecycle, and have
business context attached to them in the form of a disposition. Within the database, data for Service
Elements is constructed based on a sequence of one or more Service Events received from an
application, such as a routing workflow.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Start Service block has the following properties. The behavior of some properties will vary
depending on whether you are in offline or online mode.

Context Services Common Blocks

Composer Help 1135

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Extensions Property

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

You can also define custom events.

Service ID Property

Find this property's details under Common Properties Context Services.

Application ID Property

Find this property's details under Common Properties Context Services.

Application Type Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1136

Estimated Duration Property

Use this property to specify the estimated service duration (in seconds).

1. Click under Value to display the button.

2. Click the button to open the Estimated dialog box.
3. Select Literal or Variable from the Type dropdown menu.

• If you select Literal, enter the estimated service duration in seconds.
• If you select Variable, select the name of the variable.

Identifier Property

Use this property to identify the customer. Choose the Customer ID (for associated services) or the
Contact Key (for unassociated services).

1. Click under Value to display the button.

2. Click the button to open the Identifier dialog box.
3. Click one of the following buttons:

• Customer Identifier (for associated services)
• Contact Key (for anonymous services)

4. Click the down arrow opposite Type and select the source: Literal or Variable.

• If you select Literal, enter an attribute for Value, such as CustomerID.
• If you select Variable, select the variable for Value that contains either the Contact Key or

the Customer ID.

Media Type Property

Find this property's details under Common Properties Context Services.

Resource ID Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1137

Resource Type Property

Find this property's details under Common Properties Context Services.

Service Type Property

Find this property's details under Common Properties Context Services.

Use Server Timestamp Property

Find this property's details under Common Properties Context Services.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1138

Start Task Block
Use this block to mark the application as entering a specified task within a service/state.

Tip
If using Context Services 8.5, the database for service/state information is the
Genesys Mobile Services database. If using Context Services 8.1, the database for
service/state information is the Universal Contact Server database. For more
information, see General Guidelines for Context Services Preferences.

.
The Start Task block has the following properties. The behavior of some properties will vary
depending on whether you are in offline or online mode.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Extensions Property

Find this property's details under Common Properties Context Services.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
strategy blocks. You can also define custom events.

Context Services Common Blocks

Composer Help 1139

Task ID Property

Click the down arrow under Value and select a variable that contains the ID of the task.

Application ID Property

Find this property's details under Common Properties Context Services.

Application Type Property

Find this property's details under Common Properties Context Services.

Estimated Duration Property

Find this property's details under Common Properties Context Services.

Media Type Property

Find this property's details under Common Properties Context Services.

Resource ID Property

Find this property's details under Common Properties Context Services.

Resource Type Property

Find this property's details under Common Properties Context Services.

Use Server Timestamp Property

Find this property's details under Common Properties Context Services.

Context Services Common Blocks

Composer Help 1140

Service ID Property

Find this property's details under Common Properties Context Services.

State ID Property

Click the down arrow under Value and select a variable that contains the ID of the state.

Task Type Property

Use this property to filter for specific task types.

1. Click under Value to display the button.

2. Click the button to open the Task Types dialog box.
3. Click Add to open the Add dialog box.
4. Opposite Type, click the down arrow and select one of the following:

• Context Services. Select a Task Type identifier for Value. If Context Services attributes
have been mapped to Configuration Server Business Attributes, you can select a Task Types
DB ID. If no Business Attribute is mapped in the UCS configuration, then UCS accepts any
integer value which could represent a task type defined in an external client-specific
database.

• Literal. Then enter a pre-configured task type from the Configuration Database.
• Variable. Then select the variable that contains the task type.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Context Services Common Blocks

Composer Help 1141

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1142

Update Customer Block
Use this block to update the customer profile in the database used for Context Services. You can
update customer profile or extension data. Composer supports multi-valued extensions starting with
Universal Contact Server 8.0.2. For more information on Context Services attributes and extensions,
see the Context Services User's Guide.

Notes:

• Place this block after the Query Customer block after you place the results of the customer query in a
variable. This applies if you want to update some individual customer attributes and keep the other
attributes at their original values. Otherwise, to remove all older attribute values, you do not need to
use a Query Customer block and the Profile Data Variable property can remain not set.

• You may wish to configure Context Services Preferences. The behavior of some properties can vary
depending on whether you are in offline or online mode.

• Also see Mandatory Data for UCS Blocks.

• If using Context Services 8.5, the database for service/state information is the Genesys Mobile Services
database. If using Context Services 8.1, the database for service/state information is the Universal
Contact Server database. For more information, see General Guidelines for Context Services
Preferences.

The Update Customer block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Find this property's details under Common Properties.

Profile Data Variable

Click the down arrow under Value and select the variable that contains the customer profile data for
the update operation. A Query Customer block can be used to initialize this variable.

Context Services Common Blocks

Composer Help 1143

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/UserData#Mandatory_Data_for_UCS_Blocks

Profile Data Property

Use this property to specify the core or extension customer profile data.

1. Click under Value to display the button.

2. Click the button to open the Profile Data dialog box. The first time this dialog box appears, an Add
button appears on the left side only.

3. Click Add to open the Profile Attribute dialog box.
4. Click the down arrow and select either Core (for customer profile core data) or a customer profile

extension.
5. Click OK to close the Profile Extension dialog box. The Profile Data dialog box adds a second column

with a second Add button.
6. With Core or the customer profile extension still highlighted in the first column, click the Add button in

the second column. The Customer Attribute dialog box opens. Do one of the following:

• Opposite Attribute, select the attribute (core or extension depending on what you
previously selected). In offline mode, there is an additional field ‘’Attribute Type” in this
dialog where you must choose between string, Boolean, integer, long, double, date,
datetime, or currency depending on the customer profile attribute definition.

• Opposite Type, select Literal or Variable.
• Opposite Value, enter the literal or select the variable.
• Click OK to close the dialog box. The Profile Data dialog box reflects your entry.

7. Repeat these steps if you wish to update another attribute.

Exceptions Property

Find this property's details under Common Properties.

You can also define custom events.

Customer ID Property

Click the down arrow under Value and select a variable to specify the Customer Identifier.

Operation Property

Use this property to select the block’s operation. Click the down arrow and select one of the
following:

Context Services Common Blocks

Composer Help 1144

• Update to update an existing customer profile.
• Insert Extension to insert extensions records to an existing customer profile.

Condition Property

Find this property's details under Common Properties.

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1145

Using Context Services Blocks
This section describes how to use the Context Services blocks.

• Context Services and Composer
• Common Properties for Context Services
• Online and Offline Modes
• Runtime Configuration
• Context Services Exception Events

Context Services Common Blocks

Composer Help 1146

Common Properties Context Services
The following properties are common to multiple Context Services blocks. Their descriptions are
placed here to minimize duplication of content. The behavior of some properties can vary depending
on whether you are in offline or online mode.

Important
If using Context Services 8.5, the dropdown menu for some properties (for example,
the Media Type Property) will be unavailable.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Application ID Property

Use this property to assign a variable that contains a unique application ID (for example, a Genesys
DB ID) for the application issuing the anonymous service event (for example, a GVP VoiceXML
application, an Orchestration SCXML application, and so on).

Application Type Property

Use this property to assign a unique ID associated with the type or class of the application issuing the
completed service event. May be used to group related applications, potentially across resource
types.

1. Under Value to display the ... button.
2. Click the ... button to open the Application Type dialog box.
3. Select one of the following:

Context Services Common Blocks

Composer Help 1147

• Context Services. Select an Application Type identifier.
• Variable. Select the name of the variable that contains the Application Type identifier.
• Literal. Enter the Application Type.

Disposition Code Property

Use this property to assign a unique ID for the business disposition assigned to the given service/
state. Typically this will be a Disposition Code Business Attribute. For more information on
disposition, see the Context Services User's Guide. To set this property:

1. Click under Value to display the ... button.
2. Click the ... button to open the Disposition Code dialog box.
3. Select one of the following:

• Literal. Enter the Disposition Code for Value.
• Variable. Select the name of the variable that contains the Disposition code.
• Context Services. Select a Disposition code.

Disposition Description Property

Use this optional property to select a variable containing text providing additional context on the
business disposition.

Extensions Property

Use this property to specify the connection to the Context Services server.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
workflow blocks. You can also define custom events.

Condition Property

Find this property's details under Common Properties.

Context Services Common Blocks

Composer Help 1148

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Estimated Duration Property

Use this property to specify a variable for the estimated service duration (in seconds).

Media Type Property

Used to specify a particular Media Type for the service.

1. Click under Value to display the ... button.
2. Click the ... button to open the Extensions dialog box.
3. Click Add in the Extensions dialog box to open the Media Type dialog box.
4. Opposite Type, click the down arrow and select one of the following:

• Context Services. For Value, select a Media Type already defined in the database.
• Variable. For Value, select a Media Type contained in a variable.
• Literal. For Value, enter the name of the Media Type.

• Click OK.

Resource ID Property
Use this property to assign a variable containing the unique ID for the specific resource-providing service. This might be the Genesys
DB ID of a specific GVP or orchestration platform, or the DB ID of a given agent, depending on the context.

Context Services Common Blocks

Composer Help 1149

Resource Type Property
Use this property to assign a unique ID associated with the type or class of resource providing service (for example, GVP, Agent
Desktop, Orchestration).

1. Click under Value to display the ... button.
2. Click the ... button to open the Resource Type dialog box.
3. Select one of the following from the Type dropdown menu:

• Context Services. Select a Resource Type identifier.
• Literal. Enter the unique ID associated with the type or class of resource.
• Variable. Select a variable that contains this information.

Service ID Property
Click the down arrow under Value and select a variable that contains the ID of the anonymous service.

Service Type Property
Use this property to assign a Service Type code (Business Attribute), which describes what type of service a customer is requesting at a
particular moment in time. For example, an IVR system may have the customer select 1 for Loan, 2 for Investment or 3 for Information.
Loan, Investment, and Information are all Service Types.

1. Click under Value to display the ... button.
2. Click the ... button to open the Service Type dialog box.
3. Click the down arrow opposite Type and one of the following:

• Context Services. Select a Service Type code.
• Literal. Enter a Service Type code.
• Variable. Select the variable that contains the Service Type code.

State ID Property
Use this property to select a variable for the identifier for the completed state.

State Types Property
Use this property to filter for other service state types, such as user-defined service states.

1. Click under Value to display the ... button.
2. Click the ... button.

Context Services Common Blocks

Composer Help 1150

3. Click Add to open the Add State Types dialog box.
4. Opposite Type, click the down arrow and select one of the following:

• Context Services. Select a variable for the State Type identifier. If using Context Services
8.1 and identifiers have been mapped to Business Attributes, you can select a State Types
DB ID. If no Business Attribute is mapped, then the server accepts any integer value which
could represent a state type defined in an external client-specific database.

• Literal. Then enter a preconfigured state type.
• Variable. Then select the variable that contains the state type.

Task Type Property
Use this property to filter for specific task types.

1. Click under Value to display the ... button.
2. Click the ... button to open the Task Types dialog box.
3. Click Add to open the Add dialog box.
4. Opposite Type, click the down arrow and select one of the following:

• Context Services. Select a Task Type identifier for Value. If using Context Services 8.1
Context Services identifiers have been mapped to Business Attribute values, you can select a
Task Types DB ID. If no Business Attribute is mapped, then any integer value is accepted,
which could represent a task type defined in an external client-specific database.

• Literal. Then enter a pre-configured task type from the Configuration Database.
• Variable. Then select the variable that contains the task type.

Use Server Timestamp Property
Use this property to determine if Universal Contact Server should assign the time at which the service was associated with the
customer.

• If True, the UTC time at which the service event was associated is assigned by the server.
• If False, the UTC time is assigned by script embedded in the SCXML application.

1. Click under Value to display the ... button.
2. Click the ... button to open the User Server Timestamp dialog box.
3. Select one of the following:

• Literal. Then for Value, select True or False.
• Variable. Then for Value, select a variable that contains true or false.

Context Services Common Blocks

Composer Help 1151

https://docs.genesys.com/Documentation/GA/latest/user/CfgEnumeratorValue#Business_Attribute_Values
https://docs.genesys.com/Documentation/GA/latest/user/CfgEnumeratorValue#Business_Attribute_Values

Variables Mapping Property
Use this property to map the JSON data returned by this block to variables. See the Variables Mapping topic for details.

ORS Extensions Property
Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the Disconnect and EndParallel blocks)
add a new ORS Extensions property.

Context Services Common Blocks

Composer Help 1152

Online and Offline Modes
Composer supports two modes during when working with Context Services blocks:

• Online mode (connected to the database)
• Offline mode (not connected to the database)

You specify online or offline mode in Context Services Preferences by checking the box opposite
Connect to the Universal Contact Server when designing diagrams and completing the
associated fields.

Online Mode

In online mode, you are connected to the Context Services server. In this case, based on Context
Services Preferences, Composer accesses a specified server instance during design time, queries for
information, and populates dropdown lists and other interface items appropriately. Composer opens a
new connection to the server each time some data needs to be fetched. The connection is not kept
alive during calls (as is the connection Configuration Server) so no connection status is displayed.

Offline Mode

An offline mode is also supported. In this mode, Composer does not contact the Context Services
server during design time. Any dialogs or properties that query the server in online mode revert to an
open interface in offline mode and do not show dropdown lists containing database objects. In this
case, you must key in literal values or you may select variables if the particular property or dialog
supports working with application variables. Note: Both these modes apply to Composer during
application design. At runtime, the SCXML/VXML application will contact an instance of UCS.

Tip
When using Context Services 8.5 and Genesys Mobile Services, no connection is made
from Composer to GMS at design time. As described in Context Services Preferences,
connections to GMS are initiated only at runtime by ORS/MCP.

Context Services Common Blocks

Composer Help 1153

Runtime Configuration
This topic discusses both Workflow Diagram and Callflow Diagram runtime configuration.

Workflow Diagram Runtime Configuration

When you publish an interaction process diagram, Composer creates an EnhancedRouting Script
object in Configuration Server. This Script object has a context_management_services_url
parameter, which is initialized with the UCS server parameters configured in Context Services
Preferences.

The Script objects are automatically created by Composer and the url is also automatically set if the
Project is deployed within Composer (in embedded TOMCAT)

Context Services Common Blocks

Composer Help 1154

Manual Configuration
If using a DN to trigger the interaction process SCXML application, in the Annex of the DN, you must
manually add the following property: Orchestration/application=script:<Name of the Script
object as defined above>

Callflow Diagram Runtime Configuration

Update the IVR Profile to define a context_services_url parameter whose value points to the
Context Services (UCS) URL defined in the Context Services preference page.

Running a Callflow
This section describes the configuration required to run a callflow from a Play Application workflow
block. Configure the context_services_url parameter in Resource Manager's default IVR Profile,
which Resource Manager passes on to the VXML application.

Note: Depending on the media-service parameter seen in the INVITE, the service type changes for
MSML call flows. If media-service=treatment or conference or record (recording client) or cpd, add
the following to ensure that the cs_services_url parameter is populated in the Composer callflow:
treatment.context_services_url=fixed,http://demosrv8:9080

Context Services Common Blocks

Composer Help 1155

treatment.cs_services_url=fixed,http://demosrv8:9080/genesys/1/cs

1. In the Sip Switch/DN/VOIP Services/MSML_Service DN (if the msml-support option is true in Sip Server)
or in the standard VoipService DN (if the msml-support option is false in Sip Server): change the option
contact from sip:host_MCP:port_MCP to sip:host _RM:port_RM.

2. In the Tenant object, designate a default profile for Resource Manager: gvp.general section, option
default-application=<name of some IVRProfile object under that tenant>; for instance, Default
Application.

3. In the IVR Profile/Default Application specified above, in the Annex, add the section gvp.service-
parameters.

4. In the gvp.service-parameters section, add the option msml.context_services_url= fixed,
http://demosrv8:9080 (here, host:port of Context Management Server, which is the Server port that
you specified in Context Services Preferences).

5. In the gvp.service-parameters section, add the option voicexml.context_services_url= fixed,
http://demosrv8:9080 (here, host:port of Context Management Server, which is the Server port that
you specified in Context Services Preferences).

6. If using Context Services 8.5 (8.1.440.18), add the option for Genesys Mobile Services url. Example: In
the gvp.service-parameters section, add the option voicexml.cs_services_url= fixed,
http://demosrv8:9080/genesys/1/cs.

Context Services Common Blocks

Composer Help 1156

Context Services Exception Events
Below are some common exceptions for Context Services blocks:

Exception Number App Last Error Description
error.com.genesyslab.composer.badfetch400 Bad Request
error.com.genesyslab.composer.notauthorized401 Not Authorized

error.com.genesyslab.composer.forbidden403 Forbidden + specific error
message from the server

error.com.genesyslab.composer.notfound404 Not Found

error.com.genesyslab.composer.servererror500 Internal Server Error + specific
error message from the server

error.com.genesyslab.composer.badgateway502 Bad Gateway
error.com.genesyslab.composer.serviceunavailable503 Service Unavailable

Context Services Common Blocks

Composer Help 1157

Outbound Common Blocks
The Outbound blocks support Genesys Outbound Contact, an automated product for creating,
modifying, running, and reporting on outbound campaigns for proactive customer contact. Outbound
Contact Solution (OCS) provides automated dialing and call-progress detection, so that an Agent is
required only when a customer is connected. Composer supplies the following Outbound blocks:

Block Name Block Description

Add Record Automates building of Calling Lists by adding a new
record to a specified Calling List.

Cancel Record Cancels a customer record in a calling list.

Do Not Call
Adds a contact record, such as a phone number or
an e-mail address, to a specified Do Not Call List
and marks the corresponding record as Do Not Call.

Record Processed Marks a record as requiring no further handling.

Reschedule Record Reschedules a customer interaction from the
specified Calling List.

Update Record Updates a Calling List record that you specify via a
RecordHandle parameter.

OCS Variables

The Outbound blocks use OCS variables for SCXML applications and OCS variables for VXML
applications, present in the Entry blocks of their respective diagrams. These variables are prefixed by
"OCS_" and are added to the Entry by default.

Using the Outbound Blocks

Outbound blocks are specifically designed to be used in callflows/workflows that are configured to
work with Outbound records, the essential element of which is communication between Universal
Routing Server (URS) and Interaction Server, and between Interaction Server and OCS. For additional
information, see the Outbound Contact documentation.

Outbound Common Blocks

Composer Help 1158

Add Record Block

Use this block to automate building of Calling Lists by adding a new record to a specified Calling List.
For example, you can use the Add Record block to automatically develop a Calling List, such as one to
follow up on inbound calls that were abandoned during traffic peaks. You can then configure a routing
workflow to detect abandoned calls and add records to the Calling List with the parameters of the
incoming interactions. The Calling List can then be used by an outbound campaign that dials out to
these customers during off-peak hours and has the Agent apologize and follow up. Also see:

• OCS_Variables
• Using the Outbound Blocks

This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Contact Info Property

Click the down arrow and select the variable that contains the contact telephone number (home,
work, cell), FAX number, or e-mail address.

Contact Info Type Property

Click the down arrow and select a Contact Information Type: No Contact Type, Home Phone,
Direct Business Phone, Business with Extension, Mobile, Vacation Phone, Pager, Modem,
Voice Mail, Pin Pager, Email Address, Instant Messaging.

Outbound Common Blocks

Composer Help 1159

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Record Status Property

Click the down arrow and select a record status, such as Ready, Retrieved, Updated, Stale,
Cancelled, Agent Error, Missed Callback.

Record Type Property

Click down arrow and select the Type of record, such as No Record Type, Unknown, General,
Campaign Rescheduled, Personal Rescheduled, Personal Callback, Campaign CallBack, No
Call.

Outbound Common Blocks

Composer Help 1160

Call Time Property

This property specifies the time when record was called.

1. Click under Value to display the button.

2. Click the button to open the Call Time dialog box.
3. From the Type dropdown, do one of the following:

• Select Literal from the dropdown menu and then specify the call date and time.
• Select Variable from the dropdown menu and then select the variable that contains the call

timetime.

4. Click OK to close the dialog box.

Call Time From Property

This property specifies the time frame when a record can be called.

1. Click under Value to display the button.

2. Click the button to open the Call Time From dialog box.
3. From the Type dropdown, do one of the following:

• Select Literal from the dropdown menu and then specify the time.
• Select Variable from the dropdown menu and then select the variable that contains the

time.

4. Click OK to close the dialog box.

Call Time Until Property

This property specifies the time frame when a record can be called.

1. Click under Value to display the button.

2. Click the button to open the Call Time Until dialog box.
3. From the Type dropdown, do one of the following:

• Select Literal from the dropdown menu and then specify the time.
• Select Variable from the dropdown menu and then select the variable that contains the

time.

Outbound Common Blocks

Composer Help 1161

4. Click OK to close the dialog box.

Scheduled Date and Time Property

This property specifies the date/time at which scheduled call should be dialed.

1. Click under Value to display the button.

2. Click the button to open the Scheduled Data and Time dialog box.
3. From the Type dropdown, do one of the following:

• Select Literal from the dropdown menu and then specify the date and time.
• Select Variable from the dropdown menu and then select the variable that contains the date

and time.

4. Click OK to close the dialog box.

Time Zone Property

This property specifies the name of a Time Zone, associated with the customer record and configured
in Configuration Server.

1. Click under Value to display the button.

2. Click the button to open the Time Zone dialog box.
3. From the Type dropdown, do one of the following:

• If you are connected to Configuration Server, select Configuration Server from the
dropdown menu. Select the Time Zone from the Value field.

• Select Literal from the dropdown menu and then enter the Time Zone in the Value field.
• Select Variable from the dropdown menu and then select the variable that contains the

Time Zone from the Value field.

4. Click OK to close the dialog box.

Attempts Property

Click the down arrow and select the variable that specifies the maximum number of attempts to dial
the record in the Calling List during one Campaign.

Outbound Common Blocks

Composer Help 1162

Calling List Property

This property specifies the name of a Calling List, which is configured in Configuration Server.

1. Click under Value to display the button.

2. Click the button to open the Calling List dialog box.
3. From the Type dropdown, do one of the following:

• If you are connected to Configuration Server, select Configuration Server from the
dropdown menu. Select the Calling List from the Value field.

• Select Literal from the dropdown menu and then enter the Calling List in the Value field.
• Select Variable from the dropdown menu and then select the variable that contains the

Calling List from the Value field.

4. Click OK to close the dialog box.

Call Result Property

Click the down arrow and result code as defined in a Configuration Manager Enumeration table, such
as Abandoned, Agent Callback Error, All Agents Busy, Answer, Answering Machine Detected, Bridged,
Busy, Call Drop Error, and so on.

Campaign Property

This property specifies the name of an Outbound Campaign associated with the Calling List, which is
configured in Configuration Server.

1. Click under Value to display the button.

2. Click the button to open the Campaign dialog box.
3. From the Type dropdown, do one of the following:

• If you are connected to Configuration Server, select Configuration Server from the
dropdown menu. Select the Campaign from the Value field.

• Select Literal from the dropdown menu and then enter the Campaign in the Value field.
• Select Variable from the dropdown menu and then select the variable that contains the

Campaign from the Value field.

4. Click OK to close the dialog box.

Outbound Common Blocks

Composer Help 1163

Chain ID Property

Click the down arrow and select the variable that contains a unique chain identifier (optional). If
missing, it is assumed that a record forms a new chain.

Chain N Property

Click the down arrow and select the variable that contains a unique number in a chain (optional). If
missing, the next available number is assigned.

OC Server Property

This property identifies the Outbound Contact Server that will interact with the block. You can specify
a different OCS application for a specific block. By default, the OCS_URI application variable is used. If
the datasource is Config Server, Composer will read the OCS host, listening port and connection
protocol from config server. If the datasource is Literal/Variable, the format should be
[http|https]://<host>:<port>.

User Data Property

Use this property to specify key-value pairs for user data attached to the interaction.

1. Click under Value to display the button.

2. Click the button to open the User Data dialog box.
3. Click Add to open the Select Items dialog box.
4. Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.
5. Opposite Value, click the down arrow and select either literal or variable.

• If you select Literal, enter the name of the key in the second field.
• If you select Variable, select the name of the variable from the second field.
• Select the Value is numeric box if applicable.

6. Click OK to close the Select Items dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.
8. Click OK when through in the User Data dialog box.

Outbound Common Blocks

Composer Help 1164

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Outbound Common Blocks

Composer Help 1165

Cancel Record Block
Use this block to cancel a customer record in a calling list. You can identify the customer record to
cancel by using the Record Handle, Contact Info, or Customer ID property (one of these must be
specified). If you specify more than one of these properties, the identifiers are prioritized as follow:
Record Handle (highest), Contact Info, Customer ID (lowest). This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Outbound Common Blocks

Composer Help 1166

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Contact Info Property

Select the variable that contains contact information, such as telephone number (home, work, cell),
FAX number, or e-mail address. This parameter can be used for Inbound calls to reference the
customer record when Record Handle is not available.

Customer ID Property

Select the variable that identifies the customer when a user-defined field is present in the calling list
as described in the Outbound Contact 8.1 Deployment Guide. You can use for Inbound calls to
reference the customer record when Record Handle is not available.

OC Server Property

This property identifies the Outbound Contact Server processing this Calling List. By default, the
OCS_URI application variable is used. If the datasource is Config Server, Composer will read the OCS
host, listening port and connection protocol from config server. If the datasource is Literal/Variable,
the format should be [http|https]://<host>:<port>.

Record Handle Property

Select the variable that identifies the customer using the Record ID assigned by Outbound Contact
Server if available. Either Record Handle, Contact Info or Customer ID must be specified.

Outbound Common Blocks

Composer Help 1167

Tenant Property

Select the variable that identifies the tenant associated with the Calling List.

Update Record Chain Property

Select False to indicate if only the customer record should be cancelled. Select True if all records
chained to the customer record should be canceled.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Outbound Common Blocks

Composer Help 1168

Do Not Call Block
Use this block to add a contact record, such as a phone number or an e-mail address, to a specified
Do Not Call List and marks the corresponding record as Do Not Call. Note: Do not use the Do Not Call
and Record Processed blocks to finalize Outbound record processing. You cannot use other Outbound
blocks to process records with the same Record Handle after using Processed or Do Not Call in a
workflow. This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Outbound Common Blocks

Composer Help 1169

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Contact Info Property

Select the variable that contains contact information, such as telephone number (home, work, cell),
FAX number, or e-mail address. This parameter can be used for Inbound calls to reference the
customer record when Record Handle is not available.

Customer ID Property

Select the variable that identifies the customer when a user-defined field is present in the Calling List
as described in the Outbound Contact 8.1 Deployment Guide. You can use for Inbound calls to
reference the customer record when Record Handle is not available.

OC Server Property

This property identifies the Outbound Contact Server processing this Calling List. By default, the
OCS_URI application variable is used. If the datasource is Config Server, Composer will read the OCS
host, listening port and connection protocol from config server. If the datasource is Literal/Variable,
the format should be [http|https]://<host>:<port>.

Record Handle Property

Select the variable that identifies the customer using the Record Handle if available. Either Record
Handle, Contact Info or Customer ID must be specified.

Outbound Common Blocks

Composer Help 1170

Tenant Property

Select the variable that identifies the tenant associated with the Calling List.

Update Record Chain Property

Select False to indicate if only the customer record should be cancelled. Select True if all records
chained to the customer record should be canceled.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Outbound Common Blocks

Composer Help 1171

Record Processed Block
Use the Record Processed block to mark a record as requiring no further handling. When an Agent
finishes processing a Calling List record, Genesys Desktop sends a RecordProcessed event to indicate
that the record is processed and Outbound Contact Server updates the record accordingly. Use the
Record Processed block in a workflow to have URS request (through Interaction Server) that
Outbound Contact Server finish processing a record created as a result of a customer inquiry. For
additional information on using this block, including returned results and fault codes, consult the
Universal Routing 8.1 Reference Manual and the section on updating call results and custom fields in
the Outbound Contact 8.1 Reference Manual.

Important
Do not use the Do Not Call and Record Processed blocks to finalize Outbound record
processing. You cannot use other Outbound blocks to process records with the same
Record Handle after using Processed or Do Not Call in workflow.

This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for

Outbound Common Blocks

Composer Help 1172

Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

OC Server Property

This property identifies the Outbound Contact Server that will interact with the block. You can specify
a different OCS application for a specific block. By default, the OCS_URI application variable is used. If
the datasource is Config Server, Composer will read the OCS host, listening port and connection
protocol from config server. If the datasource is Literal/Variable, the format should be
[http|https]://<host>:<port>.

User Data Property

Use this property to specify key-value pairs for user data attached to the interaction.

1. Click under Value to display the button.

2. Click the button to open the User Data dialog box.
3. Click Add to open the Select Items dialog box.
4. Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.
5. Opposite Value, click the down arrow and select either literal or variable.

• If you select Literal, enter the name of the key in the second field.
• If you select Variable, select the name of the variable from the second field.

Outbound Common Blocks

Composer Help 1173

• Select the Value is numeric box if applicable.

6. Click OK to close the Select Items dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.
8. Click OK when through in the User Data dialog box.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Outbound Common Blocks

Composer Help 1174

Reschedule Record Block

Use this block to Reschedule a customer interaction from the specified Calling List. A record is
typically rescheduled during a call when a customer requests a callback at a certain time. For
additional information on using this block, including returned results and fault codes, consult the
Universal Routing 8.1 Reference Manual and the section on updating call results and custom fields in
the Outbound Contact 8.1 Reference Manual. This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Outbound Common Blocks

Composer Help 1175

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

OC Server Property

This property identifies the Outbound Contact Server (OCS) application that the block will interact
with. It allows you to specify a different OCS application for a specific block. By default, the
OCS_Record_URI application variable is used.

1. Click under Value to display the button.

2. Click the button to open the Application Selection dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. Select the
name of the Outbound Contact Server object from the Value field.

• You can also select Literal and enter the name of the server in the Value field.
• You can also select Variable and select the variable containing the name from the Value field.

If the datasource is Configuration Server, Composer reads the OCS host, listening port, and
connection protocol from Configuration Server. If the datasource is Literal/Variable, use the format
[http|https]://<host>:<port>.

Scheduled Date and Time Property

Specify the date/time at which scheduled call should be dialed.

1. Click under Value to display the button.

2. Click the button to open the Scheduled Date and Time dialog box.
3. The next step depends on whether you are connected to Configuration Server.
4. Do one of the following.

• Select Literal and select the date and time from the Value field.

Outbound Common Blocks

Composer Help 1176

• Select Variable and select the name of the variable containing the date and time.
• Select Delay and select an amount of time to delay from the Value field.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Outbound Common Blocks

Composer Help 1177

Update Record Block
Use this block to update a Calling List record that you specify via a RecordHandle parameter. For
example, in Predictive dialing mode, this request can be used to overwrite the call result detected by
call progress detection when needed. Or you can overwrite an answer call result with the wrong party
call result. Note: When this block is executed in a workflow, it results in an External Service Request
(through Interaction Server) to Outbound Contact Server. Since the request goes through Interaction
Server, you must have the Genesys Multimedia product installed and an Open Media component to
handle External Service processing. For additional information on using this block, including returned
results and fault codes, consult the Universal Routing 8.1 Reference Manual and the section on
updating call results and custom fields in the Outbound Contact 8.1 Reference Manual. This block has
the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Outbound Common Blocks

Composer Help 1178

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

OC Server Property

This property identifies the Outbound Contact Server (OCS) application that the block will interact
with. It allows you to specify a different OCS application for a specific block. By default, the
OCS_Record_URI application variable is used.

1. Click under Value to display the button.

2. Click the button to open the Application Selection dialog box.
3. The next step depends on whether you are connected to Configuration Server.

• If you are connected, select Configuration Server from the Type dropdown menu. Select
the name of the Outbound Contact Server object from the Value field.

• You can also select Literal and enter the name of the server in the Value field.
• You can also select Variable and select the variable containing the name from the Value

field.

If the datasource is Configuration Server, Composer reads the OCS host, listening port, and
connection protocol from Configuration Server. If the datasource is Literal/Variable, use the format
[http|https]://<host>:<port>.

User Data Property

Use this property to specify key value pairs for user data attached to the interaction.

1. Click under Value to display the button.

2. Click the button to open the User Data dialog box.
3. Click Add to open the Select Items dialog box.
4. Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.
5. Opposite Value, click the down arrow and select either literal or variable.

Outbound Common Blocks

Composer Help 1179

• If you select Literal, enter the name of the key in the second field.
• If you select Variable, select the name of the variable from the second field.
• Select the Value is numeric box if applicable.

6. Click OK to close the Select Items dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.
8. Click OK when through in the User Data dialog box.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Outbound Common Blocks

Composer Help 1180

Server-Side Common Blocks
Both routing and voice applications use the Server-Side blocks.

• Backend (voice and route). Use to invoke custom backend Java Server Pages (JSP).
• Business Rule (voice and route). Use this block to have Composer query the Genesys Rules Authoring

Tool (GRAT). For the Rule Package that you specify, Composer will query the GRAT for the Facts
associated with the Rule Package. You can then set values for the Facts, call the Genesys Rules Engine
for evaluation, and save the results in a variable.

• DB Data (voice and route). Use for connecting to a database and retrieving/manipulating information
from/in a database. This block uses a connection profile to read database access information. It accepts
a SQL query or a Stored Procedure call, which can be defined using the Query Builder or Stored
Procedure Helper. It can also use a SQL script file.

• DB Input (voice only). Accepts a DB Data block as its data source and acts as an input field that
accepts input based on a grammar created from the results returned from the database.

• External Service (route only). Enables routing applications to invoke methods on third party servers
that comply with Genesys Interaction Server (GIS) protocol. Use to exchange data with third party (non-
Genesys) servers that use the Genesys Interaction SDK or any other server or application that complies
with the GIS communication protocol.

• NDM Block. Starting with Composer release 8.1.410.14, callflow diagrams add an NDM block to work
with Nuance OSDM 6.1 modules used for speech and touch-tone IVR applications.

• OPM Block (voice and route). Enables VXML and SCXML applications to use Operational Parameters
(OPM) which allow a business user to control the behavior of these applications externally. Operational
Parameters are defined and managed in the Operational Parameter Management (OPM) feature of
Genesys Administrator Extension (GAX)

• URS Function (route only). Introduced in 8.1.440.18. Use this block to call Universal Routing Server
functions via <session:fetch> by the urs method.

• Web Request (voice and route). Use to invoke any supported HTTP web request or REST-style web
Service. It supports PUT, DELETE, GET, and POST methods.

• Web Service (voice and route). Use to invoke Web Services for both routing and voice applications.
Based on common Web Services standards such as XML, SOAP and WSDL instead of proprietary
standards. You can pass parameters (as in subdialogs) and store the return values in variables. GET,
POST, and SOAP are supported. Note: Currently Composer does not support SOAP 1.2. Only SOAP 1.1 is
supported.

Server-Side blocks provide the ability to interact with internal and external custom server-side pages,
Web Services, and URLs. These blocks can be used to exchange data like VoiceXML and SCXML
variables, JSON strings between GVP interpreter, and custom server-side pages. With the exception of
the Business Rule block, Composer uses server-side pages (ASP.NET or JSP) for implementing Server-
Side block functionality. If you include these blocks in a diagram, server-side pages provided in
Composer Projects are used at run time.

Server-Side Common Blocks

Composer Help 1181

Important
Starting with version 8.1.450.33, Composer supports fetching HTTPS (HTTP over SSL)
URLs in the Web Request and Web Service blocks. A new property category, HTTPS
Server Authentication, with two properties, Trust Store Location and Trust
Store Password, is introduced to extend support for HTTPS URLs.

Example Web Scenarios

In a typical scenario for the Web Service or Web Request block, the Composer-provided server-side
page is invoked first via the platform through language appropriate tags (<session:fetch for SCXML
and <data>, <subdialog> for VXML). This page, based on the input parameters specified in the
block, invokes any external URL for the Web Service or Web Request blocks. In case of the Web
Service block, it forms the appropriate SOAP request and sends it out. It then parses the response it
receives from the external request and makes it available to the application. The figure below depicts
the flow.

The Need for Server-Side Pages

Composer provides the Server-Side blocks in anticipation that users will usually map either their

Server-Side Common Blocks

Composer Help 1182

callflows or workflows to their business logic via these blocks. For example, the Backend block offers
the ability to create custom backend server pages that can be more tightly coupled with business
logic and at the same time provides more flexibility since the backend logic is provided by the user.
The different server-side functions offer a proxy service that can be used to query Web Services, web
servers and backend server pages while providing a user interface that is simple enough to use, but
also offering advanced features. Regarding security, the Web Request and Web Service blocks offer
proxy clients which support HTTP, as well as SOAP. Composer supports Server-Side pages in both Java
and .NET.

• Java server pages are hosted on Apache Tomcat, which is packaged and deployed with Composer.
• .NET applications are hosted on Microsoft IIS. The latter should be deployed by the user on the same

server as Composer.

The choice between using Java or .NET is mainly dependent on what technologies are available to the
user as well as the platforms. Below is a decision matrix outlining the some common situations where
the most appropriate server-side block is recommended.

Situation Recommended Block Comments

A callflow/workflow needs to
consume a Web Service which
has a WSDL definition.

Web Service block

The Web Service block provides
utilities to design the way the
Web Service will be consumed,
such as a WSDL parser. During
runtime, the output results can
also easily be assigned to
callflow or workflow variables.

A callflow/workflow needs to
query a web server for data Web Request block

The Web Request block provides
a proxy client for sending the
web request, while offering
functionality such as assigning
the result to variables, and so on.

A REST-style web service needs
to be consumed by the
application.

Web Request block
The Web Request block is used

to invoke any supported HTTP
web request or REST-style web
Service.

A callflow/workflow needs to
access some data using some
specific interface not using HTTP
or SOAP

Backend block

The Backend block offers a proxy
service to a backend application
that is developed by the user and
customized accordingly.
The Backend block allows you to reuse
custom JARs and .NET assemblies quickly
since it provides an easy mechanism to
pass parameters to and from the backend
server page. The backend pages provide
a skeleton implementation, which makes
it easy and quick to start implementing
custom logic which can use other user-
provided libraries.

A callflow/workflow needs to do
some customized post-
processing to data retrieved

Backend block
The backend application will
have to be created such that it
retrieves the data and post-
processes it accordingly.

My application does not work
with either the Web Service or Backend block Try starting with the Backend

block since the implementation is

Server-Side Common Blocks

Composer Help 1183

the Web Request blocks. What
can I use?

open by nature. The Backend
application is designed to provide
a simple interface to the actual
user-specific application.
Note: The Backend server-side page
called from the Backend block will be part
of the project and will be included when
the application project is deployed.

Configuring Log Levels for Server-Side Blocks

Beginning with release 8.1.500.03, you can configure the log levels for the various server-side blocks
across projects using the Bulk Manager.

Important
For Java projects, information is recorded in the Composer.log file generated under
<tomcat-dir>\logs\. For .NET projects, a log file is generated for each project under
the Logs folder within each project.

• Click the Log tab on the Bulk Manager. The following is displayed:

• Select the required log level from the drop-down under each server-side block. On loading Bulk
Manager, the existing log level for each block (based on the log4j.xml file for Java projects and
web.config file for .NET projects) is selected by default. When you change the level here, the next
time Bulk Manager is loaded, the updated levels are displayed based on the corresponding config files.

• Click Apply Changes.
• For the server-side blocks in a Java project, the Tomcat server must be restarted for the new log file

settings to be effective. The Tomcat server is restarted automatically when you click Apply Changes.

Server-Side Common Blocks

Composer Help 1184

Important
For .NET projects, changes to the log levels are effective immediately on clicking
Apply Changes. Restarting IIS is not required for .NET projects.

• To disable logging for a particular server-side page, select the Off option from the drop-down.

Note: For both .NET and Java projects, log levels can be configured for each project individually.
However, prior to release 8.1.550.08, for Java projects, the log levels configuration is applied to all
the projects as a whole. Each Java project cannot have log levels configured individually in releases
prior to 8.1.550.08.

The following are the different log levels available:

Log Level Description
All All levels inlcuding custom levels.

DEBUG Informational events that are useful in debugging
an application.

ERROR Error events that might still allow the application to
continue running.

FATAL Very severe error events that might cause the
application to abort.

INFO Informational events that highlight the progress of
the application at a high-level.

OFF No information is recorded. Logging is turned off.

TRACE Informational events that are a level higher than
the Debug level.

WARN Events that maybe potentially harmful.

Note: Changes to the log levels are recorded in the log4j2.xml file for Java projects (for each project
under the location project/WEB-INF/lib/), and the web.config file for .NET projects. However,
prior to release 8.1.55#.##, changes to the log levels are recorded in the log4j.xml file for Java
projects.

Important
You must launch the Composer application using the Run as Administrator option to
be able to configure log levels for server-side blocks.

Below is a video that shows you how to configure log levels for server-side blocks using the Bulk
Manager. Link to video

Server-Side Common Blocks

Composer Help 1185

https://player.vimeo.com/video/596470214?title=0&byline=0&portrait=0

Backend Common Block
The Backend block is used for both routing and voice applications. Use to invoke custom backend
Java Server Pages (JSP). You have the option to pass back all the application session state data to the
backend logic page on the server. Data being returned will be sent back as a JSON string. Other
features:

• Provides a mechanism for creating new backend logic JSP. The added JSP file will have a basic template
code already filled out. As the application developer, you will only need to implement a performLogic
function. The VXML/SCXML to return back control will be auto-generated in the template.

• User-written custom backend logic pages are stored in the Java Composer Project's src folder.
Composer provides standard include files for Backend logic blocks in the Java Composer Project's
include folder.

Important
If any custom backend logic pages use libraries, place the libraries in the Java
Composer Project's WEB-INF/libdirectory. This directory typically contains JAR files that
contain Java class files (and associated resources) required for the application. The
Tomcat application server should be restarted after changing any JAR files in this
folder. Composer includes a CHEAT SHEET for creating a Backend logic application as
well.

The Backend block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for voice blocks or Common Properties for
Workflow Blocks.

Server-Side Common Blocks

Composer Help 1186

Uri Property

The Uri property specifies the http:// page to invoke. To set a URL destination for the Uri property:

1. Select the Uri row in the block's property table.

2. In the Value field, click the button to open the Uri dialog box.
3. Select a file from the available projects.

Encoding Type Property

The Encoding Type property (used for callflows only) indicates the media encoding type of the
submitted document. GVP 8.1 supports two encoding types:

• application/x-www-form-urlencoded
• multipart/form-data

To select a value for the Encoding Type property:

1. Select the Encoding Type row in the block's property table.
2. In the Value field, select application/x-www-form-urlencoded or multipart/form-data from the

drop-down list.

Parameters Property

Note: Parameters cannot be entered until the Uri property is specified. Use the Parameters property
to specify parameters to pass to the invoked backend JSP. To specify parameters:

1. Click the Parameters row in the block's property table.

2. Click the button to open the Parameter Settings dialog box.

Add Button Use the Add button to enter parameter details.

1. Click Add to add an entry to Backend Parameters.
2. In the Parameter Name field, accept the default name or change it.
3. From the Parameter Type drop-down list, select In, Out, or InOut:

In Input parameters are variables submitted to the
Backend application.

Out
Output parameters are variables that the Backend
application returns and will be reassigned back to
the current callflow.

Server-Side Common Blocks

Composer Help 1187

InOut InOut parameters are parameters that act as both
input and output.

4. In the Expression drop-down list, select from among the listed variables, type your own expression, or
click the button to use Expression Builder.

5. In the Description field, type a description for this parameter.
6. Click Add again to enter another parameter, or click OK to finish.

Delete Button To delete a parameter:

1. Select an entry from the list.
2. Click Delete.

Pass State Property

Note: This property is used for callflows only. The Pass State property Indicates whether or not to
pass the application state to the backend. The application state includes all the variables shown in
the Entry block as well as all variables containing returned values from user Input blocks. You can find
Instructions on how to access these backend variables in Creating a Backend JSP File and a
Backend_ASP_.NET Creating a Backend ASP.NET File. The Parameters property can also be used to
pass specific parameters into the backend and, for efficiency reasons, should be considered first.
There is also a Cheat Sheet, Creating a Backend Logic Block (Help > Cheat Sheets > Composer >
Building Voice Applications). To select a value for the Pass State property:

1. Select the Pass State row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for

Server-Side Common Blocks

Composer Help 1188

Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Server-Side Common Blocks

Composer Help 1189

Business Rule Common Block

Business Rules

Composer interfaces with the Genesys Rules Engine, which is part of the Genesys Rules System. A
business rule is an external piece of business logic, which can be customized, and then invoked by
Genesys applications. Here is an example business rule for a bank: IF product = 'mortgage' and
loanAmount >=200000 THEN TTSMsg = 'You must have a credit score of 300 or great to
qualify for this loan.' To simplify rule creation, the Genesys Rules System uses Rule Templates.
These are initially created by developers and IT professionals. A Composer-compatible plug-in is

available for developing business Rule Templates. This plug-in is provided as part of the Genesys
Rules System. For information on installing the plugin, refer to the Genesys Rule System 8.1
Deployment Guide. See Chapter 2, Installation. Once validated and deployed, Rule Templates are
available for customization in the Genesys Rules Authoring Tool GUI. Business analysts then use the
templates to create related sets of business rules called Rule Packages. Packaging rules together
allows the business analyst to define which rules will support a particular application. You can use
Composer's Business Rule block to request the Genesys Rules Engine to execute a Rule Package in a
routing workflow or voice callflow and write the results back to a variable. A business rule preference
specifies the Genesys Rules Authoring Tool server to work with. Find information on using the
business rules GUI in the following documents:

• Genesys Rules System 8.1 Deployment Guide

• Genesys Rules System 8.1 Rules Authoring Tool Help

• Genesys Rules System 8.1 Rules Development Tool Help

Note: In the Genesys 8.1 release, the Genesys Rules System is packaged only with the intelligent
Workload Distribution product and the Conversation Manager product.

Business_Rules_Preferences

The preferences entered here are used in the Business Rule block, Business Rule Package property. To
set Business Rules Preferences:

1. Select Window > Preferences > Composer > Business Rules.
2. Configure the connection to the Genesys Rules Authoring Tool (GRAT) server by entering the following

fields:

• GRAT Server. Enter the address of the Application server hosting the GRAT Server. When
using the Business Rule Package property in the Business Rule block, Composer will connect
to this server to query information about packages and rules. Example only: http://ca-to-
lennon:8080.

• Server Path. Enter the name of the web application deployed as the GRAT. For example, if
you have the GRAT running at http://ca-to-lennon:8080/genesys-rules-authoring, then the

Server-Side Common Blocks

Composer Help 1190

GRAT server is http://ca-to-lennon:8080 and the Server Path is /genesys-rules-authoring.
• Tenant. To obtain a list of Rule Packages, Composer will query the GRAT server using an

HTTP request to http://{server-address:port}/tenant/packages. Enter the name of the tenant
as defined in the Configuration Database.

• Username. Enter the username defined in the Configuration Database for logging into the
GRAT server.

• Password. Enter the password defined in the Configuration Database for logging into the
GRAT server.

• Genesys Rules Engine (Optional). GRE URL. Enter the URL for the GVP Debugger to use
when starting a call. The GRE URL will be passed to the VXML application in the SIP URL. If
set, this value will be passed to the voice or routing application and will override the value
set in the Rules Engine URL property of the Business Rule Block (see that section below).

Business Rule Templates

This functionality is enabled by an Eclipse plug-in that can be installed within Composer or in a
standalone Eclipse environment.

• To install the plugin, refer to the Genesys Rule System 8.1 Deployment Guide. See Chapter 2,
Installation.

The plug-in enables developers to create Rule Templates. Rule Templates consist of rule parameters,
conditions, actions, and functions. When a Rule Template is published to the Rules System repository,
it is made available to be added to Rule Packages. Rule Packages are the deployable objects, which
are used to expose rule conditions and actions to business users for creating rules through the
Genesys Rules Authoring tool. A brief summary of Rule Templates is presented below. For detailed
information, see the Genesys Rules System 8.1 Rules Development Tool Help. Once you install the
plugin, this help system is available within Composer by selecting Help > Contents.

Genesys Rules System Architecture

A logical view of the Genesys Rules System architecture is shown below.

Server-Side Common Blocks

Composer Help 1191

• The first category reflects Rule Template creation, which can be done in Composer if the set of plugins is
installed.

• The second category reflects rule creation by business analysts in the Genesys Rules Authoring Tool.
• The third category reflects rule evaluation by the Genesys Rules Engine using the Business Rule block

once the Facts are known.

Type of Rules

The Genesys Rules System supports both basic and decision table rules.

Basic Rule
A basic or linear business rule is of this form: WHEN {condition} THEN {action} In other words, when
the condition is true, the action will occur. This is a rule template. When a business analyst uses the
Genesys Rules Authoring Tool to customized a template with valid values, this creates a business
rule. The following rules are all valid instances:

• WHEN Product = 'Gadget' THEN Select Agent Group 'Gadget Agents'

• WHEN Product = 'Widget' THEN Select Agent Group 'Widget Agents'

• WHEN Customer Segment = 'Gold' THEN Assign Credit Limit '200000'

This form of rule is preferred for simple actions, such as assigning a value to return back to the
application.

Server-Side Common Blocks

Composer Help 1192

Decision Table Rule
A business rule can also take form of a decision table. For example, assume in a particular scenario
that there are 3 customer levels: Gold, Silver, and Bronze. For each of these levels, we wish to make
an offer to customers based on a qualifying purchase they may have made. Gold customers
automatically qualify for a Premium Offer. Silver customers need to have spent $1000 or more to
qualify for that offer, otherwise they get the Special Offer. Finally, Bronze customers need to have
spent $5000 or more for the Premium Offer; or $2000 or more for the Special Offer; otherwise they
are informed of the offers available if they make the qualifying purchase level. Note: The Genesys
Rules Engine cannot execute Rule Templates.

Business Rule Block

See Genesys Rules System for information on using Composer to execute a rule block. Once the Rule
Package (created from Rule Templates) that you want to work with are deployed to the Genesys Rules
Engine, you can use the Business Rule block on the Server Side palette to create voice and routing
applications that use business rules. Use this block to have Composer query the Genesys Rules
Authoring Tool (GRAT) for deployed packages. For the Rule Package that you specify, Composer will
query the GRAT for the Facts associated with the Rule Package. You can then set values for the Facts,
call the Genesys Rules Engine for evaluation, and save the results in a variable. Note: This last step
(evaluation) happens as part of a VXML or SCXML application that Composer developer creates, not
as part of Composer. A business rule preference specifies the Genesys Rules Engine to work with.
Runtime Parameters The following parameters (defined in Preferences) are used at runtime, when
the VXML and SCXML application queries the GRAT to execute the rule.

• grat_username -- a user login for accessing the GRAT server
• grat_password -- the password for the above login
• grat_server -- a URL for the GRAT server, for example: http://hostname:8080/genesys-rules-authoring
• grat_tenant -- the tenant associated with the login, e.g. Environment

The Business Rule block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Server-Side Common Blocks

Composer Help 1193

Business Rule Package Property

Use to select the Rule Package (collection of related rules) you would like to execute. Packaging rules
together allows the business analyst to define which rules will support a particular application.
Before using this property, you must set Business Rules Preferences.

1. Click the button to request Composer to connect to the Genesys Rules Authoring Tool Server using
the information specified in Business Rule Preferences. After a successful connection, the Business Rule
Package dialog appears.

2. Select a Rule Package and click OK. The dialog closes and the name of the Rule Package appears under
Value.

Facts Property

Use this property to execute the logic contained in the selected Rule Package by supplying input
parameters called Facts. To specify Facts:

1. Click the Facts row in the block's property table.

2. Click the button to open the Facts dialog box.
3. Click Add. The dialog box adds additional fields consisting of the Facts to use when executing the Rule

Package. You then click the down arrow and select a value or a variable that contains the value for
each Fact. An example dialog box is shown below.

Server-Side Common Blocks

Composer Help 1194

Facts.gif

4. Enter the Fact Name field.
5. Click the down arrow and select an entry for the Fact Class field.
6. Click the down arrow and select a value or a variable that contains the Fact value.
7. Click Add again to enter another Fact, or click OK to finish.

Delete Button To delete a Fact:

1. Select an entry from the list.
2. Click Delete.

Rules Engine URL

Select the variable containing the Genesys Rules Engine URL. Background: Starting with 8.1.2,
Composer-generated applications no longer interact with the GRAT server at runtime. Previous
requests to the GRAT Server were done to retrieve the URL of the GRE server to which a rules
package is deployed. Instead, the runtime applications now use the Rules Engine URL property, which
is passed into the application via the IVR Profile or an Enhanced Routing Script object. You can use
this Rules Engine URL property to override any GRE URL configured in the IVR Profile or

Server-Side Common Blocks

Composer Help 1195

EnhancedRouting Script object.

Starting with Composer 8.1.440.18, you can specify a variable when the Use Variable option is
selected.

This can be used for testing in complex deployments where, for example, the GRE load balancer (or
respective instances) is not accessible from the network zone where Composer is located. This option
provides the possibility to configure the URL for testing the Rules.

Exceptions Property

The Business Rule block supports the following exceptions. They correspond to the HTTP status
codes returned by the Business Rule Server (BRS).

Exception Event
Name HTTP Return Code BRS Error Code Description

error.com.genesyslab.composer.badrequest400 610
The received URI does
not match the Engines
REST specification.

error.com.genesyslab.composer.notfound404 620
The package for the
evaluation request
received was not found.

Server-Side Common Blocks

Composer Help 1196

error.badfetch.http Any other HTTP error.

error.com.genesyslab.composer.notacceptable406 602

The evaluation request
received could not be
converted to a valid
knowledgebase-request
message, or the
evaluation request
received could not be
evaluated due to an
exception.

Details of the exception can be obtained from the body of the response. The Composer application
will log the description. The JSON body of the response will look like the following:
{ error:{ code:6xx, description:error message } }
Also see Common Properties for Callflow Blocks or Common Properties for Workflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable InteractionId.
Applicable to workflows only. Can be used for "interaction-less" processing for scenarios where the

Server-Side Common Blocks

Composer Help 1197

InteractionId variable is not automatically initialized, but instead must wait for an event. An example
would be an SCXML application triggered by a Web Service that does not add an interaction.
Background: Previous to 8.1.1, Composer did not expose an Interaction ID property. Instead, when
ORS started processing an interaction, a generated SCXML application automatically initialized the
system variable, InteractionId. This variable was then used internally by Routing and certain
eServices blocks when interacting with ORS. With the introduction of support for Interaction-less
processing, you can now define a specific event (IPD Events property) to initialize InteractionId, or not
define an event at all. For scenarios with an interaction (IPD Diagram/Wait For
Event=interaction.present for example), you may keep the default value for the Interaction ID
property. The default value is the system variable InteractionId, which is initialized automatically in
this case. For other scenarios (any scenario where the system variable InteractionId is not set), you
may choose to:

1. Not use blocks that require an Interaction ID
2. And/or set the Interaction ID property to a meaningful value
3. And/or assign a meaningful value to the InteractionId system variable

Output Result Property

Use this property to save the results of the business rule execution to a variable. To select a variable:

1. Select the Output Result row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list. Does not need to match

the variable name that is coming back as a result of the web request.

The format of returned data is JSON. Any post-processing work to be done on returned results can be
done in the existing Assign block which provides access to ECMAScript functions. It supports writing
simple or complex expressions to extract values out of JSON strings and arrays. In a workflow, the
Output Result can be attached to User Data. In the Specify Output Result Location dialog box, select
User Data or Variable. If User Data is selected, the specified name is used as a prefix of the keys that
will be added to user data. For example, if you specify abc, then the User Data will look like:

'abc_fact1'(list) '@class' 'com.genesyslab.animals.Animal'
'color' 'red'
'type' 1903
'weight' 123 'abc_fact2'(list)

'@class' com.genesyslab.animals.Car' 'make'
'mazda'

Note: The Output Result property takes effect only during application runtime. Its purpose is to take
the output of the rule execution (at runtime) and store returned results back in the specified
application variable so other parts of the application can access the data.

Business Rules Block Runtime Configuration

The table below shows the parameters that must be set up in Genesys Administrator in order for the
Business Rules block to work.

Server-Side Common Blocks

Composer Help 1198

ERS Object Key Names IVRprofile Object Key Names
GRS grat_server grat_server

grat_tenant grat_tenant
grat_username grat_username
grat_password grat_password

The figure below shows an example Enhanced Routing Script object created by Composer. It creates
these parameters in the ApplicationParms section in the Annex, so you do not have to key in
parameter names. Note: If you accidentally changes parameter names, these functions will not work.

Working With Returned Data

Below is an example on how to work with data returned by the Business Rules block. A sample of the
output can look like the snippet below, which will be stored in the output variable myOutputVar.

Server-Side Common Blocks

Composer Help 1199

To extract the value of the disposition field, an expression like this can be used:
myDisposition = myOutputVar["knowledgebase-response"].inOutFacts["named-
fact"][1].fact.disposition
This will return true.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Server-Side Common Blocks

Composer Help 1200

DB Data Common Block
The DB Data block is available for both routing and voice applications. Use for connecting to a
database and retrieving/manipulating information from/in a database. This block uses a connection
profile to read database access information. It accepts a SQL query or a Stored Procedure call, which
can be defined using the Using the Query Builder or Stored Procedure Helper. It can also use a SQL
script file. Note: When using the DB Data block to connect to and query information from an Oracle
database, some connections may remain in the TIME_WAIT state. If you encounter this situation, use
connection pooling in order to avoid exhausting the number of allowed Oracle connections. This block
acts as a data source for the DB Prompt and DB Input blocks (available only in callflows). An Entry
block user variable can also be used to access the results of a Stored Procedure call specified in a DB
Data block for both voice and routing applications.

Important
The Looping block can work with the DB Data block. For example, you can use the
Looping block to Iterate over a data set returned by the DB Data block to map values
returned from a database query to application variables.

Manually Configuring Context Attributes for Memory Leaks

At times, possible memory leaks can occur in Tomcat when the DB Data block is used in a strategy. To
avoid these possible leaks during runtime, set the following context attributes in the context.xml file
(<tomcat-folder>/conf/context.xml) to true:

• clearReferencesStopThreads
• clearReferencesStopTimerThreads
• clearReferencesThreadLocals

Example:

<!-- The contents of this file will be loaded for each web application -->
<Context clearReferencesStopThreads="true" clearReferencesStopTimerThreads="true"
clearReferencesThreadLocals="true">
<!-- Default set of monitored resources. If one of these changes, the -->
<!-- web application will be reloaded. -->
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>

<!-- Uncomment this to disable session persistence across Tomcat restarts -->
<!--
<Manager pathname="" />
-->

</Context>

Also see: Working with Database Blocks. The DB Data block has the following properties:

Server-Side Common Blocks

Composer Help 1201

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. Note: If you rename a DB Data block, its corresponding SQL statement file in the db
folder will not be updated and will not be valid until you generate code again.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Connection Profile Property

The Connection Profile property allows you to select a previously-created database Database
Connection Profiles that specifies database details for this DB Data block. If you have not created a
connection profile, open the Connections Profile editor as follows:

1. Under Value, click the down arrow.
2. Select Create New Profile Using Editor...

Refer to the topic Database Connection Profiles for instructions. To select a connection profile for your
database query:

1. Select the Connection Profile row in the block's property table.
2. Select the connection profile to use for this query.

Connection Properties Property

The Connection Properties property allows you to override the parameters in connection profile
during runtime. The properties that can be overriden are Hostname, Password, Port, Database,
Username and other Custom Parameters. Variable mapping can be configured in the dialog box
provided for the property. To define the variable mapping for Connection Parameters:

1. Click the button to open the Connection Properties variable mapping dialog.
2. Dialog displays the parameter name and value in connection profile. Select the system variable in the

drop down combo against each property.
3. Click OK

Server-Side Common Blocks

Composer Help 1202

Connection String Property

The Connection String Property allows you to define the value of Connection String that need to be
used at Runtime. If this property is specified, the parameters from Connection Profile is ignored. To
define this property enter either literal value or select system variable from the combo provided for
the property.

Timeout Property

The Timeout property defines the length of time in seconds that the voice application will wait for
query execution to complete. To provide a timeout value:

1. Select the Timeout row in the block's property table.
2. In the Value field, type a timeout value, in seconds.

The default value (20 seconds) of this property is used if not specified explicitly. Disable the timeout
by setting to -1. If the query takes longer than this specified time to complete the
error.com.genesyslab.composer.dbtimeout exception is thrown. In order to select a query type,
the Connection Profile property must be set.

Query Type Property

To define a query type:

1. Select the Operation Type row in the block's property table.
2. Select one of the following:

• SQLQuery
• SQLScriptFile
• StoredProcedure

Based on the value selected for Operation Type, the specified value is used and some properties
are not used.

Query Property

The Query property opens the Query Builder in which you can visually build the database query.
Note: The Query property and Query File property are mutually exclusive. If both are entered, then
the Query File property takes precedence over the query defined in the Query property. To define a
query:

1. Select the Query row in the block's property table.

Server-Side Common Blocks

Composer Help 1203

2. Click the button to open the Query Builder.

Important
When specifying integers (or constants) in SQL queries, enclose them within single
quotes (e.g. '0123') in the DB data block

Query File Property

The Query File property accepts a filename that points to a SQL file that the user has written. To
provide a filename for a user-written SQL file:

1. Select the Query File row in the block's property table.
2. In the Value field, type the filename of the SQL file (the file is usually in the db folder of your project. If it

is present in a different location, specify a relative path, such as ../myfolder/myquery.sql.

Stored Procedure Property

The Stored Procedure property opens the Stored Procedure Helper in which you can visually build the
database query. To define a stored procedure call:

1. Select the Stored Procedure row in the block's property table.

2. Click the button to open the Stored Procedure Helper.

Column Names Variable Property

The Column Names Variable property maps the list of column names in the result to the specified
variable. The default is Use system default, in which case the system uses an internal variable which
is named in the format below. Genesys recommends that you define a user variable for this purpose
in the Entry block and specify it in the DBData block. For Callflow diagrams:
AppState.<blockname>DBResultColumnsNames For Workflow diagrams:
App_<blockname>['DBResultColumnsNames'] To select a variable:

1. Select the Column Names Variable row in the block's property table.
2. In the Value field, select the variable from the dropdown list.

Server-Side Common Blocks

Composer Help 1204

Records Variable Property

The Records Variable property maps the records (data) in the result set to the specified variable. The
default value is Use system default, in which case the system creates an internal variable which is
named in the format below. However, Genesys recommends that you specify a user variable in the
Entry block. For Callflow diagrams: AppState.<blockname>DBResult For Workflow diagrams:
App_<blockname>['DBResult'] To select a variable:

1. Select the Records Variable row in the block's property table.
2. In the Value field, select the variable from the dropdown list.

Note: The following applies to all methods of getting database results (query builder, stored
procedure helper, custom queries): Results are stored in a variable as a two-dimensional JSON array.
This data can then be accessed via a Looping block or via scripting in the Assign or ECMAScript block.
For example, if the database result set looks like this in tabular form:

Vegetables Animals
lettuce chicken
broccoli lion

The JSON for the result will look like this: {"db_result":[["lettuce", "chicken"], ["broccoli",
"lion"]],"db_result_columns":["vegetables", "animals"]}

Suppress Empty Result Set Exception Property

The Suppress Empty Result Set Exception property determines if the dbemptyresultset exception
should be thrown if a query or a stored procedure execution results in an empty result set (number of
records returned is zero). To provide a value:

1. Select the Suppress Empty Result Set Exception row in the block's property table.
2. Select true or false.

Exceptions Property

Find this property's details under Common Properties for voice blocks or Common Properties for
Workflow Blocks. The Exceptions dialog box for the DB Data block has the following exception events:

• error.com.genesyslab.composer.dbconnectionerror

• error.com.genesyslab.composer.dberror (pre-selected in the Supported column)
• error.com.genesyslab.composer.dbemptyresultset (pre-selected in the Supported column)
• error.com.genesyslab.composer.dbtimeout

Server-Side Common Blocks

Composer Help 1205

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Server-Side Common Blocks

Composer Help 1206

External Service Block
This block enables routing applications to invoke methods on third party servers that comply with
Genesys Interaction Server (GIS) protocol. Use to exchange data with third party (non-Genesys)
servers that use the Genesys Interaction SDK or any other server or application that complies with
the GIS communication protocol. Can be used for both voice and non-voice interactions.

Important
In order to use this object, the third party server/application must already be defined
in the Configuration Database as a server of type Third Party Server or Third
Party Application. Before completing the External Service block properties, you
must already know the names of Services, Methods, and Signatures (requested input/
output parameters) provided by the external service.

The Composer External Service block does not automatically pass user data in the ESP
call unlike the legacy IRD External Service object. Therefore, ESP methods that expect
user data cannot be called using this block. Please refer to the ESP method/API
documentation to determine if user data is required. To call an ESP API that requires
user data, a hand coded SCXML page can be used and invoked using the SubRoutine
block. Please refer to the <session:fetch> documentation in the Orchestration Server
Developers Guide. See Action Elements under Session Interface for details on how to
pass user data in ESP requests.

Use Case

A customer has a custom integration to a third party application (a workflow system), through the
Open Media API. The workflow system uses Genesys to distribute work items at various times during
the workflow. At some point in the IPD handling a work item, there is a need to update the workflow
system and assign a new value to one of the attributes of the work item. The Genesys developer has
the IPD call a routing strategy, which uses the External Service block to call a specific method
exposed by the third party application. This allows the developer to update the value of the specific
attribute of the work item. The External Service block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Server-Side Common Blocks

Composer Help 1207

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Session_Interface

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Application Property

Use this property to select the name of the third party application to be contacted or the general
Application type to be contacted, which must be defined in the Configuration Database. Starting with
8.1.410.14, you can select Social Messaging Server in the dialog. If a Social Messaging Server was
configured as a Third Party Server in the Configuration Database, then it will be listed inside the
Third Party Server category.

1. Click under Value to display the button.
2. Click the button to open the Application Selection dialog box.
3. Select the third party application to be contacted.
4. Click OK.

Include Interaction User Data

Select true or false to indicate whether to attach all interaction user data to request's udata
parameter.

Method Name Property

Use this property to specify the Method defined by the third party server or application.

1. Click under Value to display the button.
2. Click the button to open the Method Name dialog box.
3. Opposite Type, select one of the following as the source for the name:

• Literal to enter the method name manually in the Value field.
• Variable to select a variable for the method name in the Value field.

Server-Side Common Blocks

Composer Help 1208

https://docs.genesys.com/Documentation/ES/8.5.1/SMSolution/SolutionGuide

4. Click OK to close the dialog box.

Method Parameters Property

Use this property to specify the list of input parameters to be passed to the specified external
service. Click the button to add a new entry:

1. Click under Value to display the button.

2. Click the button to open the Method Parameters dialog box.
3. Click Add to open the Select Items dialog box.
4. Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.
5. Opposite Value, click the down arrow and select either literal or variable.

• If you select Literal, enter the name of the key in the second field.
• If you select Variable, select the name of the variable from the second field.

6. Click OK to close the Select Items dialog box. The Method Parameters dialog box shows your entry.
7. Continue adding parameters in this fashion.
8. Click OK when through in the Method Parameters dialog box. .

Service Name Property

Use this property to specify the name of the Service defined by the third party server or application
for the functionality requested.

1. Click under Value to display the button.
2. Click the button to open the Service Name dialog box.
3. Opposite Type, select one of the following as the source for the name:

• Literal to enter the service name manually in the Value field.
• Variable to select a variable for the service name in the Value field.

4. Click OK to close the dialog box.

Service Timeout Property

Use this property to specify the timeout in seconds (s) to be used for invoking this method. If not
checked, URS uses the Reconnect Timeout entered for third party server or application in
Configuration Server. In the case of a connection or service request failure, error codes are returned.

Server-Side Common Blocks

Composer Help 1209

The default is 30 seconds.

User Data Property

Use this property to specify the list of User Data parameters to be passed to the specified external
service. Click the button to add a new entry:

1. Click under Value to display the button.

2. Click the button to open the User Data dialog box.
3. Click Add to open the Select Items dialog box.
4. Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.
5. Opposite Value, click the down arrow and select either literal or variable.

• If you select Literal, enter the name of the key in the second field.
• If you select Variable, select the name of the variable from the second field.

6. Click OK to close the Select Items dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.
8. Click OK when through in the User Data dialog box.

Result Property

Use this property to specify an application variable to store the results. These results will then be
available in other blocks in the application for further processing. The format of returned data is
JSON. Any post processing work to be done on returned results can be done in the existing Assign
block which provides access to ECMAScript functions. It already supports writing simple or complex
expressions to extract values out of JSON strings and arrays.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Server-Side Common Blocks

Composer Help 1210

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Server-Side Common Blocks

Composer Help 1211

NDM Block
Starting with Composer release 8.1.410.14, callflow diagrams add an NDM block to work with Nuance
OSDM 6.1 modules used for speech and touch-tone IVR applications. The NDM block, available on the
Server-Side palette, lets you choose the OSDM modules and parameters to work with the selected
module.

Note: Composer has a template Project that uses Subdialog blocks to invoke OSDM modules. This
new block provides in-built support to work with OSDM modules.

Global Properties

Set the com.genesyslab.dtmf.offboard_recognition property to true in the Entry Block ->
Global properties. For more information on the DTMF Recognizer property, click here.

Name Property

Find this property's details under Common Properties for Callflow Blocks.

Block Notes Property

Can be used to add comments to both callflow and workflow blocks.

Dm Name Property

Click the down arrow and select a variable containing the Dialog Module name. Or select from the
dropdown list in the Module Name property.

Module Name Property

Click the down arrow and select one of the Nuance module names.

Server-Side Common Blocks

Composer Help 1212

Osdm Url Property

Enter the base URL that points to the server for the Nuance OpenSpeech DialogModules. Format:
String (http://ip:port/ndm-core).

Exceptions Property

The NDM Input block has one supported exception event:

• error.ndm.modulefailed. If the return code is not SUCCESS, this error will be thrown.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Output Result Property
You must use the Output Result property to assign the collected data to a user-
defined variable for further processing.

Important
Note! This property is mandatory. You must select a variable for the output result even
if you do not plan on using the variable. If this is not done, a validation error will be
generated in the Problems view.

Server-Side Common Blocks

Composer Help 1213

1. Select the Output Result row in the block's property table.
2. In the Value field, click the down arrow and select a variable.

Input Parameters Property

Use the this property to specify input parameters to pass to the invoked sub-workflow. To specify
parameters:

1. Click the Input Parameters row under Value.

2. Click the button to open the NDM Input Parameters dialog box.
3. Click the Add button to enter parameter details.
4. In the Parameter field, accept the default name or change it.
5. From the Type drop-down list, leave input.

6. From the Expression field, click the button to use Expression Builder where you can define an
expression for the input parameter(s) or select a variable containing the expression (Callflow
Variables > Input).

7. Set the "browser" parameter to genesys. This is optional but helpful as this parameter directs the
engine to match the Voice Platform type.

8. In the Description field, type a description for this parameter.
9. Click Add again to enter another parameter, or click OK to finish.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics. To
assign a value to the Security property:

1. Select the Security row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Example Diagram

An example callflow diagram using the NDM block is shown below.

Server-Side Common Blocks

Composer Help 1214

Server-Side Common Blocks

Composer Help 1215

HTTP Rest Block
A new block, HTTP Rest, is introduced in 8.1.450.08. The HTTP Rest block can be used in both routing
and voice applications.

In routing applications, the HTTP Rest block supports the native HTTP Fetch functionality in
Orchestration Server and uses the ORS SCXML <session:fetch> element to fetch arbitrary XML and
JSON data from a server. The data fetched by the <session:fetch> element is bound to an
ECMAScript object through a named variable.

In voice applications, the HTTP Rest block supports the native HTTP Fetch functionality in GVP and
uses the GVP VoiceXML <data> element to fetch arbitrary XML and JSON data from a document
server. The data fetched by the <data> element is bound to an ECMAScript object through a named
variable.

The HTTP Rest block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks. You can also define custom events.

The Web Service block Exceptions dialog box has the following pre-set exceptions:

• Callflows: error.badfetch, error.semantic, and error.
• Workflows: error.session.fetch, error.script, and error.

Server-Side Common Blocks

Composer Help 1216

Guarantee HTTP Execution Property

Use this property (applicable for workflows only) to indicate whether the platform can guarantee the
execution of the <fetch> action.

1. Select the Guarantee HTTP Execution row in the block's property table.
2. In the Value field, select true or false.

Retries Property

Specify an integer value in this property (applicable for workflows only) to indicate the number of
times the platform will try to successfully deliver the associated HTTP request to the defined
destination.

Retry Interval Property

Specify an integer value in this property (applicable for workflows only) to indicate the number of
seconds to wait between each retry.

User Name Property

Specify the user name for HTTP basic authentication through a literal or a variable.

Important
When trying to access an anonymous HTTP URL, you need not provide any user
credentials.

Password Property

Specify the password for the user name specified in the User Name property for HTTP basic
authentication, through a literal or a variable.

Uri Property

Use this property to specify the URL destination or location of the XML and JSON data to retrieve.

Server-Side Common Blocks

Composer Help 1217

1. Select the Uri row in the block's property table.
2. In the Value field, click the down arrow and select the variable that contains the URL or specify the URL

(literal).

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

ORS Extensions Property

Use this property to add custom attributes into any/all states and sub-states for any block they are
configured in. For more information on this property, see ORS Extensions.

Input Parameters Property

Use the Input Parameters property to specify a list of required Name/Value pairs to pass as
parameters to the http:// page. To specify input parameters:

1. Click the Input Parameters row in the block's property table.
2. Click the ... button to open the Input Parameters dialog box.

Add Button

Use the Add button to enter parameter details.

1. Click Add to add a parameter.
2. In the Parameter Name field, leave the default name as is or change as required.

Server-Side Common Blocks

Composer Help 1218

3. The Parameter Type field displays input to indicate that the parameter being defined is an input
parameter

4. In the Expression field, click the ... button to use the Expression Builder.
5. In the Description field, type a description for the parameter.
6. Click Add again to enter another parameter, or click OK to finish.

Important
To reorder the priority of the input parameters, use the Up and Down buttons to
rearrange the parameters as desired in the dialog box.

Remove Button

To remove a parameter:

1. Select an entry from the list.
2. Click Remove.

JSON Payload Property

Select the appropriate variable from the Value drop-down to specify the JSON object that will be sent
for requesting data.

Use JSON Payload Property

Use this property to specify if parameters must be sent individually or collectively as an object.

1. Select the Use JSON Payload row in the block's property table.
2. In the Value field, select true or false.

Encoding Type Property

The Encoding Type property indicates the media encoding type of the submitted document.

GVP supports the following encoding types:

• application/x-www-form-urlencoded
• application/json
• multipart/form-data

Server-Side Common Blocks

Composer Help 1219

ORS supports the following encoding types:

• application/x-www-form-urlencoded
• application/json

To select a value for the Encoding Type property:

1. Select the Encoding Type row in the block's property table.
2. In the Value field, select the required value or specify a literal value.

Request Method Property

This property indicates the method for invoking the web request:

• get - Invoked using HTTP Get.
• post - Invoked using HTTP Post.
• put - Invoked using HTTP Put.
• delete - Invoked using HTTP Delete.

To specify a value for the Request Method property:

1. Select the Request Method row in the block's property table.
2. In the Value field, specify or select get, post, put, or delete from the drop-down list.

Important
When the HTTP Rest block is used in a callflow, the value specified in this property is
not case sensitive.

Custom HTTP Headers Property

Use this property (applicable for workflows only) to add Custom HTTP headers to be sent along with
the HTTP request during runtime execution of the Server Side block.

1. Click the Custom HTTP Headers row in the block's property table.
2. Click the ... button to open the Custom HTTP Headers dialog box.
3. Click Add to add a header entry.
4. Select the required variable that contains the header from the Value drop-down or specify a literal

value.

Server-Side Common Blocks

Composer Help 1220

Max Age Property

Use this property to specify the maximum duration (as an integer) for which the cached copy of the
retrieved data is considered, in seconds.

Max Stale Property

Use this property to specify the maximum duration (as an integer) for which the cached copy of the
retrieved data is considered after expiration, in seconds.

Timeout Property

Use this property (applicable for workflows only) to specify the duration in seconds (as an integer)
before throwing a timeout error and sending the error.session.fetch event when the content is
not returned.

Fetch Data Type Property

Use this property (applicable for workflows only) to select the type of data that will be retrieved by
the <fetch> action. The following data types are supported:

• JSON
• application/xml

1. Click the Fetch Data Type row in the block's property table.
2. Select the required fetch data type from the Value drop-down.

Fetch Audio Property

Use this property (applicable for callflows only) to specify the URI of the audio to play while waiting
for the data to be retrieved.

Fetch Audio Delay Property

Use this property (applicable for callflows only) to specify the time in seconds (as an integer) to wait
before playing the retrieved audio.

Server-Side Common Blocks

Composer Help 1221

Fetch Audio Minimum Property

Use this property (applicable for callflows only) to specify the minimum duration (as an integer) for
which the retrieved audio must be played after being triggered.

Fetch Hint Property

Use this property (applicable for callflows only) to select when the audio content must be retrieved
from the server.

• safe - file is downloaded only when needed.

Fetch Timeout Property

Use this property (applicable for callflows only) to specify the duration in seconds (as an integer)
before throwing a timeout error and sending the error.badfetch event when content is not
returned.

Output Result

Select one of the available variables from the drop-down to indicate the variable that will contain the
result of the <fetch> request.

Response Headers

Use this property (applicable for workflows only) to indicate the variable that will contain the
response headers for the HTTP request.

Response Status

Select one of the available variables from the drop-down to indicate the variable that will contain the
response output status of the HTTP request.

Status Code

Select one of the available variables from the drop-down to indicate the variable that will contain the

Server-Side Common Blocks

Composer Help 1222

output status code of the HTTP request.

Important
If any errors are encountered, the status code is updated only if the block handles
exceptions.

Enable Status

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

[+] HTTP Rest Workflow Block Code Sample
<state id="HTTPRest1">

<onentry>
<log expr="_sessionid + ': Inside HTTPRest Block: HTTPRest1'" />

<session:fetch requestid="App_HTTPRest1['requestid']"
srcexpr="user_uri" method="'get'" enctype="'application/x-www-form-

urlencoded'" username="username" password="password" maxage="40" maxstale="80"
type="'application/json'" gdelivery="false" gd_retries="1" gd_retry_interval="0" timeout="60">

</session:fetch>
</onentry>

<transition event="session.fetch.done"
cond="_event.data.requestid==App_HTTPRest1['requestid']" target="$$_MY_PREFIX_$$.Exit1">

<log expr="'Session FETCH DONE'" />
<log expr="'Composer Application:subroutine Block:

HTTPRest1'" />
<log expr="'Data Fetched:' + _event.data.content" />
<script>storeEvent("HTTPRest1", _event);</script>
<script>App_HTTPRest1['data'] = eval('(' +

_event.data.content + ')');</script>
<assign location="headers" expr="App_HTTPRest1['data']" />
<log expr="'Data Assigned: ' +

headers.toSource()"/>
</transition>

</state>

[+] HTTP Rest Callflow Block Code Sample
<form id="HTTPRest1">

<block>
<assign name="AppState.var0" expr="''"/>
<assign name="AppState.var1" expr="false"/>

<data name="HTTPRest1Response" srcexpr="AppState.var3" enctype="application/json"
method="get"

gvp:usernameexpr="'null'" gvp:passwordexpr="'null'"
fetchaudio="http://10.31.12.109:4040/Final_Test/Resources/Prompts/A.wav"
gvp:fetchaudiodelay="1s" gvp:fetchaudiominimum="10s" fetchhint="safe" fetchtimeout="120s"
maxage="50" maxstale="40" gvp:contentexpr="AppState.var4"/>

Server-Side Common Blocks

Composer Help 1223

<if cond="typeof HTTPRest1Response != 'undefined'">
<assign name="AppState.var0" expr="HTTPRest1Response"/>

<assign name="AppState.var1" expr="true"/>
<assign name="AppState.var2" expr="200"/>
<goto next="#Log1" />

<else/>
<assign name="AppState.var2" expr="204"/>

</if>
</block>
<catch event="error">

<assign name="AppState.var2" expr="extractVxmlHttpErrorCode(_event)"/>
<goto next="#Copy_1_Log1" />

</catch>

</form>

Server-Side Common Blocks

Composer Help 1224

OPM Common Block

The OPM block enables VXML and SCXML applications to use Operational Parameters (OPM) which
allow a business user to externally control the behavior of these applications. Operational Parameters
are defined and managed in the Operational Parameter Management (OPM) feature of Genesys
Administrator Extension (GAX). The OPM block is available for both Callflows (VXML) and Workflows
(SCXML).

• At application design time in Composer, the OPM block allows browsing through a JSON structure based
on metadata retrieved from the GAX server in order to form a JSON expression.

• At runtime code generated by the OPM block evaluates the specified expression and assign results to
the App_OPM (voice application) or system.OPM (routing application) application variable accessible via
the Entry block.

Important
OPM blocks access List Objects from the default Tenant (that is, Tenant associated
with the ORS session) only. To access List Objects across Tenants, use the
ListGetDataCfg method in the URS Function Block. Using the setTenant() method is
not recommended as this would impact URS and the newly created interactions in the
session.

GAX Server

GAX refers to a Genesys Administrator Extension (GAX) plug-in application used by Genesys web
application Genesys Pulse (formerly EZPulse). Genesys Pulse enables at-a-glance views of contact
center real-time statistics in the GAX user interface. A button on the Composer main toolbar, Launch
GAX Server Command, lets you launch the Genesys Administrator Extension used by the GAX Server.
Composer uses the server host, port, username, and password entered on the GAX Server
Preferences page to fetch audio resource management parameters or an audio resource IDs list.
Before using this block set GAX Server Preferences.

Notes:

• The OPM block in Composer 8.1.2 supports GAX 8.1.2.
• GVP 8.1.6 supports OPM parameters only with lowercase key names - Composer includes a warning to

that effect. Please consult your GVP version's documentation for any changes to this behavior.
• OPM Complex parameters like Schedule and Custom List types are not supported by GVP 8.1.6 and also

not supported in Composer 8.1.3+.

Server-Side Common Blocks

Composer Help 1225

https://docs.genesys.com/Documentation/GA/8.5.0/Dep/RPOPM

Prerequisites

OPM Parameters in GAX must be associated with an IVR Profile (for callflows) or a routing strategy
(for workflows). For more information on OPM parameter group associations, see:

• The GVP 8.5 User's Guide, Provisioning IVR Profiles, IVR Profile Configuration Options, gvp.context-
services-authentication, option transaction object ID.

• GAX User Guide on how to deploy or associate OPM parameters with an IVR or a routing application:
Parameter Group Templates.

The OPM block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
CallflowBlocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Server-Side Common Blocks

Composer Help 1226

https://docs.genesys.com/Documentation/GA/latest/user/ParameterGroupTemplates#t-2

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Assign OPM Data Property

Use this property to assign OPM parameters from GAX to variables.

1. Click opposite Assign OPM Data under Value. This brings up the button.

2. Click the button to bring up the Assign OPM Data dialog box.
3. Click Add.
4. Select the variable or click the Variables button to add a new variable.

5. Enter a value for the variable or click the button where you can create an expression with
ExpressionBuilder.

Reread OPM Data Property

Select true or false to indicate whether to read OPM data during a mid-call. Note: In case of GVP, this
property would be hidden as GVP does not support mid-call fetching.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Server-Side Common Blocks

Composer Help 1227

https://docs.genesys.com/Documentation/SIPS/8.1.1/IntegrationReferenceManual/CUCMOverview

TLib Block
As of 8.1.410.14, the TLib block is temporarily disabled. Genesys recommends using the SCXML State
block instead.

Server-Side Common Blocks

Composer Help 1228

URS Function Block
Starting with 8.1.440.18, Composer supplies a URS Function block, applicable to workflow diagrams
only. You can use this block to call Universal Routing Server functions via <session:fetch> by the
urs method. The URS Function block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks. This is not the name of the
function to call.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks. There are no default
exceptions for this block.

Condition Property

Find this property's details under Common Properties for Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Workflow Blocks.

Server-Side Common Blocks

Composer Help 1229

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Result Property

Select the variable to hold the data returned by URS.

Function Name Property

Select the name of the URS function to call or select the variable that contains it. Function names can
be specified as Variables, Literal and Enum (such as FindConfigObject, GetObjectProperty,
TargetState) values. These three functions are listed by as samples, but you can call any URS function
listed Table 130, Summary of All Functions, in the Universal Routing 8.1 Reference Manual. Function
parameters are included in the function descriptions found in Chapter 3, Interaction Routing Designer
Functions. Internally, the mapping is:

<session:fetch srcexpr="'urs/call/@' + system.InteractionID +
'/func?name=URS_Function_Name ¶ms=[param1,param2] method="'urs'">

See the Orchestration Server 8.1.3+ Developer's Guide, Core Extensions, Session Interface section.

Interaction ID Property

Find this property's details under Common Properties for Workflow Blocks.

Parameters Property

Use to define the list of parameters to use with the specified function. Function parameters are
included in the function descriptions found in the Universal Routing 8.1 Reference Manual, Chapter 3,
Interaction Routing Designer Functions.

[+] FindConfigObject Configuration

Server-Side Common Blocks

Composer Help 1230

https://docs.genesys.com/Documentation/OS/latest/Developer/CoreExt#.3Cfetch.3E

1. Click the ... button under Value to open the Configure Parameters dialog box.
2. Click Add to open the Specify URS Function Parameter value dialog box.
3. Specify the first function parameter. You can specify a variable or a literal. Value is an integer is

applicable to both a literal and a variable.

This example uses the FindConfigObject function to return the properties of a CfgDN object.
(Parameters for GetObjectProperty and Target State are described further ahead.) The 2 above
refers to the object TYPE, defined as a function parameter in the Universal Routing 8.1 Reference
Manual. In this example, the TYPE parameter happens to be a value formatted as a number. Refer to
List of Configuration Layer Enumerations for possible Cfg object types. Also refer to FindConfigObject
to learn about different search parameters required for the FindConfigObject method.

4. Click OK.
5. Click Add again in the Configure Parameters dialog box to enter another function parameter, if

another one is specified in the Universal Routing 8.1 Reference Manual. The dialog box shows <empty>
when no value is set for a function parameter.

6. Click OK.

Server-Side Common Blocks

Composer Help 1231

https://docs.genesys.com/Documentation/PSDK/8.5.x/ConfigLayerRef/CfgObjectType
https://docs.genesys.com/Documentation/R/latest/Ref/FunctionsUpdate#FindConfigObject

7. Continue adding any additional parameters used by the function. After defining all parameters, the
Configure Parameters dialog box shows the parameters.

8. Click OK to close the dialog box.

The URS Function block Properties view shows the function parameters.

[+] GetObjectProperty Configuration

Server-Side Common Blocks

Composer Help 1232

The GetObjectProperty function requires all five parameters to be provided to retrieve the Annex or
Options tab value of the Configuration Layer object. Refer to the Universal Routing 8.1 Reference
Manual for further information. Parameters could be specified in the format as (Type, Subtype, Name,
Section, Item) - (2, 0, 7039, TServer, contact).

• 2 - Refers to the TYPE of the Configuraton Layer object, Here for the CfgDN TYPE, the value formatted as
a number is 2. Refer to CfgObjectType for possible Configuration Layer object types,

• 0 – Refers to the Subtype of the Configuration Layer object. Here there is no Subtype required so ‘0’ is
specified. Refer to List of Configuration Layer Enumerations for possible Configuration Layer Subtype
values.

• 7039 – Refers to the Name of the Configuration Layer object. In the case of CfgDN, an alias is provided;
• TServer – Refers to the section in the Annex or Options tab of the Configuration Layer object.
• contact – Refers to the item for which the value is to be fetched.

[+] TargetState Configuration

Server-Side Common Blocks

Composer Help 1233

https://docs.genesys.com/Documentation/PSDK/8.5.x/ConfigLayerRef/CfgObjectType
https://docs.genesys.com/Documentation/PSDK/latest/ConfigLayerRef/ConfigLayerEnumList

Type of Parameter Parameter to be specified in URS Function
block

Agent TargetAgent.A or TargetAgent@StatServer.A
Place TargetPlace.AP or TargetAgent@StatServer.AP

Timeout Property

Enter or select a variable that contains the maximum time to wait for an answer. The default timeout
value configured for URS function block is 5 seconds.

Enable Status Property

Find this property's details under Common Properties for Workflow Blocks.

Server-Side Common Blocks

Composer Help 1234

Web Request Common Block
The Web Request block is used for both routing and voice applications. Use to invoke any supported
HTTP web request or REST-style web Service.

• It supports PUT, DELETE, GET and POST methods.
• It is based on common Web Services standards such as XML, SOAP and WSDL instead of proprietary

standards that are currently being replaced.

REpresentational State Transfer (REST) is an XML-based protocol for invoking Web Services over
HTTP. REST is a lighter version of SOAP, which has evolved into a more complex protocol. REST-style
web services offer a less coupled paradigm whereby simpler requests and responses are used. As an
example, a simple HTTP request follows the REST methodology. The Web Request block allows the
user to query "RESTful" Web services.

Important
Starting with version 8.1.450.33, Composer supports fetching HTTPS (HTTP over SSL)
URLs in the Web Request and Web Service blocks.

The supported return formats for the Web Request block are:

• plain text. For workflows, the result will be returned in a JSON string with the key name result, e.g.,
{"result": this is a plain text result"}.

• plain XML.
• JSON string. See an issue pertaining to JSON objects in Troubleshooting.

Important
When converting from XML to JSON, any leading zeroes in an attribute's value are
truncated. If there are leading zeroes in a number, the number is considered as an
Octal value and must be enclosed in quotes to be interpreted as a string.

In version 8.1.450.20, the SSL certificate validation code is disabled as Composer does not utilize this
code for HTTP requests. If required, this code can be enabled on a demand basis by setting the
web.legacyCertificateCode option to true in the composer.properties file. In previous versions,
this code was always enabled.

Beginning with version 8.1.560.15, a new validation mode for SSL server certificates is introduced. If
enabled, Composer does not add the server certificate to the trust store and instead only performs an
expiry date validity check and signature check for the certificate. Users can manually add the
required server certificates to the trust store. This new mode is applicable only for Composer Java

Server-Side Common Blocks

Composer Help 1235

projects. To enable this mode, the web.https.productionMode property must be set to true in the
composer.properties file. This property is set to false by default.

The Web Request block has the following properties:

Important
Some of the property names in this block are repeated under different categories.
Such property names have been prefixed with the category name for readers to be
able to easily differentiate the similar names on this page.

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks You can also define custom events.

Important
Server side exceptions from the Web Request block is optional from version
8.1.450.33. A new flag, web.throwServerException, is introduced. On adding the
flag to the composer.properties file in the respective project and setting it to true,
the Web Request block throws an error.com.genesyslab.composer.servererror
error for failures. If the new flag is set to false, the the Web Request block updates
the errorMsg entity in the JSON response.
Note: For JAVA projects, the composer.properties file is found in the WEB-INF folder of the respective

Server-Side Common Blocks

Composer Help 1236

project. For .NET projects the composer.properties file is found in the BIN folder of the respective project.
The composer.properties is not created by default by Composer, and users must create one, if required.

HTTPS SSL Authentication\Authentication Type

Use this property to select the type of authentication you want to implement for establishing an
HTTPS SSL connection, Mutual Authentication, Server Authentication, or Anonymous.

• Anonymous (selected by default, introduced in 8.1.530.17) - server certificate validation is not
performed by the client.

• Server Authentication (introduced in 8.1.450.33) - the client authenticates the server using the server's
Public Key Certificate (PKC).

• Mutual Authentication (introduced in 8.1.530.17) - both client and server authenticate each other's
identities before actual communication occurs.

Important
If Mutual Authentication is selected here, the certificateStoreName, Certificate
Alias, Certificate or Key Store Location, Key Algorithm, Key Store Password,
Private Key Password, Trust Store Location, and Trust Store Password
properties (all introduced in 8.1.530.17) are mandatory. The values specified in these
properties are used during client certificate validation.

Important
For HTTPS URLs, only the Server Authentication and Mutual Authentication
types are recommended.

HTTPS SSL Authentication\Trust Store Location

Use this property to specify the path to the certificate store location. The path must point to the
keystore file (*.jks) or cacerts (default trust store provided by JVM) that contains a list of
certificate(s) that the Composer application trusts. The drop-down lists the Entry block variables by

Server-Side Common Blocks

Composer Help 1237

default.

For Java projects, the drop-down is editable and the Java trust store can be customized and can
override the default trust store location provided by the Java Virtual Machine.

• You can point to the default CA certificate residing at $JAVA_HOME/lib/security/cacerts, or
• Manually create a CA certificate file of their own (using the keytool utility).

Important
A forward slash denotes directory separation on the Linux OS. However, on Windows,
a backward slash denotes directory separation. And since a backward slash is used for
escaping characters in Java, you must include two backslashes when specifying the
location for a Windows system. For example,
C:\\JAVA_HOME\\jre\\lib\\security\\cacerts.

You can either select a variable that has the path or directly specify an absolute path.

Server-Side Common Blocks

Composer Help 1238

For .NET projects, the drop-down is not editable. Windows has its own certificate store
(StoreLocation.CurrentUser, StoreLocation.LocalMachine) and you cannot provide a new
location or override the default location.

HTTPS SSL Authentication\Trust Store Password

Use this property to specify the password to access the specified trust store.

Important
This property is not applicable for .NET projects as access to the Windows store does
not require a password.

HTTPS SSL Authentication\certificateStoreName

Use this property to specify the name of the key store that contains the client certificate entry. The
supported key store types are jks and pkcs12.

Sample value for a Java project: keystore.jks.

HTTPS SSL Authentication\Certificate Alias

Use this property to provide an alias for the client certificate.

Sample value for a Java project: keyAlias.

Server-Side Common Blocks

Composer Help 1239

HTTPS SSL Authentication\Certificate or Key Store Location

Use this property to specify the path to the key store location that contains the client certificate.

Sample value for a Java project: C:\North\KeyStore_Certificates.

Important
Windows has its own certificate store (StoreLocation.CurrentUser ,
StoreLocation.LocalMachine) and you cannot create or override this default store
for .NET projects.

HTTPS SSL Authentication\Key Algorithm

Use this property to select the type of key algorithm (RSA or DSA) to be used during client certificate
validation.

HTTPS SSL Authentication\Key Store Password

Use this property to provide the password to access the specified key store.

HTTPS SSL Authentication\Private Key Password

Use this property to specify the password to access the client certificate's private key.

Request Method Property

This property Indicates the method for invoking the web request:

• get--Invoked using HTTP Get.
• post--Invoked using HTTP Post.
• put--Invoked using HTTP Put.
• delete--Invoked using HTTP Delete.

To select a value for the Request Method property:

Server-Side Common Blocks

Composer Help 1240

1. Select the Request Method row in the block's property table.
2. In the Value field, select get, post, put, or delete from the drop-down list.

Uri Property

The Uri property specifies the http:// page to invoke. To set a URL destination for the Uri property:

1. Select the Uri row in the block's property table.
2. In the Value field, click the down arrow and select the variable that contains URL.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Misc\Authentication Type Property

The Authentication Type property specifies whether to use an anonymous or basic authentication for
the web request. To assign a value to the Authentication Type property:

1. Select the Authentication Type row in the block's property table.
2. In the Value field, select anonymous (default) or basic from the drop-down list. With the anonymous

type of access, no user name/password is passed to Web service for client authentication in order to
get data. If you select the basic type of access, you must supply the Login Name and Password
properties.

Server-Side Common Blocks

Composer Help 1241

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Encoding Type Property

The Encoding Type property (used for callflows only) indicates the media encoding type of the
submitted document. GVP 8.1 supports two encoding types:

• application/x-www-form-urlencoded
• multipart/form-data

To select a value for the Encoding Type property:

1. Select the Encoding Type row in the block's property table.
2. In the Value field, select one of the following:

• application/x-www-form-urlencoded (default)
• application/json

Input Parameters Property

Use the Input Parameters property to specify a list of required Name/Value pairs to pass as
parameters to the http:// page. To specify input parameters:

1. Click the Parameters row in the block's property table.

2. Click the button to open the Parameter Settings dialog box.

Add Button Use the Add button to enter parameter details.

1. Click Add to add an entry to Web Request Parameters.
2. In the Parameter Name field, accept the default name or change it.
3. From the Parameter Type drop-down list, select In, Out, or InOut:

In Input parameters are variables submitted to the
web request.

Out
Output parameters are variables that the web
request returns and will be reassigned back to the
current callflow/workflow.

InOut InOut parameters are parameters that act as both
input and output.

Server-Side Common Blocks

Composer Help 1242

1. In the Expression drop-down list, select from among the variables shown, type your own expression, or
click the button to use Expression Builder.

2. In the Definition field, type a description for this parameter.
3. Click Add again to enter another parameter, or click OK to finish.

Delete Button To delete a parameter:

1. Select an entry from the list.
2. Click Delete.

JSON Content Property

If the HTTP request to be invoked expects JSON content, this property can be used to specify that
input. It expects a variable whose content will be sent to the API specified in the HTTP URI property of
the block. Set the Encoding Type property of the block to application/json. In this case, the Input
Parameters property will not be used.

The variable selected in this property should contain a JavaScript object. The object can be built from
a JSON string, or using the ECMAScript block.

For example, if you would like to pass a JSON content to the HTTP URI, using a variable named
"content", the variable can be initialized in the following ways:

• If you have a JSON string, you can use the Assign block to assign the following value to "content":

JSON.parse('{"abc": "def", "xyz": 3}')

• Alternately, you can build a JavaScript object using an ECMAScript block with code like the following:

var content = new Object(); content['abc'] = 'def'; content['xyz'] = 3;

In both cases, set the JSON Content property of the Web Request block to the variable named
"content".

Timeout Property

Select the variable containing the number of seconds that the application will wait when fetching the
result of the Web Service or the Web Request or keep the default of 90 (added starting with
8.1.440.18). If the requested resource does not respond in that time, then a timeout event will occur.

Custom HTTP Headers Property

Use this property to add Custom headers to be sent along with the HTTP request during the runtime

Server-Side Common Blocks

Composer Help 1243

execution of the Server Side block.

1. Click the row in the block's property table.

2. Click the button to open the Custom HTTP Headers dialog box.
3. Click Add to open Configuration Custom HTTP Headers dialog box.
4. Select a Header type.
5. Select Literal or Variable.
6. Type the literal value or select the variable that contains the value.

Proxy Property

You can specify a proxy server to act as an intermediary server when making requests for Web
Services from other servers. The proxy server evaluates the request as a way to simplify and control
its complexity. Today, most proxies are web proxies, facilitating access to content on the World Wide
Web and providing anonymity. To configure:

• Set Enable Proxy to true or false.
• Enter the IP address of the web proxy Host.
• Enter the Password for the web proxy.
• Enter the web proxy Port.
• Enter the web proxy User Name.

Login Name Property

Used when Misc\Authentication Type = basic. The Login Name property specifies the login name for
the invoked web page. To provide a login name for the web request:

1. Select the Login Name row in the block's property table.
2. In the Value field, type a valid login name.

Password Property

Used when Misc\Authentication Type = basic. The Password property specifies the password for the
invoked web page. To provide a password for the web request:

1. Select the Password row in the block's property table.
2. In the Value field, type a valid password that corresponds to the login name above or, starting with

8.1.440.18, you can select the password from a variable.

Server-Side Common Blocks

Composer Help 1244

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Verify JSON Response

Composer 8.1.400.35 adds this property. When set to false, the Web Request block will not parse the
JSON response and will return it as-is. The default is true. Add this property to the Properties view by
clicking the Show Advanced Properties button.

Result Property

The Result property is the variable used to get back a result from the web request. To select a
variable:

1. Select the Result row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list. Does not need to match

the variable name that is coming back as a result of the web request.

Server-Side Common Blocks

Composer Help 1245

Web Service Common Block
The Web Service block allows you to develop an an application that supports secure mutual
authentication and communication with a Web Service, through the use of both a digital client
certificate and server certificate contained in a keystore file.

This functionality is supported for both callflows and workflows. In both cases. Composer generates
all the necessary code based on the visual callflow or workflow, so you do not have to write any
server-side code to supplement the communication with the external Web Service.

In version 8.1.450.20, the SSL certificate validation code is disabled as Composer does not utilize this
code for HTTP requests. If required, this code can be enabled on a demand basis by setting the
web.legacyCertificateCode option to true in the composer.properties file. In previous versions,
this code was always enabled.

Beginning with version 8.1.560.15, a new validation mode for SSL server certificates is introduced. If
enabled, Composer does not add the server certificate to the trust store and instead only performs an
expiry date validity check and signature check for the certificate. Users can manually add the
required server certificates to the trust store. This new mode is applicable only for Composer Java
projects. To enable this mode, the web.https.productionMode property must be set to true in the
composer.properties file. This property is set to false by default.

Video Tutorial

Below is a video tutorial on using the Web Service block.

Tip
While the interface for Composer in this video is from release 8.0.1, the steps are
basically the same for subsequent releases.

Server-Side Common Blocks

Composer Help 1246

SOAP-Compliant Web Services

This block can be used to invoke SOAP 1.1 compliant Web Services. It accepts and parses WSDL
content for the WebService and collects input parameters based on this WSDL content.

• Uses common Web Services standards such as XML, SOAP and WSDL.
• You can pass parameters (as in subdialogs) and store the return values in variables.
• GET and POST methods are supported.
• Supports SOAP 1.1 and therefore requires a WSDL file to describe endpoints and services. The Web

Service block will not work without this WSDL file.
• WSDL-based Web Services are supported with certain limitations. The WSDL is parsed and you are

provided the option to select the service name, bindings type, operations, service end point, and mode
(GET / POST). The Input and Output parameter list is pulled by default from the WSDL.

Data returned by the Web Service is converted to JSON format and made available in the application.
(See an issue pertaining to JSON objects in Troubleshooting.)

Important
SOAP 1.2 is not supported.

Additional Information

For additional information, see:

• Web Service Block and SignedSOAPRequests and Web Service SOAP Message Examples.

• WSDL_SOAP_XSD_WSSE_Support

Web Service Block Security

For Java and .NET Composer projects, the Web Service Block supports secured SOAP communication
using XML Digital Signature with a Client Certificate for Java Composer Projects. XML Digital
Signature authentication is in compliance with the Second Edition of the XML Signature Syntax and
Processing Specification and the OASIS Web Services Security SOAP Messages Security Specification.
The Authentication Type property below allows you to select various types of authentication.

Server-Side Common Blocks

Composer Help 1247

Testing the Web Service Block

When working with either a callflow or workflow, the Web Service block provides menu option to test
the configured SOAP Web Service using the Web Services Explorer. Right-click the Web Services block
and select Test with Web Services Explorer.

The Web Service block has the following properties:

Important
Some of the property names in this block are repeated under different categories.
Such property names have been prefixed with the category name for readers to be
able to easily differentiate the similar names on this page.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events. The Web Service block Exceptions dialog box
has the following pre-set exceptions:

• Callflows: error.badfetch and error.com.genesyslab.composer.webservice.badFetch
• Workflows: error.session.fetch and error.com.genesyslab.composer.webservice.badFetch

Server-Side Common Blocks

Composer Help 1248

Important
Server side exceptions from the Web Service block is optional from version
8.1.450.33. A new flag, web.throwServerException, is introduced. On adding the
flag to the composer.properties file in the respective project and setting it to true,
the Web Service block throws an error.com.genesyslab.composer.servererror
error for failures. If the new flag is set to false, the the Web Service block updates
the errorMsg entity in the JSON response. If the particular configuration option is not
found in the composer.properties file, the Web Request or Web Service block
updates the errorMsg entity in the JSON response (as when the flag is set to false).
Note: For JAVA projects, the composer.properties file is found in the WEB-INF folder of the respective
project. For .NET projects the composer.properties file is found in the BIN folder of the respective project.
The composer.properties is not created by default by Composer, and users must create one, if required.

HTTPS SSL Authentication\Authentication Type

Use this property to select the type of authentication you want to implement for establishing an
HTTPS SSL connection, Mutual Authentication, Server Authentication, or Anonymous.

• Anonymous (selected by default, introduced in 8.1.530.17) - server certificate validation is not
performed by the client.

• Server Authentication (introduced in 8.1.450.33) - the client authenticates the server using the server's
Public Key Certificate (PKC).

• Mutual Authentication (introduced in 8.1.530.17) - both client and server authenticate each other's
identities before actual communication occurs.

Important
If Mutual Authentication is selected here, the certificateStoreName, Certificate
Alias, Certificate or Key Store Location, Key Algorithm, Key Store Password,
Private Key Password, Trust Store Location, and Trust Store Password
properties (all introduced in 8.1.530.17) are mandatory. The values specified in these
properties are used during client certificate validation.

Important

Server-Side Common Blocks

Composer Help 1249

Basic HTTP Authentication properties in the Web Service block are validated only
during runtime in the server-side pages (ASPX/JSP). For design time, WSDL parsing
authentication is not supported. You can copy the WSDL file to the Include folder
within the required Composer Project folder and specify include/<filename.wsdl>
in the Service URL property to parse the WSDL file and configure the block.

Important
For HTTPS URLs, only the Server Authentication and Mutual Authentication
types are recommended.

HTTPS SSL Authentication\Trust Store Location

Use this property to specify the path to the certificate store location. The path must point to the
keystore file (*.jks) or cacerts (default trust store provided by JVM) that contains a list of
certificate(s) that the Composer application trusts. The drop-down lists the Entry block variables by
default.

For Java projects, the drop-down is editable and the Java trust store can be customized and can
override the default trust store location provided by the Java Virtual Machine.

• You can point to the default CA certificate residing at $JAVA_HOME/lib/security/cacerts, or
• Manually create a CA certificate file of their own (using the keytool utility).

Important
A forward slash denotes directory separation on the Linux OS. However, on Windows,
a backward slash denotes directory separation. And since a backward slash is used for
escaping characters in Java, you must include two backslashes when specifying the
location for a Windows system. For example,
C:\\JAVA_HOME\\jre\\lib\\security\\cacerts.

Server-Side Common Blocks

Composer Help 1250

You can either select a variable that has the path or directly specify an absolute path.

For .NET projects, the drop-down is not editable. Windows has its own certificate store
(StoreLocation.CurrentUser, StoreLocation.LocalMachine) and you cannot provide a new
location or override the default location.

HTTPS SSL Authentication\Trust Store Password

Use this property to specify the password to access the specified trust store.

Important
This property is not applicable for .NET projects as access to the Windows store does
not require a password.

Server-Side Common Blocks

Composer Help 1251

HTTPS SSL Authentication\certificateStoreName

Use this property to specify the name of the key store that contains the client certificate entry. The
supported key store types are jks and pkcs12.

Sample value for a Java project: keystore.jks.

HTTPS SSL Authentication\Certificate Alias

Use this property to provide an alias for the client certificate.

Sample value for a Java project: keyAlias.

HTTPS SSL Authentication\Certificate or Key Store Location

Use this property to specify the path to the key store location that contains the client certificate.

Sample value for a Java project: C:\North\KeyStore_Certificates.

Important
Windows has its own certificate store (StoreLocation.CurrentUser ,
StoreLocation.LocalMachine) and you cannot create or override this default store
for .NET projects.

HTTPS SSL Authentication\Key Algorithm

Use this property to select the type of key algorithm (RSA or DSA) to be used during client certificate
validation.

HTTPS SSL Authentication\Key Store Password

Use this property to provide the password to access the specified key store.

HTTPS SSL Authentication\Private Key Password

Use this property to specify the password to access the client certificate's private key.

Server-Side Common Blocks

Composer Help 1252

Service URL Property

The Service URL property specifies the WSDL URL of the Web Service to invoke. To set the Service
URL:

1. Select the Service URL row in the block's property table.
2. In the Value field, type a valid URL.

When you provide the WSDL URL in the Service URL property, Composer will try to access the URL
and parse it to populate the drop-down lists for the remaining properties:

• Available Services
• Bindings
• Operations
• Service End Point
• Use Protocol

Note: When upgrading older diagrams to 8.1.1 and higher, it is necessary to clear out the
service URLand specify it again. This is needed in newer versions to re-parse the WSDL obtained
from the specified URL and not use the cached information stored in the diagram.

Available Services Property

When Composer accesses the Service URL, the available Web Services will populate the drop-down
list of the Available Services property. To select an available service:

1. Click the Available Services row in the block's property table.
2. In the Value field, select an available Web Service from the drop-down list.

Bindings Property

When Composer accesses the Service URL, the available bindings will populate the drop-down list of
the Bindings property. To select a binding:

1. Click the Bindings row in the block's property table.
2. In the Value field, select an available bindings setting from the drop-down list.

Server-Side Common Blocks

Composer Help 1253

Operations Property

When Composer accesses the Service URL, the available operations will populate the drop-down list
of the Operations property. To select an operation:

1. Click the Operations row in the block's property table.
2. In theValue field, select the desired operation from the drop-down list.

Service End Point Property

When Composer accesses the Service URL, the service end point options will populate the drop-down
list of the Service End Point property. To select a service end point:

1. Click the Service End Point row in the block's property table.
2. In the Value field, select the service end point from the drop-down list.

Service End Point Variable Property

Use this property to parameterize the Service End Point in the Web Service block. This property will
overwrite the above Service End Point property literal value. This enables you to move the workflows
across different environments. Moving applications between a test environment and a production
environment is same for both .NET and Java Projects. Only deployment procedures might change
depending on the Web Server involved. The Web Service Block -> Service End Point Variable property
can be used to externalize the Web Service URLs for different environments.

Use Protocol Property

When Composer accesses the Service URL, the protocol options (SOAP and HTTP) will populate the
drop-down list of the Use Protocol property. To select a protocol:

1. Click the Use Protocol row in the block's property table.
2. In the Value field, select SOAP or HTTP from the drop-down list.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Server-Side Common Blocks

Composer Help 1254

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Input Parameters Property

Note: The Web Service block won't work with IRD if the Web Service parameters are named double
since URS considers it a reserved keyword. The same Web Service block will work fine in the voice
application. After you have chosen the available service and operations which you want to invoke,
along with bindings, service end point, and protocol, use the Input Parameters property to specify a
list of required Name/Value pairs to pass as parameters to the Web Service URL. To specify input
parameters:

1. Click the Parameters row in the block's property table.

2. Click the button to open the Parameter Settings dialog box.

Add Button

Use the Add button to enter parameter details.

1. Click Add to add an entry to Web Service Parameters.
2. In the Parameter Name field, accept the default name or change it.
3. From the Parameter Type drop-down list, select In, Out, or InOut:

In Input parameters are variables submitted to the
web service.

Out
Output parameters are variables that the web
service returns and will be reassigned back to the
current callflow/workflow.

InOut InOut parameters are parameters that act as both

Server-Side Common Blocks

Composer Help 1255

input and output.

4. In the Expression drop-down list, select from among the variables shown, type your own expression,
or click the button to use Skill Expression Builder.

5. In the Definition field, type a description for this parameter.
6. Click Add again to enter another parameter, or click OK to finish.

Delete Button

To delete a parameter:

1. Select an entry from the list.
2. Click Delete.

Timeout Property

Select the variable containing the number of seconds that the application will wait when fetching the
result of the Web Service or the Web Request or keep the default of 90 (added in 8.1.440.18). If the
requested resource does not respond in that time, then a timeout event will occur.

Custom HTTP Headers Property

Use this property to add Custom headers to be sent along with the HTTP request during the runtime
execution of the Server Side block.

1. Click the row in the block's property table.

2. Click the button to open the Custom HTTP Headers dialog box.
3. Click Add to open Configure Custom HTTP Headers dialog box.

Note: The list of headers is a standard list defined by the HTTP protocol. You can optionally specify a
list of headers. For each header, the name can be selected from the drop down list or keyed in. The
value can be specified as literal values or as variable. There is no special format.

1. Select a Header type.
2. Select Literal or Variable.
3. Type the literal value or select the variable that contains the value.

Proxy Property

You can specify a proxy server to act as an intermediary server when making requests for Web

Server-Side Common Blocks

Composer Help 1256

Services from other servers. The proxy server evaluates the request as a way to simplify and control
its complexity. Today, most proxies are web proxies, facilitating access to content on the World Wide
Web and providing anonymity. To configure:

• Set Enable Proxy to true or false.
• Enter the IP address of the web proxy Host.
• Enter the Password for the web proxy.
• Enter the web proxy Port.
• Enter the web proxy User Name.

Security\Authentication Type Property

To assign a value to the Authentication Type property:

1. Select the Authentication Type row in the block's property table.
2. In the Value field, select from the following:

• Anonymous--With the anonymous type of access, no user name/password is passed to Web
service for client authentication in order to get data.

• HTTP Basic Authentication--HTTP Protocol level Basic Authentication using Authorization
header. If you select the basic type of access, you must supply the Login Name and
Password properties.

• SOAP Message Level Basic Authentication--SOAP Message level Basic Authentication for
legacy Web Services using <BasicAuth> header.-- Rarely used but for compatibility.

• SOAP XML Signature Authentication--SOAP Message level XML Digital Signature
Authentication using Client Certificate.

• SOAP Signature with HTTP Basic Authentication--SOAP Message Level XML Digital
Signature Authentication using Client Certificate + HTTP Basic Authentication (for the Web
Server level).

Login Name Property

Used when Security\Authentication Type = HTTP Basic Authentication. The Login Name property
specifies the login name for the invoked web page. To provide a login name for the web request:

1. Select the Login Name row in the block's property table.
2. In the Value field, type a valid login name or select the name from a variable.

Server-Side Common Blocks

Composer Help 1257

Password Property

Used when Security\Authentication Type = HTTP Basic Authentication. The Password property
specifies the password for the invoked web page. To provide a password for the web request:

1. Select the Password row in the block's property table.
2. In the Value field, type a valid password that corresponds to the login name above or select the

password from a variable.

SOAP Digital Signature\Certificate Store Name Property

Use this property to specify the name of the Windows Certificate Store. See WebService Block and
Signed SOAP Requests. To select a variable:

1. Select the Certificate Store Name row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

SOAP Digital Signature\Certificate Alias Property

Use this property to specify the Client Certificate Name. See Web Service Block and Signed SOAP
Requests. To select a variable:

1. Select the Certificate Alias row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

SOAP Digital Signature\Certificate or Key Store Location Property

Use this property to specify the location of the Certificate Store or Key Store. See Web Service Block
and Signed SOAP Requests. To select a variable:

1. Select the Certificate or Key Store Location row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

SOAP Digital Signature\Key Algorithm Property

Select DSA (default) or RSA to specify the Key Algorithm to sign the SOAP Digital Signature. See Web
Service Block and Signed SOAP Requests. Use this property to specify the Key Store Password. See

Web Service Block and Signed SOAP Requests. To select a variable:

Server-Side Common Blocks

Composer Help 1258

1. Select the Key Algorithm row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

SOAP Digital Signature\Key Store Password Property

To select a variable:

1. Select the Key Store Password row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list. Does not need to match

the variable name that is coming back as a result of the web request.

SOAP Digital Signature\Private Key Property

Use this property to specify private key of the Client Certificate. See Web Service Block and Signed
SOAP Requests. To select a variable:

1. Select the Private Key row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

SOAP Digital Signature\Private Key Password Property

Use this property to specify the private key password. See Web & Service Block and Signed SOAP
Requests. To select a variable:

1. Select the Private Key Password row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list.

Custom Prefix Property

Use this property to set custom namespace to the generated SOAP message tags. If this property is
set it will overwrite the default / WSDL namespace prefix.

Note: To access this property, ensure that the Show Advanced Properties option is selected on
the toolbar.

Add Namespace Prefix Property

Use this property to add Namespace prefix to the generated SOAP message. By default Composer

Server-Side Common Blocks

Composer Help 1259

Web Service client doesn't generate namespace prefixes.

1. None - Do not add any namespace prefix to the SOAP:Body elements.
2. Method Name Tag Only - Add namespace prefix only to the Method Name tag (Operational name tag).
3. Method Name Tag and Child Tags - Add namespace prefix to all the tags in the SOAP message.

Note: To access this property, ensure that the Show Advanced Properties option is selected on
the toolbar.

Custom SOAP Envelope Property

Use this property to set Custom SOAP Envelope messages. If this property is set, the Composer Web
Service run-time client will use this message to get a Web Service response.

1. Click the Custom SOAP Envelope property under the SOAP Message Generation category. The
Custom SOAP Envelope dialog is displayed.

2. Add the custom SOAP Envelope message (the message can be generated using any Web Service client
tool).

Server-Side Common Blocks

Composer Help 1260

Custom SOAP Envelope Dialog

The custom message is sent to the Web Service URL at run-time. Diagram application variables can
be used to form dynamic contents. Variables can be used in the custom message with a
$<Variable_Name>$ notation.

Note:

1. To access this property, ensure that the Show Advanced Properties option is selected on the toolbar.
2. This property is supported for both Java Composer Projects and .NET Composer Projects.
3. Callflow-Root document variables and Workflow-Project variables are not supported in this property.

Output Result Property

When the Map Output Values to Variables property below is set to true, the Output Result property

Server-Side Common Blocks

Composer Help 1261

maps the Web Service response keys to AppState variables. If Map Output Values to Variables is set
to false, the entire Web Service response will be assigned to a variable. The Output Result property is
the variable used to get back the invoked Web Service result. To select a variable:

1. Select the Output Result row in the block's property table.
2. In the Value field, select one of the available variables from the drop-down list. Does not need to match

the variable name that is coming back as a result of the web request.

Map Output Values to Variables Property

The Map Output Values to Variables property indicates whether or not to map the Web Service
response keys to AppState variables. To select a value for the Map Output Values to Variables
property:

1. Select the Map Output Values to Variables row in the block's property table.
2. In the Value field, select true or false from the drop-down list.

ORS Extensions Property

Starting with 8.1.4, Composer blocks used to build routing applications (with the exception of the
Disconnect and EndParallel blocks) add a new ORS Extensions property.

Example Block Properties

Example properties for a Web Service block are shown below.

Server-Side Common Blocks

Composer Help 1262

ExampleWebService.gif

Web Services Description Language (WSDL) Support

Composer supports WSDL definitions conforming to the version WSDL 1.1 schema.

Errors in WSDL Parsing

The following Composer symptom may indicate errors in WSDL parsing:

• If the WSDL definition contains any of the unsupported types and elements, Composer may not be able
to parse the WSDL correctly to identify the input and output parameters of the Web Service.

• If the Composer WSDL parser is unable to properly parse the WSDL definition for the Web Service, the
input and output parameters fields in the Web Service Parameters dialog box might be empty, with no
pre-configured parameters as shown below.

Server-Side Common Blocks

Composer Help 1263

Workarounds
Currently, the following workarounds are available to change the schemas to work with Composer:

• Use qualified elementFormDefault (elementFormDefault="qualified") and define types with fully
qualified namespace definitions.

• Define all wsdl types in one schema.
• Replace reference attributes with the actual types being referenced.
• Use the Add/Delete buttons to add or remove any parameters that may not have been automatically

displayed. The SOAP request that will be generated at application runtime will take these changes into
account.

Note

Composer Web Service block-generated SOAP messages do not have prefix in the SOAP elements.
Web Services created using Metro / JAX-WS framework may return Null Pointer Exception or
Unexpected Result due to the prefix limitation. Updating the JAX-WS API's / GlassFish server / Metro
WS Framework to latest versions may help.

Microsoft Web Services Enhancements (WSE) Not Installed

See .DOTNet Troubleshooting for steps on working with Composer .NET Projects when a machine does

Server-Side Common Blocks

Composer Help 1264

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/DotNETProjectIssues#netwse

not have WSE 3.0:

Server-Side Common Blocks

Composer Help 1265

Web Service Stubbing
Composer's Web Services stubbing feature allows you to work with Web Services in off-line mode
when you do not have access to the Web Service itself or if the Web Service is under development.
This feature is intended to be used in a test environment. It is not intended for a production

environment unless there is need to remove an active Web Service from a callflow for debugging
purposes.

Using Web Services Stubbing

To use Web Services stubbing:

1. To enable stubbing, add the variable COMPOSER_WSSTUBBING to your Entry block and set its value to 1
indicating stubbing is turned on (0 = stubbing is turned off). In Composer 8.0.2 and later, this variable
is present by default in the Set Application Variables dialog box, which opens from the Entry object.

2. Create the Web Service block.
3. Place the Web Service Description Language (WSDL) file in your Project. The assumption is that the

WSDL file for the Web Service is available at all times.
4. For the Service URL property, use a local URL to the WSDL file. When the Web Service is ready to be

used, change this local URL to the correct URL.)
5. To specify the expected output value for the Web Service result as well as any output parameters, use

the Output Result property of the Web Service block. An example is shown below.

Using the above examples:

• If stubbing is on, the myResult variable will be assigned the value Some result and myOutput1 will be

Server-Side Common Blocks

Composer Help 1266

assigned the value of some output.
• If stubbing is off, the value returned by the Web Service will be stored in these two variables.

Limitation

Web Service stubbing currently does not support auto-synchronization of output parameters in case
of Web Services with complex return types.

Server-Side Common Blocks

Composer Help 1267

Web Service SOAP Messages
Use the examples below when configuring the Web Service block.

SOAP Message Level Basic Authentication
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>
<h:BasicAuth xmlns:h="http://soap-authentication.org/basic/2001/

10/" mustUnderstand="1">
<Name>UserName</Name>
<Password>Pass</Password>

</h:BasicAuth>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<p:getNumber xmlns:p="http://webservice.com"/>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Message Signed Using Client Digital Certificate (DSA Key
Algorithm)
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" SOAP-ENV:mustUnderstand="1">
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" Id="SIG-2">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<ec:InclusiveNamespaces xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="SOAP-
ENV"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
<ds:Reference URI="#id-1">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"><ec:InclusiveNamespaces
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList=""/>
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/><ds:DigestValue>yMmgdHRevOnFPGtnSZx4JV9hiuI=</ds:DigestValue></ds:Reference></ds:SignedInfo><ds:SignatureValue>MX9c9C5Tpfvp32e2pPjkCv4ycZhcuZVMFHo8DlGKWi331fnG3oqXLg==</ds:SignatureValue><ds:KeyInfo
Id="KI-8D7856F18A7AB8CF5613098009924472">
<wsse:SecurityTokenReference wsu:Id="STR-8D7856F18A7AB8CF5613098009924473">
<wsse:KeyIdentifier EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-x509-token-
profile-1.0#X509v3">MIICwDCCAn2gAwIBAgIETfBxZzALBgcqhkjOOAQDBQAwQzELMAkGA1UEBhMCVVMxDDAKBgNVBAoTA1N1bjERMA8GA1UECxMISmF2YVNvZnQxEzARBgNVBAMTCk1hcmsgSm9uZXMwHhcNMTEwNjA5MDcwODIzWhcNMTExMjA2MDcwODIzWjBDMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDU3VuMREwDwYDVQQLEwhKYXZhU29mdDETMBEGA1UEAxMKTWFyayBKb25lczCCAbcwggEsBgcqhkjOOAQBMIIBHwKBgQD9f1OBHXUSKVLfSpwu7OTn9hG3UjzvRADDHj+AtlEmaUVdQCJR+1k9jVj6v8X1ujD2y5tVbNeBO4AdNG/
yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb+DtX58aophUPBPuD9tPFHsMCNVQTWhaRMvZ1864rYdcq7/
IiAxmd0UgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGBAPfhoIXWmz3ey7yrXDa4V7l5lK+7+jrqgvlXTAs9B4JnUVlXjrrUWU/

Server-Side Common Blocks

Composer Help 1268

mcQcQgYC0SRZxI+hMKBYTt88JMozIpuE8FnqLVHyNKOCjrh4rs6Z1kW6jfwv6ITVi8ftiegEkO8yk8b6oUZCJqIPf4VrlnwaSi2ZegHtVJWQBTDv+z0kqA4GEAAKBgHkpjztZI0n2zpnrb1sTNgtyUFT71ntv9gBuK0voURj51iRs1eHt4HGD6NjSE79w8HMG/
5Ykhco6lMBRRncJwGuWB/mFPhaX8Odfj8NMEih1+ICIjhVwGk1p6P3Gu2Dm+45TYJCxBktdOlU0uy/
Uj8E61NZSaeQL9WA4gGz5Hb5uMAsGByqGSM44BAMFAAMwADAtAhQqfbMb9hd1vpBAAJntCDSOY5uP2AIVAJGy1E7Zx4268n3fD34gLcpkZoKc</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" wsu:Id="id-1">
<p:methodName xmlns:p="http://example.com"><key>value</key></p:methodName>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Message Signed Using Client Digital Certificate (RSA Key
Algorithm)
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" SOAP-ENV:mustUnderstand="1">
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" Id="SIG-2">
<ds:SignedInfo><ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<ec:InclusiveNamespaces xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="SOAP-
ENV"/>
</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference URI="#id-1">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"><ec:InclusiveNamespaces
xmlns:ec=
"http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList=""/>
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>yMmgdHRevOnFPGtnSZx4JV9hiuI=
</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>MX9c9C5Tpfvp32e2pPjkCv4ycZhcuZVMFHo8DlGKWi331fnG3oqXLg==</ds:SignatureValue>
<ds:KeyInfo Id="KI-8D7856F18A7AB8CF5613098009924472">
<wsse:SecurityTokenReference wsu:Id="STR-8D7856F18A7AB8CF5613098009924473">
<wsse:KeyIdentifier EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-x509-token-
profile-1.0#X509v3">MIICwDCCAn2gAwIBAgIETfBxZzALBgcqhkjOOAQDBQAwQzELMAkGA1UEBhMCVVMxDDAKBgNVBAoTA1N1bjERMA8GA1UECxMISmF2YVNvZnQxEzARBgNVBAMTCk1hcmsgSm9uZXMwHhcNMTEwNjA5MDcwODIzWhcNMTExMjA2MDcwODIzWjBDMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDU3VuMREwDwYDVQQLEwhKYXZhU29mdDETMBEGA1UEAxMKTWFyayBKb25lczCCAbcwggEsBgcqhkjOOAQBMIIBHwKBgQD9f1OBHXUSKVLfSpwu7OTn9hG3UjzvRADDHj+AtlEmaUVdQCJR+1k9jVj6v8X1ujD2y5tVbNeBO4AdNG/
yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb+DtX58aophUPBPuD9tPFHsMCNVQTWhaRMvZ1864rYdcq7/
IiAxmd0UgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGBAPfhoIXWmz3ey7yrXDa4V7l5lK+7+jrqgvlXTAs9B4JnUVlXjrrUWU/
mcQcQgYC0SRZxI+hMKBYTt88JMozIpuE8FnqLVHyNKOCjrh4rs6Z1kW6jfwv6ITVi8ftiegEkO8yk8b6oUZCJqIPf4VrlnwaSi2ZegHtVJWQBTDv+z0kqA4GEAAKBgHkpjztZI0n2zpnrb1sTNgtyUFT71ntv9gBuK0voURj51iRs1eHt4HGD6NjSE79w8HMG/
5Ykhco6lMBRRncJwGuWB/mFPhaX8Odfj8NMEih1+ICIjhVwGk1p6P3Gu2Dm+45TYJCxBktdOlU0uy/
Uj8E61NZSaeQL9WA4gGz5Hb5uMAsGByqGSM44BAMFAAMwADAtAhQqfbMb9hd1vpBAAJntCDSOY5uP2AIVAJGy1E7Zx4268n3fD34gLcpkZoKc</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

Server-Side Common Blocks

Composer Help 1269

utility-1.0.xsd" wsu:Id="id-1">
<p:methodName xmlns:p="http://example.com"><key>value</key></p:methodName>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Server-Side Common Blocks

Composer Help 1270

Signed SOAP Requests
The Web Service block enables Composer applications to invoke Web Services, which require
message-level authentication. The message level security support provided by the Web Service block
is limited to one-way signed SOAP requests from the Composer application to the Web Service. Web
Services can then verify that the request received from a Composer application includes a valid
certificate.

Prerequisites

The prerequisites are:

• Web Service is able to verify only the signature (Timestamp, UsernameToken and Encryption are not
supported).

• Web Service sends an unsigned response, i.e., Web Service is not configured to process outgoing
response (only InflowSecurity is configured).

• X.509 certificate for the client is available and is trusted by the Web Service. Certificates can be
purchased from a certificate authority or can be generated (for testing) using tools, such as OpenSSL.

• Certificates should be based on one of the supported encryption algorithms, RSA or DSA.
• Certificate Stores:
• For Java projects, certificates and keys should be available in a Java Keystore (*.jks file). OpenSSL and

Keytool (available in JDK 1.6) can be used to create and import certificates.
• For .NET projects, certificates and keys should be available in the Windows Certificate Store. OpenSSL

can be used to create certificates and Certificates (snap-in in Microsoft Management Console) can be
used to import certificates.

• For .NET projects, WSE 3.0 (runtime) should be installed on the machine running Composer.

Enabling Signing of SOAP Messages

To enable signing of SOAP messages, set the Authentication Type property in the Security section to
one of the following values

• SOAPDigitalSignatureAuthentication -- for signing messages when not using HTTP Basic authentication.
• SOAPSignatureWithHTTPBasicAuthentication -- for signing messages when used along with HTTP Basic

Authentication (Security Basic Authentication Credentials section is specified)

Once enabled to sign the request, the application will need information regarding the public key
(certificate) and private key (key) as below:

• Certificate Store Name (.NET only) -- Windows Store Name containing the client certificate and private
key. Value should be one of the following predefined Windows Certificate Stores or the name of a

Server-Side Common Blocks

Composer Help 1271

custom Store in which the certificate and key are stored. Note that this Store should contain the client
certificate (should include the private key as well).

• AddressBook -- The X.509 Certificate Store for other users.
• My -- The X.509 Certificate Store for personal certificates.
• TrustedPeople -- The X.509 Certificate Store for directly trusted people and resources.
• Certificate Alias -- Alias that identifies the certificate and key in the Store. For .NET projects, this refers

to the subject of the certificate, e.g., CN=ComposerCertificate.
• Certificate or Key Store Location -- Path to the Certificate Store location containing the certificate and

private key. In .NET, the value should be set to one of the following:
• StoreLocation.LocalMachine (default when value is not one of these)
• StoreLocation.CurrentUser
• Key Algorithm -- Algorithm to be used for encryption. This is the same as the algorithm that was

specified when the key was generated; usually received from the certificate authority issuing the
certificate.

• Key Store Password (Java only) -- Java Key Store password for the key store specified as the key store
location.

• Private Key Alias (Java only) -- Alias by which the private key is identified in the key store.
• Private Key Password (Java only) - Password to access the private key to be used when signing a

message. For .NET projects, it is expected that the password be stored as part of the settings for the
certificate.

At run time, the Composer application will create a SOAP message and then sign it using its private
key. The signed message will include an encrypted signature in the SOAP header and the SOAP
request as the body. This signed message is sent to the Web Service for processing. Web Service will
decrypt the signature using the client certificate (public key previously imported into the Web Service
certificate store) and hence authenticating that the source of the request is valid.

Signature Validation Failure Causes

Signature Validation by the Web Service may fail for the following reasons:

• Syntax of request (signature) doesn't conform to the policy enforced by the Web Service. Example:
Timestamp is required by the Web Service but was not included in the request because Composer
doesn't support Timestamp policy.

• Validation of signature failed. Example: Web Service uses RSA key, but the request was signed using
DSA key.

• Application validation policy rejects the request. Example: Signature created by an untrusted key.

Once signature validation is successful, the Web Service will process the request and then send the
unsigned response back to the Composer application. Composer processes the response without
signature validation. The above will ensure that Web Services will process requests only from
legitimate clients, the Composer application being one of them.

Server-Side Common Blocks

Composer Help 1272

Connection and Read Timeout
By default, the Web Service and Web Request blocks use 20 seconds each for the connection timeout
and read timeout. The following steps describe how to configure the timeouts:

1. Create a new folder called WEB-INF inside the Composer Project.
2. Create a property file named composer.properties inside the WEB-INF folder.
3. Add the following properties (case-sensitive) to composer.properties with the timeout values:

• web.connectionTimeout=40000

• web.readTimeout=40000

The value specified should be in milliseconds. The connectionTimeout property is a specified timeout
value, in milliseconds, to be used when opening a communications link to the resource referenced by
the URL. The readTimeout property is a nonzero integer value, in milliseconds, to be used when
reading from an input stream when a connection is established to a URL resource.

Server-Side Common Blocks

Composer Help 1273

Server-Side Troubleshooting
The table below lists Server Side block troubleshooting situations and steps to remedy.

Situation Block Steps to Troubleshoot

I entered the Service URL but
getting a pop-up with Check the
Web Service URL

Web Service Block

Verify that the WSDL definition is
accessible in a web browser.
Check the Composer logs for possible
errors in fetching the WSDL. Location:
<workspace>\.metadata Check that the
WSDL definition is accessible and test
with the Web Services Explorer utility as
described in the Troubleshooting section.

I entered the Service URL and I
can choose the SOAP operations,
but the parameters do not show
up in the dialogs

Web Service Block

Verify that the WSDL definition is
accessible in a web browser.
Check the Composer logs for possible
errors in fetching the WSDL. More details
can be found in the logs in the following
location:
<workspace>\.metadata\.plugins\
com.genesyslab.studio.model folder
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

Using the Web Services Explorer
utility Web Service Block

The Web Services Explorer is a
JSP Web application hosted on
the Apache Tomcat servlet
engine contained within Eclipse.
The Web Services Explorer is
provided with Composer and
allows you to explore, import,
and test WSDL documents.
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

Errors during runtime
Web Service Block
Web Request Block Backend Block

Check the Composer logs for
possible errors in fetching the
WSDL.
Check the backend logs. For ASP.NET
projects, check the IIS logs For Java
Projects, check the Tomcat standard logs.
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

I copied my callflow/workflow
from one project to another but
my Backend block does not work

Backend Block
Check that any custom backend
libraries or applications have also
been copied to the new project.

Server-Side Common Blocks

Composer Help 1274

Backend block

Logs:

• Java Composer Projects Server Side Backend logging can be controlled using the log4j.xml file present
in the $ComposerInstalledLocation\tomcat\lib folder.

• For DotNetComposer Projects web.config file can be used to control the Server Side logging.
• Java Composer Projects exported as WAR files will have the log4j.xml bundled inside the WEB-INF\lib

folder. If the log4j.xml configuration format is not working, you can add a log4j.properties in the
tomcat/webapps/<application name>/WEB-INF/classes folder.

Notes:

• Service URL has to end with wsdl or WSDL
• Cannot use - or other reserved characters in the Entry block for a variable value. Enter the value

directly in the input parameters dialog by typing the value in the Expression column as a string;
example: 'atm near 37.771008, -122.41175'

Important
Tomcat is no longer bundled with Composer beginning with version 8.1.561.30. You
will be prompted to provide the Tomcat installed location when running the Composer
installer.

Server-Side Common Blocks

Composer Help 1275

Sample Applications and Templates
Composer provides a set of predefined Project templates (File > New > Java Composer Project)
containing sample applications.You can either start off with a blank Project template or use one of the
predefined templates as a starting point depending on the Project Type you select in the dialog box.

• Project Templates
• Diagram_Templates
• GVP Voice Project Templates
• Integrated Voice Route Project Templates
• Routing Templates and Samples
• Context Services Template
• Database Query Result Template
• Forward_to External Resource Template
• Route After Autoresponse Template
• Routing Based on Variables Template
• Routing Based on Date and Time Sample
• Routing Based on a Statistic Sample
• Routing Based on Percent Allocation
• Routing Using Web Request Sample

Other examples in this document (not supplied as templates):

• Last Called Agent
• Service Level Routing
• How To: Automate an SMS Response to a Customer Call

Note: The Orchestration Developer's Guide contains code examples for SCXML-based routing
applications.

Sample Applications and Templates

Composer Help 1276

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SampleApps
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SampleApps

Project Templates
To create a new Project using a template:

1. In Composer perspective, click the Create a Java Composer Project or Create .NET Composer
Project in the toolbar. Or alternatively:

• File > New > Java Composer Project, or
• File > New > .NET Composer Project.

2. Specify the name of the Project. By default all Projects will be saved in your workspace location.
3. In the Project dialog box, type a name for your Project. If you want to save the Composer Project in your

default workspace, select the Use default location check box. If not, clear the check box, click Browse,
and navigate to the location where you wish to store the Project.

4. Select the Project type:

• Integrated Voice and Route. Select to create a Project that contains both callflows and
workflows that interact with each other. For example, a routing strategy that invokes a GVP
voice application. For more information on both voice and routing applications, see How Do
Voice Applications Work and What Is a Routing Workflow, respectively.

• Voice: Select to create a Project associated with the GVP 8.x. This type of Project may
include callflows, and related server-side files. For more information on this type of Project,
see topic, How Do Voice Applications Work.

• Route: Select to create a Project associated with the URS 8.x SCXML Engine/Interpreter. For
more information on this type of Project, see topic, What Is a Routing Workflow.

5. Click Next.
6. Expand the appropriate Project Type category and select a template for your application.
7. Click Next.
8. Select the Project Locale(s) to be used for prompts, grammars, and other locale-related resources.
9. Click Finish. The new Project folder set will be displayed in the Project Explorer.

Sample Applications and Templates

Composer Help 1277

Diagram Templates
You can save a diagram as a template and have it appear on the list of available templates when
creating a new callflow diagram or creating a new workflow diagram. Diagrams saved as templates
can exported to/imported from the file system.

Saving a Diagram as a Template

To save a diagram as a template:

1. In the Project Explorer, right-click the diagram in the Workflows or Callflows folder.
2. Select Save <Callflow or Workflow> as Template. The Add Template dialog box opens.
3. Name and describe the template.
4. Click OK. Upon a successful save the following message appears: Custom template added to your

configuration.

Accessing Saved Diagram Templates

To view a diagram previously saved as template:

1. From the File menu, select New <Callflow or Workflow> Diagram. The New <Callflow or Workflow>
dialog box opens. The template appears in the Main Workflow tab under Custom Templates.

2. Select the template and click one of the following:

• Next to name the diagram, select the Project, and then click Finish.
• Finish to keep the template name and save in the Workflows or Callflows folder under the

current Project.

Removing a Diagram Template

To remove a diagram template from the Custom Templates list, use Customization Manager.

Exporting a Diagram Template to the File System

To export a diagram to the file system or another user's Composer:

Sample Applications and Templates

Composer Help 1278

1. In the Project Explorer, right-click the diagram in the Workflows or Callflows folder.
2. Select Export. The Export dialog box opens.
3. Under General, select File System and click Next.
4. In the File System dialog box, select the folder containing the diagram(s).
5. On the right, click check boxes to indicate the diagrams (s) to export.
6. Opposite To directory, select the Composer installation to export to or Browse for the destination

directory.
7. Under Options, select one of the following:

• Overwrite existing files without warning
• Create directory structure for files
• Create only selected directories (default).

8. Click Finish.

Importing a Diagram Template

To import a diagram previously saved as a template:

1. In the Project Explorer, right-click the diagram in the Workflows or Callflows folder.
2. Select Import. The Import dialog box opens.
3. Under General, select File System and click Next.
4. In the File System dialog box, opposite From directory, click Browse.
5. Open the workspace directory followed by the Project folder.
6. Within the Project folder, select the Workflows folder that contains the template to import and click OK.
7. In the File System dialog box on the right, click check boxes to indicate the template(s) to import.
8. Opposite Into folder, browse for and select the folder to import into.
9. Under Options, select one of the following:

• Overwrite existing files without warning
• Create directory structure for files
• Create only selected directories (default).

10. Click Finish.

Editing a Diagram Template

Use Customization Manager: Window > Show View > Other > Customization Manager. Select

Sample Applications and Templates

Composer Help 1279

Workflow Diagram Editor or Callflow Diagram Editor.

Sample Applications and Templates

Composer Help 1280

GVP Voice Project Templates
Composer provides Project templates for Genesys Voice Platform voice applications (File > New >
Java Composer Project):

NBest Results Handling Project Template

This template demonstrates processing of NBest Results and confirming the user input. For example,
in a voice application there may be cases where the application must clarify a user response, such
as:

• A Speech Recognizer may return multiple results in the case of a noisy environment or
indistinct pronunciation of words.

• Grammar complexities may cause the user's input to be ambiguous.

NBest processing logic helps a voice application to clarify user responses. The template is shown
below.

Sample Applications and Templates

Composer Help 1281

1. The Entry block enables NBest properties:

• Instructs the Speech Recognizer to return multiple results by setting maxnbest to an integer
greater than one.

• Sets the confidencelevel decimal value (value values from 0.0 to 1.0) indicating the
recognizer's confidence that the utterance matches what the user actually said.

2. An Input block Obtains the results:

• Instructs the user about the expected input details.
• An external grammar file will be used by the ASR engine to process the user input.
• Enables shadow variables.

3. A Branching block uses the Input block’s shadow variable to check whether there are multiple results.
4. An Assign block assigns the obtained results to a variable:

• Creating a custom VXML page to process the multiple results array:
• Iterating over the Array to prompt the user about the results.
• Asking the user to confirm the exact result using a simple inline grammar.

5. A Subdialog block Invokes the NBest Processing VXML page:

• ProcessNBestResults.vxml has been placed inside the src directory.
• Passing the results (LastResult variable) as input for the VXML page.
• Defining an Output variable to receive the return result from the VXML page.

6. A Prompt block announces the user confirmation result.

Sample Applications and Templates

Composer Help 1282

Business Logic Project Template

Sample Applications and Templates

Composer Help 1283

CCXML Project Template

Sample Applications and Templates

Composer Help 1284

Database Access Query Result Access Template

Sample Applications and Templates

Composer Help 1285

Transfer Project Template

Sample Applications and Templates

Composer Help 1286

Database Stocks Template

Sample Applications and Templates

Composer Help 1287

OSDM Project Template

Sample Applications and Templates

Composer Help 1288

Transfer Project Template

Sample Applications and Templates

Composer Help 1289

User Input Project Template

Sample Applications and Templates

Composer Help 1290

Voice Recording Project Template

Sample Applications and Templates

Composer Help 1291

Application Metrics Collection Project
Template
Composer provides Project templates for Genesys Voice Platform voice applications (File > New >
Java Composer Project): In this template, added in 8.1.440.18, JavaScript metrics.js files capture
and build metrics data in JSON format. The Logging Details property in the callflow diagram blocks
are used to call the JavaScript methods. Diagrams are designed to use VAR blocks to provide insights
on capturing VAR data. In addition to Project-specific files in the include, META-INFO, and scripts
folders, the Project includes the following diagrams in the Callflows folder:

[+] Metrics.callflow

Sample Applications and Templates

Composer Help 1292

Main JS Methods:

• initReportingData - Initialize metrics object for each diagram file
• finalizeReportingData - Finalize the reporting data with latest set of variables
• storeMetric - Method to build metrics
• getReportData - Method to get final report in JSON format

Logging Details Properties for Metrics.callflow Calling the JavaScript Methods:
StartApp block Logging Details

initReportingData(new Object(), AppState.varAppID, AppState.varAppName,
AppState.varAppVersion)

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'Entry','StartApp',{})

Sample Applications and Templates

Composer Help 1293

Main Application Start block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'VAR','MainAppActionStart',{});

storeMetric(gMETRICS.ACTIVITY_START,
'VAR','MainAppActionStart',{'actionId':AppState.varMainAction,'parentAction':'MainMetrics'});

Main Menu block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'MENU','MainMenu',{});

SubHandleSales block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'SUBDIALOG','SubHandleSales',{})

storeMetric(gMETRICS.APP_MILESTONES, 'SUBDIALOG','SubHandleSales','Main menu passed')

SubHandleService block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'SUBDIALOG','SubHandleService',{})

Merge Metrics block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'SCRIPT','MergeMetrics',{});

storeMetric(gMETRICS.APP_MILESTONES, 'SCRIPT','MergeMetris','Sub dialogs passed')

SetCallDataAfterSub block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'CALLDATA','SetCallDataAfterSub',{})

storeMetric(gMETRICS.CALL_DATA,
'CALLDATA','SetCallDataAfterSub',{'CustomVar0':AppState.varSubResult,'CustomVar1':AppState.varMainMenu,'CustomVar2':AppState.ANI,'CustomVar3':AppState.DNIS,'CustomVar4':AppState.APP_LANGUAGE,'CustomVar5':AppState.varAppID})

BranchforAssistance block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'BRANCHING','BranchForAssistance',{})

storeMetric(gMETRICS.APP_MILESTONES, 'BRANCHING','BranchForAssistance','Main branching
passed')

QueueTheCall block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'ROUTEREQUEST','QueueTheCall',{})

MainAppActionEnd block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'VAR','MainAppActionEnd',{});

storeMetric(gMETRICS.ACTIVITY_END, 'VAR', 'MainAppActionEnd',
{'actionId':AppState.varMainAction,'notes':'','reason':'','result':''});

PostMetricsData block
Json Content property, content placed in a variable.

[+] sub_sales.callflow

Sample Applications and Templates

Composer Help 1294

Start the subdialog application. Re-initialize the metrics object and return back to the main for merge.
Logging Details Properties for sub_sales.callflow that Call the JavaScript Methods:

StartSalesSubApp block Logging Details

initReportingData(new Object(), AppState.varAppID, AppState.varAppName,
AppState.varAppVersion)

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'ENTRY','StartSalesSubApp',{});

SubSalesApplicationStart block Logging Details

storeMetric(gMETRICS.APP_MILESTONES, 'VAR','SubSalesAppActionStart','Sub dialog sales start')

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'VAR','SubSalesAppActionStart',{})

storeMetric(gMETRICS.ACTIVITY_START,
'VAR','SubSalesAppActionStart',{'actionId':AppState.varSubSalesAction,'parentAction':'SubSales'});

SubSalesSetCall Data block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'CALLDATA','SubSalesSetCallData',{})

storeMetric(gMETRICS.CALL_DATA,
'CALLDATA','SubSalesSetCallData',{'CustomVar2':AppState.ANI,'CustomVar3':AppState.DNIS,'CustomVar4':AppState.APP_LANGUAGE})

SubSalesAppActionEnd block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'VAR','SubSalesAppActionEnd',{});

storeMetric(gMETRICS.ACTIVITY_END, 'VAR', 'SubSalesAppActionEnd',
{'actionId':AppState.varSubSalesAction,'notes':'','reason':'','result':''});

Sample Applications and Templates

Composer Help 1295

storeMetric(gMETRICS.APP_MILESTONES, 'VAR','SubSalesAppActionStart','Sub Sales service end')

[+] sub_service.callflow

Start the subdialog application. Re-initialize the metrics object and return back to the main for merge.

Logging Details Properties for sub_service.callflow Calling the JavaScript Methods:

StartServiceSubApp block Logging Details

initReportingData(new Object(), AppState.varAppID, AppState.varAppName,
AppState.varAppVersion)

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'ENTRY','StartserviceSubApp',{});

SubServiceApplicationStart block Logging Details

storeMetric(gMETRICS.APP_MILESTONES, 'VAR','SubserviceAppActionStart','Sub dialog service
start')

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'VAR','SubserviceAppActionStart',{})

storeMetric(gMETRICS.ACTIVITY_START,
'VAR','SubserviceAppActionStart',{'actionId':AppState.varSubserviceAction,'parentAction':'Subservice'})

SubServiceSetCall Data block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'CALLDATA','SubserviceSetCallData',{})

Sample Applications and Templates

Composer Help 1296

storeMetric(gMETRICS.CALL_DATA,
'CALLDATA','SubserviceSetCallData',{'CustomVar2':AppState.ANI,'CustomVar3':AppState.DNIS,'CustomVar4':AppState.APP_LANGUAGE})

SubServiceAppActionEnd block Logging Details

storeMetric(gMETRICS.BLOCK_ENTRY_TIME, 'VAR','SubserviceAppActionEnd',{});

storeMetric(gMETRICS.ACTIVITY_END, 'VAR', 'SubserviceAppActionEnd',
{'actionId':AppState.varSubserviceAction,'notes':'','reason':'','result':''});

storeMetric(gMETRICS.APP_MILESTONES, 'VAR','SubserviceAppActionStart','Sub dialog service
end')

[+] sample data

.
{

"externalrequests": [],
"dtmfpath": "0",
"milestones": ["Main menu passed", "Sub dialogs passed", "Sub dialog sales start",

"Sub Sales service end", "Main branching passed"],
"activities": [{

"activity": "Main Application",
"parent": "MainMetrics",
"entry": {

"blockName": "MainAppActionStart",
"time": "2017-01-31T23:55:24.823Z"

},
"exit": {

"blockName": "MainAppActionEnd",
"time": "2017-01-31T23:56:01.250Z"

},
"notes": "",
"reason": "",
"result": "",
"seq": 1

}, {
"activity": "Subdialog for Sales",
"parent": "SubSales",
"entry": {

"blockName": "SubSalesAppActionStart",
"time": "2017-01-31T23:55:23.615Z"

},
"exit": {

"blockName": "SubSalesAppActionEnd",
"time": "2017-01-31T23:55:23.615Z"

},
"notes": "",
"reason": "",
"result": "",
"seq": 2

}],
"menucount": 1,
"inputcount": 0,
"variables": {

"System": "{\"RetainInputTypeVariableDefaultValue\":false}",

Sample Applications and Templates

Composer Help 1297

"ANI": "4444",
"DNIS": "dialog",
"USE_LCASE_USERDATAKEY": "0",
"GVPSessionID": "undefined",
"g_CTICCall": "false",
"APP_ASR_LANGUAGE": "en-US",
"APP_LANGUAGE": "en-US",
"COMPOSER_WSSTUBBING": "0",
"EnableFCR": "true",
"EnableReports": "false",
"EnableSNMP": "false",
"GRAMMARFILEDIR": "../Resources/Grammars",
"LAST_EVENT_ELEMENT": "undefined",
"LAST_EVENT_LINE": "undefined",
"LAST_EVENT_MSG": "undefined",
"LAST_EVENT_NAME": "undefined",
"LAST_EVENT_URL": "undefined",
"PREV_APP_ASR_LANGUAGE": "undefined",
"PREV_APP_LANGUAGE": "undefined",
"SCRIPTSDIR": "../Scripts",
"varAppID": "b9768280-f518-11e5-9481-a98d7c98c257",
"varAppName": "MetricsDemo",
"varAppVersion": "1.0",
"varMainAction": "Main Application",
"varMainMenu": "0",
"VOXFILEDIR": "../Resources/Prompts",
"varQueueDN": "1234",
"varSubResult": "false",
"varCollectSubMetric": ""

},
"blocks": [{

"type": "Entry",
"name": "StartApp",
"entry_time": "2017-01-31T23:55:23.615Z"

}, {
"type": "EXIT",
"name": "SubSalesExit",
"entry_time": "2017-01-31T23:55:23.615Z"

}, {
"type": "VAR",
"name": "MainAppActionStart",
"entry_time": "2017-01-31T23:55:24.576Z"

}, {
"type": "MENU",
"name": "MainMenu",
"entry_time": "2017-01-31T23:55:26.073Z"

}, {
"type": "ENTRY",
"name": "StartSalesSubApp",
"entry_time": "2017-01-31T23:55:23.615Z"

}, {
"type": "VAR",
"name": "SubSalesAppActionStart",
"entry_time": "2017-01-31T23:55:23.615Z"

}, {
"type": "CALLDATA",
"name": "SubSalesSetCallData",
"entry_time": "2017-01-31T23:55:23.615Z"

}, {
"type": "VAR",
"name": "SubSalesAppActionEnd",
"entry_time": "2017-01-31T23:55:23.615Z"

}, {

Sample Applications and Templates

Composer Help 1298

"type": "SUBDIALOG",
"name": "SubHandleSales",
"entry_time": "2017-01-31T23:55:38.228Z"

}, {
"type": "SCRIPT",
"name": "MergeMetrics",
"entry_time": "2017-01-31T23:55:54.163Z"

}, {
"type": "CALLDATA",
"name": "SetCallDataAfterSub",
"entry_time": "2017-01-31T23:55:55.360Z"

}, {
"type": "VAR",
"name": "MainAppActionEnd",
"entry_time": "2017-01-31T23:56:00.988Z"

}, {
"type": "BRANCHING",
"name": "BranchForAssistance",
"entry_time": "2017-01-31T23:55:59.547Z"

}, {
"type": "EXIT",
"name": "MetricsMainExit",
"entry_time": "2017-01-31T23:56:02.941Z"

}],
"calldata": [{

"variables":
"{\"CustomVar2\":\"4444\",\"CustomVar3\":\"dialog\",\"CustomVar4\":\"en-US\"}",

"entry": {
"blockName": "SubSalesSetCallData",
"time": 1485906946093

}
}, {

"variables":
"{\"CustomVar0\":false,\"CustomVar1\":\"0\",\"CustomVar2\":\"4444\",\"CustomVar3\":\"dialog\",\"CustomVar4\":\"en-
US\",\"CustomVar5\":\"b9768280-f518-11e5-9481-a98d7c98c257\"}",

"entry": {
"blockName": "SetCallDataAfterSub",
"time": 1485906955609

}
}],
"@timestamp": "2017-01-31T23:55:23.340Z",
"utcstart": 1485906923340,
"applicationID": "b9768280-f518-11e5-9481-a98d7c98c257",
"applicationName": "MetricsDemo",
"applicationVersion": "1.0",
"@endtime": "2017-01-31T23:56:03.177Z",
"duration": "39837",
"activitycount": 2,
"extreqcount": 0,
"udata": {

"Composer-Debug": "rItilZQ6wM"
}

}

For information about GVP metrics (VoiceXML and CCXML application event logs), see the GVP 8.1
Metrics Reference Guide

Sample Applications and Templates

Composer Help 1299

Integrated Voice Route Project Templates
You can create an Integrated Voice (GVP) and Routing (Orchestration) application based on a Project
template. A few of the supplied samples are described below. Also see the video Integrated Voice and
Route Application.

External File-Based Routing Template

This template demonstrates voice call routing based on criteria contained in an external file.

Sample Applications and Templates

Composer Help 1300

1. The IPD contains a single Workflow block pointing to a workflow diagram named default.workflow.

2. The default.workflow diagram starts with an Assign block that sets the URL of the target definition. In
this case, the target definition (routing criteria and target preferences) is defined in the target.txt file
contained in the src folder of the Project (but which could be defined in a file external to the Project).
Routing target preferences are based on criteria such as the number dialed (DNIS), whether the inquiry
is about home or auto insurance, the caller's language, claim history, discount percentage, and so on.
Calls will be routed to various agent groups/queues based this information, which is assumed to be
contained in the user data of the voice interaction.

Sample Applications and Templates

Composer Help 1301

3. The next block in the default.workflow diagram is a Backend block, which is used for invoking custom
backend Java Server Pages; in this case, to execute the routing logic. Using the target.txt file DNIS
criteria, the Backend block parses the target definition and selects a list of matching targets that could
be routed to.

4. A Branching block then segments interactions to take different paths in the workflow.

• If a matching target is found, the Branching block sends the voice interaction to a Looping
block, which iterates until an exit condition is met; in this case, when an available target is
found, which could be an agent, agent group, or the result of a Skill Expression.

• If repeated Looping block iterations do not find an available target, the voice interaction goes
to a PlayApplicationblock, which could inform the caller that all agents are busy and to call
back later.

Load Balancing and Working Hour Routing Template

The template is shown below. For a video tutorial on this template, see Integrated Voice and Route
Application.

The Assign Block assigns the following variables:

• CallerDay using the Orchestration Server function available in ExpressionBuilder called
_genesys.session.dayInZone('ECT')

• CallerTime using the Universal Routing Server functions available in Expression Builder called

Sample Applications and Templates

Composer Help 1302

_genesys.session.timeInZone('ECT')

Next, a Branching block checks for the following conditions:

• If CallerDay is Saturday or Sunday, then a Play Application block play the Weekend message
to the caller.

• If CallerDay is a week day and CallerTime is after business hours, then a Play Application
block plays the After Business Hours message to the caller.

• If CallerDay is a week day and CallerTime is within business hours, then a Target block is
used to load balance calls between two agent groups.

Play Application & Busy Treatment Template

The template is shown below.

After the Entry block, this sample starts with an Identify Customer block that attempts to identify the
calling customer in the Universal Contact Server Database based on the calling party's number
stored in the ANI variable defined in the Entry block. The Customer Attributes property specifies to
search/retrieve core customer profile attributes for the phone number.

Sample Applications and Templates

Composer Help 1303

1. A Log block logs customer information retrieved from the database. The Logging Details property
specifies a JSON string for the format of the customer data.

2. A Play Application block plays a welcome message to the caller. The Language property indicates the
customer's language is English. The Parameters property specifies the customer's first and last name
from the JSON string.

3. A Target block routes the call based on a skill expression to a target with an English skill greater than 9
and a Spanish skill greater than 5.

4. If there are no available routing targets, a Play Message block plays a message to the caller. The
Prompts property defines an expression (created in Expression Builder) that calls an Orchestration
Server function (_genesys.statistic.sData). This function returns the value of a statistic
(ExpectedWaitTime) for a specified object, in this case, a Skill Expression. This could be announced to
the caller via an IVR application while waiting for a target.

5. Once the call is successfully routed to an agent, a Create E-mail block creates an acknowledgement e-
mail to the customer in the form of pre-written text from the Standard Response library (see eServices
Help for Knowledge Manager). The customer's e-mail address is contained in the customeremail
variable defined in Entry block.

Routing Based on DNIS and ANI Template

The template is shown below.

Sample Applications and Templates

Composer Help 1304

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/StatisticIntf
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/StatisticIntf

This template demonstrates how the originating phone number (ANI) and dialed phone number
(DNIS) values are automatically made available as variables when you create a workflow.

1. The BranchOnDNIS block first checks if the incoming call was made to the DNIS for making a deposit.
2. If the call was not made to the deposit DNIS, the application will play a voice treatment before routing

to the withdraw agent. The Withdraw Play Application block points to a voice callflow in the Composer
Project. This will execute a VXML page which plays a message to the caller.The WithdrawAgent Target

Sample Applications and Templates

Composer Help 1305

block routes the call to the agent responsible for handling withdrawals.
3. If the DNIS did match the one for deposit, the application first plays an application treatment with a

message for the caller. It will then examine the ANI of the caller in the BranchOnANI block, which
contains the following branching condition: ANI==Customer. In this case, "Customer" is a variable
declared in the Entry block of the workflow, and it can be modified to specify the ANI of the "special"
customer that you are targeting.

4. The special customer is then routed directly to the agent handling deposits. Non-special customers
must go through a voice treatment which records their name before proceeding. The voice treatment
is executed by the RecordCustomer Play Application block.

5. A voice callflow is then executed by the RecordCustomer block. After recording the user's name, the
Menu block provides the option to listen to the recording, re-record the audio, or exit. Upon exiting the
voice treatment, the call will be routed to the deposit agent.

Sample Applications and Templates

Composer Help 1306

Routing Templates and Samples
This section leads you through some Composer-supplied templates that you can save and modify to
create your own routing applications. It also presents samples, which are not part of Composer's
collection of templates.

Composer provides the following Route Project templates:

• Context Services Template
• Database Query Result Template
• Forward to External Resource Template
• Route After Autoresponse Template
• Routing Based on Variables Template
• Routing by Using Web Request Template
• Routing Based on Date and Time Sample
• Routing Based on a Statistic Sample
• Routing Based on Percent Allocation
• Routing Using Web Request Sample
• Last Called Agent

To access the Project templates:

1. Switch to Composer Design or Composer perspective.
2. Select File > New > Java Composer Project.
3. In the Project dialog box, name your Project and indicate whether you want to use the default location.
4. Select the Project type: Route.
5. Click Next. The Select a Composer Project Template dialog box opens.
6. Select a template and click Next.
7. Select the Project locale and click Finish.

Reviewing a Route Project Template

Assume you selected the Context Services Project in step 6 above. This automatically creates an
interaction process diagram for routing interactions with a single Workflow block in the
default.ixnprocess tab.

1. Double-click the Worfklow block to open the Properties view in the tab underneath

Sample Applications and Templates

Composer Help 1307

2. In the Properties view, note that the Resource property indicates that the name of the workflow is
CompleteActiveServices.workflow.

3. To view this workflow, expand the Project in the Project Explorer.
4. Expand the Workflows folder.
5. Double-click CompleteActiveServices.workflow. A commented workflow appears.
6. View the properties for each block by double-clicking the block.

Sample Applications and Templates

Composer Help 1308

Context Services Template
This template demonstrates the use of Context Services blocks in various workflows. An interaction
with a customer can be interrupted for various reasons -- the customer hanging up, a lost connection,
and so on. When the customer calls back to the contact center, the interrupted services can be
retrieved and completed. This sample contains workflows that demonstrate completing an active
service, resuming a service, and updating the customer profile.

Complete Active Service Workflow

This workflow identifies a customer based on the ANI. If the customer is found, all active services
associated to that customer are queried for and completed. Pre-requisites: The prerequisites are as
follows:

• Set the ANI correctly since it is used to identify the customer.
• Define an identification key in Universal Contact Server to allow the customer to be identified by

PhoneNumber.
• Set Context Services Preferences in Composer.

The workflow does the following:

1. Identifies the customer with the Identify Customer block:

Sample Applications and Templates

Composer Help 1309

• Identifies by setting the customer attributes to be used to search for the customer. Here, the phone
number is matched to the inbound ANI.

• Specifies the name of the key to be used for lookups (idPhoneNumber). This key must be defined in
Universal Contact Server (UCS).

• Gets the Customer Count and Customer Data information from UCS and assigns the information to
variables.

2. Determines the uniqueness of the identified customer. Using the Branching block to check whether the
number of customer records returned by Universal Contact Server is 1.

3. Assigns the CustomerID to a variable using the Assign block. If the customer is unique, gets the
CustomerID from the customer data retrieved from Universal Contact Server.

4. Queries the active services for the customer using the Query Services block:
• Sets the Service Identifier to the CustomerID.
• Sets the Service Status to Active.
• Stores the Service Data results is in an application variable.

5. Assigns the Service ID using the ECMAScript block. Retrieves the ServiceID from the Service Data.
6. Determines if the retrieved service is active using the Branching block. Determines if the ServiceID is

defined.
7. Completes the active service using the Complete Service block

Sample Applications and Templates

Composer Help 1310

Resume Active Service Workflow

This workflow identifies a customer based on the ANI. If the customer is found, the active service
associated to that customer is queried for and the active state within that active service is completed
and a new state within the service is entered. Pre-requisites: The prerequisites are as follows:

• Set the ANI correctly since it is used to identify the customer.
• Define an identification key in Universal Contact Server to allow the customer to be identified by

PhoneNumber.
• Set Context Services Preferences in Composer.

This workflow does the following:

1. On the right side, Identify Customer, ECMAScript, Query Services, and Branch blocks are similar to ones
described above for the Complete Active Service workflow.

2. Continuing with the right side of the workflow, a new service is started with the Start Service block if an
existing active service is not found. The Identifier is set to the customer ID previously retrieved in the
Identify Customer Service block.

3. An ECMAScript block assigns the active service ID to a variable.
4. Using the ECMAScript block results, a Branching block determines if an active state exists for the

service.

Sample Applications and Templates

Composer Help 1311

5. A Complete Services block sets the Service ID to complete the active service.
6. On the left side of the workflow, a Query Services block queries an anonymous service using the ANI as

contact key if the customer is not found:

• Set the ANI as the contact key in the Identifier property.
• Set the Service Elements to Active States.
• Store the Service Data in an application variable.

7. A Branching block determines if the service data retrieved from the Query Services block is defined.
8. A Start Service block starts a new service if no anonymous active service is found:

• Set the Identifier to the ANI.
• Store the Service ID in an application variable.

9. An Enter State block causes the service to enter a new state:

• Set the Service ID.
• Set the previous State ID.
• Set the State Type property to filter for the specific Service State type.

Update Profile Workflow

This workflow identifies a customer based on the ANI. If the customer is found, the contact setting of
the customer profile is updated by setting the medias/voice extension attribute value to true. Pre-
requisites: The prerequisites are as follows:

• Set the ANI correctly since it is used to identify the customer.
• Define an identification key in Universal Contact Server to allow the customer to be identified by

Sample Applications and Templates

Composer Help 1312

PhoneNumber.
• Define the medias customer profile extension in Universal Contact Server and that extension should

have the Boolean attribute voice defined.
• Configure Context Services Preferences in Composer.

This workflow does the following:

1. The first two blocks Blocks are described in the previous Complete Active Services workflow.
2. An Assign block saves the CustomerID and customer data information:

• Retrieve and assign the CustomerData to an application variable
• Retrieve and assign the CustomerID to an application variable

3. An Update Customer block updates the customer profile:

• Specify the extension customer profile data. Select the medias extension and set the voice
attribute to true.

• Set the CustomerID.
• Select the Insert Extension operation to insert the extension record.

Sample Applications and Templates

Composer Help 1313

Database Query Result Template

>br>
This template demonstrates how to access the results of a database query in a workflow.

1. First, the application makes a query in the GetStockQuotes DB Data block. The query is defined using
the Query Builder interface. The results of the query are saved to variables call DBColumnNames and
DBRecords, which are defined in the Entry block. They are assigned using the Database Result Set
properties of the DBData block.

2. Next, the FetchFirstRecord ECMAScript block uses a script to access the data. The DBRecords variable
is a two-dimensional array containing the rows and columns of the returned data. The script in the
FetchFirstRecord block extracts and assigns the first row of to a variable called DBCurrentRecord.

3. The SaveToVariables Assign block assigns the columns of the row in DBCurrentRecord into separate
variables.

4. The next DB Data block, DBData1, uses the variables assigned in the previous step to make a stored
procedure query to the database. The stored procedure is defined with the Stored Procedure builder
interface, which is similar to the Query Builder.

5. The FetchNextRecord ECMAScript block runs a script to load the next row from the DBRecords variable
obtained by the first query.

6. The CheckMoreRecord Branching block checks if there are any more records (rows) in the result set and
will loop back if there are in order to process the next row and repeat the stored procedure query in

Sample Applications and Templates

Composer Help 1314

DBData1. Once there are no more records to process, the workflow exits.

Sample Applications and Templates

Composer Help 1315

Forward to External Resource Template
This template demonstrates screening a customer e-mail to see if it describes a known problem so
that a standard (automatic) response can be sent to the customer. If the e-mail does not describe a
known problem, then an acknowledgement e-mail is sent to the customer and the customer's e-mail
is forwarded to an external resource (such as an expert or knowledge worker) for a reply. When the
reply is received from the external resource, the reply is forwarded to the customer. The template is
shown below.

1. The interaction process diagram (IPD) starts with a Media Server block, which defines Customer E-mail
and External Resource Reply endpoints. Defining two endpoints allows e-mails arriving from customers
and external resources to get into the appropriate interaction queues.

2. In the first column of blocks in the IPD, the InboundEmailQ queue sends e-mails to a Workflow block,
which points to the CreateForwardEmail.workflow. The workflow first screens the incoming customer e-
mail using a Screen Interaction block.

• If a screening rule match is found, an e-mail response is sent to the customer. This is
achieved by using an E-mail Response block with the Response Type property set to
Autoresponse. The Output Queue property is set to SendEmailQ, which allows the newly

Sample Applications and Templates

Composer Help 1316

created e-mail to be queued and processed by SendCreatedEmail.workflow.

Note: The SendEmailQ queue is used by all the e-mails created in this sample (even though it is not
explicitly stated in order to avoid duplication). In cases where the Output Queue property is not
specified, the system interaction queue is used and the e-mail is automatically sent out by
Orchestration Server. Though this latter approach does not allow for any further processing before
the e-mail is sent out, it is a satisfactory approach for many scenarios.

• If a screening rule match is not found, the workflow sends an acknowledgement to the
customer and the customer e-mail is forwarded to the external resource.

3. An E-mail Response block is used for the acknowledgement e-mail with the Response Type property set
to Acknowledgement.

4. An E-mail Forward block is used to forward the e-mail to the external resource with Forward Type set to
Forward. At this point, the external resource is expected to respond back with a reply to the forwarded
e-mail.

5. The second column of blocks in the IPD is used for processing the reply from the external resource. The
External Resource Reply endpoint directs the reply from the external resource into the OutboundReplyQ
queue. This queue then directs the reply into the ReplyToCustomer Workflow block, which points to the
CreateReplyToCustomerEmail.workflow. This workflow uses the Email Forward block with Forward Type
set to ReplyToCustomer with a Standard Response to format the customer reply. It also defines the To
address (Originating Email -- From) specifying that the e-mail is to be sent to the same address from
which the incoming customer e-mail originated. The reply e-mail then goes to the SendEmailQ queue.

6. The third column of blocks in the IPD is used for sending the reply e-mail to the customer. The
SendEmailQ queue is connected to the SendEmail Workflow block, which points to the
SendCreatedEmail.workflow. This workflow contains a Send E-mail block used for sending the external
resource reply to the customer.

Sample Applications and Templates

Composer Help 1317

Route After Autoresponse Template
This template demonstrates using the Create E-mail block to send an e-mail auto-response to an
incoming e-mail and then using the Route Interaction block routes the e-mail to an agent.

• When an e-mail (new multimedia interaction) arrives at the Media Server Endpoint1, it gets queued to
IncomingEmailQueue. The IPD is shown below.

• Orchestration Server then pulls the interaction from the queue and starts processing the RouteToAgent
workflow shown below.

Sample Applications and Templates

Composer Help 1318

1. The RouteToAgent workflow uses the Create E-mail block to first send out an auto-response e-mail to
the customer notifying that the system has received their e-mail and someone be contacting them
shortly.After sending the auto-response e-mail, the original e-mail from the customer is then routed to
an agent for a response.

2. The workflow then uses the Route Interaction block to route to a target.
3. The Route Interaction block also specifies a suggested queue for the new interaction (agent's response

e-mail).
4. After the agent responds (using reply feature in Genesys Agent Desktop), the response is now treated

as a new interaction is then placed into the suggested queue.
5. The agent then closes the current interaction (using Done feature in Genesys Agent Desktop).
6. When Orchestration Server pulls the new interaction from AgentReplyProcessing queue, the

ProcessAgentReply workflow gets executed.

Sample Applications and Templates

Composer Help 1319

1. ProcessAgentReply is a simple workflow which routes the agent response e-mail to a supervisor for
review.

2. Once the supervisor is satisfied with the response, the email is placed in the system queue and sent out
to the customer.

At this point, there are no further interactions that need to be processed and the application (session)
exits.

Sample Applications and Templates

Composer Help 1320

Routing Based on Variables Template
This template demonstrates how to route calls to DNs dynamically using variables and force routing.

1. In the GetRoutingDN Backend block the application accesses some backend business routing logic
defined in the file ../include/SomeRoutingLogic.jsp. This business logic will pass back a DN to route to
in the varRoutingDNFromLogic variable.

Sample Applications and Templates

Composer Help 1321

2. Depending of the DN set in the varRoutingDNFromLogic variable, the Branching block will conditionally
route to the appropriate targets.

3. In the case where the variable varRoutingDNFromLogic is above 3010, the flow will be forced to route to
RoutePoint 3000 as shown in the ForceRouteToDN Target block. After this is done the workflow will exit.

4. In the case where the variable varRoutingDNFromLogic is not above 3010, the DN will first be formatted
in the DNVariableFormat Assign block and then be routed by the RouteToDynamicDN Target block. After
this is done the workflow will exit.

Sample Applications and Templates

Composer Help 1322

Routing Based on Date and Time Sample
This application demonstrates routing based on business hours. A customer care company separates
customer calls based on working days (Monday - Friday) and working hours (09:00 -17:00). Based on
the working days and hours, the company sends the customer call to one of two targets.

• Agent Group #1: CustomerServiceTeam - Available during the working days and hours.
• Agent Group #2: AfterHoursTeam - Available for non-regular working days and hours.

Previous Genesys Administrator (or Configuration Manager) setup involved defining Agent Groups
and agents (Persons). The workflow diagram is shown below.

Sample Applications and Templates

Composer Help 1323

The above diagram is keyed to the numbers below.

1. The Entry block Variables property includes three user-defined variables. The Today and IsNineToFive
variables are used for this application.

2. The Assign block Assign Data property assign a value to the Today variable. The function shown returns
the current day of the week in the specified timezone.

Sample Applications and Templates

Composer Help 1324

3. The Branching block Conditions property contains an expression used for segmenting interactions based
on the date condition.

4. You can open Expression Builder from the Condition property of the branching block and access
Orchestration Server date/time functions (Data Category=Orchestration Server Functions > Data
Subcategory=genesys):

Sample Applications and Templates

Composer Help 1325

5. The ECMAScript block Script property uses standard ECMAScript time objects.

6. The Branching block Conditions property contains an expression, which determines whether the
interaction goes to the CustomerServiceTeam or the AfterHoursTeam Agent Group.

7. The first Target block routes to the CustomerServerTeam.
8. The second Target block routes to the AfterHoursTeam.

Sample Applications and Templates

Composer Help 1326

Routing Based on a Statistic Sample
This template demonstrates routing based on the value of a statistic. For a definition of each statistic
and recommended usage, consult the chapter on routing statistics in the Universal Routing 8.1
Reference Manual. For technical background on statistics, see the Real-Time Metrics Engine
documentation. The statistic you select in the Target block Statistics Property is used by Universal
Routing Server to determine which target to route the interaction to if more than one target is
available. After defining a complete set of available agents (taking agent capacity rules into
consideration, if configured), URS applies the selection criteria specified in the Target block, which
can include using the minimum or maximum value of the statistic (see Statistics Order property).
The workflow diagram is shown below.

The Target block Properties view is shown below.

Sample Applications and Templates

Composer Help 1327

The Misc properties that were configured are described below.

Clear Targets

When this property is set to true, URS retains the targets listed in the block are after the interaction
moves on through the strategy and encounters other Target blocks (not present in this simple
sample). For more information on this property, see the Target Block Clear Targets Property. Statistic
The selected statistic is StatAgentOccupancy. This statistic enables URS to route interactions to the
least occupied agent, which is the agent with the lowest occupancy rate. Occupancy rate is the ratio
between the time the agent has been busy since last login relative to the agent's total login time.
StatAgentOccupancy enables URS to evaluate multiple available agents and select the least
occupied agent so that the workload among available agents is balanced.

Statistics Order

This property can work with the Statistics property. Min was selected indicating the interaction
should be routed to the target with the minimum value of the StatAgentOccupancy statistic. For
more information on this property, see the Target Block Statistics Order Property.

Targets

The figure below shows the entries in the Targets dialog box.

Sample Applications and Templates

Composer Help 1328

Using the StatAgentOccupancy statistic URS will select the least occupied agent among these based
upon information from the specified Stat Server.

Timeout

While not used in this sample, this property allows you to specify the time in seconds an interaction
waits for an available target. If the timeout expires before one of the targets is available, the
interaction is routed to the error port. For more information on this property, see the Target Block
Timeout Property. The remaining properties are left at their default values.

Sample Applications and Templates

Composer Help 1329

Routing Based on Percent Allocation
This application demonstrates distributing interactions to targets based on a set percentage for each
target. The workflow diagram is shown below.

The Entry block does not contain any user-defined variables. The Target block Properties view is
shown below.

Sample Applications and Templates

Composer Help 1330

The Misc properties that were configured are described below.

Clear Targets

When this property is set to true, URS retains the targets listed in the block are after the interaction
moves on through the strategy and encounters other Target blocks (not present in this simple
sample). For more information on this property, see the Target Block Clear Targets Property.

Statistic

The selected statistic is StatAgentOccupancy. This statistic enables URS to route interactions to the
least occupied agent, which is the agent with the lowest occupancy rate. Occupancy rate is the ratio
between the time the agent has been busy since last login relative to the agent's total login time.
StatAgentOccupancy enables URS to evaluate multiple available agents and select the least occupied
agent so that the workload among available agents is balanced. For more information on this
property, click Target Block Statistics Property.

Statistics Order

Percentage is selected in order to route interactions to targets based on a percentage allocation.
Selecting Percentage causes the dialog box that opens from the Targets property to display a Weight
column where you can specify a percentage for each target. For more information on this property,
see the Target Block Statistics Order Property.

Sample Applications and Templates

Composer Help 1331

Targets

The figure below shows the entries in the Targets dialog box.

URS will route 90% of the calls to the CustomerService Group and 10% of the calls to the Supervisor
Group. Using the StatAgentOccupancy statistic URS will select the least occupied agent among these
based upon information from the specified Stat Server.

Timeout

This property allows you to specify the time in seconds an interaction waits for an available target. If
the timeout expires before one of the targets is available, the interaction is routed to the error port.
For more information on this property, click Target Block Timeout Property. The remaining properties
are left at their default values.

Sample Applications and Templates

Composer Help 1332

Routing Using Web Request Sample
This application demonstrates using the Web Request block to invoke an HTTP web request. The
workflow diagram is shown below.

The above diagram is keyed to the numbers below. The Entry block Variable Settings dialog box is
shown below.

Sample Applications and Templates

Composer Help 1333

Three user-defined variables are defined:

• weburl: Points to the getMemoryStatus.jsp application from the src directory. This represents an
application hosted on an external application server.

• webresult: Holds the result of the get request.
• assignresult: The content of the webresult variable is transferred to this variable in the Assign block.

The Web Request block Properties view is shown below.

• The Exceptions property indicates support for the error.sesson.fetch event.
• The Request Method property has two choices: get or post with get selected indicating the type of

request (HTTP Get) that Universal Routing Server will make.
• The Uri property indicates that the Uri is contained in a variable called weburl.
• The Authentication Type property has two choices: anonymous or basic with anonymous selected as a

security setting. With this type of access, no user name/password is passed to the Web service for
client authentication in order to get data.

Sample Applications and Templates

Composer Help 1334

• The Result property indicates that the data from the get request will initially be stored in a variable
called webresult.

The Assign block properties view is shown below.

The data received from the get request is assigned to a variable called assignresult.

Sample Applications and Templates

Composer Help 1335

Last Called Agent Routing

This topic summarizes how to use Composer to create a routing strategy that gives the calling
customer the option to speak to the agent who handled their previous call or to wait for a
callback from that agent.

Sample Applications and Templates

Composer Help 1336

Last Called Agent (LCA) Routing
You can use Composer to create an Integrated Voice and Route application that routes a customer
call to the agent who last spoke with that customer (last called agent or LCA routing). The sample
below summarizes one way to configure LCA routing. In this sample, an Interaction Workspace
custom extension retrieves the last called agent information from the Universal Contact Server (UCS)
Database.

Note: You can set the Contact Server Interaction Workspace option contact.last-called-agent.enable
to save the last called agent ID to the Universal Contact Server database. To use the agent ID in a
routing workflow, you can use Expression Builder to create a custom extension (such as that shown in
the sample below) that retrieves the agent ID from the UCS Database. Interaction Workspace
installed "out-of-the-box" does not supply the extension used in the sample below.

Scenario Summary

• A customer calls the contact center and the call is routed to an agent.
• The agent ID and the call time is saved to the customer contact information in the UCS database. As a

result, a future call from the customer can be routed to the same agent.
• If the customer calls again and requests the last called agent, the call is routed to that agent. If that

agent is unavailable, the voice treatment offers three options: Request a callback, Wait, or Leave a
voicemail.

Interaction Process Diagram

All Composer routing applications start with an interaction process diagram (IPD). For a routing
application used for voice only interactions, an IPD Workflow block points to a workflow resource
(diagram). In the Workflow block shown in the figure below, the resource is the
LastAgentAndVoiceMail.workflow diagram.

Sample Applications and Templates

Composer Help 1337

https://docs.genesys.com/Documentation/Composer/8.1.4/Help/CreatingaNewRoutingProject
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/AbouttheExtensionSamples
https://docs.genesys.com/Documentation/CS/8.1.3/User/Overview
https://docs.genesys.com/Documentation/CS/8.1.3/User/Overview
https://docs.genesys.com/Documentation/IW/8.1.4/Dep/ContactOptions
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.4/Developer/AbouttheExtensionSamples
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/VoiceTreatmentBlocks

LastAgentAndVoiceMail.workflow

The sample workflow diagram that demonstrates LCA routing is shown below.

Sample Applications and Templates

Composer Help 1338

Each block in the workflow diagram is labeled with text that summarizes its function. This text
appears below the block name. The next section discusses key blocks in the diagram.

Sample Applications and Templates

Composer Help 1339

Play Application Blocks

The above workflow diagram contain various Play Application blocks. These are numbered in the
figure below.

Reviewing the various voice prompts associated with these Play Application blocks helps you
understand the flow.

Sample Applications and Templates

Composer Help 1340

last_agent_001.vox Welcome. Please enter your four digit account number
last_agent_002.vox Ok, got it.
last_agent_003.vox Please hold while I transfer your call to an agent
last_agent_004.vox Sorry, all of our agents are currently busy. Please hold for the

next available agent.
last_agent_005.vox Would you like to be connected to the agent that you spoke with

previously?
For yes, press 1. For no, press 2.

last_agent_006.vox Ok, checking agent availability
last_agent_007.vox Sorry, your agent is not available at the moment. To have the

agent call you back,
press 1. To leave a voicemail for the agent, press 2.
Or just wait on the line for the agent.

last_agent_008.vox Thank you, your callback request has been registered. The agent
will call you

back soon. Goodbye.
last_agent_009.vox Ok, to leave a voicemail for the agent, being speaking at the

tone.
When you are finished, you can simply hang up or press pound.

last_agent_010.vox Your voicemail has been recorded and will be delivered to the
agent.

Thank you for calling, goodbye.
last_agent_011.vox Sorry, I didn't get that.

Blocks Used for LCA

This section summarizes the important blocks used for LCA routing in this particular sample. The
figure below numbers the LCA-related block with the numbers keyed to descriptions further ahead.

Sample Applications and Templates

Composer Help 1341

1. The Identify Customer block (1) uses the account numbered entered by the customer to search for
contact information in the Universal Contact Server Database. A Branching block (1) causes the
workflow to take different paths based on whether customer data is or is not found.

2. If found, an Assign block (2) assigns LCA information to variables.

Sample Applications and Templates

Composer Help 1342

3. The ECMAScript block (3) calls a script created in Expression Builder to get the last called agent ID.

Sample Applications and Templates

Composer Help 1343

4. If the last called agent is found, a Branching block (4) sends the interaction to another Play Application
block.

5. This Play Application block (5) prompts the customer: "Would you like to be connected to the agent that
you spoke with previously? For yes, press 1. For no, press 2."

6. If the customer presses 1, another Branching block (6) directs the interaction to a Target block (7),
which routes the call to the last called agent. If the agent is unavailable, the customer is given the
option of a callback or waiting for the agent.

For more information on this particular sample and last agent routing in general, please contact
Genesys Technical Marketing.

Sample Applications and Templates

Composer Help 1344

Validation, Debugging, and Deployment
This section contains information about the following:

• Validating your diagram files and other source files for completeness and accuracy
• Debugging voice applications
• Debugging routing applications
• Deploying applications

Validation, Debugging, and Deployment

Composer Help 1345

Validation
Composer can validate your diagram files and other source files for completeness and accuracy.

Validation Preferences

For information on setting Validation preferences, see the figure in topic Project Properties dialog box.
Select Validation.

Prompts Resource Validation

In Diagram Preferences, Global Settings, the Enable Validation for Prompt Resource preference
enables diagram validation warnings where prompt audio resources no longer exist in the given file
path. If the audio file is no longer present, the diagram block will show a warning icon.

Diagram Validation

This topic covers both callflow/workflow diagrams and interaction process diagrams (IPDs).

Callflow/Workfow Validation

You can initiate standalone callflow or workflow validation in a couple of ways. When the callflow or
workflow is saved and selected:

• Diagram > Validate from the menu.

• Click the Validate icon on the upper-right of the Composer main window .

Note: In case of errors, the Problems view will become visible and error markers are put on the
callflow or workflow blocks that contain errors. Double clicking on an error in the Problems view will
take you to the corresponding blocks that contain the errors. Review each of the errors and do the
fixes, then validate again. After validation, you can generate code.

Interaction Process Diagram Validation

The validation process is basically the same for IPDs. When the IPD is selected or in view :

Validation, Debugging, and Deployment

Composer Help 1346

• Diagram > Validate from the menu.

• Click the Validate icon on the upper-right of the Composer main window.

When invoked, validation checks for the existence of objects in Configuration Server and indicates
the results. Validation does not make changes in Configuration Server as part of the process. Note: If
Composer is not connected to Configuration Server, clicking the validation button brings up the
Connect to Configuration Server dialog.

Source File Validation

There are two types of validation that can occur when you are working with source files in Composer
Rich editors:

• Source validation
• Batch validation

Source validation occurs as you type your code; this validation reflects the "unsaved" and "unbuilt"
contents of the source you are editing. Note: To turn source validation on (or off) for all structured
text editors, click Window > Preferences > General> Editors> Structured Text Editors and
check (or uncheck) Report problems as you type. Batch validation occurs on saved files. Batch
validations may catch build process errors and other types of non-source validation errors. Batch
validation can uncover errors in multiple files at once and give you a comprehensive view of where
problematic code can be found in your project. Moreover, you do not need to open files in an editor to
run batch validation. To run batch validation on specific files, select and right click the files in the
Project Explorer and then select Run Validation from the popup menu. Note: To set preferences for
batch validation, click Window > Preferences > Team > Validation.

Project Level Validation

You can validate a Project using the integrated Composer Validator, which is enabled or disabled at
global level using the Validation preferences (Window > Preferences > Team > Validation >
Composer > Composer Validator).

• Invoke Composer Validator on a Project or individual file by right clicking and selecting Validate from
the pop-up menu.

Note: Automatic validation does not occur during any change in resource contents, since this action is
taken care by the Composer Project Builders. You can enable or disable Composer Project Builders
using the Project > Build Automatically menu option.

Project Level Validation Use Cases
Here are some possible validation use case scenarios:

• Validate all the callflow and workflow diagram files within the Composer Project.

Validation, Debugging, and Deployment

Composer Help 1347

• Validate all the referenced subroutines and subdialog diagram files, which have the corresponding
.scxml / .vxml files generated inside the src-gen folder.

• Validate all the GBuilder files, which have the corresponding .grxml file generated within the Grammars
folder.

• Validate all ASP.NET related resources within a .NET Composer Project.
• Validate all JSP related resources within a Java Composer Project.

Validating a Single Flow Diagram

Note:

• Starting with 8.1.4, Composer shows a warning when validating a workflow if some (potential) infinite
loop is detected.

• Composer shows the developer (via IPD Diagram properties) the Orchestration Server SCXML attributes
for infinite loop defense.

Problems View
To configure the contents of the Problems view to view only warnings and errors associated with the
currently validated callflow/workflow:

1. Open the Problems View by selecting Window > Show View > Problems.
2. On the top right side of the Problems view, click the down arrow to display the View menu.
3. Select Configure Contents.
4. On the left side of the Configure Contents dialog box under Configurations, select Errors/Warnings on

Selection.
5. Under Scope, click On selected element and its children.
6. Click OK.

For more information on this dialog box:

1. Select Help > Contents.
2. Open the Workbench User Guide.
3. Expand Concepts > Views > Problems.
4. Review the Problems View topic.

Validation, Debugging, and Deployment

Composer Help 1348

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/SCXMLRef

Debugging Routing Applications
Composer's ORS_Debugger provides real-time debugging capabilities for SCXML-based Orchestration
Server (ORS) routing applications. The ORS Debugger is integrated within the workflow designer for
making test calls, creating breakpoints, viewing call traces, stepping through an SCXML document/
workflow, and debugging applications. Debugging can be started on an existing session or it can wait
for the next session that runs the application at a given URL. Prior to debugging, set preferences for
the ORS Debugger, which supports both Run and Debug modes.

• Using a Run As > Run Configurations launch configuration, metrics (call traces) are displayed and
the application continues without stopping at any breakpoints. When the SCXML application executes,
these metrics can describe, for example, state transitions, ECMAScript executions, and execution
warnings or errors.

• Using a Debug launch configuration, debugging pauses at breakpoints, single-step through the code,
inspect variable and property values, and execute any ECMAScript from the query console.

You can debug:

• A workflow built with Composer, or
• Any SCXML application or set of SCXML pages whether or not they were created with Composer.

Notes:

• You can export a launch configuration. From the File menu, select Export. Expand Run/Debug and select
Launch Configurations > Next. The dialog box lets you select or browse for a launch configuration.

• Composer 8.1 uses TCP to send SIP messages (previous releases used UDP). This is not a configurable
option.

• Also see ORS Debugger Limitations.
• For information on Debug Code Generation mode, see the figure in topic Project Properties dialog box.

Important
It is recommended that you don't use names ending with the terms workflow, callflow,
or ixnprocess for your projects. Projects with names ending with the mentioned terms
might not behave as expected when debugging.

Starting a Debugging Session

If using Context Services:

Validation, Debugging, and Deployment

Composer Help 1349

• Set Context Services parameters: Window > Preferences > Composer > Context Services. In
Context Services Preferences, specify the Universal Contact Server host and port.

In order to debug, a launch configuration must exist. There are various ways to create a launch
configuration:

• Right-click on the diagram/SCXML file in the Project Explorer. Select Run As > Run Configurations or
Debug As > Debug Configurations. (The difference between Run as and Debug as is explained at
the start of this topic.) This opens a dialog box for creating a launch configuration for the workflow
diagram or SCXML files.

• Use launch shortcuts. Note: To automatically fill in a debug or run launch configuration, use launch
shortcuts. Right-click on the diagram/file and select Debug As Workflow or Debug as SCXML File.
Composer automatically fills in the launch configuration.

• On the main toolbar, there is a Debug button and a Run button. Clicking relaunches the
most recently used launch configuration. You can also use the keyboard shortcuts Ctrl+F11 (for Run)
and F11 (for Debug).

• If you click the down arrow on these buttons to drop down a menu, a history of recent launches
appears.

All of the above are also available in the Run top-level menu.

ORS Debugger Limitations

Limitations of the ORS Debugger are as follows:

• Do not use the ORS Debugger in a production environment. Use the ORS Debugger only for
development purposes. A Production Orchestration Server is always configured to not allow debugging.

• Interaction process diagram debugging is not supported. Code generated from an IPD can be debugged
just like any other SCXML page.

• In SCXML debugging mode, the <invoke> tag will not step into the invoked SCXML page. Debugging will
continue to the next element in the page currently being debugged.

• Debugging a Play Application block will not step into the associated Callflow diagram and will not launch
a GVP debugging sessions. Instead debugging will continue on to the block after the Play Application
block.

• Application variables are not displayed correctly in the Variables View in ORS Debugging Perspective if
the value contains XML or variables that are of type E4X.

ORS Debugging Perspective

See Debugging Toolbars for information on the views and buttons.

Validation, Debugging, and Deployment

Composer Help 1350

Debugging a Workflow Diagram

Workflow diagrams can be tested using the real-time ORS Debugger. Both Run and Debug launch
configurations are supported, as well as code and diagram modes.

• In the Run mode, call traces are displayed and the workflow continues without stopping at any
breakpoints.

Validation, Debugging, and Deployment

Composer Help 1351

• In the Debug mode, you can input breakpoints, single-step through the blocks, inspect variable and
property values, and execute any ECMAScript from the query console.

Prior to debugging, you should have validated the workflow, generated the code, and deployed the
Project for testing. Also, if you have not already done so, set ORS Debugger preferences. To start
debugging, create a launch configuration for the file you want to debug. An example launch
configuration is shown below.

To automatically fill in the debug launch configuration described below, use launch shortcuts. Right-
click on the workflow file and select Debug As Workflow. Composer automatically fills in the launch
configuration.

Creating a Debug Launch Configuration

Note: See Debugging a SCXML Files if you want to view only call traces and not use breakpoints to
step through the file. There are various ways to start a debug session. To test your workflow by
stepping through it, use Debug Configurations to first create a launch configuration:

1. In the Project Explorer, expand the Composer Project and its workflows subfolder.
2. Right-click on the workflow filename in the Project Explorer and select Debug as > Debug

Configurations. The Debug Configuration dialog box opens. Note: Debug As > Debug Configurations

Validation, Debugging, and Deployment

Composer Help 1352

sometimes does not appear for selection. The exclusion may also occur in other Composer scenarios
and is an Eclispe IDE-related behavior. Should this occur, the workaround is to restart Composer.

3. Expand Composer - ORS Debugger.
4. Click the button for a new launch configuration or right-click and select New.
5. Name the configuration.
6. In the Workspace Storage Location tab, specify the Project name and location for saving SCXML pages

executed by ORS. This folder appears in the Location field. Optionally, click Create Automatically
to have the Debugger create a new Project folder to save the SCXML pages as the IPD is debugged. The
files fetched may include SCXML pages, audio files, grammars, scripts, and SCXML data.

7. Click the ORS Debugger Launch tab.

Note: Under ORS Connection, the IP Address and Port fields reflect the ORS Server Host Name
and ORS Server Port previously entered as ORS Preferences, but can be changed.

Validation, Debugging, and Deployment

Composer Help 1353

1. Address. Enter the IP address or host name of the ORS server.
2. Port. Enter the debugger port of the ORS server. This is defined in ORS configuration as [scxml]:debug-

port, and defaults to 7999. Make sure that ORS has debug-enabled set to true as well.
3. Path. Enter the workspace-relative path of the workflow diagram. For example, /MyProject/src-gen/

IPD_default_defaultWorkflow.scxml.
4. Application is a. Select Workflow to step through the diagram or SCXML if code. If unchecked, it will

step through the SCXML code.
5. Associated IPD. Enter the name of the interaction process diagram (IPD) associated with the workflow

to be debugged. This field is optional because it is possible to run a stand-alone SCXML. Most of the
time, you will use launch shortcuts (right-click on workflow or SCXML and select Run/Debug As). The
fields in the launch configurations are filled in automatically.

6. Step through IPD. If enabled and debugging in code mode (as opposed to workflow mode), then the
Debugger steps through the SCXML code that is generated from the IPD. Otherwise, it will "skip"
through that code. The SCXML code generated from an IPD is generally setting up global variables and
functions, so you might not want to go through that every time.

7. Attach to existing session. If enabled, ORS will start debugging on an existing session. When you
launch the debugging session, Composer will prompt for a session ID in a dialog box. Once you enter
the session ID, it will enter debugging mode for that session. If not enabled, ORS will wait for the next
session that runs the application at a given URL. Note: The URL will point to the SCXML page that
should be debugged. ORS will enter debug mode for the next session that is started for this URL.

8. Click Apply and Debug when ready.

After you launch, debugging doesn’t start until ORS starts the session. You can start the session with
a SIP call or multimedia interaction or using the ORS REST API (you need to send a POST request to
ORS). The ORS Debugger skips over deactivated blocks.

Note: If the debugging session can't be started, a dialog box appears with an error message.

Stepping

Once debugging is initiated you will see a red box around the first block of the workflow. This
indicates the current location where debugging is paused.

1. Step through the workflow. Click the Step Over button to step through the blocks. See Debug
View. Application state can be seen in the Variables tab.

2. You can input breakpoints from the Breakpoints View/Toolbar or use the context menu on a block and
select Toggle Breakpoint . When breakpoints are set, you can press F5 or click Resume to resume the
call to the next breakpoint, instead of stepping block-by-block.

3. You can change values of variables in the middle of a workflow. This could be used to quickly change
the execution path as the call is progressing. Right-click in the Expressions tab and select Add Watch
Expression.

4. In the Add Watch Expression window, add a new expression to watch during debugging.

To change the value, expand the variable, right-click on the child item and select Change value. A
popup window as shown above will open, and you can specify the new value. Click OK. Proceed with
debugging of the application and see the changed value.

Validation, Debugging, and Deployment

Composer Help 1354

Debugging-results Folder

The ORS Debugger creates a debugging-results folder in the Project Explorer. Clean up the
debugging results by deleting the ors-debug.<timestamp> folders from the Project Explorer. Each
ors-debug.<timestamp> folder corresponds to a single debug call that was made at the time
specified by the timestamp. It contains files downloaded by the debugger. The metrics.log file
contains the Call Trace of the call.

Debugging SCXML Files

SCXML files can be tested using the real-time ORS Debugger. Both Run and Debug launch
configurations are supported, as well as code mode.

• In the Run mode, call traces are provided and the application continues without any breakpoints.
• In the Debug mode, you can input breakpoints, single-step through the SCXML code, inspect variable

and property values, and execute any ECMAScript from the query console.

Tomcat engine is bundled as part of Composer and the application can be auto deployed and auto-
configured for testing. Also, if you have not already done so, set ORS Debugger preferences. To start
debugging, create a launch configuration for the file you want to debug. An example launch
configuration is shown below.

Validation, Debugging, and Deployment

Composer Help 1355

To automatically fill in the run launch configuration described below, use launch shortcuts. Right-click
on the SCXML file and select Run As SCXML Page. Composer automatically fills in the launch
configuration.

Creating a Run Launch Configuration

Note: See Debugging a Workflow Diagram if you want to use breakpoints to step through the file by
creating a Debug launch configuration. To test your SCXML Files without breakpoints, use Run
Configurations to create a launch configuration:

1. In the Project Explorer, expand the Composer Project and its src subfolder.
2. Right-click on the SCXML filename in the Project Explorer and select Run As > Run Configurations.

The Run Configuration dialog box opens.
3. Expand Composer - ORS Debugger.
4. Click the button for a new launch configuration or right-click and select New.
5. Name the configuration.
6. In the Workspace Storage Location tab, specify the Project name and location for saving SCXML pages

executed by ORS. This folder appears in the Location field. Or click Create Automatically to have
the Debugger create a new Project folder to save the metric traces and SCXML pages as the file is
debugged. The files fetched may include SCXML pages, audio files, grammars, scripts, and SCXML data.

Validation, Debugging, and Deployment

Composer Help 1356

Call traces are also saved in this location.
7. Click the ORS Debugger Launch tab.
8. Under ORS Connection, the Address and Port fields reflect the ORS Server Host Name and ORS

Server Port previously entered as ORS Debugger Preferences, but can be changed.
9. Application is a. Select SCXML. Leave unchecked to step through the SCXML code. Select Workflow

to step through a diagram.
10. Path. Enter the path for storing files downloaded during a debugging session. Specify the workspace-

relative path of the SCXML file. For example, /MyProject/src-gen/
IPD_default_defaultWorkflow.scxml.

11. Associated IPD. Enter the name of the interaction process diagram (IPD) associated with the SCXML
file to be debugged. This field is optional because it is possible to run a stand-alone SCXML. Most of the
time, you will use launch shortcuts (right-click on workflow or SCXML and select Run/Debug As). The
fields in the launch configurations are filled in automatically.

12. Step through IPD. If enabled and debugging in code mode (as opposed to workflow mode), then the
Debugger steps through the SCXML code that is generated from the IPD. Otherwise, it will "skip"
through that code. The SCXML code generated from an IPD is generally setting up global variables and
functions, so you might not want to go through that every time.

13. Attach to existing session. If enabled, ORS will start debugging on an existing session. When you
launch the debugging session, Composer will prompt for a session ID in a dialog box. Once you enter
the session ID, it will enter debugging mode for that session. If not enabled, ORS will wait for the next
session that runs the application at a given URL. Note: The URL will point to the SCXML page that
should be debugged. ORS will enter debug mode for the next session that is started for this URL.

14. Click Apply and Run when ready.

After you launch, debugging does not start until ORS starts the session. You can start the session
with a SIP call or multimedia interaction or using the ORS REST API (you need to send a POST request
to ORS). Note: If the debugging session cannot be started, a dialog box appears with an error
message.

Debugging IPD SCXML Files

Interaction process diagram debugging is not supported. You can debug code generated from an IPD
just like any other SCXML page (see Debugging Modes). Prior to debugging, you should have
validated the workflow, generated the code, and deployed the Project testing. Also, if you have not
already done so, set ORS Debugger preferences. Creating a Debug or Run Configuration The
focus is on stepping through the workflow diagrams called from the IPD as the bulk of routing logic
and decision making is done at the workflow level. IPD flows are straightforward and in most cases
should not require debugging. To debug/run an IPD, you first create a launch configuration.

1. In the Project Explorer, expand the Composer Project and its Interaction Processes subfolder.
2. Right-click on a workflow diagram, and select Debug As or Run As. This will create a launch

configuration automatically and start the debugging session.
3. Optionally, at a later time, you can go back to the launch configuration, and check Step through IPD if

you want to step through the IPD as well.
4. Click the ORS Debugger Launch tab.

Validation, Debugging, and Deployment

Composer Help 1357

5. Under ORS Connection, the Address and Port fields reflect the ORS Server Host Name and ORS
Server Port previously entered as ORS Debugger Preferences, but can be changed. Address. Enter
the IP address or host name of the ORS server. Port. Enter the debugger port of the ORS server. This is
defined in ORS configuration as [scxml]:debug-port, and defaults to 7999. Make sure that ORS has
debug-enabled set to true as well. Path. Enter the workspace-relative path of the IPD SCXML file. For
example, /MyProject/src-gen/IPD_default_defaultWorkflow.scxml.

6. Associated IPD. Enter the name of the interaction process diagram (IPD) associated with the SCXML
file to be debugged. This field is optional because it is possible to run a stand-alone SCXML. Most of the
time, you will use launch shortcuts (right-click on workflow or SCXML and select Run/Debug As). The
fields in the launch configurations are filled in automatically.

7. Step through IPD. See Step 3. If enabled and debugging in code mode (as opposed to workflow mode),
then the Debugger will step through the SCXML code that is generated from the IPD. Otherwise, it will
"skip" through that code. The SCXML code generated from an IPD is generally setting up global
variables and functions, so you might not want to go through that every time. Note: While debugging
an IPD SCXML file, debugging skips over lines that include the workflow SCXML file using the
<xi:include> tag. Workaround: None required. Debugging will step into the included workflow
diagram or SCXML file.

8. Attach to existing session. If enabled, ORS will start debugging on an existing session. When you
launch the debugging session, Composer will prompt for a session ID in a dialog box. Once you enter
the session ID, it will enter debugging mode for that session. If not enabled, ORS will wait for the next
session that runs the application at a given URL. Note: The URL will point to the SCXML page that
should be debugged. ORS will enter debug mode for the next session that is started for this URL.

9. Click Apply and Run when ready.

After you launch, debugging does not start until ORS starts the session. You can start the session
with a SIP call or multimedia interaction or using the ORS REST API (you need to send a POST request
to ORS).

Note: If the debugging session cannot be started, a dialog box appears with an error message.

Stepping Through a Routing Application

Note: Step Over on the Debugging Toolbar is the only way to step for both routing and voice
applications. Stepping means executing the workflow one step at a time, suspending execution
between steps, and using variables, breakpoints, and watch expressions. You can then examine the
state of the application when it is suspended. At each step of execution, the Debugger displays
metrics (call traces) received from ORS. This topic covers the following:

Suspending Execution
When execution is suspended:

• ORS displays the text of the SCXML page currently being executed.
• Highlights the line that will be executed in the next step.

When you choose to step again, the next step is executed and execution is suspended again. For
information on how to step and suspend, see the Debugging Toolbars topic.

Validation, Debugging, and Deployment

Composer Help 1358

Using Variables
The ORS execution context contains ECMAScript variables. Composer access these variables by
using the Eval message.

• When execution is suspended, Composer displays the workflow and project variables in the current
scope of the ORS execution. The variables are displayed in the Variables tab in ORS Debugging
Perspective.

• If the variable is a complex ECMAScript object, You can expand it to view the contents of the object.
• You can create a watch expression from any variable or sub-object of a variable.

For more information, see the Debugging Toolbars topic.

Using Breakpoints
Breakpoints allow you to select a position in the SCXML application to suspend execution. Instead of
stepping through execution, You may wish to resume the application, which means to run it until the
next breakpoint is reached. You create a breakpoint on a line of the current page. A line breakpoint is
reached if the execution reaches the line number of the breakpoint. Line breakpoints are allowed only
on SCXML elements which support suspending. The following elements support suspending: onentry,
onexit, invoke, transition, script, log, if, assign, raise send, cancel. If you try to create a breakpoint on
an unsupported element, the breakpoint is moved to the next valid line. From the Breakpoints View/
Toolbar, you can:

• Display a list of all current breakpoints and enable/disable them. If you disable a breakpoint by
unchecking the box in the list of breakpoints, then execution is not suspended if that breakpoint is
reached. You may also disable all breakpoints by clicking the Skip All Breakpoints action from the
Eclipse Run menu.

• Remove a breakpoint.

Breakpoints are saved across sessions.

Using Watch Expressions
You create watch expressions to monitor the value of a given expression. The expression is an
ECMAScript expression, e.g., a variable or function call, that is evaluated in the scope of current
SCXML application. From the Expressions View/Toolbar, you can:

• Add a watch expression. The value of the expression is displayed immediately, and updated when the
value changes.

• Modify the value of a variable in a watch expression. The change is then reflected in the SCXML
application context.

• Disable a watch expression. When disabled, the watch expression value will not be updated.
• Remove a watch expression.

Validation, Debugging, and Deployment

Composer Help 1359

Debugging Modes

The ORS Debugger supports two debugging modes: Diagram and Code.

• Launching a workflow in Debug mode starts debugging in diagram mode.
• Launching a SCXML file in Debug mode starts debugging in code mode.

The table below summarizes the modes for different file types. Also see ORS Debugger Limitations.

Debug File Mode Supported Procedure to Launch

Interaction process
diagram As Code Yes

Run/Debug as SCXML
from an IPD SCXML.
When debugging an
SCXML file. Composer
supports debugging of
the SCXML document
generated for the IPD
diagram. It will not be a
common use case to
only debug the IPD.

Interaction process
diagram As Diagram No

IPD debugging is not
supported. Code
generated from an IPD
can be debugged just
like any other SCXML
page.

Workflow As Code Yes

Run/Debug as SCXML,
from a workflow SCXML.

This will basically still
run the IPD SCXML but
execution will pause at
the <AppEntry> state of
the workflow SCXML.

Workflow As Diagram Yes

Run/Debug as Workflow,
from a workflow
diagram. It will detect
the associated IPD
SCXML and run that.

Sub-Workflow As Code Yes

A subroutine cannot be
debugged on its own.
Put a breakpoint on the
subroutine’s Entry block
and debug its calling
workflow.

Sub-Workflow As Diagram Yes

A subroutine cannot be
debugged on its own.
Put a breakpoint on the
subroutine’s Entry block
and debug its calling
workflow.

Hand-coded SCXML As Code Yes Should work identical to

Validation, Debugging, and Deployment

Composer Help 1360

IPD SCXML debugging.

Validation, Debugging, and Deployment

Composer Help 1361

Debugging Voice Applications

Video Tutorial
Below is a video tutorial on debugging VoiceXML applications.

Important
While the interface for Composer in this video is from release 8.0.1, the steps are the
basically the same for subsequent releases.

GVP Debugger

Composer's GVP Debugger provides real-time debugging capabilities for Genesys Voice Portal voice
applications. The debugger is integrated with GVP for making test calls, viewing call traces, and
debugging applications. It supports accessing SOAP and REST based Web Services. Database access
is provided using server-side logic and a Web services interface. Prior to debugging, set preferences
for the GVP Debugger, which supports both Run and Debug modes.

Run Versus Debug

• In the Run mode using Run > Run Configuration, call traces are provided and the application
continues without any breakpoints.

• In the Debug mode, using Debug as > Debug Configuration, you can input breakpoints, single-step
through the code, inspect variable and property values, and execute any ECMAScript from the query
console.

Integration with a SIP Phone is provided with a click-to dial feature for making the test calls. You can

Validation, Debugging, and Deployment

Composer Help 1362

debug:

• A callflow built with Composer, or
• Any VoiceXML application or set of VoiceXML pages whether or not they were created with Composer.

Notes:

• Previous to GVP 8.1.4, one instance of GVP's Media Control Platform (MCP) supported only one
Composer debugging session. This limitation no longer exists in GVP 8.1.4.

• Debugging is supported only on Tomcat. VXML debugging is the same on any application server so
debugging using Tomcat is sufficient.

• Composer 8.1 uses TCP to send SIP messages (previous releases used UDP). This is not a configurable
option.

• For information on Debug Code Generation mode, see the figure in topic Project Properties dialog box.

Starting a Debugging Session

If using Context Services:

• Set Context Services parameters: Window > Preferences > Composer > Context Services. In
Context Services Preferences, specify the Universal Contact Server host and port.

You can start a debugging session in the following ways:

• Right-click on the diagram/VXML file. Select Run As > Run Callflow or Debug As > Debug Callflow.

• On the main toolbar, there is a Debug button and a Run button. Clicking relaunches the
most recently used configuration. You can also use the keyboard shortcuts Ctrl+F11 (for Run) and F11
(for Debug).

• If you click the down arrow on these buttons to drop down a menu, a history of recent launches
appears.

All of the above is also available in the Run top-level menu.

Debugging When Using Context Services

If using Context Services, you must do the following before debugging a callflow or a VXML
application:

1. Check the Connect to the Universal Contact Server when designing diagrams preference option
in the Context Services preference page.

2. Set the UCS parameters Context Services preference page.

Composer then automatically appends an extra context_services_url parameter to the SIP URI.

Validation, Debugging, and Deployment

Composer Help 1363

This parameter is then read by the GVP application at runtime, enabling the GVP application to
connect to the UCS.

GVP Debugging Perspective

The figure below shows Composer's elements for the GVP Debugging perspective (callflow
debugging):

• The Debug view shows the callflow diagram name being debugged, as well as the status of the debug
progress or result.

• The Navigator view shows the same Project folder structure shown in the Project Explorer window of the
Composer perspective.

• The callflow diagram is displayed below if you are debugging a callflow. At the beginning of the debug
session, a red box surrounds the Entry block of the callflow to indicate the start point. The focus
changes as the session progresses, and a red box displays wherever the call execution suspends,
regardless of whether or not there’s a breakpoint.

• The Call Trace view displays metrics which describe the events occurring in the application, such as

Validation, Debugging, and Deployment

Composer Help 1364

recognition events, audio playback, user input, errors and warnings, and application output. The history
functionality of the call trace view shows the call traces from past calls.

• The Console is for executing ECMAScript commands on the interpreter.

Debugging Tools

See the Debugging Toolbars topic.

Debugging Views

The upper right of GVP Debugging Perspective contains the following views:

• Variables allows you to monitor the state and value of any variable used in the application, to see how
the variable changes during execution. This shows all global variables of the application, and also the
recognition results of the previous recognition, if any.

• Breakpoints allows you to select a position in the VoiceXML application to suspend execution instead
of stepping through the application one command at a time.

• Expressions indicates watch expressions you can add and monitor during execution. You can change
the value of these expressions to see how they impact the application.

Note: The VXML Properties and Configuration views are for information only; they do not perform any
tasks.

• VXML Properties are the properties defined in the VXML application by <property> tags. This
includes application-specific properties (set in the Entry block) as well as default properties defined by
the platform.

• Configuration parameters are the configuration items of the VXMLI. Basically it is what you would
see in the vxmli section of the MCP settings in MF.

Debugging a Callflow

The GVP Debugger allows you to debug a callflow by single-stepping through the blocks. Prior to
debugging, you should have validated the callflow, generated the code, and deployed the Project for
testing. Also, if you have not already done so, set GVP Debugger preferences. Select Window >
Preferences > Composer > Debugging > GVP Debugger and configure the GVP Debugger.

Creating a Debug Launch Configuration

To test your callflow by stepping through it, use Debug Configurations to first create a launch
configuration: To run your callflow for debugging use Debug Configurations:

Validation, Debugging, and Deployment

Composer Help 1365

1. In the Project Explorer, expand the Composer Project and its callflows subfolder.
2. Right-click on the callflow filename in the Project Explorer and select Debug as > Debug

Configurations.
3. Expand Composer - GVP Debugger.
4. Select New Configuration. The Debug Configurations dialog box opens. An example is shown below.

5. Name the configuration.
6. Click the Create Automatically button to create a new project folder to save the metric traces and

VXML pages as the calls are being executed. This folder appears in the Location field as shown above.
7. Click the SIP Phone Settings tab and provide your SIP Phone information if not already there from GVP

Debugger Preferences. An example is shown below:

Validation, Debugging, and Deployment

Composer Help 1366

8. Click the Application Settings tab and select Callflow Diagram. An example is shown below:

Validation, Debugging, and Deployment

Composer Help 1367

9. You can pass CTI Input variables in a Debugger call. Input variables in a callflow diagram can be
initialized in a Debugger call using the Extra Parameters field in the Run / Debug Configurations >
Application Settings tab. The Parameter names should match the "Input" variable defined in the
Entry Block of the Callflow diagram.

10. Click Apply.
11. Click Debug. This will automatically dial out your SIP Phone.
12. Accept the call and you will be connected to the application on GVP. Composer switches to the GVP

Debugging perspective.

Once the call is initiated you will see a red box around the first block of the application. This indicates
the current location where the call is paused. Note: The GVP Debugger skips over deactivated blocks.

13. Click the Step Over button to single step through the blocks. Note: Step Over on the Debugging
Toolbar is the only way to step for both routing and voice applications. Blocks in the diagram
correspond to <form> elements in the generated VXML. When stepping through a callflow diagram,
the debugger is stepping through <form> elements in the underlying VXML. The call traces will
become visible in the Call Trace view at the bottom. An example is shown below.

Validation, Debugging, and Deployment

Composer Help 1368

Application state and last user input values can be seen in the Variables tab.

14. You can input breakpoints from the context menu on a block and select Toggle Breakpoint . When
breakpoints are set, you can press F5 to resume the call to the next breakpoint, instead of single
stepping block-by-block.

15. You can change values of variables in the middle of the callflow. This could be used to quickly change
the execution path as the call is progressing. Right-click in the Expressions tab and select Add Watch
Expression. In the Add Watch Expression window, add a new expression to watch during debugging.
For example, give the name as AppState.<actual variable name>.

16. To change the value, expand the variable, right-click on the child item and select Change value. A
popup window as shown above will open, and you can specify the new value. Click OK. Proceed with
debugging of the application and see the changed value.The value of the watch expression can be
refreshed at any time by right-clicking on it and selecting Reevaluate Watch Expression.

Debugging-results Folder

The GVP debugger creates a debugging-results folder in the Project Explorer. There is currently no
automatic cleanup so the number of files can become large. Clean up the debugging results by
deleting the gvp-debug.<timestamp> folders from the Project Explorer. Each gvp-
debug.<timestamp> folder corresponds to a single debug call that was made at the time specified by
the timestamp. It contains files downloaded by the debugger. The metrics.log file contains the Call
Trace of the call.

Code Generation of Multiple Callflows

When using the Run Callflow or Debug Callflow functions, Composer automatically generates the
VXML files from the diagram file that you want to run. In the case of a Java Composer Project that has
multiple callflows, Composer attempts to generate the VXML for all the callflows before running
(because the application might move between multiple callflows for subdialogs). However, if one of
the callflows has an error, Composer provides the option to continue running the application anyway,
because the erroneous callflow may be a callflow that’s not used by the one being run (if there are
two or more main callflows, for example). When this happens, the VXML files are basically out of sync

Validation, Debugging, and Deployment

Composer Help 1369

with the diagram files and this may affect execution. Genesys recommends that you fix all errors
before running the application.

Debugging VoiceXML Files

• VXML debugging does not work on 64-bit operating systems when Transport Layer Security if TLS is
enabled in Context Services Preferences. If TLS is not enabled, debugging works as expected.

• Debugging is supported only on Tomcat. VXML debugging is the same on any application server so
debugging using Tomcat is sufficient.

• When subdialog calls external VXML page in debug mode, Composer throws the following error: An
internal error occurred during: Debug Source Lookup. This is a known limitation. The problem occurs
when stepping through a callflow with a subdialog block that links to a VXML page. A "mode switch"
between debugging a callflow diagram and debugging a VXML page is not supported. Workaround is to
start debugging the generated code instead as a VXML page, which will step into the hand written
VXML page when it is called.

• VoiceXML applications can be tested using the real-time GVP Debugger. Support for both Run and
Debug mode is provided.

• In the Run mode, the call traces are provided and the application continues without any breakpoints.
• In the Debug mode, you can input breakpoints, single-step through the VoiceXML code, inspect variable

and property values, and execute any ECMAScript from the query console. Integration with a SIP Phone
is provided and click to dial feature is provided for making the test calls.

• Tomcat engine is bundled as part of Composer and the application is auto deployed and auto-configured
for testing. Programmers can test by specifying the DNIS of the application already provisioned in MF or
provide the URL of the application or let Composer auto-configure the application for testing.

There are various ways to start a debug session. The next section describes Run Mode and Run
Launch Configurations.

Creating a Run Launch Configuration

In order to test and debug applications configured in the Genesys Administrator Console as an IVR
Profile, you will have to create a launch configuration for making test calls.

1. From the Run menu select Run Configurations.
2. In the dialog box, right-select NGI Real Time Debugger and select New from the menu.
3. Define the launch configuration. The figure below shows an example completed Workspace Storage

Configuration tab.

Validation, Debugging, and Deployment

Composer Help 1370

4. Click the Create Automatically button to create a new Project folder to save the metric traces and
VXML pages as the calls are being executed. This folder appears in the Location field as shown above.

5. Click the SIP Phone Settings tab and provide your SIP Phone information if not already there. An
example is shown below:

Validation, Debugging, and Deployment

Composer Help 1371

6. Click the Application Settings tab and select the DNIS option. Specify the DNIS of your application
and the IP Address of your GVP (MCP / RM), as well as the port. An example is shown below:

Validation, Debugging, and Deployment

Composer Help 1372

• The Application URL option is for an application that is not provisioned, but is hosted at an HTTP URL.
• The Workspace Location and Callflow Diagram options are generally not used to create launch

configurations. Those launch configurations are automatically created using Run As Callflow or Run
As VXML file.

• You can pass CTI Input variables in a Debugger call. Input variables in a callflow diagram can be
initialized in a Debugger call using the Extra Parameters field in the Run / Debug Configurations >
Application Settings tab. The Parameter names should match the "Input" variable defined in the
Entry Block of the Callflow diagram.

7. Click the Apply button and then click Run.
8. Your SIP Phone should get dialed. Accept the call in your SIP Phone and then the Debugger will dial out

to GVP and connect the call.
9. You should then see call traces in the Call Trace view.

Adding Breakpoints

To toggle breakpoints, double-click the side area of the Editor window as shown in the figure below:

Validation, Debugging, and Deployment

Composer Help 1373

Debugging Server-Side Pages

This section covers server-side debugging with the TCP/IP monitor. Composer includes a TCP/IP
monitor which can be used to debug server-side code such as Server Side blocks and Database
blocks. To monitor TCP traffic on the Tomcat or IIS port, follow these steps:

1. Check the Composer Preferences page to determine the port on which your bundled Tomcat is running.
If you are using IIS, see the IIS port configured for Composer in Preferences.

2. Enable the TCP/IP monitor in Preferences (Window > Preferences, expand Run/Debug and select
TCP/IP Monitor. Select the Show the TCP/IP Monitor view when there is activity check box.

3. Add a new monitor entry in TCP/IP monitor preferences. The Monitor section refers to the target being
monitored. Use the configured port in the previous step as the port to monitor. For example, use 8080
and start the monitor.

Validation, Debugging, and Deployment

Composer Help 1374

4. Update your Tomcat port / IIS port to the Local Monitoring Port.
5. Start debugging your application and put breakpoints on appropriate blocks. The debug perspective will

start showing the TCP/IP Monitor view. If the view is not visible, access it from Window > Show View.
The image below shows the bundled Database Stock Application being debugged. The TCP/IP Monitor
view shows the error returned by server-side pages that handle database interactions.

Validation, Debugging, and Deployment

Composer Help 1375

For additional information, see the following sections in the Eclipse Workbench User Guide Help
available from within Composer (Help > Help Contents):

• TCP/IP Monitor view
• Defining TCP/IP Monitor preference
• Using the TCP/IP monitor to test web services

Debugging TLS Support

The instructions below describe how to (optionally):

• Configure a secure connection (Use Secure Connection) to GVP's Media Control Platform (MCP) during
voice application debugging when using SIPS.

• Use a Transport Layer Security (TLS) connection for the Debugger control channel.

For additional information, see the Genesys 8.1 Security Deployment Guide. Note: MCP version
8.1.401.07 or later is required to use the TLS feature for debugging.

1. Import the certificate for MCP as follows:

a. In the MCP’s configuration, in section vxmli, there is a debug.server.tlscert parameter. (By default,
this is $InstallationRoot$/config/x509_certificate.pem.) Copy this file from the MCP installation
to a location on Composer’s local machine.

b. In Composer, go to Window > Preferences. Select Composer > Security in the tree. Click Import
Certificate and navigate to the x509_certificate.pem file.

c. Restart Composer.

Validation, Debugging, and Deployment

Composer Help 1376

2. Enable debugging from MCP configuration as follows:

a. Set [vxmli]:debug.enabled to true.
b. Ensure that [vxmli]:debug.server.tlsport and [vxmli]:debugserver.tlsport.public are set.

(By default, it is set to port 27668.)
c. In Composer, go to Window > Preferences and select Composer > Debugging > GVP Debugger.

Check Use Secure Connection to enable security. The Platform Port setting should match the MCP
configuration [sip]:transport.2.

Limitations

The GVP Debugger has the following limitations:

• CTI calls are not supported.
• Transfers of type blind and consultation do not work when a test call is made using the GVP debugger.

The call will reach the Transfer block, but then it will hang and not proceed so you will need to
terminate the call or debugging session manually.

A partial workaround is to set the Transfer Method property to bridge (i.e.. Transfer Type = blind/
consultation, Method = bridge) before debugging. The transfer will proceed, but the debugging
session and the call will terminate immediately afterwards. Genesys recommends that you do full
testing for Transfer applications by provisioning the application in Genesys Administrator and making
test calls directly from the SIP phone. These limitations apply to Run Callflow (in Run mode) as well.

Validation, Debugging, and Deployment

Composer Help 1377

Deploying Composer Applications
Consult the Composer 8.1.5 Deployment Guide for Composer product installation information. This
topic describes deploying a Composer application to a web server.

Video Tutorial
Below is a video tutorial on exporting and deploying a Composer application to a web server.

Important
Important Note: While the interface for Composer in this video is from release 8.0.1,
the steps are the basically the same for subsequent releases.

Deploying to Apache Tomcat Server for Testing

For testing purposes, Composer supports automated deployment of routing applications to the
bundled Tomcat server or to a local IIS server. For more information, see Testing Your Application.

Migrating a Composer Application From Lab to Production

Automated deployment of a Composer Project application to application servers from within
Composer (JBoss, Websphere, and IIS) is not directly supported. The Composer remote deployment
option can be used for Java Composer Projects to deploy directly to remote machines. For more
information, see the section on application server requirements in the Composer 8.1.4 Deployment
Guide.

For the Web Service block, the Service End Point Variable Property can be used to externalize the

Validation, Debugging, and Deployment

Composer Help 1378

https://docs.genesys.com/Documentation/Composer/8.1.5/Deployment/Welcome
https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Preinstallation#Application_Server_Requirements
https://docs.genesys.com/Documentation/Composer/8.1.4/Help/WebServiceCommonBlock#Service_End_Point_Variable_Property

Web Service URLs for production environments.

Deployment to a Web Application Server

Deployment to a web server depends on which type of Project you are working with:

• Java Composer Project
• .NET Composer Project

Once your application has been unit tested you will need to deploy it to a web server. The
deployment process involves:

1. Exporting your Project
2. Transferring the files to your web/application server
3. Executing any necessary configuration steps required to make your application work.

For Composer-generated applications that use .NET resources, you can use any version of Microsoft
IIS that is compatible with the Windows versions on which Composer is supported or any web server
that supports Java Runtime Environment 1.7.0_0 or higher.

Combination Routing and Voice Projects

A single Composer Project can contain both routing and voice elements. If this is the case, the
application will get deployed on a single application server (such has IIS or Tomcat), but must be
provisioned in Genesys Administrator in two places:

• In GVP for the voice elements. See the chapter, Post Installation Activities on the GVP Hosts,
Provisioning the Components section, in the Genesys Voice Platform 8.1 Deployment Guide.

• In URS for the routing elements. See the chapter, SCXML Strategy Support, in the Universal Routing 8.1
Deployment Guide.

Microsoft IIS Application Servers

Deploying an Composer application to a Microsoft IIS application server requires Administrative
privileges when running the Microsoft Windows 7 and Microsoft Windows Server 2008, 32-bit
operating systems.

Exporting a Java Composer Project for Deployment

Java Composer Projects can be exported to a location in the local machine and then manually

Validation, Debugging, and Deployment

Composer Help 1379

deployed to any web application server that meets the following minimum pre-requisites:

• Must be J2EE 5 compliant.
• Must support the JSP 2.1/Servelet 2.5 specification (such as Tomcat andJBoss application servers).

Exporting a Java Composer Application to an Application Server

1. Select File > Export, expand the Composer folder, then select Java Composer Project as WAR file
and click Next.

2. Select Export Composer WAR file to a location and click Next.
3. Select the Java Composer Project that you wish to export and specify the information below.
4. Enter WAR Display Name. This is the name that will be used for the application when it is deployed

(for example, Tomcat Manager will show this name).
5. Enter File system destination. Enter the location on the local machine where the war file will be

saved.
6. Generate code for Composer diagrams. Select the check box if you would like to auto-generate the

code for all the callflows/workflows before exporting the .war file.
7. Create Revision. Select the checkbox and select Major, Minor, or Micro. This will be recorded in the

Project history and can be reviewed later.
8. Contributor (Optional). Typically the username of the person exporting the Project.
9. Comment. Enter any comments associated with this operation. Typically these will indicate why a new

version was exported.
10. Click Finish.

A file with the same name as the name of your Java Composer Project and file extension as .war will
be created in the destination location. The .war file name is always set to the Project name. The
display name is not the file name. It is the application display name used by an application server
when the .war file is deployed in it. See the web.xml file in the WEB-INF folder in the generated .war
file. It will contain the specified display name. When exporting a .war file, the display name is saved
on a per-Project basis. Subsequently, when exporting the same Project, the saved name is pre-
populated.

Once the .war file is exported, deploy the .war file in your Production server or JBOSS server
manually. For example, typically, you will upload the file via Tomcat Manager or drop the file into the
webapps folder of your Tomcat server. If your server is configured to auto-expand the files, you will
see a folder created with the same name as your voice Project. If auto-expand is not configured you
will have to stop and start your web server in order to expand the .war file.

Generating and Deploying a WAR file to a Remote Web Server

Use this option to export a .war file to a remote application server from within Composer. It removes
the need to manually copy over the file to the application server to deploy it.

1. Select File > Export, expand the Composer folder, then select Java Composer Project as WAR file
and click Next.

Validation, Debugging, and Deployment

Composer Help 1380

2. Select Generate and Deploy a WAR File to a Web Server and click Next.
3. Select the Java Composer Project that you wish to export and specify the information below. The

descriptions listed in the previous section applies here as well and are therefore not repeated.
4. Web Container: Select your target application server.
5. Web Server installed location: This is required for JBoss only. It is the location where the JBoss 711

application server was unzipped. It requires a file mapping to this location. Note: Only JBoss 711 version
is supported for remote deployments.

6. Generic Cargo configuration properties:
• Host IP – IP address of the host where the application server is currently deployed.
• Port No – Webserver port.
• Username, Password – Application server credentials required to deploy the application.

7. Custom Cargo Configuration Properties:
• Cargo – Used by Composer for this remote deployment. Introduces additional capabilities, which

can be specified via this option. Please refer to the Cargo documentation for details.

8. Click Finish.

Composer will generate a .war file and attempt to deploy to the specified remote application server.
The information in the previous section also applies.

Deploying a NET Composer Project

.NET Composer Projects developed with Composer can be deployed on the IIS web application server.

• If you rename a .NET Composer Project, the new Project is not automatically deployed to IIS. The
workaround is to undeploy the Project before renaming and then deploy manually after renaming.

• To deploy Composer .NET Projects to IIS, the IIS 6 Metabase Compatibility must be installed.

To deploy a voice application on IIS:

1. Generate the code for your project.
2. Right-click on your project and click Export.
3. In the Export dialog box, select General > File System and click Next.
4. Select all folders except simulation, callflows, and debugging-results.
5. In the To directory box, select the location in your file system where you want to export the application.

Select the option for Create only selected directories then click Finish to export.

All your Project files should be exported to the location that you specified.

6. You can copy this folder to your final deployment machine.
7. Create a virtual directory for this application in IIS and point it to this folder:

Validation, Debugging, and Deployment

Composer Help 1381

• In Virtual Directory Alias, specify the name that will be used to access this virtual
directory from HTTP, then click Next.

• Browse to the folder that has your application's exported contents, then click Next.
• Give the following permissions: Read, Run Scripts.
• Configure the Mime types for the deployed .NET Composer Projects manually. The following

mime types should be added: .grx
• Open IIS and select the website you want to use. Right-click it and select New Virtual

Directory. A wizard dialog will be displayed. Click Next to start it.
• ml and .vxml

To add a mime-type, open Internet Services Manager and follow these steps:

• Right-click your website (such as Default Web Site) and select properties.
• Click the HTTP Headers tab.
• Click the MIME Types button to display the MIME Types dialog box.
• Add these MIME types:

• .grxml application/srgs+xml

• vxml text/xml

• Make sure that ASP.NET extensions are enabled in your IIS.
• Make sure that ASP.NET is enabled on your virtual directory and set to the correct version.
• Make sure that scripts have execute permissions on your virtual directory.

8. Right-click on the main vxml page in your src-gen folder and select Browse. If all settings are correct,
a browser window will open and show you the VXML page. The address in the browser will be the URL
at which your VXML application will be available.

Deploying a Routing Application

Deploying routing applications involves two main tasks.

1. Creating the appropriate objects in Configuration Server that are required by the Universal Routing
platform. These objects are needed so that the platform understands how to direct interactions (voice
or multimedia) as well as how to process them.

2. Generating SCXML pages accessible to the platform so they may be retrieved and processed by the
platform.

You can handle both tasks in Composer using its integrated development environment.

• Publishing interaction process diagrams (IPDs) creates most necessary Configuration Server
objects.

• Deploying Composer Projects to local application servers (Tomcat for Java Composer Projects and
IIS for .NET Composer Projects) makes application SCXML pages available to the platform.

Validation, Debugging, and Deployment

Composer Help 1382

However, Composer does not support deploying applications to a production environment. The
steps documented below can be used to do that.

The term object is used (e.g., Interaction Queue object) when referencing Configuration Server
objects. When blocks in Composer diagrams are referenced, the term block is used (e.g., Interaction
Queue block). To deploy a routing application:

1. Deploy your Composer-generated SCXML pages to an application server. Note the URL of the starting
SCXML page.

2. Using Genesys Administrator or Configuration Manager, log into the Configuration Database and
connect to the Configuration Server that is being used for the environment in which you wish to deploy
this application.

3. Create the Configuration objects listed below. All objects must be created under the appropriate Tenant
that owns Configuration objects being referenced in your Workflow blocks like Queues, Standard
Responses, and so on.

a. One Script object for each Workflow block in your IPDs. The object type should be
EnhancedRouting. This applies to workflows that process voice or multimedia interactions.

b. One Script object for each Interaction Queue block in your IPDs. The object type should be
Interaction Queue. This applies only to IPDs/ workflows that process multimedia interactions.

c. One Script object for each View defined in Interaction Queue blocks in your IPDs. The object
type should be Interaction Queue View. This applies only to IPDs/ workflows that process
multimedia interactions.

d. A media server Endpoint for each newly added Endpoint in any Media Server block in your
IPDs. This applies only to IPDs/ workflows that process multimedia interactions.

e. For any E-mail or SMS servers being referenced in Media Server blocks in your IPDs,
configure the appropriate POP accounts to route multimedia interactions to the appropriate
media server endpoints. This applies only to IPDs/ workflows that process multimedia
interactions.

f. Configure DNs to point to an EnhancedRouting object so that voice calls on those DNs
invoke the application that is referenced in the Enhanced Routing object. This applies only to
IPDs/ workflows that process voice interactions.

Detailed Steps for Creating Configuration Server Objects
The steps are listed below.

1. Common steps to create aScript object of a specific type:

• Create a new Script object.
• Ensure that the correct object type is set e.g. InteractionQueue or EnhancedRouting.
• Set the object state to Enabled.
• Check that the object is being created under the correct Tenant object.

2. Creating Script objects for Workflow blocks.

• In Genesys Administrator, navigate to Provisioning > Routing / eServices >
Orchestration.

Validation, Debugging, and Deployment

Composer Help 1383

• Create a Script object of type Enhanced Routing. The name can be the name of your
Workflow block. If another object already exists by this name, you can use a different name.

• Specify the URI. It should be the URL of the starting SCXML page of your application.
• Add a parameter: context_management_services_url. Its value should be in the format:

[http:// http://]<UCS application host>:<Context Services port>.
• Additional parameters can be specified here. If the names match the names of any Project

level variables, those variables will be initialized with values specified here.

3. Creating the Script object of type InteractionQueue.

• In Genesys Administrator, navigate to Provisioning > Environment > Scripts.
• Create a Script object of type Interaction Queue. The name can be the name of your

Interaction Queue block. If another object already exists by this name, you can use a
different name.

• In its Annex, create the following sections and keys:

Annex Section Property Equivalent
Composer Block Value Notes

Namespace Name Name <name of the
queue>

Namespace Description Queue Description <descriptive text
for the queue>

Orchestration Application --

script:<name of
the Enhanced
Routing object to
which interactions
from this queue
should be sent

Connects an
interaction queue
to an Enhanced
Routing object.
Equivalent to
linking an
Interaction Queue
block to a
Workflow block in
an IPD.

4. Creating the Script object of type Interaction Queue View.

• In Genesys Administrator, navigate to Provisioning > Environment > Scripts.
• Create a Script object of type InteractionQueueView. The name can be the name of your

view defined in an Interaction Queue block. If another object already exists by this name,
you can use a different name.

• In its Annex, create the following sections and keys:

Annex Section Property Equivalent
Composer Block Value Notes

View Name Name <name of the
queue>

View Queue Parent Interaction
Queue block

<name of the
Interaction Queue
object in

Connects the
Interaction Queue
View object with

Validation, Debugging, and Deployment

Composer Help 1384

Configuration
Server

its parent
Interaction Queue
object

View Description Description <descriptive text>
View Freeze Interval Check Interval
View Condition Condition
View Order Order
View scheduling mode Scheduling

View "Condition.<Name>" Parameterized
Conditions <value>

View sql-hint Database Hints

View segment-by Configured
Segments

Value will be
"value of segment
1, value of
segment 2, ...,
value of segment
n"

Segment names
are not used

View segment-check-
interval Segment Interval

View segment-total-limit Segment Limit

5. Creating Media Server Endpoints

• In Genesys Administrator, navigate to the correct Application object representing your media server
application of type EmailServer or SMSServer.

• For EmailServer and SMSServer applications, Endpoints are created in the endpoints:<tenant dbid>
section which is specific to a Tenant.

• For each Endpoint, add a key in the above section with

1. Key name = <Endpoint name>
2. Value = <name of the Interaction Queue object to which interactions coming from this

Endpoint will be submitted>

This defines an Endpoint and connects it to an interaction queue.

• Once an Endpoint is hooked up to an Interaction Queue object, all interactions coming in from that
Endpoint are directed to the connected interaction queue. This object, in turn, is linked to an
EnhancedRouting object from where the URL to the application is picked up. This completes the flow
from the media server to the application SCXML pages.

6. Configuring POP accounts (EmailServer).

• In Genesys Administrator, navigate to the correct application object representing your media
server application of type EmailServer.

• Accounts defined in EmailServer need to be configured to send e-mail interactions to specific
Endpoints. For this, locate the pop-client<some number> section in the application’s
options that represents a POP account.

Validation, Debugging, and Deployment

Composer Help 1385

• In this section, set the value of the endpoint property to the name of the Endpoint to which
e-mails should be redirected.

7. Configuring DNs. To connect DNs with SCXML applications for voice interactions, specify the following in
the Annex of the DN:

Annex Section Property Equivalent
Composer Block Value Notes

Orchestration application -

script:<name of
the Enhanced
Routing object to
which interactions
from this queue
should be
submitted>

Connects a DN to
an Enhanced
Routing object

a. For more details, see the chapter on configuring Orchestration Server in the Orchestration Server 8.1
Deployment Guide.

Deploying Applications That Use Context Services

This topic discusses the following types of applications that use Context Services:

• SCXML Applications
• VXML Applications

SCXML Applications
When you publish an interaction processing diagram, Composer creates an enhanced Script record in
the Configuration Database. This Script record has a context_management_services_url parameter,
which is initialized with the UCS server parameters configured in Context Services Preferences. When
the SCXML application is run, this parameter is read to enable Orchestration Server to connect to
Universal Contact Server (UCS). If you want to point to another UCS, you must either:

• Update the UCS parameters in the Context Services Preferences and re-publish, or
• Manually update the context_management_services_url parameter using either Configuration

Manager or Genesys Administrator. The example below shows the configuration in Genesys
Administrator.

Validation, Debugging, and Deployment

Composer Help 1386

MoreImages/contextServicesurl.gif

VXML Applications
When running a callflow from a RM Direct call, you must update the IVRProfile to define an additional
context_services_url parameter whose value points to the Context Services (UCS) URL.

Validation, Debugging, and Deployment

Composer Help 1387

Running a Callflow from a PlayApplication Workflow Block In this case, you must configure the
context_services_url parameter in RM’s default IVR Profile, which RM passes on to the VXML
application. Configuration details are as follows:

1. In the Sip Switch/DN/VOIP Services/MSML_Service DN (if the msml-support option is true in Sip Server)
or in the standard VoipService DN (if the msml-support option is false in SipServer): change the option
contact from sip:host_MCP:port_MCP to sip:host _RM:port_RM

2. In the Tenant object, designate a default profile for RM: gvp.general section, option default-
application=<name of some IVR Profile object under that tenant>, Default Application for instance.

3. In the IVR Profile/Default Application specified above, in the Annex, add the section gvp.service-
parameters.

4. In the gvp.service-parameters section, add the option msml.context_services_url=
fixed,http://demosrv8:908 (host:port of Context Management Server aka UCS’ customer view port).

5. In the gvp.service-parameters section, add the option voicexml.context_services_url=
fixed,http://demosrv8:9080 (host:port of Context Management Server aka UCS customer view port).

Testing Your Application

After you have saved your files and generated code for your application, test the application as
follows:

1. Deploy the project for testing.

Validation, Debugging, and Deployment

Composer Help 1388

• If deploying a Java Composer Project, Composer bundles Tomcat for running test applications, such
as routing applications. If you configured the Tomcat settings prior to creating your Project, it will
be auto-deployed on the Tomcat Server. You can double check this by clicking on the name of the
Project in the Project Explorer, then right-click and select Project Properties. Select the Tomcat
deployment category and verify that the project is deployed. If not, click Deploy.

Note: If deploying a .NET Composer Project, deploy your project on an IIS Server. Be sure you have
configured the IIS settings. Click on the name of the Project in the Project Explorer, then right-click
and select Project Properties. Select the IIS deployment category and verify that the Project is
deployed. If not, click Deploy.

2. For Voice Projects, use Run mode to run the application by selecting Run > Run As > Run Callflow, or
by right-clicking on the callflow file name in the Project Explorer and selecting Run As > Run Callflow.
The code is generated in the src-gen folder and the debugger sends the call to your SIP Phone.

3. Accept the call and you will be connected to the application on GVP. The call traces will become visible
in the Call Trace window, and you should hear the voice application run.

Deploying Updates

This topic summarizes how to deploy updates to a Composer GVP voice application. For example, you
may wish to deploy an updated version of a voice application with some new prompts and different
DNIS numbers, but want to test it while the old one is still running. To deploy a new version of a
Project without affecting the previously deployed one, try the following:

1. Export the existing Project (doesn’t have to be a new Project unless it is needed in cases where SCM
tools are not used).

2. Rename the .war file before deploying to the application server. The deployed URL will depend on this
war file name and therefore result in a different URL for the updated Project. You can control the display
name of the application from the export wizard, however, this does not affect the URL.

Notes:

• The above procedure works on Tomcat, but has not been tested on other application servers.
• if the .war file is renamed before deploying to the application server, the application URL will reflect the

.war file name instead of the Project name. This behavior may be application server-specific. The URL
will look like:

[http:// http://]<ip_of_application_server>:<port>/<war_file_name>/src-
gen/<callflow_name>.vxml

• See the information on specifying the URL in Exporting a Java Composer Project above.
• Direct deployment to remote application servers is currently not supported in Composer.

Deploying Multiple Projects Using Bulk Manager

Validation, Debugging, and Deployment

Composer Help 1389

A new wizard, Composer Bulk Manager, is introduced in version 8.1.450.33 to manage bulk
deployment of projects.

• Click the Launch Bulk Manager icon on the toolbar. The Composer Bulk Manager is displayed listing
the Java and .NET projects available in the workspace, and their deployment status.

• To deploy multiple projects, select the required projects and click the Deploy button. The selected
projects are deployed and the status in the Deployment column is changed to Deployed.

• To undeploy multiple projects, select the required projects that have been deployed and click the
UnDeploy button. The selected projects are undeployed and the status in the Deployment column is
changed to Not Deployed.

Important
Both Java and .NET projects can be deployed in conjunction into their respective
configured server locations using the Composer Bulk Manager wizard. You must
launch the Composer application using the Run as Administrator option to be able
to view the deployment status for .NET projects.

Upgrading Multiple Projects Using Bulk Manager
Beginning with release 8.1.500.03, when you upgrade to a new version of Composer, you can use the
Bulk Manager to upgrade multiple projects at one go. When you initially open Bulk Manager after
upgrading to a new version, the status of the existing projects in the IsUpToDate column is
displayed as No.

To upgrade multiple projects, select the required projects and click the Upgrade button. The selected
projects are upgraded and the status in the IsUpToDate column is changed to Yes. When the

Validation, Debugging, and Deployment

Composer Help 1390

upgrade fails for a particular project, the status is displayed as Unknown or Failed. The version
number in the Version column reflects the latest version for upgraded projects.

Important
You can also configure log levels for server-side blocks using the Bulk Manager. For
more information, see Configuring Log Levels for Server-Side Blocks.

Launching Bulk Manager on Composer Startup
Beginning with release 8.1.510.12, Bulk Manager is launched on starting the Composer application.
This behavior is controlled through the Launch Bulk Manager on Composer startup option under
Window > Preferences > Composer, and is enabled by default.

To prevent the Bulk Manager from launching automatically on Composer startup, deselect the
Launch Bulk Manager on Composer startup option.

Important
Bulk Manager is launched asynchronously if the Launch Bulk Manager on
Composer startup option is enabled.

Validation, Debugging, and Deployment

Composer Help 1391

Best Practices
This section discusses the best practices to use when developing efficient Composer applications. It
contains the following topics: Also see:

• Deploying Update.
• Best Practices in the GVP 8.1 VoiceXML Reference Help available within Composer (Help > Help

Contents).

Pooling Reusable Subflows

This topic discusses how to share a pool of reusable subcallflows between multiple Composer
Projects.

• Note: Accessing other system resources (include/jsp) across Projects is not supported.

Runtime Solution
You can have the shared pool exist in a single Project, which contains the set of subcallflows that is
the shared pool. Each Project that wants to use these subcallflows uses the Subdialog block. The Uri
property can be used to specify the location of the subcallflow VXML, which is deployed on an
application server. For example, you could enter something like http://appserver/SharedModules/
src-gen/SubFlow1.vxml http://appserver/SharedModules/src-gen/SubFlow1.vxml in the URI
field of the Subdialog block (or have the value contained in a variable). This solution works best if
you want to keep a shared pool of subroutines at runtime. If you update a subroutine at the shared
location on the application server, all applications that reference it immediately start using the
updated subroutine.

Design Time Solution
If you need shared subroutines at design time, but want to include a copy in each application and
avoid a global update to all deployed applications, you could try the following:

1. Identify a folder where shared subroutines will be stored. This can be inside a Project or a folder outside
your workspace on your hard drive.

2. In any Project that needs to reference subroutines, create a new folder and link it to this shared
subroutines folder. This will allow access to all shared subroutines in the referencing Project as if they
are a part of the Project. Any changes made to these subroutines will update the master copy and
propagate to all other Projects.

3. When you generate code and export a .war file, subroutine code will be included in the export allowing
a more controlled deployment of shared subroutines. The drawback of this approach is that you will
need to update each application individually.

You can also use an SCM tool to create these linked folders, which may allow other features, such as
providing read-only access to shared subroutines from referencing Projects.

Best Practices

Composer Help 1392

Multiple Developer Access to Single Project

At times, you may need to have more than one Developer working on different modules of the same
Composer Project. For example, you could have a "modularized" Composer application with each
module being its own Subdialog/Subcallflow. In this case, you could have the Composer workspace on
a shared network drive with multiple workstations accessing the Project without corrupting the
Project metadata. In a such a team development scenario, Genesys recommends using a source code
management system. Third party plugins specific to the source control system (ClearCase,
Subversion, Subclipse Team Plugin, and so on) can be installed on top of Composer to enable this
functionality. The application files need to be structured to allow individual developers to work on
different diagrams. Note: Merging updates to the same diagram from different sources has not been
tested so currently Genesys recommends not doing that. If a source code control system is not an
option, a shared location could possibly be used simultaneously by more than one developer, but this
has also not been tested. The Project could remain on the shared drive and imported into the
workspace on each developer’s machine. The import is initiated from File > Import > General >
Existing Projects into Workspace. Uncheck the option Copy Projects into Workspace so that
files remain on the shared drive but can be used from the workspace.

Dynamic Web Projects

After you install Java EE Developer Tools plugins, you can create a Dynamic Web Project containing
pages with active content. Unlike with static Web Projects, dynamic Web Projects enable you to
create resources such as JavaServer Pages and servlets. Here’s how to get started:

1. Composer Help >> Install New Software.
2. Click Add. In the resulting box, enter http://download.eclipse.org/releases/galileo/
3. Select it to see the available package.
4. Select the Web, XML, and Java EE Development Eclipse Java EE Developer Tools entry.
5. Install the plugins.
6. Restart Composer.
7. Create a Dynamic Web Project.

Note: Other missing project types can be similarly enabled.

Best Practices

Composer Help 1393

Troubleshooting
For more extensive troubleshooting information for Genesys Voice Platform 8.1 components, please
refer to the Genesys Voice Platform 8.1 Troubleshooting Guide.

The present troubleshooting section considers issues specific to Composer.

• General Troubleshooting
• Block Names and Multi-byte Characters
• Bundled Help contents are always in English
• Chat Messages in Queues
• Checkin Error Source Code Integration
• Composer Project Not Deployed on Tomcat
• Composer Project Not Currently Deployed
• Connection Profile and ASCII Characters
• Chinese Characters Do Not Display
• Connection to a database fails
• Context Services URL Message
• CTI Block issues
• Debugging Failure
• Deployment Failure on IIS
• DotNET Project Issues
• Failed to Deploy Message
• Installation and Uninstallation
• JSON objects and JavaScript keywords
• ORS Compile Errors Non Esc Characters
• Plugin Installation
• Proxy Configurations .NET Composer Projects
• Request.Form Error Message
• SCXML Editor Element Not Bound Message
• Server-Side Troubleshooting
• Slow Response Time
• Stored Procedure Helper and DB Data Block
• Tomcat Service Failed to Start
• Test Calls Do Not Work

Troubleshooting

Composer Help 1394

• Upgrade Error Message
• Validation Error upon publishing IPD
• Web Service Block Issues
• Workflow Does not Compile
• Workspace in Use or Cannot be Created
• Workspace Files Not in Sync
• Tomcat Service - File Permissions Issue

Troubleshooting

Composer Help 1395

General Troubleshooting
If you encounter any of the following symptoms, try increasing the memory allocated to Composer:

• You get OutOfMemory Exceptions
• The perspective layout changes on its own
• The system hangs while loading a Composer Project
• The Composer UI appears slow to respond

Edit the Eclipse.ini file present in the Eclipse installation folder. Open it in a text editor. It will look like
this:

-startup
plugins/org.eclipse.equinox.launcher_1.3.100.v20150511-1540.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.300.v20150602-1417
-product
org.eclipse.epp.package.committers.product
--launcher.defaultAction
openFile
--launcher.XXMaxPermSize
256M
-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
256m
--launcher.defaultAction
openFile
--launcher.appendVmargs
-vmargs
-Dosgi.requiredJavaVersion=1.7
-Xms256m
-Xmx256m
Try increasing the value of XX:MaxPermSize> and Xmx to a higher value, for example,
512m.

Important
For more information on increasing heap size available to Eclipse, refer to the
increasing heap size topic on the Eclipse website.

Troubleshooting

Composer Help 1396

Block Names & Multi-byte Characters
Composer block names can contain only alphanumeric characters. If multiple-byte characters are
used in block names, the code generation step fails and no SCXML or VXML file is generated from the
Composer diagram.

Troubleshooting

Composer Help 1397

Bundled Help contents are always in
English

Troubleshooting

Composer Help 1398

Chat Messages in Queues
When a chat server terminates unexpectedly or the server goes offline, the chats that were hosted on
that chat server are terminated at the client end. However the chats remain in the system and
continue to route to Workspace Desktop Edition (previously Interaction Workspace (IWS)).

IWS presents the chat, but displays a message that it cannot connect to the chat server.

When the agent can eventually mark the chat as done, IWS closes the chat in the agent IWS session,
but it routes again, landing on any available agent IWS. This can occur for up to an hour.

The following is an example log entry:

14-03-28 12:17:10.138 [ChannelDefault] WARN ESDK - Channel tcp://ctizgesmipr002:4125/ closed
14-03-28 12:17:10.139 [ChannelDefault] WARN ESDK - Channel closing [Name]
ChatSessionChannel.Id001_90f30c5c-63c4-438b-a1b7-72c2dd7a8fc9 [Uri]
tcp://ctizgesmipr002:4125/
has 1 requests pending. They are lost
14-03-28 12:17:10.139 [ChannelDefault] DEBUG ESDK - Chat strategy 'ResyncStrategy' Processing
msg [Name] undefined <check channel evenr> [EndPoint] tcp://ctizgesmipr002:4125/
14-03-28 12:17:10.141 [ChannelDefault] DEBUG ESDK - Chat strategy 'ResyncStrategy' Found 1
related channel for Event undefined <check channel event>
14-03-28 12:17:10.147 [ChannelDefault] WARN edia.InteractionChat - Protocol Closed
message:'Genesyslab.Platform.Commons.Protocols.ProtocolException: Exception occured during
channel opening ---> System.Net.Sockets.SocketException: No connection could be made because
the target
machine actively refused it 172.203.217.149:4125

at System.Net.Sockets.Socket.EndConnect(IAsyncResult asyncResult)
at Genesyslab.Platform.Commons.Connection.CommonConnection.AsyncConnect(IAsyncResult res)
— End of inner exception stack trace ---' Previous Channel State:'Opening,

[InteractionChat: Id001/0006Ka9HFHRR0T2B]'

Resolution

Use the workflow diagram to stop chat interactions from being routed to an agent. The workflow must
determine if a chat session is still accessible before sending the interaction to an agent. One of the
possible solutions could be to use "dummy" chat ESP messages. If such a message could not be
delivered to Chat Server (see below details about errors), this will indicate not to route the interaction
to the agent (and so the interaction could be stopped in workflow). The workflow could make several
attempts (in the case where chat High Availability mode will be enabled) before finally stopping the
attempt to route.

In order to hide these dummy messages from chat parties, the following could be done:

1. Use some special keywords in the message and modify the web chat application not to show those to
the customer. Agent still will be seeing them.

2. Use the "Visibility" parameter of the chat ESP message request. It could have values ALL (default), INT
(only agents) or VIP (only supervisors). Setting Visibility=VIP will hide the message from customer and
agent (only supervisor will see those and it will be saved in final transcript in Universal Contact Server).

Troubleshooting

Composer Help 1399

Errors (in the Interaction Server log) when trying to deliver chat ESP message are as follows:

If ChatServer is not running (was not restarted)
00:04:08.485 Trc 24112 Cannot find appropriate 3rd-party server: name: [any], type: ChatServer
00:04:08.485 Trc 24102 Sending to Universal Routing Server: URServer: 'EventError' (52)
message:
…

AttributeErrorCode [int] = 1
AttributeErrorMessage [str] = "Not found by type"

…

After ChatServer was restarted and running
00:18:32.532 Trc 26015 Received message 'ExternalServiceFault' ('502') from client
'ChatServer' -
Third party server:0:920, message attributes:

attr_envelope [list, size (unpacked)=488] =
'Parameters' [list] = (size=80)

'FaultCode' [str] = "100"
'FaultString' [str] = "interaction with specified id was not found"

'Service' [str] = "Chat"
'Method' [str] = “Message""

Troubleshooting

Composer Help 1400

Checkin Error During Source Code
Integration
If you are using Source Control tools, checking in Composer Projects contents after the Project
Upgrade process may result in an error. To solve errors during checkin, refer to the table below and
delete the listed files manually in the Source Control.

Composer From
Version

Composer To
Version

.NET Project,
Files/Directories
to Delete in

Source Control

.Java Project
Files/Directories
to Delete in
Source Control

File Location in
the Project

8.0.30* 8.0.40* lib .

PlayBuiltinType.js PlayBuiltinType.js .\Resources\
Prompts\en-US

8.0.40* 8.1.00* getWebRequestDataWorkflow.aspx
getWebRequestDataWorkflow.jsp.\include

CVDBCommand.cs
.\App_Code

BackEndLogic.cs
.\App_Code

CVDBConnProfile.cs
.\App_Code

dbrequest.cs
.\App_Code

WebServcClient.cs
.\App_Code

SPHelper.cs
.\App_Code

CVDBQueryFile.cs
.\App_Code

upgradeReports .\App_Code
8.1.00* 8.1.10*

Troubleshooting

Composer Help 1401

Composer Project Not Deployed on Tomcat
In the Project Settings, if you try to deploy the Project and it fails each time, check the following:

1. Are the Tomcat preferences configured correctly?

• Make sure the post-installation configuration steps have been accomplished. Verify the
Tomcat port, user name, and password values.

2. Is the Tomcat service running?

Open Control Panel > Administrative Tools > Services, and look to see if the ComposerTomcat
service is listed as Started.

If not, follow the steps in TomcatServiceFailedtoStart to verify that no port clash is present.

Troubleshooting

Composer Help 1402

Composer Project Not Currently Deployed
If you attempt to run a callflow or workflow and receive a message indicating the following:

Could not start the debug target. The Composer Project containing <diagram> is not
currently deployed.

this indicates that the Project is not currently deployed. This most likely has occurred because the
Project was either imported or renamed.

Do the following to deploy a Java Composer Project on Tomcat:

1. From the Project Explorer, right-click on the Composer Project and select Properties.
2. Select Tomcat Deployment and click the Deploy button.

Do the following to deploy a .NET Composer Project on IIS:

1. From the Project Explorer, right-click on the Composer Project and select Properties.
2. Select IIS Deployment and click the Deploy button.

Troubleshooting

Composer Help 1403

Connection Profile and ASCII Characters
Database Connection Profiles do not support non-ASCII characters. Use only ASCII characters when
creating connection profiles.

Troubleshooting

Composer Help 1404

Chinese Characters Do Not Display
If Chinese UTF-8 characters cannot be displayed/used in the GRXML/VXML editor, install files for East
Asian languages in Windows.

1. Select Start > Control Panel > Regional Settings.
2. Select the Languages tab.
3. Select Install files for East Asian languages.
4. Windows installs the necessary files for Chinese characters to be displayed correctly in most

applications including Composer.

Troubleshooting

Composer Help 1405

Connection to a Database Fails
If your application or Composer is not able to connect to your database, you can:

• Check connection parameters in the Connection editor UI and verify they are correct.
• Verify that the database is up and running and accepting new connections.
• Check the error message that is stored in the Composer logs. It will contain the database-specific

error message returned by the JDBC driver.
• For SQLServer, you can create a new ODBC connection to verify whether the information is correct.

Access it from Control Panel > Administrative Tools > Data Source (ODBC). Provide the
same information that you provided in the connection and test the connection.

• For Oracle, run SQLPlus and try connecting to your database with the same information you
provided in the Connection Profiles editor.

Oracle and .NET Composer Projects

While working with .NET Composer Projects and Oracle, you may get this error at runtime: Oracle
client and networking components were not found. These components are supplied by Oracle
Corporation and are part of the Oracle Version 7.3.3 or later client software installation. Provider is
unable to function until these components are installed. If so, try the following steps:

1. Log on to Windows as a user with Administrator privileges.
2. Launch Windows Explorer from the Start Menu and navigate to the ORACLE_HOME folder. To find this

value, look up this variable in your machine environment variables through My Computer >
Properties > Advanced > Environment Variables > System Variables.

3. Right-click the ORACLE_HOME folder in Windows Explorer and select the Properties option from the drop
down list. A Properties window appears.

4. Click the Security tab of the Properties window. Click the Authenticated Users item in the Name list
(on Windows XP the Name list is called Group or user names).

5. Uncheck the Read and Execute box in the Permissions list under the Allow column (on Windows XP the
Permissions list is called Permissions for Authenticated Users).

6. Recheck the Read and Execute box under the Allow column (this is the box you just unchecked).
7. Click the Advanced button and in the Permission Entries list make sure you see the Authenticated

Users listed there with:

Permission = Read & Execute Apply To = This folder, subfolders and files If this is not
the case, edit that line and make sure the Apply onto dropdown box is set to This folder,
subfolders and files. This should already be set properly, but it is important to verify it.

1. Click the OK button until you close out all of the security properties windows. This may take a few
seconds as permissions are applied.

2. Restart your computer to assure that these changes have taken effect.

Troubleshooting

Composer Help 1406

3. Retest your application.

Additional Troubleshooting Steps

If dbrequest.aspx returns a 500 error (with ASP debugging enabled) and if the event viewer shows
the following exception message: Failed to access IIS metabase try granting access using the
following at the command line (sample version number): Start > Run > C:\WINDOWS\
Microsoft.NET\Framework\v2.0xyz\aspnet_regiis -i

Troubleshooting

Composer Help 1407

Context Services URL Message
session.connection.protocol.sip.requesturi['context_services_url']

If you get the above message when debugging VXML, you must update your IVRProfile to define the
context_services_url parameter.

See IPD RuntimeConfiguration for details.

Troubleshooting

Composer Help 1408

CTI Block Issues
Potential Issues are as follows:

1. A CTI block throws an error.unsupported.send exception:

• Check if external messaging is enabled in MCP. CTI blocks use <send> and <receive> tags
and these can be disabled in MCP configuration. Please refer to the Genesys Voice Platform
Deployment Guide.

2. A CTI block throws an error.com.genesyslab.composer.unsupported exception:

• Check that the CTI functionality your application is trying to use is supported in the scenario
that is getting executed at runtime -- CTI via SIPServer or CTI via CTIConnector. Consult the
Working with CTI Applications and CTI Blocks topics to see which features are supported in
the two scenarios in each CTI block.

Troubleshooting

Composer Help 1409

Debugging Failure
While debugging diagrams or code, if there is a error, check the following:

1. The Project is deployed on Tomcat or IIS.
2. Debugger preferences are setup correctly. Select Window > Preferences > Composer > Debugging

> GVP Debugger and configure the GVP Debugger. Make sure the SIP phone IP address and MCP's IP
address and ports are correct.

3. Delete any previous debug configurations by right-clicking the file > Debug As > Debug
Configurations. Delete existing debug configurations for the file. A new one will be created when
debugging is initiated.

4. In the Project Explorer, check that the debugging-results folder exists. If not, create the folder and try
debugging again.

5. While creating a .NET Composer project, if a non-default location is selected, debugging workflows or
callflows may fail. Workaround: Give read permissions to all files in the Project from Windows Explorer
so that they are accessible to the Debugger.

Troubleshooting

Composer Help 1410

Deployment Failure on IIS
In a .NET Composer Project, if you try to deploy the Composer Project and it fails each time, check the
following:

1. Is IIS installed on the machine?

• Make sure IIS is installed and running on the machine that is running Composer.

2. If running on IIS 7.5 and Windows 7, does the account used for login have full administrative
permissions? If not, the deployment will fail to access metadata with error: location
IIS://LocalHost/w3svc Failed. This error appears either in the logs when you try to debug or in the
Project Properties > IIS Deployment tab. Ensuring full administrative permissions is best
accomplished by using one of two methods:

• Log into your computer by using the local administrator account.
• If logging in using an account with administrative permissions, but the account is not the

local administrator account, open Composer by using the "Run as Administrator" option.

3. If running on IIS 7 (Windows Vista, Windows 2008) or IIS 7.5 (Windows 7), during the installation of IIS,
IIS Metabase and IIS 6 configuration compatibility must be installed. See the section "Configuring in IIS
Manager" in the Composer 8.1 Deployment Guide.

4. Are the IIS preferences configured correctly?

• Make sure the post-installation configuration steps have been accomplished. Verify the IIS
website port.

5. To address any potential deployment failures when using IIS, Genesys recommends disabling the User
Account Control (UAC) for all Composer supported Windows operating systems (Control Panel -> User
Accounts -> Use User Account Control).

6. Make sure IIS does not have any existing virtual directory of the .NET Composer Project name in the
website where you want to deploy to.

7. Make sure the files in the Composer Project have read permissions for all users. The permissions can be
set by navigating to the Project in Windows Explorer and using the Security tab in the Properties dialog
of the folder.

Troubleshooting

Composer Help 1411

DOTNet (.NET) Project Issues
This section contains information on issues that may arise when working with .NET Projects.

Microsoft Web Services Enhancements (WSE) Not Installed

For Composer versions prior to 8.1.420.14, use the steps below to work with Composer .NET Projects
when the machine does not have WSE 3.0 installed:

1. Create a dummy file named Microsoft.Web.Services3.dll in any location.
2. Open Composer.
3. Go to Window>Preferences>Composer>IIS/.NET.
4. Click Browse for the Microsoft WSE 3.0 Installed Path option.
5. Navigate to dummy Microsoft.Web.Service3.dll file location and select it.

Composer will now allow you to create a .NET Project with few errors in the getWebServiceData.jsp
page, which only affects the Web Services block.

Backend Page Requests Failing

If requests to backend pages in a .NET Composer Project are failing, it may be due to IIS validation.
IIS validates all requests for security reasons.

• It is possible to disable validation. You can do this for a specific page by adding the following directive in
the ASPX file: <%@ Page validateRequest="false" %>

• You can also disable validation for the entire Project by adding this configuration to the web.config file:
<configuration> <system.web> <pages validateRequest="false" /> </system.web>
</configuration> Note that request validation is a security feature provided by ASP. Disabling it is at
your own risk. See for details.

Error 500.24 - Internal Server Error

If you are using IIS 7 or IIS 7.5 with Integrated Pipeline Mode, requests to backend pages in a .NET
Composer Project may fail with 500.24 Internal Server Error. This occurs because ASP.NET Integrated
mode is unable to impersonate the request identity in the pipeline stages.

It is possible to ignore or workaround the 500.24 error.

Troubleshooting

Composer Help 1412

• If your application does not rely on impersonation, edit the predefined web.config file within the
DotNet Composer Project to set impersonate to false, <system.web> <identity impersonate=
"false"/>

• If your application relies on impersonation, configure Impersonate in IIS 7 as suggested in this link.
http://technet.microsoft.com/en-us/library/cc730708(v=WS.10).aspx

• If you want to ignore these errors edit the predefined web.config file to set
ValidateIntegratedModeConfiguration property to false. http://msdn.microsoft.com/en-us/library/
bb422433(v=vs.90).aspxhttp://msdn.microsoft.com/en-us/library/aa965174(v=vs.90).aspx

• If you want to use the Composer predefined web.config file without making any new changes, set the
Request-Processing mode of the Application pool to classic in your IIS. http://technet.microsoft.com/
en-us/library/cc725564(v=ws.10).aspx

Troubleshooting

Composer Help 1413

Failed to Deploy Message
The message below appears if trying to deploy a project and Tomcat is down or there is no
connection to Tomcat. Check Tomcat preferences and start the service.

Troubleshooting

Composer Help 1414

Installation and Uninstallation
When installing or uninstalling Composer in a Windows XP Professional or Windows Server 2003
Standard Edition environment, the prompt reboot may appear. After the reboot, the following
message appears: There are some pending operations and the system needs a reboot. The
target computer does not meet some mandatory requirements. Subsequent reboots result in
the same behavior and you cannot install Composer on this machine. This is a result of pending
reboots from other installations. To correct this situation:

1. Open the Registry editor.
2. Remove the following key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\PendingFileRenameOperations

3. Install Composer.

Troubleshooting

Composer Help 1415

JSON objects and JavaScript keywords
If the JSON Objects used within the VXML document contain JavaScript reserved keywords (for
example: double), NGI will throw an error.semantic exception.

For example, if the following occurs:

{'double':{'content':'40.015','XMLNS':'HTTP://WWW.WEBSERVICEX.NET/'}}

then accessing double.content in the above JSON Object will result in the following error:

exec_error SyntaxError: missing name after . operator JSONType.double.toSource()

event error.semantic:1

Therefore, responses from the requested URLs in Web Service and Web Request blocks should not
contain any JavaScript reserved keywords.

Troubleshooting

Composer Help 1416

ORS Compile Errors & Non-Escaped
Characters
The condition expression for event-related properties in interaction process (IPD) and workflow
diagrams are not XML-escaped when generating the SCXML code. Non-escaped XML special
characters in the condition expression field will cause Orchestration Server compile errors at runtime.
As a result, the following XML special characters in condition expressions should be escaped:

CHARACTER REPLACEMENT
" "
< <
> >
& &

For an existing 8.1.3 or 8.1.4 diagram:

1. Go to the IPD diagram Events property or workflow diagram block Exceptions property. In the case of
an IPD, when you select the IPD in the Project Explorer, a Properties view shows the Events property.

2. Check for XML special characters in the Condition expression field and escape them as shown in the list
above. If the Body field SCXML expression includes some conditions (i.e. <if cond="somecondition">),
the condition expression needs to be XML-escaped as well.

3. Save the diagram and generate code.

Note: Condition expressions provided by Composer (like for default IPD event handlers) are already
XML-encoded.

Troubleshooting

Composer Help 1417

Plugin Installation
When installing plugins into Composer, you may have to add an update site to Composer's
installation preferences.

1. Go to Window > Preferences.
2. Select Install/Update > Available Software Sites.
3. Ensure that the Galileo Eclipse Version update site is present
4. If the version update site is not present, add it. The URL for the location is:

http://download.eclipse.org/releases/$EclipseVersionName$ where EclipseVersionName is galileo,
juno, kepler, and so on).

Troubleshooting

Composer Help 1418

https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Preinstallation#Update_Site

Proxy Configurations .NET Composer
Projects
See Proxy Settings in the Composer 8.1.4 Deployment Guide.

Troubleshooting

Composer Help 1419

https://docs.genesys.com/Documentation/Composer/8.1.4/Deployment/Post#Proxy_Settings

Request Form Error Message
When running a .NET project, you may encounter the error message: A potentially dangerous
Request.Form value was detected from the client .NET has a built-in security check that will
reject values that look like a potential attack. You can disable the validation using the configuration
described in this page: http://www.asp.net/learn/whitepapers/request-validation.

Troubleshooting

Composer Help 1420

SCXML Editor Element Not Bound Message
The SCXML editor may show element not bound errors for an SCXML tag while editing a generated
workflow or sub-workflow SCXML file. The is caused by missing namespace declarations in the root
<scxml> element of the page. For workflow and sub-workflow-generated SCXML files, this error can
be safely ignored as namespace declarations for the enclosing IPD SCXML file will take effect at
runtime and the current page's <scxml> element will be ignored by ORS.

Troubleshooting

Composer Help 1421

Server-Side Troubleshooting
The table below lists Server Side block troubleshooting situations and steps to remedy.

Situation Block Steps to Troubleshoot

I entered the Service URL but
getting a pop-up with Check the
Web Service URL

Web Service Block

Verify that the WSDL definition is
accessible in a web browser.
Check the Composer logs for possible
errors in fetching the WSDL. Location:
<workspace>\.metadata Check that the
WSDL definition is accessible and test
with the Web Services Explorer utility as
described in the Troubleshooting section.

I entered the Service URL and I
can choose the SOAP operations,
but the parameters do not show
up in the dialogs

Web Service Block

Verify that the WSDL definition is
accessible in a web browser.
Check the Composer logs for possible
errors in fetching the WSDL. More details
can be found in the logs in the following
location:
<workspace>\.metadata\.plugins\
com.genesyslab.studio.model folder
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

Using the Web Services Explorer
utility Web Service Block

The Web Services Explorer is a
JSP Web application hosted on
the Apache Tomcat servlet
engine contained within Eclipse.
The Web Services Explorer is
provided with Composer and
allows you to explore, import,
and test WSDL documents.
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

Errors during runtime
Web Service Block
Web Request Block Backend Block

Check the Composer logs for
possible errors in fetching the
WSDL.
Check the backend logs. For ASP.NET
projects, check the IIS logs For Java
Projects, check the Tomcat standard logs.
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

I copied my callflow/workflow
from one project to another but
my Backend block does not work

Backend Block
Check that any custom backend
libraries or applications have also
been copied to the new project.

Troubleshooting

Composer Help 1422

Backend block

Logs:

• Java Composer Projects Server Side Backend logging can be controlled using the log4j.xml file present
in the $ComposerInstalledLocation\tomcat\lib folder.

• For DotNetComposer Projects web.config file can be used to control the Server Side logging.
• Java Composer Projects exported as WAR files will have the log4j.xml bundled inside the WEB-INF\lib

folder. If the log4j.xml configuration format is not working, you can add a log4j.properties in the
tomcat/webapps/<application name>/WEB-INF/classes folder.

Notes:

• Service URL has to end with wsdl or WSDL
• Cannot use - or other reserved characters in the Entry block for a variable value. Enter the value

directly in the input parameters dialog by typing the value in the Expression column as a string;
example: 'atm near 37.771008, -122.41175'

Important
Tomcat is no longer bundled with Composer beginning with version 8.1.561.30. You
will be prompted to provide the Tomcat installed location when running the Composer
installer.

Troubleshooting

Composer Help 1423

Slow Response Time
If Composer response time is slow, stop/disable anti-virus software that might be running on the
system.

Troubleshooting

Composer Help 1424

Stored Procedure Helper and DB Data
Block
When StoredProcedure is selected for the Query Type in the DB Data block, you can open the
Stored Procedure Helper dialog box.

If using the one of the database Project Templates, after selecting a stored procedure and clicking
Execute, you may get a Problem Occurred exception message and a null exception may occur in the
logs.

This may occur, for example, if the correct parameters are not passed.

Troubleshooting

Composer Help 1425

Tomcat Service Failed to Start
Start Tomcat and Stop Tomcat toolbar buttons can be used to control the bundled Tomcat service
from within the Integrated Development Environment. In some cases, using these buttons may
display error messages.

Failure in Starting Tomcat Service. Composer Tomcat could not be started

Failure in Stopping Tomcat Service. Composer Tomcat could not be stopped

If you receive these error messages, close Eclipse (or Composer) and run Eclipse.exe
(Composer.exe) as administrator by right clicking the file and selecting Run as Administrator. This
provides administrator permission to the integrated development environment and enables it to
start/stop the Tomcat service.

If the Start Tomcat button is clicked when the service is already started, this message is displayed:

Failure in starting Tomcat Service
Reason:
Tomcat Service could not be started.
Please check if Tomcat is already running.

Tomcat Windows Service

Composer bundles Tomcat and deploys it as a Windows Service called ComposerTomcat. If you
receive a message indicating that the Tomcat Service failed to start, please check the following:

1. From Control Panel > Administrative Tools > Services, check to see if the ComposerTomcat service
is started.

2. If the service is not started, open up the log files in ${ComposerInstalledPath}/tomcat/logs and look
for an error that looks like: java.net.BindException: Address already in use: JVM_Bind.

3. If you see this error, it means that the port specified in the Tomcat configuration screen in the installer
wizard is already in use. Uninstall Composer and reinstall using a different value for the Tomcat port.

Another place to check is the composer_global.properties in the installed location <program
files/GCTI/Composer 8.1/>. It should show the correct Tomcat port number e.g.
TOMCAT_PORT=8082

Note: The port number for Tomcat entered during Composer installation and the port number in
Composer preferences should match.

Troubleshooting

Composer Help 1426

Test Calls Do Not Work
If the test calls from Composer keep failing, check the following:

1. Do you keep getting Received 200 OK without receiving debugging control info for every test call made
from Composer?

• Make sure that the vxmli.debug.enabled parameter on the MCP is set to true. Follow the
instructions in Post-Installation Configuration to verify the values.

2. Is the Tomcat service or IIS service running?

• If you are using Tomcat, take the actions described in TomcatServiceFailedtoStart. If no port
conflict exists, try restarting Tomcat from Windows Services.

• If you are using IIS, take the actions described in DeploymentFailureonIIS. Try restarting IIS
from Windows Services.

3. Has Debugger configuration been set as described in the Configure Tomcat and Debugger Settings
cheat sheet, or has IIS been configured according to the Setting IIS Preferences cheat sheet?

• Check the instructions in Post-Installation Configuration.

4. Is there a SIP Phone running on the configured host and port number?

• Check your installation for a SIP Phone, and check the SIP Phone values in Post-Installation
Configuration.

5. Can you make a test call directly from the SIP Phone?

• If so, this confirms that the MCP and SIP Phone are working fine.

6. Is your SIP Phone running on the dedicated port?

• If not, check your SIP Phone documentation to see how to configure it to run on a dedicated
port. If the SIP Phone does not support this, switch to one of the SIP Phones like X-Lite which
provides this capability.

7. Do you have a local firewall on the development server (for example, Windows Firewall on Windows XP/
2003)?

Make sure that the following TCP ports have been opened:

• Tomcat port (this is generally set to port 8080). If you installed Tomcat on a different port,
open its corresponding port in the firewall. IIS port (this is generally set to port 80). If you
installed IIS on a different port, open its corresponding port in the firewall.

• UDP port on which your SIP Phone is running (by default this will be 5060 or 5070). Check
your SIP Phone settings for the exact port number.

• RTP ports on which your SIP Phone will get the audio stream. Check your SIP Phone Help file

Troubleshooting

Composer Help 1427

for details on this. Some SIP phones will auto-configure this during installation.

If you continue to run into problems with the firewall and calls are not successful, try turning off the
firewall temporarily when making the test calls.

See GVP Debugging Limitations.

Troubleshooting

Composer Help 1428

Upgrade Errors and Error Messages

Diagram File Upgrades

Composer does not support upgrading diagram files from 8.0.4 versions to 8.1.2 or higher versions. If
a diagram upgrade is required. first upgrade the Projects to 8.1.1 versions and then upgrade to 8.1.2
or higher versions.

Tomcat version mismatch errors

One or more of these errors may be observed:

• Compilation errors in Eclipse console

Errors seen on building the Composer Project.

[javac] warning: C:\Program Files (x86)\Sun\JRE\7u5\lib\rt.jar(java/net/
ProtocolException.class):
major version 51 is newer than 50, the highest major version supported by this compiler.
[javac] It is recommended that the compiler be upgraded.
[javac] warning: C:\Program Files (x86)\Sun\JRE\7u5\lib\rt.jar(javax/net/ssl/

KeyManager.class):
major version 51 is newer than 50, the highest major version supported by this compiler.
[javac] It is recommended that the compiler be upgraded.
[javac] Note: Some input files use or override a deprecated API.
[javac] Note: Recompile with -Xlint:deprecation for details.
[javac] Note: <your project path>\WEB-INF\src\org\apache\jsp\include\

getWebRequestData_jsp.java
uses unchecked or unsafe operations.
[javac] Note: Recompile with -Xlint:unchecked for details.

• Tomcat logs

Tomcat logs error:-
Tomcat localhost log file we get the following error:
15-mei-2014 15:04:17 org.apache.catalina.core.StandardWrapperValve invoke SEVERE:
Servlet.service() for servlet jsp threw exception
java.lang.UnsupportedClassVersionError: com/genesyslab/studio/backendlogic/db/

CVDBBackendHandler :
Unsupported major.minor version 51.0
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClassCond(ClassLoader.java:632)
at java.lang.ClassLoader.defineClass(ClassLoader.java:616)
at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:141) at

org.apache.catalina.loader.WebappClassLoader.findClassInternal(WebappClassLoader.java:1819)
at org.apache.catalina.loader.WebappClassLoader.findClass(WebappClassLoader.java:872)
at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1327)
at org.apache.catalina.loader.WebappClassLoader.loadClass(WebappClassLoader.java:1206)
at org.apache.jasper.servlet.JasperLoader.loadClass(JasperLoader.java:128)
at org.apache.jasper.servlet.JasperLoader.loadClass(JasperLoader.java:66)

Troubleshooting

Composer Help 1429

Root Cause:

Composer 8.1.3 requires Tomcat with JVM 1.7 (please check system-level guide, Genesys Supported
Operating Environment Reference Guide, for the most updated version information). This is required
both

• At design time while working on your application in the Composer/Eclipse Integrated Development
Environment.

• At runtime when the exported application is deployed on production or test servers where Composer is
not installed.

Resolution:

1. Ensure Tomcat JAVA version is set to the correct version as mentioned above or as per the latest
information in the Composer Deployment Guide.

2. Restart Composer Tomcat
3. Clean the Project in Composer from the Project menu.
4. Build the project.

Note: If you continue to see errors, please ensure that the JVM version set as the default in the
operating system (JAVA_HOME) is the same as the version being used in Tomcat (check version from
Tomcat scripts/utilities).

java version mismatch and unsupported class version errors

After upgrading to Composer 8.1.3 from prior versions, java version mismatch and unsupported class
version errors may appear in the console window. For example:

15-mei-2014 15:04:17 org.apache.catalina.core.StandardWrapperValve invoke SEVERE:
Servlet.service()
for servlet jsp threw exception java.lang.UnsupportedClassVersionError:
com/genesyslab/studio/backendlogic/db/CVDBBackendHandler : Unsupported major.minor version

51.0

As a workaround, use the Composer workbench Project Clean to clean all the Projects. This will
remove all the temporary jsp compiler-related files inside the WEB-INF folder files and do a new
Composer Project build.

Troubleshooting

Composer Help 1430

Validation Error upon publishing IPD
Sometimes, when publishing an IPD to the Config server for the first time, Composer shows a
Validation Error. After a second publish, no error appears, and the publish completes successfully. The
likely cause is that the Config Server does not like the data being written to it. Most likely the
underlying SQL Server isn't configured to accept non-ascii input.

Troubleshooting

Composer Help 1431

Web Service Block Issues
If you have problems using the Web Service block, follow the procedure below. Also see the Errors in
WSDL Parsing section in the Web Service block topic.

Web Services Explorer

Before proceeding to the Web Service block, use the Web Services Explorer to run and test your Web
Service.

• To access the Web Services Explorer from the diagram, right-click on the Web Service block and select
Test with Web Services Explorer. The Web Services Explorer view will open and provide support for
browsing and invoking Web services natively from the WSDL supplied in the Web Service block.

Setting Properties in the Web Service Block

When you provide the WSDL URL in the Service URL property, Composer will try to access the URL
and parse it to populate the drop-down fields for the remaining properties. If the following error
occurs, there is a problem in parsing the WSDL: An error occurred while parsing the WSDL url
WSDLException: faultCode=OTHER_ERROR: Unable to resolve imported document at 'null".

1. Verify that the WSDL URL entered is valid and prefixed with http://.
2. If you are behind a proxy server, configure the proxy settings by going to Window > Preferences, then

expand General and select Network Connections.
3. Select Manual proxy configuration and add values for HTTP proxy and Port.
4. After you have chosen the available Service and operations which you want to invoke, set the required

input Parameters, if any, in the Input Parameters dialog box.
5. You can use the Output Result dialog box to map the Web Service response keys in to AppState

variables by setting the Map Output Values to Variables property to true; otherwise the entire Web
Service response will be assigned to a variable.

6. If required, set the Web Service authentications (only basic authentication is supported).

Execution Errors when the Web Service Block is Executed in Your
Call

If you see the error subdialog_return :|event|com.genesys.studio.webservice.badFetch in the call
traces while executing the Web Service block, check the following:

Troubleshooting

Composer Help 1432

1. If your Tomcat Web Server is behind a proxy server, configure Proxy settings in Tomcat.

Proxy settings have to be configured in Tomcat for the backend pages to access the Web when Web
Request and Web Service blocks are used. To configure proxy settings in Tomcat, add the following
lines into the catalina.properties file under the $ComposerInstalledDir$\tomcat\conf\ folder:
http.proxyHost=hostip http.proxyPort=portofProxy http.proxyUser=username
http.proxyPassword=password

1. Finally, restart the ComposerTomcat service.
2. Use the Web Services Explorer to test whether the Web Service is a valid one.
3. Verify the Service URL and Service End Point values.
4. Verify that the supplied Input Parameters and the data type of the values are valid.
5. Verify whether the Web Service requires any basic authentications and if needed, configure these

authentications in the Security category of the Web Service block.

How to Configure Connection Timeout and Read Timeout See Connection and Read Timeout
Configuration.

Custom SOAP Envelope Feature - Fetch Failed in Weblogic

Weblogic returns null for the ServletContext.getRealPath() method when web applications are
deployed as WAR files. You must manually enable this in Weblogic since the Composer Custom SOAP
Envelope property uses the getRealPath() method.

Here are the steps to enable RealPath in a Weblogic application server:

1. Go to the server admin console->Domain-> Web applications.
2. Click the check box for Archived Real Path Enabled. This should make an entry into the domain

config.xml as below.

<web-app-container>
<show-archived-real-path-enabled>true</show-archived-real-path-enabled>
</web-app-container>

A second option is at the web application level by updating weblogic.xml as below:

<container-descriptor>
<show-archived-real-path-enabled>true</show-archived-real-path-enabled>
</container-descriptor>

The value of <show-archived-real-path-enabled> set in the web application has precedence over
the value set at the domain level. The default value of this property is false.

Troubleshooting

Composer Help 1433

Web Service Block Issues
If you have problems using the Web Service block, follow the procedure below. Also see the Errors in
WSDL Parsing section in the Web Service block topic.

Web Services Explorer

Before proceeding to the Web Service block, use the Web Services Explorer to run and test your Web
Service.

• To access the Web Services Explorer from the diagram, right-click on the Web Service block and select
Test with Web Services Explorer. The Web Services Explorer view will open and provide support for
browsing and invoking Web services natively from the WSDL supplied in the Web Service block.

Setting Properties in the Web Service Block

When you provide the WSDL URL in the Service URL property, Composer will try to access the URL
and parse it to populate the drop-down fields for the remaining properties. If the following error
occurs, there is a problem in parsing the WSDL: An error occurred while parsing the WSDL url
WSDLException: faultCode=OTHER_ERROR: Unable to resolve imported document at 'null".

1. Verify that the WSDL URL entered is valid and prefixed with http://.
2. If you are behind a proxy server, configure the proxy settings by going to Window > Preferences, then

expand General and select Network Connections.
3. Select Manual proxy configuration and add values for HTTP proxy and Port.
4. After you have chosen the available Service and operations which you want to invoke, set the required

input Parameters, if any, in the Input Parameters dialog box.
5. You can use the Output Result dialog box to map the Web Service response keys in to AppState

variables by setting the Map Output Values to Variables property to true; otherwise the entire Web
Service response will be assigned to a variable.

6. If required, set the Web Service authentications (only basic authentication is supported).

Execution Errors when the Web Service Block is Executed in Your
Call

If you see the error subdialog_return :|event|com.genesys.studio.webservice.badFetch in the call
traces while executing the Web Service block, check the following:

Troubleshooting

Composer Help 1434

1. If your Tomcat Web Server is behind a proxy server, configure Proxy settings in Tomcat.

Proxy settings have to be configured in Tomcat for the backend pages to access the Web when Web
Request and Web Service blocks are used. To configure proxy settings in Tomcat, add the following
lines into the catalina.properties file under the $ComposerInstalledDir$\tomcat\conf\ folder:
http.proxyHost=hostip http.proxyPort=portofProxy http.proxyUser=username
http.proxyPassword=password

1. Finally, restart the CV80Tomcat service.
2. Use the Web Services Explorer to test whether the Web Service is a valid one.
3. Verify the Service URL and Service End Point values.
4. Verify that the supplied Input Parameters and the data type of the values are valid.
5. Verify whether the Web Service requires any basic authentications and if needed, configure these

authentications in the Security category of the Web Service block.

How to Configure Connection Timeout and Read Timeout

See Connection and Read Timeout Configuration.

Runtime Error for Dot.NET Projects in Windows 2012

While using IIS 8, it must be installed with Microsoft.NET Framework 3.5 (see steps below).

Before running Server-Side blocks/Projects, ASPX and ASP MIME must be installed as IIS 8 does not
have it pre-configured to avoid the following runtime error:

error.badfetch.http.405:1|HTTP error response 405

The steps to add IIS 8 with Microsoft .NET Framework 3.5 feature in Windows 8 and Windows 2012 are
as follows:

1. Open Control Panel, Select Programs and features.
2. Select Turn Windows Features on or off. Server Manager will open.
3. In Before You Begin page, click Next.
4. In Installation Type, Role-based or feature-based installation is selected by default. Click Next
5. In Server Selection, select the server for your installation from the server pool. Click Next.
6. In Server Roles, select Web Server (IIS). Click Next.
7. In Features, select .NET Frameworks 3.5 Features. Click Next.
8. Under Web Services Role (IIS), Role Services, select features as required. Under Application

Development: .NET Extensibility 3.5, .NET Extensibility 4.5, ASP.NET 3.5, ASP.NET 4.5 are necessary).
Click Next.

Troubleshooting

Composer Help 1435

9. In Confirmation, click Install.
10. After IIS installation, open IIS manager as inetmgr from Run as.
11. Expand Sites and Select Default Web Site.
12. On the Default Web Site Home page select MIME Types.
13. Add MIME types as VXML, SCXML, ASP, ASPX as shown in the figures below.

Troubleshooting

Composer Help 1436

Troubleshooting

Composer Help 1437

14. Restart the default website (Default Website Home).

Troubleshooting

Composer Help 1438

Workflow Does Not Compile
If a routing application has been deployed, but Orchestration Server (ORS) is not compiling the
workflow, consider the following:

• ORS can only run SCXML applications generated/specified in an interaction process diagram (IPD).
• Typically, for voice applications, you create one or more IPD diagrams, plus one workflow diagram per

strategy.
• IPD Workflow blocks, Resource property, refer to the workflow diagram(s).
• The EnhancedRoutingScript objects in the Configuration Database associated with the Routing Point

must point to the IPD SCXML and not to the workflow SCXML.
• At runtime, the IPD SCXML will include the workflow SCXML.
• If an EnhancedRoutingScript object is associated with the workflow SCXML instead of the IPD, ORS

places an error message in the log.

Troubleshooting

Composer Help 1439

Workspace in Use or Cannot be Created
The above message may display if multiple Composer instances are sharing the same workspace,
causing an access violation. Use a different workspace or ensure that only single instance of
Composer accesses a workspace.

Troubleshooting

Composer Help 1440

Workspace Files Not in Sync
When running into files in your Project that are out of sync, there is a Refresh automatically
preferences option to avoid manually pressing F5 on the Workspace resource.

Refresh Automatically

To enable the preference:

1. Go to Window > Preferences.
2. Expand the General tree item and click on the Workspace item.
3. Mark the check box Refresh automatically.
4. Click OK to close the Preferences dialog.

To avoid refresh issues Composer recommends the following when dealing with Project resource files:

• Use the File > Import capability.
• Add directly from Windows Explorer and then refresh the resource list by pressing F5 in Composer's

Project Explorer.
• Drag and drop files from the file system onto Composer's Project Explorer.

Troubleshooting

Composer Help 1441

Tomcat Service - File Permissions Issue
The Tomcat 9 service does not have full permissions by default for logs and configuration folders. As
a result, logs are not generated and deployments fail.

Workaround:

1. Stop the Composer Tomcat service.

2. Right-click the Tomcat folder within the Composer installer folder, and grant full permissions to the
required user accounts in the Security tab.

3. Close the dialog and start the Tomcat service.

Tomcat Service - File Permissions Issue

Composer Help 1442

Links to Useful Resources
You may find information and resources at the following locations to be useful as you use Eclipse and
Composer.

For Genesys Product Documentation
Each product has its own documentation for online viewing at the Genesys Genesys Documentation
website or on the Documentation Library DVD, which is available from Genesys upon request.

• Universal Routing Server (URS)—which enables intelligent distribution of voice and multimedia
interactions throughout the enterprise. You may need this link if transitioning from IRD routing
strategies to Composer routing workflows.

• Orchestration Server (ORS)—an open standards-based platform with an SCXML engine, which enables
the customer service process. See the Orchestration Server Developer's Guide for information on ORS
Functional Modules and Extensions.

For Eclipse

• Eclipse website: http://www.eclipse.org/
• Ganymede Documentation: http://help.eclipse.org/ganymede/index.jsp
• Workbench User Guide: http://help.eclipse.org/ganymede/nav/0

For VXML

• VXML 2.1 Draft Specification: http://www.w3.org/TR/voicexml21/
• VoiceXML website: http://www.voicexml.org
• For information on the ECMAscript functions that can be used in Expression Builder:http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-262.pdf.

For IBM WebSphere

• Installing WebSphere Application Server 6.1: http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/
topic/com.ibm.websphere.express.doc/info/exp/ae/tins_custome_61.html

• Installing application files with the console: http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/
index.jsp?topic=/com.ibm.websphere.express.iseries.doc/info/iseriesexp/ae/trun_app_instwiz.html

• Configuring HTTP Proxy Information: http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/
com.ibm.websphere.express.doc/info/exp/ae/twbs_configaddhttppropertiesadmin.html

Links to Useful Resources

Composer Help 1443

For Web Services
Web Services Description Language (WSDL) website: http://www.w3.org/TR/wsdl

SCXML Reference Documents

• State Chart XML (SCXML): State Machine Notation for Control Abstraction: http://www.w3.org/TR/scxml/
• ECMAScript Language Specification: http://www.ecma-international.org/publications/files/ECMA-ST/

Ecma-262.pdf
• Standard ECMA-327: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-327.pdf

Links to Useful Resources

Composer Help 1444

Composer Product Videos
This page contains Composer product videos. Stay tuned for more videos to come. To request a
video, please email Techpubs.webadmin@genesyslab.com.

Composer Installation Video

Below is a video tutorial on Composer 8.1.4 Installation. Depending on the flavor of Eclipse you have
installed, your interface may appear slightly different than that shown in the video.

Link to video

Getting Started After Installation

This tutorial shows how to immediately get familiar with Composer by using a sample application.

Uninstalling Composer

This video tutorial shows how to uninstall Composer when you want to install a later version.

Link to video

Moving to Composer from IRD
A video on using Composer to create routing strategies instead of IRD and the similarities between
the two.

Link to video

Composer Product Videos

Composer Help 1445

https://docs.genesys.com/Documentation/Composer/8.1.5/Deployment/Preinstallation#Installation
https://player.vimeo.com/video/216084628?title=0&byline=0&portrait=0
https://player.vimeo.com/video/216754156?title=0&byline=0&portrait=0
https://player.vimeo.com/video/179832505?title=0&byline=0&portrait=0

Introduction to the Interface
Below is a video that can function as a brief introduction to the Composer user interface.

Link to video

Using Templates to Create a Routing Workflow
Below is a video tutorial on using Composer templates to create a workflow that routes interactions
to targets based on a percent allocation.

Link to video

Integrated Voice and Route Application

This video shows an example workflow that integrates GVP voice self-service with Orchestration
routing.

Link to video

Defining Agents, Agent Groups, and Skills

This video shows how Agent, Agent Group, and Skill objects are defined in Genesys Administrator
prior to using them for skills-based routing in Composer.

Link to video

Skills-Based Routing

This video presents a simple example of the Composer aspect of routing chat interactions to Agent
Groups. This example is based on a multimedia interaction (chat), which uses Composer's Route
Interaction block, Targets property. A voice interaction uses the Target block and properties, such as
the Targets property. Once ORS/URS identify a routing target, other servers are involved in the
process of delivering the interaction to the agent desktop.

Link to video

Composer Product Videos

Composer Help 1446

https://player.vimeo.com/video/152599254?title=0&byline=0&portrait=0
https://player.vimeo.com/video/155082323?title=0&byline=0&portrait=0
https://player.vimeo.com/video/219164462?title=0&byline=0&portrait=0
https://player.vimeo.com/video/218716644?title=0&byline=0&portrait=0
https://player.vimeo.com/video/220376215?title=0&byline=0&portrait=0

Debugging VoiceXML Applications
Below is a video tutorial on debugging VoiceXML applications.

Important
While the interface for Composer in this video is from release 8.0.1, the steps are
basically the same for subsequent releases.

Link to video

Deploying a Composer Application to a Web Server
Below is a video tutorial on exporting and deploying a Composer application to a web server.

Important
While the interface for Composer in this video is from release 8.0.1, the steps are
basically the same for subsequent releases.

Link to video

Using the Database Blocks
Below is a video tutorial on using the Database Blocks.

Important
While the interface for Composer in this video is from release 8.0.1, the steps are
basically the same for subsequent releases.

Link to video

Creating a Simple Grammar
Below is a video tutorial on building a simple grammar with the Grammar Menu block.

Composer Product Videos

Composer Help 1447

https://player.vimeo.com/video/77444006?title=0&byline=0&portrait=0
https://player.vimeo.com/video/77444008?title=0&byline=0&portrait=0
https://player.vimeo.com/video/77444007?title=0&byline=0&portrait=0

Important
While the interface for Composer in this video is from release 8.0.1, the steps are
basically the same for subsequent releases.

Link to video

Using the Web Service Block

Below is a video tutorial on using the Web Service block.

Tip
While the interface for Composer in this video is from release 8.0.1, the steps are the
basically the same for subsequent releases.

Refactoring Variables

Below is a video tutorial on automatically refactoring variables.

Important
This feature is available from version 8.1.450.33 only.

Composer Product Videos

Composer Help 1448

https://player.vimeo.com/video/79128534?title=0&byline=0&portrait=0

Using Bulk Manager

Below is a video tutorial on using the Bulk Manager wizard.

Important
This feature is available from version 8.1.450.33 only.

Creating a Java Composer Maven Project

Below is a microvideo on creating a Java Composer Maven Project.

Important
Maven support is available from version 8.1.550.08 only.

Link to video

Composer Product Videos

Composer Help 1449

https://player.vimeo.com/video/436144734?title=0&byline=0&portrait=0

Masking Sensitive Information is Composer Tomcat Logs

Below is a microvideo on masking sensitive information in Tomcat Logs.

Important
This feature is available from version 8.1.550.08 only.

Link to video

Configuring Log Levels for Server-Side Blocks

Below is a video that shows you how to configure log levels for server-side blocks using the Bulk
Manager.

Important
This feature is available from version 8.1.550.03 only.

Link to video

Composer Product Videos

Composer Help 1450

https://player.vimeo.com/video/440228421?title=0&byline=0&portrait=0
https://player.vimeo.com/video/596470214?title=0&byline=0&portrait=0

	Composer Help
	Table of Contents
	Welcome
	Composer Overview
	Getting Help
	Composer Installation Video
	Composer Quick Start
	Eclipse Workbench

	Introduction to Composer
	Software Prerequisites
	Interface Overview
	Using the Interface
	Connection Links
	Composer Code Editors
	Enabling/Disabling Functionality
	Hiding File Types and Blocks
	Localization
	Composer Compared to IRD

	Getting Started with Composer
	Running Composer for the First Time
	Software Updates Functionality (Plugins)
	Integrating with Source Control
	Project Types and Directories
	Project Properties
	Multiple User Environments
	Security Configuration
	Upgrading Projects and Diagrams
	Working with Diagram Layouts
	Accessing the Editors and Templates
	Keyboard Shortcuts
	Default Logging
	IRD Functionality Included in Composer
	Diagram Search

	Masking Sensitive Information in Composer Tomcat Logs
	Composer Menus
	File Menu
	Edit Menu
	Diagram Menu
	Navigate Menu
	Search Menu
	Project Menu
	Run Menu
	Configuration Server Menu
	Window Menu
	Help Menu
	Canvas Shortcut Menu
	Palette Group Menu

	Composer Toolbars and Views
	Toolbars Overview
	Main Toolbar
	View Toolbars
	Perspective Switcher Toolbar
	Trimstack Toolar
	Debugging Toolbars
	Minimizing and Restoring Views
	Strategy Manager View

	Voice Applications and Callflows
	Getting Started with Voice Applications
	Callflow Post Installation
	Working with Java Composer Projects
	Working with .NET Composer Projects

	Preferences for Voice Applications
	CCXML File Preferences
	Diagram Preferences
	GAX Server Preferences
	GRXML File Preferences
	VXML File Preferences
	GVP Debugger Preferences
	IIS.NET Preferences
	Setting Context Services Preferences
	Time Zone Preferences
	Tomcat Preferences
	XML Preferences

	Creating Voice Apps for GVP
	What is GVP and How Do Voice Apps Work
	Creating CCXML Applications
	Creating VXML Applications

	Creating a New Callflow
	Validation
	Code Generation
	Deploying/Testing Your Application
	Hello World Sample
	Callflow Blocks
	Variables in Callflows
	VXML Properties
	Voice Block Palette Reference
	Voice Blocks Basic
	Assign Common Block
	Branching Common Block
	Disconnect Block
	End FCR Block
	Entry Block and Variables
	Exit Block
	GoTo Block
	Grammar Menu Block
	Input Block
	Log Common Block
	Looping Common Block
	Menu Block
	Prompt Block
	Raise Event Block
	Record Block
	Release ASR Engine Block
	Script Block
	Set Language Block
	SNMP Block
	Start FCR Block
	Subdialog Block
	Transfer Block
	VXML Form Block

	Voice Database Blocks
	DB Data Block
	Database Input Block
	DB Prompt Block
	Working with Database Blocks
	Supported SQL Datatypes

	Voice CTI Blocks
	CTI Scenarios
	Get Access Number
	Interaction Data Block
	Route Request Block
	Statistics Block
	ICM Interaction Data Block
	ICM Route Request Block
	Working with CTI Applications

	Voice External Message Blocks
	Receive Block
	Send Data Block
	Send Event Block
	Send Info Block

	Reporting Blocks
	Action Start Block
	Action End Block
	Set Call Data Block
	Set Call Result Block

	Genesys Voice Platform (GVP) Blocks
	IVR Recording Block

	Using Voice Blocks
	Working with Grammar Builder
	Working with CTI Applications
	Working with Prompts
	Connection Pooling

	Common Properties for Callflow Blocks
	Routing Applications and Workflows
	Routing FAQs
	Getting Started with Route Applications
	IRD Functionality Included in Composer
	Workflow Post Installation
	Upgrading Workflows

	Preferences for Routing Applications
	Business Rule Preferences
	Configuration Server Preferences
	Diagram Preferences
	Setting Context Services Preferences
	Customizer Preferences
	ORS Debugger Preferences
	GAX Server Preferences
	Help Preferences
	IIS.NET Preferences
	Orchestration Preferences
	Orchestration Options
	Orchestration Extensions
	Detaching Interactions
	SCXML File Preferences
	Security Preferences
	Tomcat Preferences

	Introduction to Routing Workflows
	What is a Routing Workflow?
	Architecture Diagram for Workflows
	Workflow Example and Palette
	SCXML File Editor
	Sessions and Interactions
	Interaction Process Diagrams

	Creating Routing Applications
	IPD Planning & Preparation
	Starting SCXML Page
	Creating a New Project
	Creating the IPD
	Creating a New Workflow Diagram
	Using the SCXML Editor
	Using SCXML Templates
	Your First Application: Routing Based on DNIS or ANI
	Using URS and ORS Functions

	Routing Block Palette Reference
	Interaction Process Diagram Blocks
	IPD Differences Voice and Multimedia
	Starting a New IPD
	Interaction Queue Block
	Adding an Interaction Queue
	Interaction Queue Views
	Media Server Block
	Workflow Block
	Workbin Block
	Flow Control Blocks
	Workflow Generated Blocks
	Linking IPDs with Workflows
	Publishing Updates

	Route Flow Control Blocks
	Assign Common Block
	Attach Block
	Begin Parallel Block
	Branching Common Block
	Cancel Event Block
	Detach Block
	Disconnect Block Routing
	ECMAScript Block
	End Parallel Block
	Entry Block and Variables
	Exit Block Routing
	Response Block
	Log Common Block
	Looping Common Block
	Raise Event Block
	SCXML State Block
	Subroutine Block
	User Data Block
	Wait Event Block

	Routing Blocks
	Cancel Block
	Default Routing Block
	Force Route Block
	Queue Interaction Block
	Query Block
	Route Interaction Block
	Routing Rule Block
	Set Ideal Agent Block
	Single Step Transfer Block
	Stop Interaction Block
	Target Block
	Update Block
	Percent and Conditional Routing

	Routing to the Last Called Agent
	Voice Treatment Blocks
	Composer Equivalent to IRD Treatment
	Cancel Call Block
	Create User Announcement Block
	Delete User Announcement Block
	IVR Block
	Pause Block
	Play Application Block
	Play Sound Block
	Play Message Block
	Set Default Route
	User Input Block
	Single Session Treatments

	eServices Blocks
	Composer Equivalent to IRD Multimedia
	Analyze Block
	Chat Transcript Block
	Classify Interaction Block
	Create E-mail Block
	Create Interaction Block
	Create SMS Block
	Email Forward Block
	Email Response Block
	Find Interactions Block
	Identify Contact Block
	Render Message Block
	Screen Interaction Block
	Send Email Block
	Send SMS Block
	Set Agent State Block
	Update Contact Block
	Update Interaction Block
	Update UCS Record
	Using eServices Blocks
	Handling eServices Switchovers
	How To: Automate an SMS Response to a Customer Call

	Common Properties for Workflow Blocks
	Social Media Blocks
	Twitter Block
	Facebook Block

	Other Workflow Functionality
	Variables Project and Workflow
	User Data
	Custom Events
	Skill Expression Builder
	List Objects Manager
	Statistics Manager and Builder
	Orchestration Extensions
	Service Level Routing
	Exception Events
	Working with URS Functions
	Working with URS API Calls

	Common Voice & Route Functionality
	Code Generation
	Custom Blocks
	Customization Manager
	Diagram Preferences
	Exception Events
	Expression Builder
	GAX Server Preferences
	Getting Using Email Addresses
	Import and Export
	Link Tool
	Locales
	Time Zone Preferences
	Using User Data
	Variables Mapping

	Common Blocks & Functionality
	Context Services Common Blocks
	Context Services 8.5 Support
	Context Services and Composer
	Associate Service Block
	Complete Service Block
	Complete State Block
	Create Customer Block
	Complete Task Block
	Enter State Block
	Identify Customer Block
	Query Customer Block
	Query Services Block
	Query States Block
	Query Tasks Block
	Start Service Block
	Start Task Block
	Update Customer Block
	Using Context Services Blocks
	Common Properties Context Services
	Online and Offline Modes
	Runtime Configuration
	Context Services Exception Events

	Outbound Common Blocks
	Add Record Block
	Cancel Record Block
	Do Not Call Block
	Record Processed Block
	Reschedule Record Block
	Update Record Block

	Server-Side Common Blocks
	Backend Common Block
	Business Rule Common Block
	DB Data Common Block
	External Service Block
	NDM Block
	HTTP Rest Block
	OPM Common Block
	TLib Block
	URS Function Block
	Web Request Common Block
	Web Service Common Block
	Web Service Stubbing
	Web Service SOAP Messages
	Signed SOAP Requests
	Connection and Read Timeout
	Server-Side Troubleshooting

	Sample Applications and Templates
	Project Templates
	Diagram Templates
	GVP Voice Project Templates
	Application Metrics Collection Project Template
	Integrated Voice Route Project Templates
	Routing Templates and Samples
	Context Services Template
	Database Query Result Template
	Forward to External Resource Template
	Route After Autoresponse Template
	Routing Based on Variables Template
	Routing Based on Date and Time Sample
	Routing Based on a Statistic Sample
	Routing Based on Percent Allocation
	Routing Using Web Request Sample
	Last Called Agent Routing

	Last Called Agent (LCA) Routing
	Validation, Debugging, and Deployment
	Validation
	Debugging Routing Applications
	Debugging Voice Applications
	Deploying Composer Applications

	Best Practices
	Troubleshooting
	General Troubleshooting
	Block Names & Multi-byte Characters
	Bundled Help contents are always in English
	Chat Messages in Queues
	Checkin Error During Source Code Integration
	Composer Project Not Deployed on Tomcat
	Composer Project Not Currently Deployed
	Connection Profile and ASCII Characters
	Chinese Characters Do Not Display
	Connection to a Database Fails
	Context Services URL Message
	CTI Block Issues
	Debugging Failure
	Deployment Failure on IIS
	DOTNet (.NET) Project Issues
	Failed to Deploy Message
	Installation and Uninstallation
	JSON objects and JavaScript keywords
	ORS Compile Errors & Non-Escaped Characters
	Plugin Installation
	Proxy Configurations .NET Composer Projects
	Request Form Error Message
	SCXML Editor Element Not Bound Message
	Server-Side Troubleshooting
	Slow Response Time
	Stored Procedure Helper and DB Data Block
	Tomcat Service Failed to Start
	Test Calls Do Not Work
	Upgrade Errors and Error Messages
	Validation Error upon publishing IPD
	Web Service Block Issues

	Web Service Block Issues
	Workflow Does Not Compile
	Workspace in Use or Cannot be Created
	Workspace Files Not in Sync
	Tomcat Service - File Permissions Issue
	Links to Useful Resources
	Composer Product Videos

