
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Working with Grammar Builder

Composer Help

4/2/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Working with Grammar Builder

Contents

• 1 Working with Grammar Builder
• 1.1 Grammar
• 1.2 Rule
• 1.3 Keywords
• 1.4 Using the Grammar Builder
• 1.5 Creating a New Grammar Builder File With Initial Settings
• 1.6 Adding Keywords and Synonyms for a Rule
• 1.7 Saving the Grammar Builder File
• 1.8 Exporting the Grammar to GRXML Format
• 1.9 Locales and Grammar Builder
• 1.10 Dynamic Grammars

Working with Grammar Builder

Composer Help 2



Grammar Builder provides a solution for supplying simple grammars, without requiring GRXML
expertise. This editor provides a hierarchical view of certain grammar concepts in a simple, abstract
way. Each level of this tree contains properties which affect all child members. Following is a brief
description of the key concepts of the Grammar Builder model as well their relationship with GRXML.

Note: A Grammar built with the Grammar Builder is not a GRXML file.

Grammar

The grammar is the root object of the tree. It serves to provide an implicit description of the intended
use of a grammar. For example, a grammar which would be used for a bank customer could be
called bankmenuinput. The selection of a grammar name is determined by the file name or the
related gbuilder file, and its setting influences the file name(s) of any exported GRXML data.

Within the grammar object are properties for the setting of languages. These languages, or locales,
indicate support for a particular language. For each locale that is added to a grammar, a distinct
GRXML file will be created specifically to support that language. DTMF, or touch-tone input, is
considered a language even though it is not spoken.

Rule

Every grammar must contain at least one rule, but may contain many. Rules provide a grouping for a
spoken (or DTMF) items. Continuing the bank customer scenario, we could have rules for yes/no
responses, another for menu options and perhaps another for branch cities. Rules are the product
that is referenced in a voice application.

At a point in an application where we wish to retrieve the branch city, we must refer to that
grammar’s rule. If an application designer does not specify a rule and instead only specifies the
grammar file, the default rule is used. Additionally, a rule may be hidden from outside applications by
declaring it as private. Usually this is for more sophisticated grammar cross-referencing, which is not
currently supported in the more elementary Grammar Builder.

Keywords

Within a rule are specific keywords that will be used to add intelligence to an end application.
Keywords become the value which can be identified within the application for use in branching or
other application constructs. However, this keyword is independent of what may actually be spoken
and is instead an internal identifier.

To bridge the gap between what a caller says or presses on their keypad, locale-specific synonyms
are defined. Remember that the languages supported are defined at the grammar level. It is at this
point that those defined languages come into play. Each keyword will have a list of words (synonyms)
which relate to the keyword for a given language.

For example, assuming as part of our yes/no rule, we have a keyword for yes. This keyword could

Working with Grammar Builder

Composer Help 3



contain the word yes for English, 1 for DTMF and oui for French. Regardless of which locale ends up
being used in the running application, yes (the keyword identifier) will be returned.

Working with Grammars will guide you through the process of creating a simple grammar, using a
user color selection problem as the example to model.

Using the Grammar Builder

Let's create a simple grammar for use with a project and the Grammar Menu block. Our example will
be a user color selection problem. You will perform the following steps:

1. Create a new grammar builder file with initial settings.
2. Add keywords and synonyms for a rule.
3. Save the grammar builder file.
4. Export the grammar builder file to standard GRXML format.

Composer provides a cheat sheet for building a simple grammar file:

• Select Help > Cheat Sheets > Composer > Building Voice Applications > Creating a
simple grammar.

Creating a New Grammar Builder File With Initial Settings

The first step is to create a new grammar builder file and provide its initial settings. Follow these
steps:

1. Select File > New > Other.
2. From the New dialog box, expand the Composer folder, then expand the Grammars folder.
3. Select Grammar builder file and click Next to continue.
4. In the Container field of the wizard dialog box, click Browse to select a project-specific folder to contain

the new .gbuilder file. Genesys recommends <voiceprojectname>/Resources/Grammars for the
location.

5. Set the file name to use for this grammar. File names should give an indication of the context this
grammar will be used in. For example, type colors.gbuilder in the File name field.

Note: The Grammar Menu block does not pick up changes automatically if you change your Gbuilder
file. To synchronize the block with the latest changes, click on the Gbuilder File property of the
Grammar Menu block. In the popup make sure that the correct Gbuilder file and RuleID are
selected. Click OK to close the dialog. Your diagram will now reflect any menu options changes made
in the Gbuilder file.

6. Next, set the initial default rule. Rules contain items which form a category. All grammar builder files
must have at least one rule. Since our example grammar only deals with one such categorization, type
Colors in the Initial Default Rule field.

Working with Grammar Builder

Composer Help 4

https://docs.genesys.com/Documentation/IW/8.1.4/Help/GrammarMenuBlock
https://docs.genesys.com/Documentation/IW/8.1.4/Help/GrammarMenuBlock


7. Locales are languages that this grammar will support. By default, English and digit input (DTMF) are
selected in the Initial locale(s) field. If you knew you would need to support additional languages for the
grammar, you would select the appropriate check box(es). For our example, the default selections are
adequate.

Note: Grammar Builder treats DTMF as a separate language (locale), even though technically it is
not categorized as such.

8. After making the selections described above, click Finish.

The file is added to the selected project (as you can see in the Project Explorer), and the Grammar
Builder opens as shown in the image below.

Adding Keywords and Synonyms for a Rule

Grammar builder files are created with a default rule. The next step is to define keywords for this
rule. Each rule can have any number of input-agnostic keywords. These keywords will be returned
from either the speech or digit processor for use in your callflow.

By default, a keyword is not usable in an application. This is because multiple languages may use
different words/sounds for your keyword. In our example, red may be an appropriate English

Working with Grammar Builder

Composer Help 5



pronunciation, but in Spanish this would not be true. Because of this, each configured locale must
provide accepted input for the keyword. These inputs are called synonyms. Therefore, keywords
consist of a logical identifier and a list of locale-specific synonyms.

Once you have defined keywords and synonyms for the default rule, you can then create additional
rules and define keywords and synonyms for those rules as well.

To add a new keyword:

1. Select the Colors (default) rule in the Overall Structure tree.

• The Rule Properties area shows the Public Visibility and Default Rule settings for the selected
Rule ID.

• Default Rule. This is selected only for the rule that has been set as the default (as is the
Colors rule in this example).

• Note: Not all aspects of Composer allow for specific rule targeting within grammar files
(grxml). As such, it is highly recommended that you specify a default rule. This rule will be
used by default when a reference to the grammar exists that does not target a specific rule.
Considering that a default rule (e.g., root) is not mandatory in GRXML, no warning is given

when one is not specified
• Public Visibility. If selected, this indicates that this rule can be referenced by an external

grammar (in a ruleref element in the grammar making the reference). A public rule can
always be activated for recognition. If not selected, the rule is private, which indicates that
the rule is visible only within its containing grammar. A private rule can be referenced by an
external grammar if the rule is declared as the root rule of its containing grammar.

2. Click the (Add) button.
3. In the Add new keyword dialog box, type a name for this keyword, which is normally an instance of the

category that the rule defines. In our example, type Red in the Keyword ID field and click OK.
4. You can repeat the steps above to add more keywords to this rule.

To add a new synonym:

1. Select a keyword from the Overall Structure tree. In our example, select Red.

The Synonyms area allows you to add synonyms for each of the locales you have defined (each
locale is a tab at the bottom of the synonyms table). Note in our example that the window has both
English - United States and DTMF as bottom tabs. This allows you to switch the synonym context for
the selected keyword.

1. With the English - United States tab selected, click Add ID as Synonym. This button allows you to add
a synonym that is identical to the keyword, thus allowing red to be spoken in English and associated
with the keyword Red.

2. You may at this time add other values, such as Crimson for example, which will also be accepted as
Red.

3. Select the DTMF tab. To associate the digit 1 with the keyword Red, type 1 in the Digits field and click
the Add button.

4. You can repeat the steps above to add more synonyms to this keyword.

Working with Grammar Builder

Composer Help 6



Note: If you are using locales representing other languages, the synonyms you create for each locale
would represent acceptable values for the keyword in that language. In our example, if you also
defined Spanish and French locales, you could create a synonym rojo for the Red keyword in the
Spanish locale, and a synonym rouge for the Red keyword in the French locale.

Saving the Grammar Builder File

When you have finished building your grammar builder file, or periodically during the course of
building the file, be sure to save the changes you make to the file.

5. To save the file, click (Save), or to save the file under a different name, click (Save As) and
provide a new file name and location.

Exporting the Grammar to GRXML Format

Because the Grammar Builder saves your grammar to a non-standard GRXML format (denoted with a
.gbuilder extension on the file name), you will want to export the grammar to the standard GXML
format as follows:

1. Click (Export) , located at the top-right corner of the Grammar Builder editor.
2. If prompted to save, click Yes.

You will see a message indicating the file has been successfully exported. The exported GRXML file
names are displayed in the success window, and the .grxml file will display in the appropriate locale
folder(s) in the Project Explorer under <voiceprojectname>/Resources/Grammars. It's important to
note that DTMF is considered a locale for the purpose of exportation. As such, an export result for a
GBuilder resource with English and DTMF would be placed in <voiceprojectname>/Resources/
Grammars/en-US and <voiceprojectname>/Resources/Grammars/DTMF directories, respectively.
These files can now be edited in the GRXML Editor.

Locales and Grammar Builder

When using the Grammar Builder, you specify locales, which are the languages that a grammar file
will support. The Grammar builder wizard uses the active locales for the Composer Project.

See Locales in CommonBlocks & Functionality.

Dynamic Grammars

Dynamic grammars are used for automated speech recognition (ASR). They are generated "on-the-
fly" based on information dynamically pulled out from data sources such as databases, web services,

Working with Grammar Builder

Composer Help 7

https://docs.genesys.com/Documentation/IW/8.1.4/Help/Locales
https://docs.genesys.com/Documentation/IW/8.1.4/Help/ComposerCodeEditors
https://docs.genesys.com/Documentation/IW/8.1.4/Help/Locales
https://docs.genesys.com/Documentation/IW/8.1.4/Help/CommonBlocks


or the file system. Contrast this to using a static grammar file whose content is fixed. The ASR engine
matches the user utterance with the grammar. Returned values are then passed back to the
application based on any matches in the grammar.

There are several ways to include dynamic grammars in voice dialogs:

• Use a dynamic VXML page template that creates the dynamic grammar and insert it in-line into the
VXML page. Using a dynamic VXML page will provide flexibility in terms of the data source used to
generate the grammar.

• If data is being retrieved from a database, using the DB Input block may be another alternative. It
generates a grammar based on data retrieved from a database using the DB Data block. It can also
generate a grammar based on contents of a JSON array that may have been retrieved from alternate
data sources e.g., a Web Service.

Working with Grammar Builder

Composer Help 8

https://docs.genesys.com/Documentation/IW/8.1.4/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.4/Help/DBDataBlock

	Composer Help
	Working with Grammar Builder

