
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

SCXML State Block

Composer Help

4/19/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

SCXML State Block

Contents

• 1 SCXML State Block
• 1.1 Name Property
• 1.2 Block Notes Property
• 1.3 Exceptions Property
• 1.4 Body Property
• 1.5 Transitions Property
• 1.6 Condition Property
• 1.7 Logging Details Property
• 1.8 Log Level Property
• 1.9 Enable Status Property
• 1.10 Using the SCXML State Block

SCXML State Block

Composer Help 2

Use to write custom SCXML code for Composer to include in the SCXML document that it generates
based on the workflow diagram. The SCXML State block has the following properties:

Name Property

Click under Value and enter the block name. Composer will use the name to identify the block in the
diagram and as the state name in the SCXML code.

Block Notes Property

Find this property's details under Common Properties.

Exceptions Property

Use to configure the exception nodes, with each port being hooked up to an event configured by you
and selectable using Add Custom Event. Find this property's details under Common Properties.

Body Property

This property contains all the executable content of the <state> element (<onentry>, <onexit>,
<final>, …).

1. Click opposite Body under Value. This brings up the button.

2. Click the button to bring up the Configure Body dialog box.

SCXML State Block

Composer Help 3

https://docs.genesys.com/Documentation/IW/8.1.4/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.4/Help/CommonPropertiesforWorkflowBlocks

3. Enter the executable content of the <state> element. . All content (children) of the state are editable.
You also have the option of adding code to <onentry> and <onexit>.

4. When through, click OK. Note: The editor does not validate against the SCXML schema.

Transitions Property

Use this property to add additional outports (transitions) using the block's custom Transitions dialog.

1. Click opposite Transitions under Value. This brings up the button.

2. Click the button to bring up the Configure Transitions dialog box.
3. Click Add. The dialog box now appears as shown below.

SCXML State Block

Composer Help 4

4. For each transition, specify at least one name, event, condition, or target (you are not required to
complete all three fields). An output port is created for every transition

• Name--Composer uses the name of the transition to label the outport.
• Event--Use to select the event that will trigger this transition.
• Condition--The guard condition for this transition. The transition is selected only if the

condition evaluates to true.
• Target--If true, an output port is created and the user can connect it to the block this

transition will transition to when it is executed. If false, the transition will not cause a change
in the state configuration when it is executed. The executable content contained in the
transition will still be executed, so the transition will function as a simple event handler.

If a target is set, an outport for that transition will appear and you can connect it to other blocks. If a
target is not set, an outport for that transition does not appear; in this case, you can add some
SCXML code to handle the event. When through in the dialog box, click OK.

Condition Property

Find this property's details under Common Properties.

SCXML State Block

Composer Help 5

https://docs.genesys.com/Documentation/IW/8.1.4/Help/CommonPropertiesforWorkflowBlocks#Condition_Property

Logging Details Property

Find this property's details under Common Properties.

Log Level Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Using the SCXML State Block

The sample below demonstrates one way of using the SCXML State block to:

1. Register an Agent-DN (Needed in order to send a Logoff request)
2. Logoff Request for an Agent
3. Unregister the Agent-DN

Below is an example diagram using the SCXML State block and example code. If you do not have the
Agent information, retrieve it from the Configuration Database with FindCfgObjURS. Register the
Agent, make the Agent not ready, and then log out the Agent, all using the URS trek function. The
details of this function can be found by the http request—for example:

http://< urs host>:< urs http port>/urs/help/misc/trek

where the http port is defined in the URS options section http. Also you must enable this method by
setting methods to all in the same section.

SCXML State Block

Composer Help 6

https://docs.genesys.com/Documentation/IW/8.1.4/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.4/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.4/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

For this example, create the following Project variable: vursFetchReqID.

[+] Restrictions, Disclaimer and Copyright Notice
Any authorized distribution of any copy of this code (including any related documentation) must
reproduce the following restrictions, disclaimer and copyright notice:

The Genesys name, the trademarks and/or logo(s) of Genesys shall not be used to name (even as a
part of another name), endorse and/or promote products derived from this code without prior written
permission from Genesys Telecommunications Laboratories, Inc.

The use, copy, and/or distribution of this code is subject to the terms of the Genesys Developer
License Agreement. This code shall not be used, copied, and/or distributed under any other license
agreement.

THIS CODE IS PROVIDED BY GENESYS TELECOMMUNICATIONS LABORATORIES, INC. ("GENESYS") "AS
IS" WITHOUT ANY WARRANTY OF ANY KIND. GENESYS HEREBY DISCLAIMS ALL EXPRESS, IMPLIED, OR
STATUTORY CONDITIONS, REPRESENTATIONS AND WARRANTIES WITH RESPECT TO THIS CODE (OR
ANY PART THEREOF), INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. GENESYS AND ITS SUPPLIERS SHALL
NOT BE LIABLE FOR ANY DAMAGE SUFFERED AS A RESULT OF USING THIS CODE. IN NO EVENT SHALL
GENESYS AND ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, ECONOMIC,
INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ANY LOST REVENUES OR
PROFITS).

Copyright © 2008—2016 Genesys Telecommunications Laboratories, Inc. All rights reserved.

SCXML State Block

Composer Help 7

[+] Example SCXML Code
<onentry>

<script>
var KVPs = 'number:' + '704' + '|tenant:' + system.TenantName +

'|switch:' + _genesys.ixn.interactions[system.InteractionID].location.media_server;
var vLocalParms = [2, KVPs];
var ursFunc = 'urs/call/' +

_genesys.ixn.interactions[system.InteractionID].voice.connid + '/func/FindConfigObject';
</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "params" expr="uneval(vLocalParms)" />
</session:fetch>

</onentry>

Transitions:

Event: session.fetch.done
Condition: _event.data.requestid == vursFetchReqID
Body: (if you want the data to be in JSON form)

var vEventData = _event.data.content.toString();
vEventData = vEventData.replace(/[.]/g, ",");
vEventData = vEventData.replace(/\\u000a/g,"");
vEventContent = JSON.parse(vEventData);

Results will be:

vEventContent =
{

dbid:159,
type:1,
number:"704",
name:"",
switchdbid:103,
switch:"SipSwitch",
tenantdbid:101,
tenant:"orchestration",
annex:{TServer:["true"]}

}

Event: error.session.fetch
Condition: _event.data.requestid == vursFetchReqID
Body: (whatever you want to do if an error happens)

trekRegister:

<onentry>
<script>
var ursFunc = 'urs/trek/exec';

</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "switch" expr="'SipSwitch'"/>
<param name= "thisdn" expr="'704'" />
<param name= "event" expr="'RequestRegisterAddress'" />

</session:fetch>
</onentry>

Transitions:

SCXML State Block

Composer Help 8

Event: session.fetch.done
Condition: _event.data.requestid == vursFetchReqID
Body: (if you want the TEvent data to be in JSON form)

var vEventData = _event.data.content.toString();
vEventData = vEventData.replace(/[.]/g, ",");
vEventData = vEventData.replace(/\\u000a/g,"");
vEventContent = JSON.parse(vEventData);

Results will be:

vEventContent =
{

event:"EventRegistered",
AddressType:1,
AddressInfoType:8,
AddressInfoStatus:1,
AgentID:"704",
ThisDN:"704",
AgentWorkMode:0,
ReferenceID:53,
TimeinSecs:1461257507,
TimeinuSecs:61000,
return:"ok",
Extensions:
{

AgentStatus:2,
AgentStatusTimestamp:1461257264,
AgentStatusReliability:0,
AgentLoginTimestamp:1461257264,
AgentLoginReliability:0,
AgentSessionID:"7MQNHM3BJ15RN2NS1ABJKTUT0K00006G",
AgentWorkMode:0,
status:0,
EmulateLogin:"true"

}
}

Event error.session.fetch – handled as in first example.

trekNotReady:

<onentry>
<script>
var ursFunc = 'urs/trek/exec';

</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "switch" expr="'SipSwitch'"/>
<param name= "thisdn" expr="'704'" />
<param name= "event" expr="'RequestAgentNotReady'" />

</session:fetch>
</onentry>

trekLogout:

<onentry>
<script>
var ursFunc = 'urs/trek/exec';

</script>
<session:fetch requestid="vursFetchReqID" srcexpr="ursFunc" method="'urs'">

<param name= "switch" expr="'SipSwitch'"/>
<param name= "thisdn" expr="'704'" />
<param name= "event" expr="'RequestAgentLogout'" />

SCXML State Block

Composer Help 9

</session:fetch>
</onentry>

SCXML State Block

Composer Help 10

	Composer Help
	SCXML State Block

