3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Composer Help

Composer 8.1.3

12/29/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Composer Overview
How to Use This Guide
Composer Installation Video
Deploying Composer
Introduction to Composer
Software Prerequisites
Interface Overview
Using the Designer
Connection Links
Composer Code Editors
Eclipse Workbench
Enabling/Disabling Functionality
Hiding File Types
Localization
Composer Versus IRD
Mac OS Support
Features Introduced in Composer 8.1.x Releases
Getting Started with Composer
Running Composer for the First Time
Software Updates Functionality (Plugins)
Integrating with Source Control
Composer Projects and Directories
Multiple User Environments
Security Configuration
Upgrading Projects and Diagrams
Working with Diagram Layouts
Accessing the Editors and Templates
Keyboard Shortcuts
Composer Menus
File Menu
Edit Menu
Diagram Menu
Navigate Menu
Search Menu
Project Menu

13
16
17
18
19
22
23
27
29
31
33
34
35
36
38
43
44
52
53
54
56
63
71
72
73
77
79
82
84
85
87
88
91
93
94

Run Menu 95

Configuration Server Menu 98
Window Menu 99
Help Menu 101
Canvas Shortcut Menu 102
Palette Group Menu 104
Composer Toolbars 105
Toolbars Overview 106
Main Toolbar 107
View Toolbars 113
Perspective Switcher Toolbar 125
Trimstack Toolar 127
Debugging Toolbars 128
Minimizing and Restoring Views 135
Voice Applications and Callflows 136
Getting Started with Voice Applications 137
Callflow Post Installation 138
Working with Java Composer Projects 142
Working with .NET Composer Projects 143
Accessing the Editors and Templates 79
Preferences for Voice Applications 148
CCXML File Preferences 149
Diagram Preferences 151
GAX Server Preferences 154
GRXML File Preferences 155
VXML File Preferences 157
GVP Debugger Preferences 159
IIS.NET Preferences 160
Time Zone Preferences 161
Tomcat Preferences 162
XML Preferences 163
Setting Context Services Preferences 164
Creating Voice Applications for GVP 166
What is GVP and How Do Voice Apps Work 167
Creating CCXML Applications 169
Creating VXML Applications 170

Hello World Sample 176

Callflow Blocks 179

Variables in Callflows 180
VXML Properties 182
Voice Block Palette Reference 199
Voice Blocks Basic 200
Assign Block Common 202
Branching Common Block 205
Disconnect Block 207
End FCR Block 209
Entry Block 211
Exit Block 219
GoTo Block 221
Grammar Menu Block 223
Input Block 230
Log Common Block 240
Looping Common Block 242
Menu Block 247
Prompt Block 255
Raise Event Block 259
Record Block 261
Release ASR Engine Block 268
Set Language Block 270
SNMP Block 272
Start FCR Block 274
Subdialog Block 277
Transfer Block 281
VXML Form Block 291
Voice Database Blocks 293
DB Data Block 294
Database Input Block 295
DB Prompt Block 301
Working with Database Blocks 304
Supported SQL Datatypes 317
Voice CTI Blocks 319
CTI Scenarios 320
Get Access Number 323

Interaction Data Block 326

Route Request Block 329

Statistic Block 337
ICM Interaction Data Block 342
ICM Route Request Block 344
Working with CTI Applications 352
Voice External Message Blocks 358
Receive Block 359
Send Data Block 361
Send Event Block 364
Send Info Block 366
Reporting Blocks 368
Action Start Block 369
Action End Block 372
Set Call Data Block 375
Set Call Result Block 377
Server-Side Common Blocks 380
Backend Common Block 383
Business Rule Common Block 387
DB Data Common Block 397
External Service Block 402
OPM Common Block 406
TLib Block 409
Web Request Common Block 411
Web Service Common Block 417
Web Service Stubbing 431
Web Service SOAP Messages 433
Signed SOAP Requests 436
Connection and Read Timeout 438
Server-Side Troubleshooting 439
Outbound Common Blocks 441
Add Record Block 442
Cancel Record Block 448
Do Not Call Block 451
Record Processed Block 454
Reschedule Record Block 457
Update Record Block 460

Using Voice Blocks 463

Common Properties for Callflow Blocks
Working with Grammar Builder
Working with CTI Applications
Working with Prompts
Working with Database Blocks
User Data
Connection Pooling
Route Applications and Workflows
Getting Started with Route Applications
Routing FAQs
Routing My Interactions
IRD Functionality Included in Composer
Workflow Post Installation
Upgrading Workflows
Preferences for Routing Applications
Business Rule Preferences
Configuration Server Preferences
Diagram Preferences
GAX Server
ORS Debugger Preferences
Setting Context Services Preferences
SCXML File Preferences
Security Preferences
Time Zone Preferences
Tomcat Preferences
XML Preferences
Palette Group Menu
Introduction to Routing Workflows
What is a Routing Workflow?
Architecture Diagram for Workflows
Workflow Example and Palette
SCXML File Editor
Sessions and Interactions
Interaction Process Diagrams
Creating Routing Applications

Starting SCXML Page

464
474
352
486
304
511
514
520
521
522
531
532
536
540
541
542
543
151
547
548
164
551
553
161
162
163
104
558
559
561
563
564
566
567
570
571
573

Creating a New Routing Project 574

Creating the IPD 576
Creating a New Workflow Diagram 580
Using the SCXML Editor 581
Using SCXML Templates 582
Your First Application: Routing Based on DNIS or ANI 583
Using URS and ORS Functions 593
Routing Block Palette Reference 595
Interaction Process Diagram Blocks 596
IPD Overview 597
Starting a New IPD 598
Queue Interaction Block 604
Interaction Queue Block 607
Interaction Queue Views 610
Media Server Block 617
Workflow Block 621
Workbin Block 624
Flow Control Blocks 628
Workflow Generated Blocks 629
Linking IPDs with Workflows 632
Publishing Updates 633
Route Flow Control Blocks 639
Assign Block Common 202
Attach Block 643
Begin Parallel Block 645
Branching Common Block 205
Cancel Event Block 650
Detach Block 652
Disconnect Block Routing 654
ECMAScript Block 656
End Parallel Block 661
Entry Block Routing 662
Exit Block Routing 667
Log Common Block 240
Looping Common Block 242
Raise Event Block 259

SCXML State block 679

Subroutine Block 683

User Data Block 688
Wait Event Block 692
Routing Blocks 694
Default Routing Block 695
Force Route Block 698
Queue Interaction Block 604
Route Interaction Block 706
Routing Rule Block 714
Single Step Transfer Block 718
Stop Interaction Block 721
Target Block 726
Percent and Conditional Routing 740
List Objects Manager 742
Statistics Manager and Builder 746
Voice Treatment Blocks 750
Composer Equivalent to IRD Treatment 752
Cancel Call Block 755
Create User Announcement Block 757
Delete User Announcement Block 761
IVR Block 763
Pause Block 767
Play Application Block 769
Play Sound Block 775
Play Message Block 778
Set Default Route 782
User Input Block 784
Single Session Treatments 792
eService Blocks 797
Composer Equivalent to IRD Multimedia 800
Chat Transcript Block 803
Classify Interaction Block 807
Create E-mail Block 812
Create Interaction Block 816
Create SMS Block 820
Email Forward Block 824

Email Response Block 829

Identify Contact Block 834

Render Message Block 838
Screen Interaction Block 842
Send Email Block 848
Send SMS Block 851
Update Contact Block 853
Using eServices Blocks 856
Common Properties for Workflow Blocks 860
Variables Project and Workflow 874
User Data 511
Custom Events 884
Expression Builder 885
Skill Expression Builder 897
List Objects Manager 742
Common Blocks 905
Context Services Common blocks 906
Associate Service Block 908
Complete Service Block 911
Complete State Block 914
Create Customer Block 917
Complete Task Block 919
Enter State Block 922
Identify Customer Block 926
Query Customer Block 930
Query Services Block 933
Query States Block 938
Query Tasks Block 941
Start Service Block 944
Start Task Block 948
Update Customer Block 951
Using Context Services Blocks 954
Context Services and Composer 955
Common Properties Context Services 957
Online and Offline Modes 963
Setting Context Services Preferences 164
Runtime Configuration 966

Context Services Exception Events 969

Outbound Common Blocks 441

Add Record Block 442
Cancel Record Block 448
Do Not Call Block 451
Record Processed Block 454
Reschedule Record Block 457
Update Record Block 460
Server-Side Common Blocks 380
Backend Common Block 383
Business Rule Common Block 387
DB Data Common Block 397
External Service Block 402
OPM Common Block 1018
TLib Block 409
Web Request Common Block 411
Web Service Common Block 417
Web Service Stubbing 431
Web Service SOAP Messages 433
Signed SOAP Requests 436
Connection and Read Timeout 438
Server-Side Troubleshooting 439
Common Functionality 1052
Code Generation 1053
Custom Blocks 1055
Customization Manager 1058
Diagram Preferences 151
Exception Events 1064
Expression Builder 885
GAX Server Preferences 1087
Getting Using Email Addresses 1088
Import and Export 1092
Link Tool 1095
Locales 1096
Time Zone Preferences 161
Using User Data 1106
Variables Mapping 1109

Sample Applications and Templates 1110

Project Templates 1111

Diagram Templates 1112
GVP Voice Project Templates 1115
Integrated Voice Route Project Templates 1117
Routing Templates and Samples 1120
Context Services Template 1122
Database Query Result Template 1125
Forward to External Resource Template 1126
Route After Autoresponse Template 1127
Routing Based on Variables Template 1128
Route by Using Web Request Template 1129
1130

Routing Based on a Statistic Sample 1134
Routing Based on Percent Allocation 1137
Routing Using Web Request Sample 1140
Last Called Agent Routing 1143
Validation Debugging Deployment 1152
Validation 1153
Debugging Routing Applications 1156
Debugging Voice Applications 1167
Deploying Composer Applications 1183
Best Practices 1194
Troubleshooting 1196
General Troubleshooting 1197
1198

Chat Messages in Queue 1199
Checkin Error During Source Code Integration 1201
Composer Project Not Deployed on Tomcat 1202
Composer Project Not Currently Deployed 1203
Connection Profile and ASCII Characters 1204
Chinese Characters Do Not Display 1205
Connection to a Database Fails 1206
Context Services URL Message 1208
CTI Block Issues 1209
Debugging Failure 1210
Deployment Failure on 1IS 1211

DOTNet (.NET) Project Issues 1212

Failed to Deploy Message 1213

Installation and Uninstallation 1214
JSON objects and JavaScript keywords 1215
ORS Compile Errors and Non-Escaped Characters 1216
Plugin Installation 1217
Proxy Configurations .NET Composer Projects 1218
Request Form Error Message 1219
SCXML Editor Element Not Bound Message 1220
Slow Response Time 1221
Stored Procedure Helper and DB Data Block 1222
Tomcat Service Failed to Start 1223
Test Calls Do Not Work 1224
Upgrade Error Messages 1226
Validation Error upon publishing IPD 1228
Web Service Block Issues 1229
Workspace in Use or Cannot be Created 1231
Workspace Files Not in Sync 1232
Links to Useful Resources 1233

Composer Product Videos 1234

Composer Overview

Composer Overview

Use to Create Routing and Voice Applications

Composer is an Integrated Development Environment (IDE), based on Eclipse, for developing routing
applications for the Genesys Orchestration Platform 8.x, which includes:

e Universal Routing Server (URS)—which enables intelligent distribution of voice and multimedia
interactions throughout the enterprise.

e Orchestration Server (ORS)—an open standards-based platform with an SCXML engine, which enables
the customer service process. ORS is responsible for executing orchestration logic (SCXML) that is
provided by an application server (such as an application server hosting an SCXML-based routing
application created in Composer). The responsibility of URS within the Orchestration Platform is to
provide a necessary service to Orchestration Server to support Routing functions.

You can also use Composer to create voice applications for Genesys Voice Platform (GVP) 8.1+—a

software suite, which unifies voice and web technologies to provide a complete solution for customer
self-service or assisted service.

Notes:

* In the past, Interaction Routing Designer was used to create routing applications. Genesys
Composer is now the tool of choice for creating both routing and voice self-service applications.

Previously Composer was known as "Composer Voice," as it was used only to develop voice
applications for Genesys Voice Platform. Starting with 8.0.2, the capabilities of the IDE were expanded
to include support for Universal Routing application development. Due to this expansion in scope, the
product name was shorted to "Composer." The terms Composer Voice and Composer Route are used
in some places in the product, to refer to the collection of product features that are used specifically

for Genesys Voice Platform application development, and Universal Routing Application development,
respectively.

* Users may enable/disable Composer Voice and/or Composer Route capabilities through a Composer
preference setting. This is useful for developers who are only using one of these Genesys platforms.

Application Development

Composer provides both drag-and-drop graphical development of voice applications (or “callflows”)
and routing strategies (or “workflows”) as well as syntax-directed editing of these applications.

e For voice applications for the Genesys Voice Platform, Composer supports editing of VoiceXML 2.1,
CCXML1.0 and SRGS 1.0.

e For routing applications for the Genesys Orchestration Platform, Composer supports editing of SCXML
1.0. Applications may be developed in an "offline” mode, without requiring the user to connect to

Composer Help 13

Composer Overview

Genesys Configuration Server.

Application Debugging
Composer provides real-time debugging capabilities for both voice and routing applications.

¢ The Genesys Voice Platform Debugger is integrated with GVP for making test calls, viewing call traces,
and debugging applications. It supports accessing SOAP and REST-based Web Services. Database
access is possible using server-side logic and a Web Services interface.

e The Orchestration Server Debugger, integrated within the workflow editor, works with both live and
simulated calls. For live calls, it places those calls into a T-Server/SIP Server connected to a URS/ORS
system. The capabilities include setting breakpoints, stepping through a workflow, viewing and setting
the values of variables, and viewing event messages from the URS/ORS platform.

Eclipse

Composer is an Eclipse-based application. The use of Eclipse as the underlying framework enables
the use of third party IDE plug-ins, supporting integration with third party source code control
systems, server-side development enhancements, and side-by-side development of any business
logic required to support your applications.

Operating Systems

Composer can run on the following operating systems: Windows 2003 and 2008, Windows XP,
Windows Vista, Windows 7, and Mac OS.

Composer Help Wiki URL

The URL to the Composer Help wiki is configurable by using the Online Wiki URL field: Window >
Preferences > Help. The default works with English but if, for example, Japanese pages were
available in a different location, then you could change the URL accordingly.

Third Party Software

This product includes software developed by:

* The Eclipse Foundation (http://www.eclipse.org).

¢ The Apache Software Foundation (http://www.apache.org/).

Composer Help 14

https://docs.genesys.com/Documentation/IW/8.1.3/Help/MacOSSupport

Composer Overview

* The JDOM Project (http://www.jdom.org/).
¢ The Jaxen Project (http://www.jaxen.org/).

* The SAXPath Project (http://www.saxpath.org/)

This software contains code from the World Wide Web Consortium (W3C) for the Document Object
Model API (DOM API) and SVG Document Type Definition (DTD).

The audio prompts used in Composer are provided by GMVoices (http://www.gmvoices.com).

Also see the Legal Notices section on the installation CD ReadMe file.

Composer Help 15

How to Use This Guide

How to Use This Guide

¢ Depending on your location in the user interface, Composer's context sensitive help triggers wiki pages.
¢ You can use the TOC to locate help topics.

e As described in the above watch tab, you can also get notified when pages are updated (watch pages)
or create a PDF.

Help for Help!

The majority of the Help for Composer exists in this online wiki. In addition, there remains a small
help guide, available on the main Composer landing page, that explains how to use the help and its
search capabilities. Introduction to Composer 8.1.3 Help.

The contents of both the help wiki and help guide is in English, regardless of the user's operating
system locale, or any language packs they have installed on Composer. This does not affect the
ability to use Composer in languages other than English, or to access the online Composer
documentation in languages other than English. For more information, see Localization.

Block Palette Reference

For information on Composer blocks and block properties, you can go directly to the following:

¢ Voice Block Palette Reference (when building applications for Genesys Voice Platform (GVP))
* Interaction Process Diagram Block Palette Reference (used for routing applications)
* Routing Block Palette Reference (when building routing applications for the Orchestration Platform)

e Common Blocks Block Palette Reference (blocks used for both voice and routing applications)

Composer Help 16

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Localization
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VoiceBlockPaletteReference
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagramBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBlockPaletteReference
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonBlocks

Composer Installation Video

Composer Installation Video

Video Tutorial

Below is a video tutorial on installing Composer 8.1.3 on Windows in an Eclipse 4.2 environment.
When Eclipse 3.7 is installed, there is a small extra step described in the Installation chapter of the
Composer 8.1.3 Deployment Guide. Also see the Deploying Composer topic.

Notes:

1. This video is a high-level tutorial on Composer 8.1.3 installation. Be sure to consult the Composer 8.1.3
Deployment Guide after watching this video.

Silent installation of Composer is not supported.

N

Download the correct Eclipse for your computer’s processor, i.e., download 64-bit Eclipse download or
32-bit Eclipse based on the target computer.

w

4. Java Development Kit and Eclipse must match, i.e., both 32-bit or both 64-bit.

- C?l" I'l!"i:,l's- g

B Gerosye ins Vet Soonsas Covsruly Dopicymanl Goids o

Composer Help 17

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Overview#Eclipse
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposer

Deploying Composer

Deploying Composer

When deploying Composer, in addition to the Composer Installation video topic:

e Consult the Composer 8.1.3 Deployment Guide for Composer product installation information. This
includes supported Eclipse versions to download, Java Development Kit variables that must be set, and
other software requirements that must be in place prior to installing Composer.

e Consult the Deploying Composer Applications topic for information on deploying a Composer application
to a web server.

Composer Help 18

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerInstallationVideo
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications

Introduction to Composer

Introduction to Composer

Composer is an Integrated Development Environment (IDE) based on Eclipse for building voice
applications for the Genesys Voice Platform (GVP) 8.1+ and routing applications for the Orchestration
Server 8.0+.

What is Composer?

Composer is the next generation version of Genesys Studio based on Eclipse 3.5.1. It provides a rich
development experience, which Web Application developers are already used to, for building
VoiceXML, CCXML, and SCXML applications. Familiarize yourself with basic Eclipse concepts by
referring to the Workbench User Guide (Help > Help Contents). Composer provides ability to
develop the following types of applications. For the GVP 8.x NGI Interpreter:

e Pure VoiceXML Applications with full support for Genesys extensions

¢ CCXML + VXML Applications requiring advanced call control features including Conferencing

e CTI + VXML Applications for Genesys Framework
For the Orchestration Server 8.x SCXML Engine/Interpreter:
e Pure SCXML Applications with full support for all Genesys predefined SCXML functional modules and
extensions used for creating SCXML-based strategies and routing applications.
* Voice Routing SCXML applications for handling media of type voice for Inbound channels.

¢ Integrated CTI + VoiceXML applications for end-to-end treatment handling in conjunction with GVP and
Stream Manager.

GUI Designer

Composer provides a drag-and-drop based interface for creating VXML and SCXML applications. Users
can easily create flow diagrams by placing and connecting blocks and configuring properties. This
approach also provides an easy mechanism for invoking Web Services and doing database lookups
from the Application server-side. Custom blocks can be created that can be added to the supplied
palette of blocks.

Code Editors

For those who prefer to write their own code, Composer provides a set of rich editors for SCXML,
VXML, CCXML, and GRXML along with use case templates.

Composer Help 19

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories#Voice_Application_Project_Types
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories#Routing_Application_Project_Types
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#InterfaceGUI
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors

Introduction to Composer

Templates

Out-of-the-box, reusable template applications are provided. These can act as a starting point for new
projects and visual flows and serve as guidelines and tutorials for routing and voice application
developers. Composer also provides templates for its rich editors with the ability to create user-
defined custom code snippet templates, which can be exported and imported to share across team
members.

Code Generation

When generating code, Composer provides the ability to generate Static VXML pages to take
advantage of the Platform optimizations. For SCXML routing strategies, Composer provides the ability
to generate Static SCXML pages for improved performance due to caching.

Debugging

Debugging functionality includes the ability to debug VoiceXML applications and callflow diagrams
with the GVP Debugger and GVP Debugging perspective. The real-time GVP Debugger supports both
Run and Debug modes. In the Run mode, call traces are provided and the application continues
without any breakpoints. In the Debug mode, you can input breakpoints, single-step through the
code, inspect variable and property values, and execute any ECMAScript from the query console.
Composer provides real-time debugging capabilities for SCXML-based Orchestration Server (ORS)
applications. The ORS Debugger is integrated within the workflow designer for making test calls,
creating breakpoints, viewing call traces, stepping through an SCXML document/workflow, and
debugging applications. Debugging can be started on an existing session or it can wait for the next
session that runs the application at a given URL.

Deployment

Composer provides the ability to deploy applications. Future releases will provide the ability to deploy
routing applications.

Project Management

Composer provides full project management capabilities for managing all the resources in a
Composer project.

Composer Help 20

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SampleApplicationsandTemplates
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CodeGeneration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#GVP_Debugging_Perspective
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ViewToolbars#Call_Trace_View
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Creating_a_Debug_Launch_Configuration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingApplicationsandWorkflows
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UsingtheDesigner
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications

Introduction to Composer

Routing Strategies

Composer is integrated with Genesys Configuration Server, which provides the ability to define and
fetch strategy-related data residing in the Configuration Server database. This integration allows
developers to find and select routing targets when using Composer's Target block. When creating
routing strategies, developers can define List objects and routing-related Statistics.

Composer Help 21

Introduction to Composer

Software Prerequisites

See the Installation chapter of the Composer Deployment Guide for specific requirements for
Composer 8.1.2 and 8.1.3 (installed as an Eclipse plugin).

In general, to obtain the full functionality of Composer 8.1, the following Genesys products/software
components are required:

¢ Orchestration Server 8.1.2 or later for debugging and testing SCXML session-based applications.

¢ Genesys Voice Platform (GVP) Media Control Platform 8.1.6 or later for debugging and testing VXML-
based self-service applications.

¢ |If you wish to use Context Services in routing workflows and voice callflows, you will need Universal
Contact Server/Context Services 8.1.000.10 or later.

* Genesys Rules System 8.1.0 or later for business logic, which can be customized, and then invoked by
Genesys applications.

¢ For information on components required by Orchestration Server, such as eServices components for
processing multimedia interactions, see the Packaging section of the Orchestration Server 8.1
Deployment Guide.

Composer Help 22

Introduction to Composer

Interface Overview

Note: The minimum screen resolution for Composer is 1024x768 on a standard 4:3 aspect ratio
monitor. The recommended resolution is 1280x1024. Lesser resolutions, such as 800x600, are not

supported.

Tutorials

For a tutorial on voice applications, see Your First Application, which describes a text-to-speech
application. For a tutorial on routing applications, see Your First Application, which describes a DNIS

routing application.

Blocks, Connectors, and Properties

The Composer interface uses workflow and callflow design components (blocks and connectors) to

create voice and routing applications.

. Entry
Entryl

= Braﬁching
Branchingl
Conditiono |
& defallt Congiteri
ondition
Target &
Target

DefaultRouting
T Englishagents

0

@ Exit
Exitl

0
Target
SpanishAgents

It uses drag-and-drop to arrange, add, and delete blocks on a canvas area. The blocks are connected
within the canvas (work area) to build the flow for the application. You define the properties for a
selected block in Composer's Properties view. Also see: Working With Diagram Layouts

Composer Help

23

https://docs.genesys.com/Documentation/IW/8.1.3/Help/HelloWorldSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingApplicationSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDiagramLayouts

Introduction to Composer

Interface Elements

The first time you enter the Composer perspective, since your workspace is empty and does not
contain any Projects, you will see an empty Project Explorer on your top-left, and a blank center area.
After you create a voice or routing Project, the Package Explorer shows all the files and resources
that make up the Project. The figure below shows the GUI elements in Composer perspective for a

sample routing application.

© Composer - IntegVioiceRouteProject/Workflows/default workflow - Eclipse SDK -
Eile [Edit Diagram [Navigate Search Project Configuration Server Run Window Help 9
Mgy livwaBd i teRdatrswviv o e e s .'ﬂ-%.@%&égézrkfv Q- L9
| Tahoma x|o. - [BRI ARSS =g] R e Hellwx -0
Eick Access . , a2 | aj Java [Composer Design
[{ Project Explorer 22 = B 5- *defaultworkflow &1 = |m|
= <)_=|;} i - | i Palette 5 P
a % IntegVoiceRouteProject 4 |E & E D -
4 (= Califlows [;
% | MoAgent.callflow #- Output Link
wa WelcomeCaller.callflow o Exception Link
» = db H : ;-[43, Flow Centrol
v (3 include ; (@ Target Callis routed to an agent with sl | =— - _
(= Interaction Processes s RUOTANE bmit = jB Routing @%
b Target The statistic may have to be ch
b 2 META-INF it i @ Target
i (= Reports Busy Treatments f#| Default Route |
b= st_ources 1| Route Interaction |
(= Seripts
4 (= sre Iy 7 .»6 Queue Interaction
v = subRoutines “-Play Message I EHT kDR S ¥ Stop Interaction
b (= WEB-INF PlayMessage Acknowledge || D Force Route
4 (= Workflows L 4 3 | . [N ¢ —
L= defaultworkflow |[C)‘.'mc:'flutrnems
| [= Server Side
' ; | Context Senvi
Exit = ces
= Outline &2 Histo = 0 e == -
@ % ©_E=q't__ | e eServices I
‘ i ¢+ | Outbound
] Properties 53 6 Elmet Y= 0
@ Target
||
“Model Log Lz\l.'el U= Project Default: Error 3 *
4 Orchestration o
Appearance ! Hints s 12
Interaction ID = Variable(system InteracticniD) 13 |
4 Output -

GUI Element Descriptions

The numbers in the figure above are keyed to the table below.

Composer Help

24

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingRouteApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives

Introduction to Composer

The Package Explorer shows all the files and
1 resources that make up a Project. See Composer
Projects and Directories for more information.

For large flows, the Outline view (shown above)
2 allows you to navigate to the portion of the flow to
view in the main canvas.

The History view maintains previous versions of
3 flows and application files, allowing you to revert to
any previous version if needed.

The Canvas is where you create flows by placing
and connecting blocks. Composer's canvas area is
the overall workplace that you will use for building
your applications.

Depending on your Perspective, the Palette
contains workflow diagram-building blocks or
callflow diagram-building blocks grouped in various
categories.

The Properties view shows block properties and
allows you to modify settings, set variables, and
otherwise change or set the properties
corresponding to a block. This area also displays
Call Traces during debugging, or Problems during
validation or testing.

In the top toolbar, the Validate button allows you
to check for syntax errors. The Generate Code
button creates VXML and SCXML pages from the
diagrams you create.

7,8

Menus and Toolbars provide commands and
operations for running Composer.

Perspective buttons show the active perspective
and let you easily move between perspectives. By
default, when you enter the workbench for the first
time, you will be taken inside the Composer
perspective. Perspectives are arrangements of

10 different sections of the GUI in a manner that
facilitates easy use of a particular feature. For
example, the GVP and ORS Debugging
perspectives will show those sections (Breakpoints,
Call Trace, Variables, and so on) that are useful
when debugging an application.

Composer displays a Help view on the right if you select Help > Search or Help > Dynamic Help.

Perspectives

Composer includes the following perspectives for building applications:

¢ GVP Debugger, for debugging applications you build or import
¢ ORS Debugger, for debugging routing applications you build or import

Composer Help 25

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerMenus
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerToolbars
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingRoutingApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Debugging_Perspective
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingRoutingApplications#ORS_Debugging_Perspective

Introduction to Composer

e Prompts Manager perspective, which provides the ability to quickly review all prompts in a Composer
Project

* Composer perspective shows the Project Explorer, Outline view, Canvas, Palette, and can show the
following tabs in the lower pane: Properties, Prompts Manager, Problems, Console, and Call Trace.

e Composer Design perspective can be used to simplify the workbench to show only the palette of blocks,
the canvas area, and the Properties tab.

When you click the open perspective button and select Other, the window lists all perspectives
available in Eclipse. You can use this window to change perspectives or select Window > Open
Perspective. Any customized perspective appears in this list. You can configure perspectives on the
Window > Preferences > General > Perspectives preference page.

Customizing the Show View Menu

A view can be displayed by selecting it from the Window > Show View menu. You can customize

this menu by using Window > Customize Perspective. Click the Submenus down arrow and
select Show View.

Composer Help 26

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithPrompts#Opening_the_Prompts_Manager
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Interface_Elements
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PerspectiveSwitcherToolbar#Open_Perspectives_Button
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ViewToolbars

Introduction to Composer

Using the Designer

Blocks

A block is the basic building unit that you use to create applications. In Composer perspective, the
palette of blocks is located in the right-most part of the main window (unless the Help window is also
visible) and contains various categories of blocks. Every application must start with an voice Entry
block or routing Entry block. You can also create Custom Blocks. A routing applications starts with
Interaction Process Diagram Blocks.

Using Blocks

When creating voice application callflows and routing application workflows using the designer:
¢ You double-click or drag-and-drop callflow blocks and/or workflow blocks to place them onto the center
area (canvas).
¢ You configure properties for each block.

* You connect the blocks together by drawing connection links to define the flow.

For additional information, see the the Eclipse Workbench User Guide (Help > Help Contents).

Block Names and Multi-Byte Characters

Composer block names can contain only alphanumeric characters. If multiple-byte characters are
used in block names, the code generation step fails and no SCXML or VXML file is generated from the
Composer diagram.

Methods for Adding Blocks

There are a few ways to add blocks from the Palette to the canvas. The most common methods are
as follows:

¢ Click on the block icon on the palette, release the mouse and click on the target location on the canvas
area.
* Double-click a block icon on the palette.

¢ Click on the block icon on the palette, and while holding down the mouse button, drag and drop the
block to the canvas.

Composer Help 27

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlockRouting
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagramBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VoiceBlockPaletteReference
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBlockPaletteReference
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks

Introduction to Composer

Any of these methods will add the new block and you can then type the name of the block on the
canvas itself. Click here to read about block naming restrictions.

Outline View

For large call or workflows, the Outline view allows you to navigate to a portion of the flow diagram to
view in the main canvas. It can also be used to facilitate navigation for other types of elements that
might appear in the canvas or editor window, such as a large VXML file displayed in the VXML Editor.
For more information, see the Outline View topic in the Eclipse Workbench User Guide (Help > Help
Contents).

Simulation View

Simulation view shows the VoiceXML or SCXML code (read only) for a selected block (IPD blocks do
not have this view). To add the Simulation view to the current perspective:

¢ Click Window > Show View > Other > Composer > Simulation.

Block Context Menus

Or, you can use a block's context menu as follows:

¢ Select a block in the canvas, then right-click the box and select Simulate Code from the context menu
as shown in the figure below. The Simulation View displays the code for the selected block.

The History view maintains previous versions of call and workflows and application files, allowing you
to revert to any previous version if needed.

e For more information, see the Local History topic in the Eclipse Workbench User Guide (Help > Help
Contents).

The Problems view is used during validation of callflows, workflows, and files (VXML, SCXML, GRXML,
and so on). It displays information about errors encountered when validating an application.

e For more information, see the Problems View topic in the Eclipse Workbench User Guide (Help > Help
Contents).

Composer Help 28

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#GUI_Element_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ViewToolbars

Introduction to Composer

Connection Links

Blocks are connected to each other using connection links. There are two types of connection links:

1. Use OutLinks to connect one block's output port to another block's input port: s OutLink

2. Use Exception Links to indicate error or exception conditions by connecting from a block's exception
port to another block's input port:
w—a ExcephionLink

Find the connection links at the top of the palette on the right side of the Composer window.

Example

The figure below shows examples of using the link tools:

—
rorm Menu
=TI MenLl
ey . '
- Prompt ;e
. Exceaded [
imL O
_ @ Record
Recordl

In the above example, the red links (going from the Menu block to the Prompt block) result from using

the Exception Link tool to connect the two blocks. The black links (going from the Menu block to the
Record block and the Log link) result from using the Outlink tool.

Adding a Link

To add a new Output Link (or Exception Link):

1. Click the Output Link (or Exception Link) icon in the palette.
2. Move the mouse over to the source block. The cursor will change to an upward arrow.
3.

Click once on the source block and keep the mouse button pressed. Then drag the mouse onto the
target block and release the mouse button.

This will add the connection link between the two blocks. To use an Exception Link, the source block
must have an exception port defined. This is done by selecting at least one supported exception

Composer Help

29

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Interface_Elements

Introduction to Composer

within the block's Exceptions property. Another method for adding an Output Link or Exception Link
between two blocks is as follows:

1. Click once on the source block to select it.
2. Hold the Ctrl key and click once on the target block to select it as well.

3. Double-click the Output Link (or Exception Link) icon in the palette to create a connection between the
two blocks.

Again, to use an Exception Link, the source block must have an exception port defined.

Changing Style and Appearance

Composer allows you to change the style and appearance of your connection links to suit your needs.
To change connection link appearance:

1. Select the connection link(s) you wish to change on the diagram (Ctrl-click to select multiple links). If
the Properties view for the selected link is not visible, select Window > Show View > Properties. Or
right-click the link and select Show Properties View from the shortcut menu.

2. In the Properties view, click the Appearance button to the left. A palette of appearance options is
displayed in the Properties view.

You may change any of the following:

e Font, Font Size, Font Style, and Color

Line and Arrow Style

¢ Smoothness of the connection line (None, Normal, Less, or More)

Routing Style (Oblique, Rectilinear [default], or Tree), as well as the option to avoid obstructions or
choose the closest distance for the link (even if it must cross over another block)

e Jump links set how links will be displayed when a link needs to jump over or cross another link (None,
All, Below, Above), and the shape of the link crossing over can be Semi-Circle, Square, or Chamfered

¢ Reverse jump links switches the orientation of the semi-circle, square, or chamfered shape of a crossing
link

Composer Help 30

Introduction to Composer

Composer Code Editors

Composer provides the ability to hand-code SCXML, VoiceXML, CCXML, GRXML, JSP, and ASP.NET for
custom scripts as a part of the application development process. The editors have standard editing
capabilities and time-saving features such as a code snippet library, validation checks for errors
(during design and save time), and syntax highlighting.

© Composer - IntegVoiceRouteProject/OfficeHours som - Ecipse SOK . I
File Edit Source MNavigate Search Proj Configuration Server Run XML Window Hel
’ 9 19 * P
e e s B O @A B e e R BRI O e v
T e -.-' . T 3-“_‘,] B Quick Access i Ei | &’ ava T Composer Design
[Project Explorer 52 = B 5 *defaultworkflow g OfficeHoursscxml 53 = |m|
B T <?xml version="1.8" encoding="utf-8"x B
1 ; ; - <scxml version="1.0" xmlns="http://www.w3, org/2005/07/scxml™ [T
4 i IntegVoiceRouteProject wmlns:queue="http://www. genesyslab. com/modul es/queus”
4 & C__‘]mw"‘ xmlns:dialog="http://www.genesyslaob. com/modules/dialog"”
| MoAgent.callflow wmlng:session="http: S, genésyslab. com/modules/session”
42| WelcomeCaller.callflow wmlns:ixn="http://ww.genesyslab. com/modules/interaction”
b @& db xmlnsiclassification="http: /. genesyslab. com/modules/classification” =
b xmlns ws="http:/ /. genesyslab. com/modules/ws" |
b & inclu e_ xmlng i xim"hEtp: /Swww. w3.0rg/2801/XInclude”
i+ = Interaction Processes initial="_composer_entry’ profile="ecmascript™s
» (= META-INF
& [Reports <l-- SCXML Subroutine template to used with Composer Subroutine Bleck --»
e <state ids"_composer eéntry”: =
2 - -
& Scripts - <initial> i
4 (=1 <transition target="$$ MY PREFIX $3. composer globalstate™ />
> = subRoutines </initial>
& = WEB-INF
4 = Workflows = <state id="_composer_globalstate™:
1] defaultworkil = <initial»
B AU <transition target="$§ MY PREFIX $§.CustomSCXMiState™ (>
iy OfficeHours.sexml efinitials
- <state ide"CustomSCXMLState™> 2
8= Outline 32 [History = 3 5 CEnETtEyS =
(=l 4 b
27 xml Design | Source |
[3 =
i [€] sexml version=1.0
] Properties 57 ‘_-,":.:;b 1 =M
Property Value |
|
) N |
Writable Smart Insert 1:1

Code Editing Features

The editors provide:

Composer Help 31

Introduction to Composer

e Standard editing features such as cut, copy, paste, undo, show line numbers, search and replace,
bookmarks and TODO markers

e Standard Eclipse Editor features; local file history support, Team support for source code control,
compare files.

e The ability to do background validation of the text as the user types, showing squiggly marks for errors
as is done in Microsoft Word.

e A Validate option to validate against the schemas.

¢ A code snippet library with the ability for developers to add their own custom scripts.

* An outline view for quick navigation and the ability to view and edit the XML in tree format.
e Syntax coloring with the ability to customize the colors.

e A spell checking feature; a yellow squiggly line is shown below words that are misspelled.

* Quick-fix choices to fix the spelling or ignore / disable the check.

¢ Task tags features for setting preferences to auto scan comments with TODO in comments, and
automatically add tasks corresponding to these comments.

e Context-sensitive help as the user types in the code

Using the Editors

Composer editors are embedded/integrated within the user interface and are made available to you
whenever a .scxml, .vxml, .ccxml, .grxml, or .jsp file is created or accessed within Composer.

For additional information, see Accessing the Editors and Templates.

Composer Help 32

https://docs.genesys.com/Documentation/IW/8.1.3/Help/AccessingtheEditorsandTemplates

Introduction to Composer

Eclipse Workbench

e As described in the Composer Deployment Guide, Composer 8.1.3 is installed as an Eclipse plugin.

Since Composer is based on based on Eclipse, you should familiarize yourself with basic Eclipse
concepts by referring to the Workbench User Guide. The Workbench User Guide presents an overview
of many of the same concepts used within Composer, but from the Eclipse development environment
framework perspective. Reviewing this information is valuable as a first step in getting familiar with
the Eclipse user interface on which Composer is based. To access the Workbench User Guide online
help:

1. Select Help > Help Contents. The system displays the Help - Composer window.

2. In the Contents navigation pane, click Workbench User Guide.

3. Click Concepts in the main Help pane.
Review the multiple sections of the Concepts section to gain familiarity with Eclipse.

e Select Search from the main Help menu to search the Eclipse Help.

Composer Help 33

Introduction to Composer

Enabling/Disabling Functionality

You may hide voice application (GVP) and/or routing application development capabilities through a
Composer preference setting. This feature is useful for developers who are only developing
applications for GVP or Universal Routing. To hide voice or routing development capabilities:

1. Select Window > Preferences.

2. Expand General and select Capabilities.

3. Click the Advanced button.

4. In the Advanced Capabilities dialog box, expand Composer.
5

. Check or uncheck Composer Route or Composer Voice based on your need.

If you uncheck Composer Voice, the ability to create Projects and diagrams with callflows will no
longer be available. Also, perspectives and views exclusive to callflows will not be available. This
means you temporarily won't be able to design voice applications for GVP until you re-enable
Composer Voice capability. If you uncheck Composer Route, the ability to create Projects and
diagrams with workflows is not available. Also, perspectives and views exclusive to workflows are
not available. This means you temporarily won't be able to design routing applications for Universal
Routing 8.x until you re-enable Composer Route capability. <ol start="6"> Click OK in both
dialog boxes.

Composer Help 34

Introduction to Composer

Hiding File Types

You can hide Composer file types by using base Eclipse functionality in Composer. This may be
desired when certain functionality is not applicable to your environment. For example, when using
Voice capabilities, and VXML is used but not CCXML, you may wish for the CallControlXML file type to
be hidden from the File > New menu. The following steps may be used:

1.

N o v kA W

Right-click the one of the buttons for the Composer-provided perspectives (e.g. Composer Design,
Composer) and click Customize....The Customize Perspective dialog appears.

Click the Shortcuts tab.

To remove CallControlXML File from the File > New menu, set Submenus to New.
Expand Composer and check Others.

In the list of shortcuts, uncheck <file-type>, where <file-type> is the type to be hidden.
Click OK.

Repeat for other perspectives if desired.

This customization is specific to the workspace. If you use other workspaces, you must customize
them as well. This is base Eclipse behavior where customization is saved within the workspace.

Composer Help 35

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RunningComposerfortheFirstTime#Setting_Up_Your_Workspace

Introduction to Composer

Localization

Localization in Composer allows you to use Composer in your preferred language. There are some
limitations to localization, which are detailed here.

Bundled Help Always in English

The majority of the documentation for Composer exists in this online wiki. In addition, there remains
a small help guide that is bundled with Composer, available in the product by clicking on Help >
Help Contents > Composer.

The contents of this bundled help guide are always in English, regardless of the user's operating
system locale, or any language packs they have installed on Composer. This does not affect the
ability to use Composer in languages other than English, or to access the online Composer
documentation in languages other than English.

Translating the Palette

After installing the Composer Language Pack, if you open Composer and continue to use an existing
workspace, you will discover that the Palette is not localized. This is because Palette customization
happens within Composer. You can change the labels, descriptions, and visibility of individual tools in
the Palette. Composer preserves your customizations and, for that reason, Composer keeps the
settings of your workspace Palette even after a Language Pack is installed. To workaround this issue,
you can perform one of the following actions.

1. Start a new workspace. The Palette will be localized in the new workspace.

2. If you are willing to lose your current Palette settings:

e Shut down Composer.

¢ In a file explorer, go to <workspace>\.metadata\.plugins\com.genesyslab.composer.diagram,
where <workspace> is your Composer workspace.

Delete the file paletteSettings.xml.

¢ Restart Composer. The Palette will be localized in your existing workspace.

Translating Diagram Properties

The diagram preferences shown below use the Eclipse GMF runtime preferences, including their
message strings. Due to limitations in Eclipse related to translating GMF Runtime, when localizing,
certain diagram preferences are not translated.

Composer Help 36

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RunningComposerfortheFirstTime#Setting_Up_Your_Workspace
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#GUI_Element_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PaletteGroupMenu

Introduction to Composer

¢ Window > Preferences > Composer > Composer Diagram > Appearance
¢ Window > Preferences > Composer > Composer Diagram > Connections
¢ Window > Preferences > Composer > Composer Diagram > Pathmaps

e Window > Preferences > Composer > Composer Diagram > Printing

e Window > Preferences > Composer > Composer Diagram > Rulers and Grid

Translating Enumeration Properties

In the Properties view, many properties of blocks are enumerations, which are collection of fixed
values, from which one is selected. Internally within Composer, a number of different dialogs, drop-
down boxes, and various other mechanisms are used to display the various enumeration properties.
The 8.1.3 release of Composer does not to enforce uniform behavior when translating enumeration
properties. As a result, some enumeration properties will appear localized, while others may not. This
has no impact on diagram validation, code generation, or runtime behaviour. It is merely the values
displayed in the Properties view that appear either translated or untranslated. The underlying code
that is generated will always be the same.

Fast Asian Characters

If you are using characters from an East Asian language (for example, Chinese, Japanese, Korean) in
Expression Builder, you may find that they do not display properly, and appear as squares rather
than the expected characters. The most likely cause of this issue is that the operating system font
does not support East Asian language characters. As a workaround, change the Dialog Font setting
from within Composer.

In Composer, go to Window > Preferences.

Select General > Appearance > Colors and Fonts.

In the preference dialog, select Basic > Dialog Font.

Click Edit to bring up the font selection dialog.

Choose a font which can render East Asian languages, such as Arial Unicode MS.

o Uk w N H

Click OK on the font selection dialog, then click OK on the preferences dialog.

Connection Profile and Non-ASCIlI Characters

Database Connection Profiles do not support non-ASCII characters. Use only ASCII characters when
creating Connection Profiles.

Composer Help 37

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Interface_Elements
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks

Introduction to Composer

Composer Versus IRD

Integrated Development Environment

* Composer is a single Integrated Development Environment (IDE) for creating applications to orchestrate
the entire customer experience. Composer-created voice and routing applications can command and
control the customer experience through all channels (IVR, voice, e-services, and so on).

* Composer's open framework enables widely-available, existing competencies to be used to create
reusable components that manage the customer experience. The IDE allows both customers and
integrators to utilize existing code sets (HTML, VXML, java, perl, REST and others) to control the
customer experience.

¢ The open framework also allows simplified integration into all Enterprise applications to harness the
information within the Enterprise to drive and personalize the customer experience.

Differences from IRD

In the past, Interaction Routing Designer was the only Genesys tool to create routing applications.
Genesys Composer is now the tool of choice for creating both routing and voice self-service
applications.

A few of the differences between Composer and Interaction Routing Designer are listed below.

e Composer is integrated with Orchestration Server allowing you to manage customer conversations
spread out over time using the ORS session-based functionality and persistent storage as well as
Orchestration Extensions.

e Composer encompasses IRD's functionality and much more routing functionality in general.

e Composer lets you create routing applications using an open language (SCXML) and ECMAScript for
decision-making. In contrast, IRD uses a closed Genesys proprietary language (IRL) and you are limited
to IRD's objects and functions.

e Composer gives the option of writing your own SCXML code and/or using predefined blocks.

¢ Unlike IRD, you can also use Composer to create voice self-service applications for Genesys Voice
Platform, including VoiceXML and CCXML-based applications. You can also create integrated voice and
routing applications.

Composer Routing Application Types

You can use Composer's predefined blocks and/or write your own code to create routing applications
that route based on various criteria such as:

Composer Help 38

https://docs.genesys.com/Documentation/OS/latest/Deployment/Overview#ManagingCustomerConversations
https://docs.genesys.com/Documentation/OS/8.1.3/Deployment/Persist
https://docs.genesys.com/Documentation/OS/8.1.3/Developer/Welcome

Introduction to Composer

. * Agent, Agent Group, ACD Queue, Place, Place Group, Route Point, Skill, or Variable

* last called agent

* date and time

* the value of a statistic,

* dialed number (DNIS)

* originating number (ANI)

* percent and conditional routing

The above list is by no means complete. It represents only a few types of routing applications that
can be created in Composer. Since Composer uses open languages (SCXML and ECMAScript), you are
not limited to its pre-defined blocks, but are free to create many types of routing applications.

Migrating IRD Strategies into Composer

Note: You can migrate routing strategies created in IRD into Composer. For more information, see the

IRD to Composer Migration Guide.

Composer Blocks Mapped to IRD Objects

Composer refers to the fundamental element of a workflow as a "block" whereas in IRD
documentation, this element is referred to as an "object." The tables below group IRD objects based
on their IRD toolbar category name and point to the corresponding functionality in this release of

Composer. Summary information is presented below.

Data & Services

IRD Object Name Composer Block Name
Database Wizard DB Data
Web Service Web Service

Web Request

Miscellaneous

IRD Object Name Composer Block Name
Assign Assign

Description

DB Data retrieves information
from the database. Uses a the
Query Builder Query Builder.

Invokes Web Services. GET, POST
and SOAP over HTTPS are
supported.

Invoke any supported HTTP web
request or REST-style web
Service. See sample: Routing
Based on Web Request.

Description
Assigns a computed value/

Composer Help

39

https://docs.genesys.com/Documentation/Composer/latest/Help/YourFirstApplication#Target_Selection
https://docs.genesys.com/Documentation/Composer/latest/Help/LastCalledAgent
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonDateandTimeSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonaStatisticSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonPercentAllocation
https://docs.genesys.com/Documentation/Composer/8.1.2/Migration/Welcome
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UsingtheDesigner#Blocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Using
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Using
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebRequestCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingTemplatesandSamples
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingTemplatesandSamples
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignBlockCommon

Introduction to Composer

Multi-Assign

Call Subroutine

Entry

Exit

Error Segmentation

Function

Multi-Function

Multi-Attach

Routing

IRD Object Name

Selection

Percentage

Default

Routing Rule

Subroutine

Entry

Exit

Multiple error output ports can be
created in Composer blocks
based on each block's Exception
property.

ECMAScript

Assign, Branching,
ECMAScriptBlock blocks all open
Expression Builder

ECMAScript

Composer Block Name

Target

Target

Default Route

expression or a literal value to a
variable. Variables are defined
in the Entry block. Capable of
multiple assignments.

Creates reusable sub-modules.

Sets global error (exception)
handlers. Defines global
variables (see Variables section
below).. All routing strategy
diagrams must start with an
Entry block.

Terminates the strategy and
returns control back to calling
workflow in case of a subroutine.

Builds an ECMAScript expression
using the Expression Builder.
Many URS functions are
available as Genesys Functional
Modules described the
Orchestration Server
Documentation Wiki Can invoke
multiple functions.

Expression Builder can be used
to create IF expressions.

Can be used for attaching data to
an interaction.

Description

Routes an interaction to a target,
which can be Agent, AgentGroup,
ACDQueue, Place, PlaceGroup,
RoutePoint, Skill, or Variable. Skill
target uses Skill Expression
Builder.

Order Property Statistics Order
property in Target block, lets you
perform percentage allocation.
Also see sample: Routing Based
on Percent Allocation.

Routes the interaction to the
default destination.

Orchestration Server 8.1 does
not support service level routing

Composer Help

40

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SubroutineBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlockRouting
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesProjectandWorkflow
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExitBlockRouting
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScriptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Expression_Builder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OrchestrationServer
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OrchestrationServer
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignBlockCommon
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScript_Block
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScriptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TargetBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SkillExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SkillExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TargetBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TargetBlock#Statistics
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonPercentAllocation
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonPercentAllocation
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DefaultRoutingBlock

Introduction to Composer

rules.

Orchestration Server 8.1 does
Switch to Strategy not support switch to strategy
routing rules.

Not exposed as a routing rule in

Force Route Force Route Composer.

Although statistical routing rules
are not yet supported as in IRD's
Statistics routing object, users
can use the Target object
Property Statistic property to
route based on the value of a
statistic. A Statistics Manager
and Builder let you create your
own statistics from URS
predefined statistics.

Statistics Target

Segmentation

IRD Object Name Composer Block Name Description

. See Your First Application: DNIS
AN Branching Routing for an example.
DNIS Branching See Your First Application: DNIS

Routing for an example.

. See the sample: Routing Based
Date Branching on Date and Time.

. See the sample: Routing Based
Day of Week Branching on Date and Time.
Time Branching See the sample: Routing Based

on Date and Time.

For classification segmentation,
an ECMAScript function
determines if a particular

Classification Segmentation Branching category name or ID exists in the
array of category objects
represented by an application
variable.

Use as a decision pointin a
workflow. It enables you to

Generic Branching specify multiple application
routes based on a branching
condition.

Also see Context Services Blocks.

Voice Treatment

See Composer Equivalent to IRD Treatment.

Composer Help 41

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ForceRouteBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TargetBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TargetBlock#Statistic
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsManagerandBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsManagerandBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/YourFirstApplication
https://docs.genesys.com/Documentation/IW/8.1.3/Help/YourFirstApplication
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/YourFirstApplication
https://docs.genesys.com/Documentation/IW/8.1.3/Help/YourFirstApplication
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonDateandTimeSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonDateandTimeSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonDateandTimeSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonDateandTimeSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonDateandTimeSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBasedonDateandTimeSample
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ClassifyInteraction#ECMAScript_Functions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ContextServicesCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerEquivalenttoIRDTreatment

Introduction to Composer

eServices Multimedia

See Composer Equivalent to IRD Multimedia.

Outbound

See Outbound Common Blocks

Context Services

See Context Services Blocks

Business Process

See Interaction Processing Diagrams Overview and Interaction Process Diagram Blocks.

Reusable Objects
¢ |IRD List Object: See Composer's List Object Manager.
* |IRD Variable List Dialog Box: See Entry block Variables property.

In contrast to IRD, which defines variables in a special dialog box outside of the strategy, Composer
defines both workflow and Project variables.

Composer Help 42

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Composer_EquivalenttoIRDTreatment
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ContextServicesCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/IPDOverview
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagramBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ListObjectsManager
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlockRouting#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Variables_Project_and_Workflow

Introduction to Composer

Mac OS Support

Starting with Composer 8.1.3, the MacOS X operating system is partially supported. Consult your
Genesys representative for availability or more information on this.

See the Supported Operating Environment: Composer page for more detailed information and a list of
all operating systems.

Support for MacOS X ended with version 8.1.300.80. The last 8.1.3 release that
supported MacOS X is 8.1.300.78.

Composer Help 43

https://docs.genesys.com/Documentation/System/Current/SOE/Composer

Introduction to Composer

Features Introduced in Composer 8.1.x
Releases

This section describes the new Composer 8.1 features.

Composer 8.1.3

This section describes the new features in Composer 8.1.3.

e Support for Eclipse 3.7 (Indigo) and 4.2 (Juno).
e Composer is installed as a set of plug-ins.

* Localization support. Language Packs that provide translations for Composer can now be produced and
then installed on top of Composer, allowing Composer to run in languages other than English.
Localization of generated VXML and SCXML applications is also supported.

e Support for Mac OS (see Composer 8.1 Deployment Guide for features supported).

e Database passwords in connection profile can be encrypted.

e« Common bundled Composer Project files can be updated at any time.

e Command line code generation.

e Composer Projects can track change revisions, and revision history can be viewed by the user.
e Customizable global system event handlers in interaction process diagrams.

¢ New properties in Target block to support updating the DN of the reserved resource to include the
access code returned by URS.

e The ECMAScript block is now also available in callflow diagrams, similar to its workflow/interaction
process diagram counterpart.

New blocks for workflow diagrams:

* The TLib block adds support for TSendRequest-based requests to Genesys T-Server through the TLIB
protocol.

* The SingleStepTransfer block adds support for the <ixn:singlesteptransfer> ORS action. This transfers a
voice call directly, without creating another call leg.

¢ The Raise Event and Cancel Event blocks are provided to raise events in the current SCXML session or
to cancel a delayed event.

Voice and Route:

¢ All toolbar button can be used to generate code for all diagrams in a project.

e Expression Builder now lists custom Javascript functions from a Project's included JS scripts.

Composer Help 44

Introduction to Composer

¢ Block tooltips allow the user to see a summary of a block's properties at a glance, without pulling up the
Properties View (experimental feature).

Composer 8.1.2

This section describes the new features in Composer 8.1.2.

Common Features Across Applications:

e The Business Rules block works directly with Genesys Rules Engine and does not require going through

GRAT server at runtime. This simplifies the usage of Genesys Business rules in VXML and SCXML
applications.

¢ Enhancements made to Database blocks support Database clusters and secure connections; this
enables users to connect to Oracle RAC and SQL clusters.

» Database Connections can use service names in addition to SIDs. Connection strings can be

dynamically generated and support variables. This helps developers to simplify the usage of database
connections.

¢ Blocks in either Orchestration workflows (SCXML) or Voice call-flows (VXML) can be disabled. For

example, you may wish to temporarily remove a block during debugging or during development.
Disabled blocks do not participate in the application at runtime.

* New properties for Logging are available for all blocks. Additional support for Alarms is added to
workflows. This feature allows developers to minimize insertion of Log blocks and improves readability.

GVP application (VXML) Enhancements:

e Support for Outbound Campaigns in callflows. New Outbound blocks enable callflow applications to
update, add or delete records in Campaign Calling Lists and work as a solution in tandem with Genesys

Outbound Solutions. Users can also update Do Not Call lists in an Outbound Solution through callflow
diagrams.

¢ Callflow applications (VXML) can use the Operation Parameter Module (OPM) and Audio Resource
Management (ARM) features of Genesys Administrator Extension. OPM enables simplification of the
overall solution by allowing business users to easily control and manage callflows.

e This release adds a new utility function to access SIP header values in callflows.

* A new VXML code block allows the embedding of VXML code directly into callflows through
<subdialog>. This feature provides developers the flexibility to modularize callflow diagrams.

¢ Users can specify custom formats for Voice prompts in a VXML applications. Custom formats can be
created via ECMAScript functions in callflows.

e Input and ICM variables defined in callflow Entry blocks are initialized to default variables if no value is
supplied at runtime. This behavior is controlled by a flag. Older version of callflows will continue to have
this flag reset to maintain backward compatibility.

Orchestration Application (SCXML) Enhancements:

* Enhanced debugger support provides the ability to debug SCXML applications. The Composer interface
provides full debugging functionality for Composer-generated and hand-coded applications.

¢ New Outbound Campaign blocks support integration with Genesys Outbound Contact features, such as

Composer Help 45

Introduction to Composer

adding, deleting, and updating Calling List records; updating Do Not Call lists; and other Calling List
manipulation features. This functionality provides more robust integration between Routing logic and
Genesys Outbound Contact functionality.

* New blocks support the SCXML <parallel> functionality allowing developers to define applications that
can simultaneously perform multiple operations. Entry, Subroutine and Begin parallel blocks in
workflows and sub-workflows support target-less transitions, which could be based on some condition.

e Support for Genesys Administrator Extension Operation Parameters (OPM) and Audio Resource
Management (ARM) functionality in SCXML applications. This feature simpifies the solution and provides
control to the end user, addressing Total Cost of Ownership (TCO).

¢ Voice Treatment blocks provide direct access to Extension data returned after treatment completion.
Composer now supports Orchestration Server-based treatments instead of Universal Routing Server-

based treatments.

e Support for multiple views for Workbins and existing queues within interaction process diagrams (IPDs).

Composer 8.1.1

This section describes the new features in Composer 8.1.1.

New Routing Application Features

New features for creating SCXML-based routing applications include:

An Orchestration Server (ORS) Debugger, which gives ability to debug SCXML applications including
routing applications. The applications can be Composer-generated, hand-coded or a mix of both.

* When specifying ORS preferences, you can enable secure communications (SSL/TLS) between the
Composer client and ORS, for SCXML debugging sessions. The connection between Composer and ORS
is mutually-authenticated TLS if implemented on the ORS side.

¢ Routing blocks, as well as those involved in interaction processing, support multi-site routing: Target,
Route Interaction, Queue Interaction, Force Route, Routing Rule, Default Route, Create E-mail, E-mail
Response, E-mail Forward, Chat Transcript, and Create SMS. See new properties Detach and Detach
Timeout.

e Support for development of "interaction-less" processing has been added, which allows the creation of
SCXML applications that may be started/interacted with via ORS Web Services, rather than an
interaction. The following features support "interaction-less" processing:

* Blocks that influence interactions now support selecting the interaction they should use. The default
behavior is to use the current interaction which is backwards compatible.

* Wait for Event in the interaction process diagram, which can be set to not wait for a startup or
triggering event thereby enabling interaction less workflows.

¢ To support "interaction-less processing," the following blocks add a new property, Interaction ID:

* Routing blocks: Default Route, Force Route, Route Interaction, Queue Interaction, Routing Rule, Stop
Interaction, and Target.

e Flow Control blocks: Disconnect, and Exit

* eServices blocks: Chat Transcript, Create Email, Create SMS, Email Forward, Email Response,

Composer Help 46

Introduction to Composer

Identify Contact, Update Contact, Create Interaction, and Render Message.

* Voice Treatment: Create User Announcement, Delete User Announcement, IVR, Play Application,
Play Message, and Play Sound.

Interaction process diagrams add a Namespaces property, which gives the ability to refer to custom
namespaces in generated code.

Interaction Queue blocks in interaction process diagrams support segmentation based on views.
Multiple views can be defined and each can redirect flow to a different workflow diagram.

The following Flow Control blocks are available when creating an interaction process diagram:
Branching, ECMAScript, and Log.

When segmenting interactions to take different paths in a workflow, you now have the ability to define a
default limit for each segment.

When using the Media Server block to specify interactions of a particular media type for an interaction
process diagram, the following servers are now available for selection: Chat Servers and Third Party
Servers (such as one used for Capture Point application). The Publish operation creates endpoints for
these server types.

When using the Route Interaction block, a new Hints property allows you to specify extension data. The
following blocks also add the Hints property: Cancel Call, Create User Annoucement, Delete User
Annoucement, Default Route, Queue Interaction, Play Application, Play Sound, Play Message, Routing
Rule, Target, User Input.

When using the Route Interaction block, a new Hints property allows you to specify extension data. The
following blocks also add the Hints property: Cancel Call, Create User Annoucement, Delete User
Annoucement, Default Route, Queue Interaction, Play Application, Play Sound, Play Message, Routing
Rule, Target, User Input.

The Play Application block adds a new property, Use User Data. When set to true, Composer will
automatically update the interaction's user data with the input/inout parameters specified in the
Parameters property.

The Target and Force Route blocks add a Type property, which you can use to define the type of
redirection processing.

The Route Interaction block and Target blocks add a new property, Include Requests From Previous
Blocks, which can be used for cascaded target lookups.

A new Wait block can be used to have Orchesration Server transition out when one of a defined list of
events is received and the associated condition is true.

When using Composer's Business Rule block to request the Genesys Rules Engine to execute a Rule
Package in a routing workflow or voice callflow, the getUData() function is now available.

New Voice Application Features

New features for creating voice applications for GVP include:

VXML callflows now support a VXML application root document. This enables features like global
variables that are available across all callflows and sub-callflows.

The Prompts property in the following blocks allows VoiceXML to overlay text into an existing video
image/stream: Prompt, Menu, Input, DB Prompt, DB Input, Grammar Menu, Record, and Menu.

The Menu block supports specifying DTMF for repeating a menu.

New Voice & Route Application Features

Composer Help 47

Introduction to Composer

¢ While exporting a .WAR file, each Project can specify a unigue name which is included in the .WAR file.

¢ When using Context Services, you can specify a particular media type for a service, which can be a
Configuration Server Business Attribute, such as for an Application Type. The following blocks add the
Media Type property: Start Service, Associate Service, Complete Service, Enter State, Complete State,
Start Task, and Complete Task.

* When defining parameters for the Backend, Web Request, Web Service, Subroutine, and Subdialog
blocks, you can now use Expression Builder.

Composer 8.1

This section describes the new Composer 8.1 features.
IRD to Composer Migration Support

Starting with Composer 8.1, you can migrate routing strategies created with Interaction Routing
Designer (IRD) 8.0+ into Composer Projects as SCXML-based workflow diagrams, which can run on
the Orchestration Platform. The migration process uses an import wizard to handle the transformation
from an IRD strategy into a Composer workflow diagram. The IRD to Composer Migration Guide Wiki
details the migration process.

e Composer can now interface with the Genesys Rules Engine, which is part of the Genesys Rules System.
A Composer-compatible plug-in is available for developing business Rule Templates. This plug-in is
provided as part of the Genesys Rules System. For information on installing the plugin

¢ A new Business Rule block lets you request the Genesys Rules Engine to execute a particular set of
business rules in a routing workflow or voice callflow and get the results back.

Note: In the Genesys 8.1 release, the Genesys Rules System will only be packaged with the intelligent Workload
Distribution product and the Conversation Manager product.

Composer moves closer to parity with Universal Routing's strategy creation tool, Interaction Routing
Designer (IRD).

¢ An E-mail Response block combines the functionality of IRD's Acknowledgement, Autoresponse, and
Create Notification objects.

e A Chat Transcript block allows you to generate a reply e-mail to a chat interaction and attaches a chat
transcript.

¢ An E-mail Forward block combines the functionality of IRD's Forward E-mail, Redirect E-mail, and Reply
E-mail from External Resource object.

e A Screen Interaction block allows you to screen a text-based interaction for specific content (specific
words or patterns), and then (optionally) segment the interaction to different logical branches based on
the result of the screening query.

e A Classify Interaction block allows you to classify a text-based interaction based on content, and attach
one or more Classification categories to the interaction.

* For classification segmentation, an ECMAScript function determines if a particular category name or ID
exists in the array of category objects represented by an application variable. This variable can be the
output of the Classify Interaction block, enabling the Branching block to be used for segmentation
based on category.

Composer Help 48

Introduction to Composer

For manually attaching categories to an interaction, the User Data block can be used and then a
branching block can be (optionally) used to segment interactions to different logical branches based on
the different categories.

An Update Contact block allows you to update customer profile information in the UCS Database, based
on data attached to an interaction.

An Identify Contact block can identify a contact based on the interaction User Data; return a list of
matching Contact IDs based on the User Data; create a contact record in the UCS Database with
information in the User Data if a matching contact is not found; or update the UCS Database record of
the matching contact with information from the current interaction's User Data.

A Create Interaction block allows you to create an interaction record in the Universal Contact Server
Database for a customer contact. This saves the current interaction being processed by the strategy, in
the database.

A Render Message block provides the ability to render field codes in arbitrary text.

Other New Routing Application Features

Composer's existing Create E-mail block is enhanced to allow you to: pick up standard response text
from User Data; specify that the "To" address be picked up from the Customer Profile in the Universal
Contact Server Database; and use Field Codes in standard responses that will later be filled in with
user-specific values.

Composer's existing Route Interaction block now allows you to create applications where routing is
based on schedules from Genesys Workforce Management.

The Flow Control palette for routing applications contains a new SCXML State block. When used in a
workflow diagram, it allows you to write custom SCXML code that Composer will include in the SCXML
document that it generates based on the workflow diagram.

The Flow Control palette for routing applications contains a new User Data block for updating an
interaction's User Data and for attaching Business Attributes, Categories, and Skills.

When an interaction process diagram (IPD) uses a Workflow block, if the referenced workflow diagram
contains an eServices block that names a server performing an action or operation, Composer adds a
visual indicator in the form of a node (similar to an IRD strategy-linked node).

When developers work with Context Services, Composer accepts HTTP basic authentication credentials
and uses them for authentication, including digest authentication for working with Web Services.

You can now use variables in Skill Expression Builder. You can also disable Skill Expression validation
from the Configuration Server preference page.

You can now include your own custom JavaScript (*.js) files in workflows by placing them in the
/include/user folder. The JavaScript functions in the specified .js file can then be used in Assign or
Branching block expressions.

A new Composer Route Project template is available: Forward to External Resource.
Composer's database Query Builder and Stored Procedure Helper now support table synonyms.

New Integrated Voice and Route Project templates are available: Load Balancing and Working Hour
Routing, External File-Based Routing, and Play Application and Busy Treatment.

GVP-Specific Enhancements

e The Transfer block provides a property for setting an authorization code (authcode). It can be populated

either from free-form text or from an application variable.

e The Call Trace view used for debugging a callflow displays the line number for each incoming metric.

Composer Help 49

Introduction to Composer

e A "barge-in" option is available for prompts. The Interruptible property for the following blocks add a
new option for DTMF-only barge-in mode: Prompt block, DB Prompt block, Input block, Menu block,
Grammar Menu block, and DB Input block.

¢ Automatic selection of language-specific pre-recorded prompts, grammars, and TTS prompts is now
available during application execution. The following blocks add a new Language property: Prompt
block, DB Prompt block, Input block, Menu block, Grammar Menu block, DB Input block, and Record
block.

* The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of the
block. The language setting reverts back to its previous state after the block is done.

* The Language property affects the language of grammars used for ASR input for the following blocks:
Input block, Transfer block, and Route Request block.

¢ The Record block's Capture Filename Prefix and Capture Location properties now allow selection from
application variables in addition to accepting literal strings.

* You can now use the GVP ICM Adapter in VoiceXML applications, including invoking services, responding
to requests, and sharing data.

* A new ICM Interaction Data block, available on the CTI Blocks palette, supports sending of variables to
Intelligent Contact Management (ICM).

¢ A new ICM Route Request block, also available on the CTI Blocks palette, supports routing the call to
CTL.

¢ The Exit block's Return Values property dialog allows you to select the ICM variables to be returned.

¢ \oice Projects now have a Project-level flag, which controls whether ICM variables are available for
selection and assignment to variables within Composer's Entry block.

e SSML tags can be used in prompts.
Security Enhancements

e The Web Service block now supports certificate-based authentication. You can develop both voice
(VXML) and routing (SCXML) applications that support secure mutual authentication and
communication with a Web Service. Composer supports the use of both a digital client certificate and
server certificate contained in a keystore file.

¢ When creating a routing application and connecting to Configuration Server, Composer displays
informational text associated with both successful and unsuccessful authentication.

¢ You can configure an inactivity timeout for the connection to Configuration Server as well as when the
timeout warning dialog should appear.

* You have the option of having a configurable security banner appear when Composer is first launched,
similar to other Genesys applications. For information on configurable items related to the banner, see
the Genesys 8.1 Security Deployment Guide.

e Composer supports secure connections when connecting to GVP's Media Control Platform and when
connecting to Context Services and for Universal Contact Server.

¢ Composer now has Transport Layer Security (TLS) support and adheres to Federal Information
Processing Standards (FIPS) in its connection to Configuration Server and to GVP Media Control
Platform.

Routing & Voice Applications

* When organizing custom blocks, you have the option of creating new drawers in the palette. You can

Composer Help 50

Introduction to Composer

also select from a set of bundled custom icons for the custom blocks you create.

e Expression Builder now returns to its last state when re-opened, which includes displaying the tree and
the location in the tree in the Expression Builder Data area.

¢ The Expression Builder filter now works on the description of the functions in addition to the function
signatures.

* Expression Builder data loading is optimized to run in a separate thread. As a result, dialogs remain
responsive while data loading is in progress.

New operating system support for 8.1 is as follows:

e Composer can run on the Windows 2003, Windows 2008 (32-bit and 64-bit in 32-bit compatibility
mode), Windows XP, Windows Vista, and Windows 7 (32-bit and 64-bit in 32-bit compatibility mode)
operating systems. For more information, see "Operating Systems Supported" on page 41.

Composer Help 51

Getting Started with Composer

Getting Started with Composer

This section is your first stop for getting started with Composer. It discusses the following topics:

Also see: Composer 8.1 Routing Applications User's Guide.

Running Composer for the First Time
Software Updates Functionality
Integrating with Source Control Systems
Composer Projects and Directories
Security Configuration

Upgrading Projects/Diagrams

Keyboard Shortcuts

Menus

Toolbars

Composer Help

52

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RunningComposerfortheFirstTime
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SoftwareUpdatesandPlugins
https://docs.genesys.com/Documentation/IW/8.1.3/Help/IntegratingwithSourceControl
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SecurityConfiguration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/KeyboardShortcuts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerMenus
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerToolbars

Getting Started with Composer

Running Composer for the First Time

Setting Up Your Workspace

When you run Composer, before the user interface appears, a dialog box opens with a suggested
workspace, which is a location (folder) for your projects and files in addition to any special folders
that Eclipse needs to maintain for its internal bookkeeping. The dialog box gives the option of
changing the workspace to a different location. New projects created in Composer will be created
under this workspace as subfolders. After the Composer interface opens, the Project Explorer shows
this location. You can change this location by selecting File > Switch Workspace. Notes:

¢ Genesys recommends that the workspace folder name has no spaces in its path (for example,
c:\comp8ldev). This recommendation is not required and Composer does not enforce this. Genesys
also recommends using the component version in the name to avoid confusion during upgrades.

* When prompted for a workspace folder, do not specify parenthesis in the workspace path.

* The workspace should not be located in a ClearCase view, as this will cause problems accessing files
later during development.

Opening Composer

The first time you open Composer, it asks you to specify the location of your workspace. Eclipse
remembers this location and will present it for all subsequent times when you open Composer. If you
do not wish to be prompted each time for this path and plan to use the same location for all your
projects, you can check the Use this as the default and do not ask again option to skip this screen on

future launches.

Welcome Screen

When a new Workspace is created for the first time, you will be taken to the Welcome screen, which
provides getting started overview topics, tutorials and links for references on the Web. The first time
you enter the Workspace, select Tutorials and choose Configure Settings. The next time you open
Composer, if the Welcome screen still opens, click on the Workbench link. Or close the Welcome
screen by clicking the "x" on the Welcome tab. To go back to the Welcome screen at any time:

¢ Select Help > Welcome.

Composer Help 53

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#GUI_Element_Descriptions

Getting Started with Composer

Software Updates Functionality (Plugins)

You can find information on installing new software (such as for Dynamic Web Projects or updating
existing plug-ins in the Eclipse help. For example, using "update software" as search words displays
plugin topics in the Eclipse Workbench User Guide (Help > Contents).

=100 =]
Sesrch scope: Al topics
Search Results o : A [do = hlged oo
., orgscipss. b symchyone (Eckpss 21| oMb User Gyt > Tasks > DRENng el it SRR = [roaltion, Dot s =
= Patformn &R Specfication)
2 Trfocenter N * N
usin peveipment encronmentcuge | LNNSEAllation Details forr Plug-ins
1 POE - wihat's Hewin 3.5
Workbench User Guide Yow can browse detaled wdormation about the mdisideal ghig-ms that comgose wour instalaton. Ths
o Lipdating soltwas wising the Avalsbie view 12 wteful when the list of mstalled m of the feabare detal iz not encugh A tirnes yao want
= Lpdiabes wizard o knew exacty which warsions of which plug-ins are installed into your system, without having bo
2 Updating ard instaling software know what feanere contaned the phig-in T browse the plag-mn detads:
21 Lking the clsssic upeists mansger
; Upating the et alation 1. Chck Help = Abowt ard then chick B Tnstallagon Drerails .. to open a dialog showing
- Scheduing aukomatic updaies pages that provide more detall about your nstallation.
= Reverting to 2 previous rstel configration 2 Chek the Plug-ing tab to see a bst of the plag-ing that are installed in pour configuratan. The
- Lrireitsling softwecre Bt mehudes eack plug-in's narne, provider, id, and version,
. seadide Saftwace Skos 3. Salect a plog-m 1o ses addmonal detadl.
- m:::ﬁ:;;‘ . o Chek Legal Info to launch a beowses that shows any legal information that may be
2 Lipidating Fieaburias wth Ehe upcabe manager provided with the phig-mn.
B Eclpse Ftfarm What's Howin 3.5 2 Chck Show Signng Info te wiew wfermation abaut the signing certficates prowded with
1 IrekalUpdate the phag-in.
21 Trekabing soltsacs usng the Fustall wizerd
=, Irekakng nev Fealures vith tha updata @ Related tasks
~ manager '
1 Enabbng, dhabling, and eninctaling Feabres [nstallatien Dietads
B Fasturss Installation Detads for Featares
B Hek meri Installateon Detads for the Co ki
2 trekabation Desads the installabion
21 Irekabation Detads for Peatures I
2 Irekalstion Detads for the Confiouration
B [retalstion Detads for Plug-ns
21 Restoring a saved corfiguration
21 Irepecting the current corfiguration =
B |l & | % [W .
Dane

Plugin Installation Requirements

It is standard Eclipse behavior for plugins to be installed in C:\Program Files\... (i.e. the base
Composer installation directory), and NOT in the user's workspace. The installation of plugins must be
performed by an adminn user.

Composer Help 54

Getting Started with Composer

Dynamic Web Projects

After you install Java EE Developer Tools plugins, you can create a Dynamic Web Project containing
pages with active content. Unlike with static Web Projects, dynamic Web Projects enable you to
create resources such as JavaServer Pages and servlets. Here's how to get started:

o

1. Composer Help >> Install New Software.

2. Click Add. In the resulting box, enter http://download.eclipse.org/releases/galileo/

3.

4. Select the Web, XML, and Java EE Development Eclipse Java EE Developer Tools entry.Install the

Select it to see the available package.

plugins.

Restart Composer.

6. Create a Dynamic Web Project.

Note: Other missing project types can be similarly enabled.

Composer Help 55

Getting Started with Composer

Integrating with Source Control

This section describes setup instructions for using source control with Composer. The ClearCase
source control system is supported as well as Subversion.

ClearCase Plug-in Installation

To install ClearCase plug-ins for use with Composer:

1. Install ClearCase on the machine that Composer will run on.

2. Exit Composer. If you want to print these instructions to use after closing Composer, click the Print Page
icon at the top-right of the Eclipse Help window.

3. Install the ClearCase Eclipse plug-in from IBM:

a. Get the following files from IBM's website:com.rat.cc.win32-20080131A.zip and
com.r.cc.ccrefresh.all-20061107.zip

http://www.ibm.com/developerworks/rational/library/content/03July/2500/2834/ClearCase/
clearcase_plugins.html

Note: Actual ZIP file and directory names may change as IBM continues to update the plug-ins.
These documented names are current at the time of this writing. These plug-ins are for Eclipse v3.3
and not 3.4. Even though Composer 8.1. is based on Eclipse 3.4, Genesys recommends that you
install the plug-ins listed for Eclipse 3.3.

b. Extract the two ZIP files to a location of your choosing, essentially merging the contents.
There is a duplicate file .eclipseextension in the two ZIPs; you can safely ignore that file. The
ZIP files, when extracted, create a directory structure like:

=) eclipse
=l 155 Features
| com.ibm.rational.clearcase, coimport. feature_7.0,0,200706 126
|53 com.ibm.rational . clearcase.corefresh_7.0,0, 200611074
|5 com.rational.dearcase_7.0.0,200801514
= 153 plugins
|3 com.ibm.rational.clearcase. coimport_7.0.0, 200706126
I3 com.ibm.rational. clearcase corefresh_7.0.0,200611074
I3 com.rational clearcase. ackivities_7.0.0,200801314
|53 com.rational. dearcase. help_7.0.0,200301314
| com.rational.dearcase_7.0.0.200801314

c. If it does not already exist, create the directory ${Composer 8.1.Install}\features, where
${Composer 8.1.Install} is the installation root of your Composer 8.1 installation.For

Composer Help 56

Getting Started with Composer

example, ${Composer 8.1.Install} might be C:\Program Files\GCTI\gvp\Composer
8.1

d. From the directory where the ZIP files were extracted, copy the folders in the features
directory to ${Composer 8.1.Install}\features, and copy the directories in the plugins
directory to ${Composer 8.1.Install}\plugins.

Note: Instead of dropping the extracted zip file content in these two locations, you may place the
entire (eclipse folder) extracted content in the following folder location ${Composer 8.1.Install
dir}\dropins.

4. Ensure that ClearCase capabilities are enabled.

a. Go to Window > Preferences > General > Capabilities.

b. Make sure that the Team checkbox is checked. It must be checked in order for ClearCase
MVFS Support and ClearCase SCM Adapter preference items to appear in the Preferences
window. Please note you must restart Composer to see the changes.

5. Enable MVFS Support:

a. Start Composer.
b. Select Window > Preferences > Team > ClearCase MVFS Support.

c. Click the Workspace link underMVFS Support Preferences and select the Refresh
Automatically check box.

d. Click the Apply button.
e. Click OK to close the Workspace dialog box.
f. Again, open Window > Preferences > Team > ClearCase MVFS Support and make sure

that Enable ClearCase dynamic view file system support is selected, then click OK.

6. Configure the ClearCase plug-in. Configuration can be accessed from Window > Preferences > Team
> ClearCase SCM Adapter from the tree in the left-side panel. The recommended settings are shown
in the image below:

Composer Help 57

Getting Started with Composer

= Preferences ; =10l x|
[type filer et ClearCase SCM Adapter b -
- General
[Ak —When fies under source contral are edited or saved and...
[+ Composer Yoice
Help Checked in files are edited by an internal, interactive editor |Prnmpttu:h=daaut j
E instal.ﬂ.lpdate Checked in flles are edted by an internal, non-intesactive editee |automatically checkout |
- lava
(& JavaScript Checked in files are saved by an internal editor | atomatically checkout |
[+ Model Validabion H
opendrchitechuaWars For all of the abowe preferences, i chedaout is alowed:
- RunDebug % Do not hijack in snapshok views
[Server ™ Always hijack in snapshot views
I :::e Palcies ~ a } g | i
= SSt when workspace & dosed [Proenpt to checkin =]
- Diff Merge Patterns When new resources are added IPvmptbaa:l:ltn:urce control :j
—File Content
lonored Resources ClearCase decorations |Eniable lcon Decorations =l
mdr-:;ls :mwrmwumch-mdmtnm,m, |Mmi:al'r:h=:kinparﬂdi'ﬁm ﬂ
E ""‘EE Sawe dirty ediors before ClearCase operations |Frompt o save all editars =l
[H- Web Services
[¥Daclet Build command | ake -5 -F “§{ProjPathi§{Profiame}.mak’ =]
[ML [~ Aukomatically connect bo ClearCase on startup

[~ Set defaul to check out Files after adding them ko source control
[+ Perform Refresh Status operations recursively

¥ Decorabe project oot names with viswtags

¥ Request Stabus information on demand oy

Leheantced Optione, |

Restore Defauts | apoly |

(7] oK EI Cancel |

Note: You can read more about ClearCase features and working with ClearCase view from the help
topic Rational ClearCase SCM Adapter available from the Eclipse Help system. These help topics will
be available only after installing ClearCase plugins.

ClearCase Usage

To use ClearCase functionality within Composer:

1. Create a view using ClearCase Explorer, or use an existing view.

2. In Eclipse, if you don’t see the ClearCase toolbar, make the toolbar appear by clicking Window >
Customize Perspective. In the dialog box that displays, click the Commands tab, select the
ClearCase command group and click OK.

Composer Help 58

Getting Started with Composer

Customize Perspective - Composer Yoice S |EI|5|

Shorkeuts Commands

Select the command groups that wou want ko see added ko the current perspective (Composer Moice), The details field
identifies which menu items andjfor koolbar items are added ta the perspective by the selected command group,

fvvailable command groups: Menubar details: Toolbar details:
®) annotation Navigation = = Mavigate toolbar
O ant Eu:htu.:ur Presentation TEL | Mext Annaokakion
[Breakpaints 47| Previous Annotation

Cheat Sheets
ClearCase

Corwert Lin&)elimiters
Convert Web Project
Debug —
D Diagram

Editor Mavigation

[editar Presentation
External Tools

O 1ava Coding

[1avaDebug

D Java Editor Presentation
D Java EE

O 1ava Element Creation

D Jawa Mavigakion ¥
4| | v

Ise FZ ko display the description for a selected command ikem,

.:':?) (5] 4 I Zancel

Fiz Edit Diagram Navigate Search Project Rum ClearCase Window Help
|- |~ O0~-Q~ |8 |5 |@]|~ - e b _
|rahoema 4 | EHES | - - S=e Wl e 0F v B e Y

& ’ e S e KB @ @ B @ | ClearCase Toolbar

[+

@

=
3. Once the toolbar is available, click on the =& button.

After this, any Composer Project that resides in a ClearCase view will have the view name displayed
next to it in the Project Explorer window. Also, the icons for files and folders under source control will
show the status, such as checked out, hijacked, and so on.

Creating a Composer Project Managed by ClearCase

To create a new Composer Project that will be managed by ClearCase:

Composer Help 59

Getting Started with Composer

1. Bring up the Project wizard (File > New).

2. Clear the Use default location check box and enter in the Location field a path that resides inside
your ClearCase view.

The path becomes the root of the Composer Project. Note that the files in the new project will not be
checked into ClearCase until you use the Add to Source Control function.

To add a project that is already checked into ClearCase to your Composer 8.x workspace:

1. Use the Import wizard (File > Import).
2. Select Existing Projects into Workspace.

3. In the Select root directory field, enter the path of the project residing in your ClearCase view. Check
the box corresponding to the Project name.

Important: Leave the Copy projects into workspace box unchecked. If it is checked, the imported
project will not be under ClearCase control.

To edit a file that is under source control, it must be checked out from ClearCase. After editing, it can
either be checked in to create a new source control version, or the checkout can be undone to revert
the file back to its previous version. You can also compare changes to the previous version before
checking it. All of these operations can be accessed in several alternative ways:

* Right-click the file name in Composer's Project Explorer view, and use the Team submenu.

¢ Select the file in Composer's Project Explorer view, and use the ClearCase menu on the top menubar.

¢ Select the file in Composer's Project Explorer view, and use one of the buttons on the ClearCase toolbar.
Note: If you choose to remove a ClearCase-managed Composer Project from your workspace, you
will be prompted with a Confirm Project Delete message. Genesys strongly recommends that you

choose the Do not delete contents option. This leaves the files in your ClearCase view untouched.
Otherwise, the files may be removed from source control.

Subversion Configuration

Subversion is a client-server versioning system. You can integrate Subversion with Composer in order
to have a version control over Projects. Subversion creates and maintains a repository on the Project
web server. Its clients run on Composer machines and connect to the Subversion server over the
Internet.

Note! The integration steps below are not version-specific or Composer-specific. The steps refer to
the interface and capabilities provided by the Eclipse Integrated Development Environment (IDE)
(Subclipse Team Provider plug-in) and CollabNet (CollabNet Subversion Server) products.

The recommended steps are as follows:

1. Install and Configure Subversion Server.

2. Download the Collabnet Subversion server from the website: http://www.collab.net/downloads/
subversion/

Composer Help 60

Getting Started with Composer

3. Follow the installation and configuration instructions from the vendor for the operating system you are
working with. Complete registration if required. When the installation executable runs, the wizard has
an option to View Installation Information.

CollabMet Subversion Server 1.6.6 Setup O] x|

Yiew Latest Readme

ﬁil : Collabhet Subwversion Server For Windows

L 3

The latest installation inFormation is maintained and updated on
the openCollabMet web site, Click the link below to open waur
web browser and view the latest information prior ko installation.

‘Wiew inskallation information on openCaollabiet

allabiet Subyversion

Cancel |

Note: If you are running IIS on the server machine during installation of Collabnet Subversion server,
you may wish to change the Apache port to “81” instead of the default 80 to avoid conflict.

4. Follow post installation instructions from the vendor and complete Collabnet Subversion server
configuration.

5. Configure the Subversion repository. Follow the instructions provided by the vendor
(http://www.collab.net/downloads/subversion/) to define the permissions, user name, and password for
accessing the repository. Use the instructions for the specific version of the Callabnet Subversion server
that you installed in step 1.

Note: Subclipse provides an option for creating a repository, but this is more suited for personal
development where you do not need to share your code. Typically, you would set up a Subversion
server, create the repository on the server and then point Subclipse at the server.

6. Install the Subversion client using the capabilities of Eclipse by adding Subclipse to the Eclipse IDE.
Subclipse is a project to add Subversion support to the Eclipse IDE. Use Eclipse's Software Manager to
add Subclipse to our Eclipse IDE.

a. Add the Subclipse update version compatible with Subversion server installed in step 1.
b. From Composer's Help menu, choose Install New Software to open the Install wizard.

c. Select the required Subclipse update from the site: (http://subclipse.tigris.org/update_1.6.x/)

Composer Help 61

Getting Started with Composer

Note: The above link may not be current. In this case, check the http://subclipse.tigris.org/ site. The
Download and Install section lists update sites for various Eclipse versions. Choose the correct site
based on the Eclipse version for Composer. Composer’s Eclipse version can be determined from Help
> About and clicking the Eclipse.org icon.

d. Click on the Download link to go to the download page. There you will find the URL to enter
into the Eclipse Install wizard.

e. Follow the wizard and instructions provided in the Help > Contents > Workbench User
Guide for installing new software.

f. Restart Composer if required by installer.

7. Create the CVN (Subversion) item in Composer menu bar. Follow the Eclipse instructions on customizing
perspectives /creating command groups (Help > Contents > Workbench User Guide > Concepts
> Perspectives > Configuring perspective command groups.

8. Define CVN repository location to your Eclipse IDE. Follow the instructions provided in Help > Contents
> Workbench User Guide > Getting Started > Team SVN Tutorial. Use the instructions for
Specifying a project location.

For more details working with CVN, please, see Help: Subclipse - Subversion Eclipse plugin.

Checkin Error

If you are using Source Control tools, checking in Composer Projects contents after a Project Upgrade
may results in an error. See Checkin Error During Source Code Integration.

Composer Help 62

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CheckinErrorSourceCodeIntegration

Getting Started with Composer

Composer Projects and Directories

A Composer Project is associated with either:

e A voice application for Genesys Voice Platform or

* A routing application for the Orchestration Platform.

In general, a Project consists of a predefined, structured set of files and folders that contain all
resources for the application.

Voice Application Project Types

Voice applications use two types of Composer Projects:

* Java Composer Projects -- Use JSP and Java to implement server-side blocks and custom business
logic. These Projects can be deployed to Tomcat, JBoss, or IBM WebSphere servers or other web
applications servers that meet the requirements described in the Composer 8.1 Deployment Guide.

* .NET Composer Projects -- Use ASP.NET and C# to implement server-side blocks and custom business
logic. The Project can only be deployed to Microsoft IIS.

Also see Creating Voice Applications for GVP. Note: .NET projects may show this warning in the
Console View. "include\getWebServiceData.aspx(482): warning CS0618:
'Microsoft.Web.Services3.SoapContext.Security' is obsolete: 'SoapContext.Security is
obsolete. Consider deriving from SendSecurityFilter or ReceiveSecurityFilter and
creating a custom policy assertion that generates these filters.' This warning can be
ignored and no workarounds are needed. It will not show up as an error or warning in the Problems
View.

Routing Application Project Types

Routing applications are created as Java Composer Projects. They are SCXML applications with full
support for the Genesys Functional Modules. A Routing application can be deployed on a web
application server that meets the minimum prerequisites described in the Composer 8.1 Deployment
Guide. Also see Creating a New Routing Project.

Project Structure/Directories

A Composer Project (Java or .NET) will contain some or all of these subfolders depending on the type
of Project:

e App_Code -- .NET Composer Projects only. This folder will be empty by default as Composer bundles all

Composer Help 63

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VoiceApplicationsandCallflows
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowExampleandPalette
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScriptBlock#Using_Genesys_Functional_Modules
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingaNewRoutingProject

Getting Started with Composer

the C# classes in to the ComposerBackend.dll file. Custom C# classes will also go into this folder.

e bin -- Any libraries used in a .NET Composer Project go here.

Callflows -- Folder for storing all the callflow diagrams (.callflow files)

db -- Database connection.properties and .sql files are stored here.

e include -- Composer-provided standard include files used by Backend logic blocks.
Custom JavaScript files (.js) can be included in a routing application by placing the file(s) in the
include/user folder. Re-generating code for all IPD diagrams in the project is required after placing

the files. The JavaScript functions in the specified .js file can then be used from any Workflow block
that supports writing expressions e.g. the Assign, Branching and ECMASCript blocks.

e META-INF -- Created when you create a new Java Composer Project. It is needed for Java and is included
when a .war file is exported from Composer. Do not make changes to this directory.

* WEB-INF/1ib -- Java Composer Projects only. Folder for external dependency libraries such as JAR files.
Note: The Tomcat application server should be restarted after changing any JAR files in this folder.

e Interaction Processes -- Folder for storing all the interaction process diagrams (.ixnprocess files).
¢ Resources -- Folder for the audio and grammar resources.Resources/grammars -- Folder for Grammar
Builder (.gbuilder files) and GrXML files.
e Resources/grammars/<language code> -- Place language-specific grammars here (such as
en-US or es-MX folders).
e Resources/prompts -- Folder for prompts files.

e Resources/prompts/<language code> -- Place language-specific prompts here. If the
application language is changed mid-call using a Set Language block, prompts audio
resource paths in these language folders will be translated to the current language at run
time.

e Scripts -- Folder for user-written ECMAScript. Custom JavaScript files (.js) can be included in a voice
application by placing the file(s) in the Scripts folder.
e src-gen -- Folder for the code generation VXML/SCXML files.

e upgradeReports -- When migrating IRD strategies into Composer, folder for migration reports. Also
used for reports as result of upgrading Projects and diagrams.

e src -- Folder for custom code such as backend logic pages written by the user.

e Workflows -- Folder for storing all the workflow diagrams (.workflow files).
Static VXML/SCXML code is generated with the name of the Composer diagram file. The code will be
saved in the src-gen folder under the current active Project. The two types of Projects have different
Project natures. Based on these Project natures, different builders, editors and preferences are

associated with the Projects. For example, .NET Composer Projects and Java Composer Projects have
different preferences for deployment since they are deployed to different web/application servers.

Folders Created When Upgrading Projects and Diagrams

The following additional folders may also be created in the Project Explorer:

Composer Help 64

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Database_Connection_Files
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Migrating_IRD_Strategies
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams

Getting Started with Composer

e When upgrading to 8.1, a Project upgrade creates the folder . /WEB-INF/1lib, copies files from ./1ib to
./WEB-INF/1lib, then removes the ./1ib folder from the Java Composer Project.

e archive -- For placing zipped original contents of the Composer Project (created during an upgrade).

e upgradeReports -- For upgrade reports (created during an upgrade).

Adding Files to an Existing Project

Composer recommends adding files (i.e., a prompts audio file) to an existing Project within Composer
using the following methods:

¢ Use the File > Import capability.

¢ Add directly from Windows Explorer and then refresh the resource list by pressing F5 in Composer’s
Project Explorer.

¢ Drag and drop files onto Composer’s Project Explorer.

For out of sync files, please see troubleshooting topic Workspace Files Not in Sync.

Project Permissions

Composer Project upgrade and code generation processes need current\launching user WRITE
permission to the Composer Project Directories and Files. If you move Projects between Windows and
0S X, these considerations may apply:

WRITE permission:

In Windows 7 OS, Projects created using Mac OS needs Effective Permission to be set. To do that:

1. Open Windows Explorer and browse to Composer Project directory.

2. Right Click the Project folder and select the Properties option to open the properties dialog.

3. Select the Security tab and click the Advanced button.

4. In the Advanced properties dialog, select the Effective Permissions tab.

5. In the Effective Permissions tab, select the current User / Groups to grant Full Permission.

Also uncheck the Read-only and Hidden properties in the General tab for the Project and sub
directories. Note: While importing Composer Projects, if the Copy Projects into Workspace option

is selected, the above mentioned permissions needs to be set for the copied Project directory
separately.

Composer Help 65

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkspaceFilesNotinSync

Getting Started with Composer

Using Composer Shared Subroutines

Typically subroutines are a part of the Project in which other diagrams call them. This makes the
project self-contained that can be deployed as a unit with minimum dependencies on other Projects.
However, in some cases subroutines may be used by multiple Projects but are required to be present
in only one location in the workspace. This need for residing in a single Project within the workspace
is usually governed by the need to deploy to all subroutines to a single location from where these
subroutines may be referenced by multiple applications - similar to how a service is exposed. It is
recommended that subroutines be a part of the Project they are consumed in and to enable this
"sharing" via an SCM system (e.g., symbolic links in ClearCase; other system will support this
capability differently). If that is not an option, subroutines in Composer can be placed into a
"common" Project, so that multiple other Projects can access and reuse them. NOTE: In order to
support the URL substitution from the "$$" tokens, this feature requires Orchestration Server version

8.1.300.27 and above.

In our example, we will create two Projects:

e CommonProject - the Project containing subroutines

e MainProject - the Project containing the main diagrams, which will use the subroutines in
CommonProject

(5 Project Explorer &3 =R

P %% CommonProject
> 7% MainProject

After subroutines have been created in CommonProject, MainProject must be set to reference
CommonProject. This means that MainProject can use the subroutines files in CommonProject.

To do this, open the Project properties page of MainProject by right-clicking and selecting
Properties. Select the Project References page on the left-hand side, and enable the checkbox for

CommonProject:

Composer Help 66

Getting Started with Composer

eno ... PropertiesforMa A— N—
type filter taxt Project References Sv Lvw
¥ Resouroe

Buitders Projects may refer to other projects in the workspace.

Code Ceneration Made Use this page to specify what other projects are referenced by the project.
Default Legging i

ICM Suppaort Praject references for ‘MainPraject”

Locales o {5 CommenPrejea

Praject Facets

Project Properties

Project References

Prarmpt Management
Refactoring Histary
Reset IPD Publish Informatic
Run/Debug Settings
Server
I Task Repository
Task Tags
Tomcat Deployment
FYalkdation

@ [ame | ok

In a callflow in MainProject, you can create a Subdialog block which uses a Subcallflow diagram in
CommonProject:

Composer Help 67

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SubdialogBlock

Getting Started with Composer

o P

"'Ij“

il ey Mas c sl fow - Lrlyna SP

SR o B I
ok Lk ekt AT
¥ L b A i

Pbais AT § AdEarn i S el o8 Il Solilaiieg Disn

Wpme =g

5 Proseen Delsain Drvoe

P Dupconrmcind froms Dot gon barm

Debug and Release Modes

When using shared subroutines, it may be helpful to separate the development process from the final
deployed application. During the development process, it is assumed that CommonProject resides in
the same Workspace as MainProject. However, in a production environment, a more complex

service may be needed to host subroutines.

Composer supports the concept of Debug and Release mode code generation. Using this mode flag,
the same Project can generate different code suitable for specific tasks.

Debug and Release mode can be set by Project properties dialog:

Composer Help

68

Getting Started with Composer

- NaNs) Properties for MainProject
type filter text Code Generation Mode L= . -
F Resource
Builders Composer projects can be set to Debug or Release mode. The setting will
Code Ceneration Mode affect the eode generated from the diagrams in the project. Debug mode
Default Logging is intended for code that will be run in a development testing
ICM SUSport emdronment, and Release mede |5 Intended for production envirgnments,
Locales
Project Facets

Praject Properties Code Generation Mode | Debug = |

Project References
Prompt Management
Refactoring Histoery
Reset IPD Publish Informatic
Run/Debisg Settings
Server
¥ Task Repository
Task Tags.
Tomcat Deployment
Fvalidation

|_Restore Defaults | | Apply |

@ [canes | [om

To apply Release Mode to shared subroutines development, open the Properties view of the
Subdialog block in the the callflow for MainProject. Enable the Show Advanced Properties option:

1 Properties &% mE ™M Y=n [
™ New Properties View |
i Subdialog v & Show Categories '

Model PROPOALY — Show Advanced Properties

Appearance | "-“‘:‘erm Configure Columns... |
=# Pin to Selection
n ——

This will reveal a Release Mode URI property:

¥ Location
Method FEget
Release Mode Uri W http:/ (5 SSUBROUTINE SERVICES S fsubroutines /S SSUBROUTINE VERSIONSS
Tyoe EiE Project File
Ui g

Note that any token delimited by “$$” in this property can be substituted at runtime.

Once the Application is ready to deploy, set the Code Generate Mode of the Project to Release.

Composer Help 69

Getting Started with Composer

This will generate code that uses the Release Mode URI property value.

Composer Help 70

Getting Started with Composer

Multiple User Environments

When more than one Composer user attempts to log into the same Workspace, the following
message appears: Workspace in use or cannot be created, choose a different one.
Whenever Composer uses a Workspace, it locks the Workspace so other Composer instances cannot
access it. A Workspace is meant to be a "private" development area, until the developer decides to
share it with the team. It is not possible to share a single Workspace among multiple users, so you
need to set up (private) workspaces for each developer. To merge the work of different developers
together, use source control, which could be be SVN (Subversion), Git, or something else. This is the
best way to manage a Composer Project with multiple users working simultaneously on it, and
prevent the developers from interferring with each other's work.

You could consider the Subversion plugin in Composer as a connector to source countrol like SVN. To
install the Subversion plugin, see Software Updates Functionality (Plugins). Continuing with this
example, once the Subversion plugin is installed, the Project can be shared using source control.
When you right-click on a Project, you will find all the relevant options under the Team menu. For the
first time, a Project needs to be shared with source control. After this, there will be options on the
Team menu.

Composer Help 71

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SoftwareUpdatesandPlugins

Getting Started with Composer

Security Configuration

You have the option of configuring:

e A secure Transport Layer Security (TLS) connection between Composer and Universal Contact Server
(UCS) during application design when connecting to Context Services.

e A secure TLS connection when connecting to Configuration Server during design time.
You can also configure:

e A security banner that displays when users establish a Configuration Server connection.

¢ An inactivity timeout. If a Composer user has authenticated with Configuration Server, Composer times
out after a configurable number of minutes of inactivity.

¢ Both certificate-based and key-based authentication.

For information on configuring the above features, see the Genesys Security Deployment Guide

Composer Help 72

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SettingContextServicesPreferences
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Configuration_Server_Connection

Getting Started with Composer

Upgrading Projects and Diagrams

Note: Java Composer Projects were referred to as Java Voice projects in earlier versions of Composer,
such as Composer Voice. While working with the current version of Composer, an upgrade is required
for a previously-created Composer Project and Project diagrams. If you simply copy diagrams into a
new Composer Project instead of upgrading the Project itself, then you must use the diagram
upgrade procedure as described below. Genesys recommends that you create a dedicated workspace
for 8.1 Projects and do not reuse the previously created workspace. This will provide a clean
separation between the two versions as well as ensure that a backup copy is preserved for later
reference or rollback.

Upgrade Summary

A summary of the Composer diagram upgrade process is as follows:

1. Obtain Composer 8.1 through Genesys Technical Support.
2. Uninstall the older version of Composer. Before uninstalling the older version of Composer:
¢ Make a copy of your Composer workspace folder (which contains all your Project files), as
your workspace may be deleted if it is located under the installation directory (C:\Program
Files\GCTI\Composer 8.1\workspace).
¢ Uninstall the older version of Composer.
3. Install Composer 8.1.
4. Upgrade at a Project level or at the Diagram level as described below.

Routing Upgrade Limitations

See Migrating IRD Strategies.

Project Upgrades

A Project-level upgrade will automatically apply diagram-level upgrades for all the diagram files
directly residing within the diagram (Callflows or Workflows) folder. As part of the upgrade process,
Composer makes a back-up of the Project and its files, which are saved under the archived folder; for
example: ./JavaComposerProject/archive/JavaComposerProject20100809184446388.zip To
upgrade a Project created in a previous version:

1. Import an old Composer Project into Composer's Project Explorer view. From the menu, select File >

Composer Help 73

https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Migrating_IRD_Strategies

Getting Started with Composer

Import.

In the Import dialog, navigate to General and double-click Existing Projects into Workspace.
Browse to the Composer Project location and select the Project(s).

Mark the checkbox Copy projects into workspace.

Click Finish.

In the Project Explorer, select the imported project and type F5 to refresh.

Right-click the imported Project and select Upgrade Composer Project from the context menu.

© N o v A~ W N

If the Project is upgraded, a message appears indicating that it is the current version. Otherwise, a
prompt appears asking if you would like to upgrade this Project. Click the Yes button to start the
upgrade process.

9. View the upgrade report. Once the upgrade process is complete, Composer displays a report. The report
is located in the Reports folder of the Project; for example:C:\Work\Templ\Gate3IPTest\Reports\
UpgradeReport Gate3IPTest20090513155840979.html

Upgrade Error Message

After a Composer Project upgrade, the Project Upgrade Report may display the following error
message: error while updating the .studio config.properties. In this case, permissions for
.studio config.properties may be read-only or hidden. To resolve this issue, go to the file system
and check for the studio config.properties file located under the Composer Project directory. Set
the file permissions so that the read-only and hidden file attributes are disabled/unchecked. Hint: To
find where the current Project directory is located, do the following:

1. Go to Composer's Project Explorer view.

2. Right-click the Composer Project.

3. From the shortcut menu, select Properties > Resource and look for Location., e.g., Location:
C:\Program Files\GCTI\Composer 8.1\workspace\JavaComposerProject

Diagram File Upgrade

In Composer 8.0.2 and later, diagrams for voice applications are called callflow diagrams whereas in
earlier versions of Composer they were called studio_diagrams. Follow the steps below if you have
only copied older diagram files to a current version of Composer Project (or to an already upgraded
Composer Project).

1. In Composer's Project Explorer, select the Project destination folder to where you want the files to be
imported, such as the Callflows or Workflows Project folder.

2. Right-click and select Import.

3. In the Import wizard, select the diagram files to import.

4. After the import operation completes, right-click on the imported diagram file and select the upgrade
option: Upgrade Callflow Diagram or Upgrade Workflow Diagram.

Composer Help 74

Getting Started with Composer

Changes as a Result of Upgrading

It is important to note the following:

* When upgrading to 8.1.1, references to internal variable names may have to be edited manually. See
Variables Project and Workflow, Internal Variables Naming for details and examples. It is recommended
that internal variables such as DB Data block database result variables not be used; instead, create
User variables to store these results.

e A Project upgrade does not upgrade any custom blocks. When Composer is launched, it checks if any
custom blocks need upgrading and upgrades them. There are no manual steps involved.

¢ When upgrading to 8.0.4/8.1, Project upgrading creates the folder ./WEB-INF/1ib, copies files from
./1lib to ./WEB-INF/1ib, then removes the ./1ib folder from the Java Composer Project.

e When upgrading from 8.0.2, the Entry block variable _COMPOSER WSSTUBBING is
renamedCOMPOSER WSSTUBBING.

* When upgrading from 8.0.1 to 8.0.2, the Studio Diagram file extension changes from .studio diagram
to .callflow. For example: MyDiagram.studio diagram changes to MyDiagram.callflow.

» To avoid any resulting file name conflict, the diagram upgrade will append a timestamp to the file name
only if a .callflow file with the same file name already exists in the same folder; for example:
Main 2010 02 19 123010.callflow. The Timestamp is of the following format: yyyy MM_dd_HHmmss

e Starting with 8.0.2, the following callflow blocks contain a mandatory Output Result property: Menu, DB
Input, Grammar Menu, Input, Get Access Number, Transfer, Statistics and Record. You supply this
property by selecting a variable. Since this property is mandatory; if not supplied, an error occurs in the
Problems View when validating the callflow.

¢ Upgrading to 8.0.2 or higher automatically populates this variable. For example, if the block is a Menu
block and the block's name is Main_Menu, upgrading will add a Main_Menu variable to the Entry block
(as if you added it manually) and will set the Output Results property to this variable.

¢ The GVP Next Generation Interpreter does not support the error.badfetch.badxmlpage event. If
upgrading a callflow application from an earlier version that listed this event under Supported in its
Entry block Exceptions dialog box, you will need to modify that Entry block by removing that event
under Supported in the Exceptions dialog box.

e Composer workflow and callflow diagrams do not directly store diagram grid information. This
preference is workspace-specific. If you are using a new workspace, you can set this value prior to
upgrading Projects and diagrams so that the grid information does not change during the upgrade
process.

Note: Workspace preferences can be exported and imported from File > Export or Import >
General - Preferences.

Generating Code for multiple diagrams from command line

A command line option is availabe in Composer 8.1.3 and later to generate code for all diagrams for
all projects in a workspace eclipse.exe -application
com.genesyslab.composer.voice.generator.commandline.app -nosplash -console
-consoleLog -data .\workspace

e Eclipse should not be running. This commandline will launch a headless instance of Eclipse that will exit

Composer Help 75

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesProjectandWorkflow#Internal_Variables_Naming
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DatabaseInputBlock#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DatabaseInputBlock#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumber#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TransferBlock#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticBlock#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock#Output_Result_Property

Getting Started with Composer

once code generation is complete.
e Eclipse.exe should be executed from its installed location.

* .\workspace is the relative path to the workspace that contains your projects for which code should be
generated

e This will generate code for all supported types of diagrams
e Callflow : VXML
* Sub-Callfow : VXML
* Workflow : SCXML
* Sub-Workflow : SCXML

e Interaction Process Diagram : SCXML

Migrating IRD Strategies

Starting with Composer 8.1, you can migrate routing strategies created with Interaction Routing
Designer (IRD) 8.0+ into Composer Projects as SCXML-based workflow diagrams. For more
information, see the Composer 8.1 IRD to Composer Migration Guide.

Composer Help 76

Getting Started with Composer

Working with Diagram Layouts

Composer routing workflow and voice callflow diagrams follow a vertical layout scheme by default.
The in port of a block is always positioned at the top of the block while one or more out ports are
positioned at the bottom edge of the block. Exception ports are displayed on the left edge. Following
this vertical layout can quickly exceed the available vertical screen space. The Outline view can then
be used to determine which part of a large diagram is being displayed currently and to quickly
navigate to a different part by clicking the outline view.

It is possible to follow a horizontal layout where the in ports and out ports can be manually re-
positioned to any edge of the block and lose some features. For example, elbowed (bent) connectors
and individual ports may not display on the block making it difficult to know how many unconnected
ports are present and also to connect out ports out of order. See Show Connection Ports for more
details. Please note that switching between the default vertical layout and the more flexible
horizontal layout will rearrange connection links and manual rearrangement may be necessary. While
working with diagrams, you may run into odd looking links. The figures below show some of these
and lists suggestions on how to fix them.

[Link Issue Steps to resalve End Result
1. Grab the extreme laft and right
points of the infinity curve and
coax tham towards the center
A until they merge intothe =
%, User Data vertical line, —o L
UserData2 UserData2
2T t (@) Target
entongueus, bt & Targe errorusuesbngh
Targeti Ta‘gau
r
-
[
Exit [Exit
@ Exit1 | @ Exitl

Composer Help 77

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#GUI_Elements_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DiagramPreferences#Global_Settings
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks

Getting Started with Composer

pr—
‘ O

Exit

“Web Request
webReguastL

Increase the vertical spacing
batwean the two blocks linked
by this connector until the
broken connectar fixas itsalf,

! Entry
.En:rn
o) Web Request
WebREquEtL
55 Web Service
WebServidel

® Bt

Exit1

To make it easier to align blocks, Composer diagrams have enabled "just in time" guides. They show
up when a block is dragged near another block, when blocks are aligned, and help for about a
second. To place the block in an aligned position, drop the block when the guides confirm the block is

aligned.

“b Web Request

WebReguestl

) web Service
WebServicel

Composer Help

78

Getting Started with Composer

Accessing the Editors and Templates

Composer editors are embedded/integrated within the user interface and are made available to you
whenever a .scxml, .vxml, .ccxml, .grxml, or .jsp file is created or accessed within Composer.

Creating a New File

In Composer or Composer Design perspective, create a new VoiceXML, SCXML, or CallControlXML
file as follows:

e Select File > New > Other > Composer > Others.

* Select the file type.

¢ Select the parent folder; usually an existing Project.

e Enter a name for the file.

» If applicable, click Advanced to link to the file system and use an existing file.

e Click Finish.

Using an Existing Template

e Select File > New > Other > Composer > Others.

* Select the file type.

e Select the parent folder; usually an existing Project.

* Enter a name for the file.

* If applicable, click Advanced to link to the file system and use an existing file.

* Click Next.

e Select the template.

¢ Click the Use SCXML Template checkbox.

* Click Finish.

The editor opens with your new file. When working with XML files, the view contains Source and
Design tabs. All editor functions described at the top of this topic are available to you. The

appropriate Composer editor also opens whenever you open an existing .vxml, .ccxml, .grxml, .aspx,
or .jsp file, whether previously created as described above, or previously imported into Composer.

Composer Help 79

Getting Started with Composer

Open an Existing File
Open an existing file as follows:

* Select File > Open File.
* Navigate to the file to open, OR

Open a Composer Project's src or src-gen folder in the Project Explorer, then double-click the file to
open it in the editor.

Creating a Custom Code Template

When writing manual SCXML/VXML/CCXML/GRXML code in the file editors, you may run into code that
becomes repetitive. You may consider creating a code template to avoid retyping this block of code.
Creating templates will improve the speed and consistency for writing code. The following steps show
how to create a code template.

¢ Select Window > Preferences.

¢ In the Preferences dialog box, navigate through the Composer category, and expand the file type (VXML
Files / CCXML Files / GRXML / SXCML Files) in which you want to add your template. Then select the
Templates section. For example, select VXML Templates.

¢ Click the New button to add a new code template.

¢ Fill in the fields for the new template. The Context drop down box specifies at what context level you
want the code template to appear as a context sensitive help.

¢ Click the OK button when finished.

XML File Preferences

You can also set XML File Preferences: Window > Preferences > XML > XML Files. When
specifying Encoding formats in the XML Preference page: encoding formats are applicable only for
new File creation using the Template option: (File > New > XML > XML File > Create XML File
from an XML Template > Select XML Template). This applies only to new XML, VXML, CCXML and
SCXML files. Existing files within the Project will not get impacted.

Creating a Backend JSP File

¢ Create a new JSP file by selecting File > New > Backend JSP file.

* In the Create Backend JSP File folder, navigate to the src folder within the Java Composer Project in
which the Backend JSP file belongs.

¢ Type a name In the File Name field.

Composer Help 80

Getting Started with Composer

¢ Click Finish.

The Editor opens with a JSP file template. You can see your new file in the src folder of your Java
Composer Project in the Project Explorer. A template is provided when you create a new Backend JSP
file in Composer. You implement a performLogic method as a JSON object, store a result and return it
to the voice application if desired. You have the flexibility to enter any valid JSP code that you wish.

Creating a Backend ASP NET File

e Create a new ASP.NET file by selecting File > New > Backend ASPX file.

In the ASPX File folder, navigate to the include folder within the .NET Composer Project in which the
Backend ASPX file belongs.

e Type a name In the File Name field.

Click Finish.

The Editor opens with an ASPX file template. You can see your new file in the include folder of your
.NET Composer Project in the Project Explorer. A template is provided when you create a new
Backend ASPX file in Composer. You implement a performLogic method as a JSON object, store a

result and return it to the voice application if desired. You have the flexibility to enter any valid
ASP.NET/C# code that you wish.

Composer Help 81

Getting Started with Composer

Keyboard Shortcuts

When working in Composer, you can use the following keyboard shortcuts. Click in the Package

Explorer on the left. Then use the keyboard shortcuts shown below.

Ctrl+Alt+P

Ctrl+Alt+)

Ctrl+AIt+T

Ctrl+Alt+0
Ctrl+Alt+R

Alt+1+C

Alt+1+D

Ctrl+Alt+C

Alt+M
Alt+P+P

Alt+H

Alt+H+C

Alt+H+A

Ctrl+Alt+D
Ctrl+Alt+S

Space

Alt+A

Alt+D

Alt+R

Create new interaction process
diagram

Create new Java Composer
project

Create new .NET Composer
project

Create a new voice callflow
Create a new routing workflow

Open dialog box for connecting
to Configuration Server

Disconnect from a connected
Configuration Server

Generate all

Open Prompt Manager
perspective

Open Project properties

Open Composer Help
Open Cheat Sheet

Open About Composer
Open Database Connection
Profiles

Open Statistic Builder

To toggle a check box
Jump to an Add button in a

wizard

Jump to a Delete button in a
wizard

Jump to a Remove button in a
wizard

Create Interaction Process
Diagram Wizard opens

Wizard for Java Composer project
opens

wizard for .NET Composer project
opens

Callflow Diagram wizard opens
Workflow Diagram wizard opens

Connect to Configuration Server
dialog box opens

A connected Configuration Server
is disconnected

Brings up the Generate All
wizard. Creates properly
formatted VoiceXML (callflows) or
SCXML (workflows) diagram files
for the Project.

Prompt Manager perspective
opens

Properties dialog box opens

Help menu appears. Select Help
Contents.

Help menu appears. Select Cheat
sheets.

About Composer dialog box
opens

Database Connection Profiles
opens

Statistic Builder opens.

The check box mark toggles on/
off

The Add button is selected
The Delete button is selected

The Remove button is selected

Composer Help

82

Getting Started with Composer

ALT+U Jump to an UP button in a wizard The UP button is selected
ALT+W Ju_mp to a DOWN button in a The DOWN button is selected
wizard
Jump to a Test/Preview button in The Test/Preview button is
Alt+T :
a wizard selected
Alt+R/Alt+W Ju_mp to a Browse button in a The Browse Event button is
wizard selected
Alt+B Jump to a Back button in a wizard The Back button is selected
Alt+N Jump to a Next button in a wizard The Next button is selected

Jump to a Finish button in a

Alt+F .
wizard

The Finish button is selected

Composer Help 83

Composer Menus

Composer Menus

This section discusses Composer's top-level menus.

Composer Help 84

Composer Menus

File Menu

The commands active in the File menu change depending on the object you have selected, the
perspective, and where you are within the perspective. Commands available from the File menu are
described below. Also see the Hiding File Types topic.

Select New > Other, which can be a new:

¢ Java Composer Project

.NET Composer Project
e Project

e Callflow Diagram

e Workflow Diagram

e Grammar builder file

New « VoiceXML file
(Alt+Shift+N) e SCXML file
e GrammarXML file
e CallControlXML file
e Backend JSP file
e Folder
e File
You can also select Example... or Other... (for example, to create
a new Interaction Process Diagram). Both of these bring up the
Select a Wizard dialog box.
Open File Opens the selected object.
Close))
Closes the current callflow or workflow diagram in
(Ctrl+W) the canvas.
Close All
(Ctrl-+Shift+ W) Closes all open elements in the workbench area.
Save
(Ctrl+S) Saves the selected object.
Save As Saves the selected object under another name
Save All

(Ctrl+Shift+S)

Revert

Saves all files in all open editors.

Reverts to an earlier saved version of a file

Composer Help

85

https://docs.genesys.com/Documentation/IW/8.1.3/Help/HidingFileTypes

Composer Menus

Move
Rename
Refresh

Convert Line Delimiters To

Print

Page Setup

Print Preview
Switch Workspace...

Restart

Import

Export

Properties

Exit

selected from the History.

Moves Project resources.

Renames Project resources.

Reloads the configuration.

Converts line delimiters within the callflow design
canvas to one of the following:

* Windows (default)
e Unix

¢ MacOS 9

Prints the selected object(s) within the callflow
design canvas

Brings up a dialog box where you can specify to
use workplace settings or diagram settings. You
can also change orientation, units, size, and the
margin as well as configure workplace settings.

Previews the output before printing.

Browses for/selects a different workspace storage
area. Changes the set of projects and resources
that you are working on.

Restarts Composer.

Brings up a wizard that leads you through the
process of importing various types of files.

Expand Composer to: Import an IRD Strategy or to import a

Realtime Debugger Launch Configuration.

Brings up a wizard that leads you through the
process of exporting various types of files.

Shows properties for the selected resource (such as
a Project). When a Project is selected, includes the
Deployment property.

Exits Composer.

Composer Help

86

https://docs.genesys.com/Documentation/IW/8.1.3/Help/MigrationOverview

Composer Menus

Edit Menu

Use the Edit menu to move around within the current application; cut, copy, paste, and delete blocks
from the displayed callflow or workflow; find individual blocks within the callflow; and open the
Properties dialog box for a selected block. Edit menu items include standard Windows and Eclipse

edit functions:

Undo

(Ctrl+2)

Redo

Cut

Copy

Paste
Delete

Select All

Find/Replace

Add Bookmark

Add Task

After you perform an action on an object, the Undo
command becomes Undo <action>. For example,
Undo Deleting appears after you perform a
deletion.

Select Redo <action> after using Undo <action> to
go back to the most recent edit.

Removes selected object(s) and moves the objects
to the clipboard.

Copies the selected object(s) to the clipboard.

Moves copies of selected object(s) from the
clipboard to the selected location.

Deletes the selected object(s).

Selects all text or objects in the currently active
view or editor.

Use in text files, such as JSP, VXML, CCXML, and
SCXML files. Place your cursor inside the file and
then select from Edit menu. Not used for callflows
or workflows. Brings up the Find/Replace dialog
box.

When the cursor is positioned on a file in the
Project Explorer, opens the Bookmark Properties
window. A bookmark helps you quickly navigate to
a frequently used resource. You can place an
"anchor" either on a resource within the
Workbench, or at a specific line within a file, by
creating a bookmark. Then you can use the
Bookmarks view to return to those files quickly. The
Bookmarks view (Window > Show View >
Bookmarks) displays all bookmarks that you have
created.

When a Project is selected in the Project Explorer,
opens a properties dialog box. You can associate
tasks with an editable resource, for instance to
remind yourself to update a line of source code
later.

Composer Help

87

Composer Menus

Diagram Menu

This menu contains a number of standard diagram-related menu commands that can be used within
the Project Explorer view and callflow/workflow diagram canvas.

Invokes the system font dialog used to modify the

el font associated with the selected diagram element

Applies a color to the selected diagram element's

Fill Color interior

Applies a color to the selected diagram element

Lin lor)
e Colo lines

Modifies the style of the selected diagram
connector element to one of the following:

* solid

* dash

* dot

» dash dot

* dash dot dot

Line Type

Modifies the width of the selected diagram
connector to one of the following:

e one point
Line Width * two points
e three points
e four points
¢ five points
Modifies either the source end or the target end of

the arrow connector element to one of the
following:

Arrow Type * NO arrow

¢ solid arrow

* open arrow

Changes the diagram connector to one of the
following:

Line Style + Rectilinear Style Routing
e Oblique Style Routing

Composer Help 88

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#ElemDesc

Composer Menus

Select

Arrange

Align

Text Alignment

Order

Auto Size

Make Same Size

Filters

View

Zoom

Apply Appearance Properties

e Tree Style Routing

Select all diagram elements, all shapes, or all
connectors

Applies a layout to all diagram elements, or to the
selected ones only

Aligns all selected diagram elements to: the left,
the right, the center, the top, the bottom, or the
middle of the selection

Aligns the text left, right, or center

Re-orders the selected diagram elements to: the
front, the back, forward once, or backward once

Resets the size of the selected diagram elements
to the default size, usually just enough to see an
embedded label within the shape

Sets the size of the selected diagram elements to
the size of the last selected element, either
horizontally, vertically, or both

Does one of the following:

e sort/filter Compartment items

e show/hide Compartment items

(all Compartments or named Compartments only).

Compartment items refer to Composite attributes within your
editor, which can optionally be collapsed or expanded.

Shows or to hides various diagram features:

e ruler
e grid
* page breaks

Controls the snap to grid behavior.

Changes the diagram magnification to one of:
° in

e out

* 100%

* To Fit

e To Width

* To Height

* To Selection

Copies various appearance properties, such as fill
color, of the first selected diagram element to the

Composer Help

89

Composer Menus

Generate Code

(Alt+G)

Import Custom Blocks

Export Custom Blocks

Validate

(Alt+V)

other selected ones

Creates a properly-formatted VoiceXML file from a
callflow diagram built with Composer. Static VXML
pages (pure VXML code) are generated in the src-
gen folder of the Composer Project. This selection
is enabled when the Project is selected in the
Explorer after a new edit.

In the case of a routing workflow, check the Problems tab for
errors and fix any problems. If code generation succeeds, click
OK at the confirmation dialog box. The SCXML code is generated
in the src-gen folder.

Allows you to import a custom block that was
previously exported so the block can be shared
across multiple users/installations of Composer.

Allows you to export a custom block so the block
can be shared across multiple users/installations of
Composer.

Validates the diagram that is open for
completeness and accuracy. This selection is
enabled when the Project is selected in the
Explorer after a new edit.

Composer Help

90

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomBlocks

Composer Menus

Navigate Menu

This menu allows you to locate and navigate through resources and other artifacts displayed in the
Workbench. The Navigate menu differs from the Find/Replace command on the Edit menu. Instead of
entering text to find, the Navigate menu uses directional commands. The Navigate menu contains
the following items:

Refocuses the active view so that the current
Go Into selection is at the root. This allows web browser
style navigation within hierarchies of artifacts.

Refocuses the active view to one of the following:

e Back: Displays the hierarchy that was displayed
immediately prior to the current display. For
example, if you Go Into a resource, then the
Back command in the resulting display returns
the view to the same hierarchy from which you
activated the Go Into command. This command
is similar to the Back button in an HTML
browser.

Go To e Forward: Displays the hierarchy that was
displayed immediately after the current display.
For example, if you've just selected the Back
command, then selecting the Forward
command in the resulting display returns the
view to the same hierarchy from which you
activated the Back command. This command is
similar to the Forward button in an HTML
browser.

* Up one level: Displays the hierarchy of the
parent of the current highest-level resource.

Show In Finds and selects the currently selected resource in
another view. If an editor is active, these
(Alt+Shift+W) commands are used to select the resource

currently being edited in another.

Navigates to the next item in a list or table in the
active view. For example, when the search results

Next view is active, this navigates to the next search
result.
Navigates to the previous item in a list or table in

. the active view. For example, when the search

SR results view is active, this navigates to the previous
search result.

Last Edit Location Jumps to the last edit position
Navigates to the previous resource that was viewed

Back in an editor. Analogous to the Back button on a web
browser.

Forward Navigates to undo the effect of the previous Back

Composer Help 91

Composer Menus

command. Analogous to the Forward button on a
web browser.

Composer Help 92

Composer Menus

Search Menu

Search results are displayed in the Search view, which appears if not previously present. The Search
menu contains the following items:

Opens the Search dialog box, where you can
perform file, text or Java searches. Java searches
operate on the structure of the code. File searches
operate on the files by name and/or text content.
Java searches are faster, since there is an
underlying indexing structure for the code
structure. Text searches allow you to find matches
inside comments and strings.

Search

Opens the Search dialog box. If it is not already
selected, select the File Search tab. In the
Containing text field, type the search string. For a
Java search, make sure that the File name patterns
field is set to *.java. The Scope should be set to
Workspace. Then click Search. Note: To find all files
of a given file name pattern, leave the Containing
Text field empty.

File

After selecting text, searches a workspace, a
project, a file, or a working set. Working sets group
elements for display in views or for operations on a
set of elements. They restrict the set of resources
that are displayed. If a working set is selected in
the navigator, only resources, children of
resources, and parents of resources contained in
the working set are shown.

Text

Composer Help 93

Composer Menus

Project Menu

The Project menu contains the following items:

Open Project

Close Project

Build All

(Ctrl+B)

Build Project

Build Working Set

Clean

Build Automatically
Convert to a Dynamic Web project

Properties

Opens the currently selected Project(s). The
selected Project(s) must currently be closed for this
command to be available.

Closes the currently selected(s) Projects. Closing a
Project will remove all of that Project's state from
memory, but the contents on disk are left
untouched.

Performs an incremental build on all Projects in the
Workbench. This command builds (compiles) all
resources in the Workbench that are affected by
any resource changes since the last incremental
build. This command is only available if auto-build
is turned off. Auto-build is turned off via the Build
Automatically menu option or from the General >
Workspace preference page.

Performs an incremental build on the currently
selected Project. This command builds (compiles)
all resources in the Project that are affected by any
resource changes since the last build. This
command is only available if auto-build is turned
off. Auto-build is turned off via the Build
Automatically menu option or from the General >
Workspace preference page.

Performs an incremental build on a working set.
This command builds (compiles) all resources in
the working set that are affected by any resource
changes since the last build. This command is only
available if auto-build is turned off. Auto-build is
turned off via the Build Automatically menu option
or from the General > Workspace preference page.

Discards all previous build results. If autobuild is
on, then this invokes a full build.

Toggles the auto build preference on and off. The
auto-build preference is also located on the
General > Workspace preference page.

[Not supported in Composer]

Opens a dialog box showing the properties of the
selected project or of the Project that contains the
selected resource.

Composer Help

94

Composer Menus

Run Menu

¢ See the Debugging voice applications and Debugging routing applications topics for supported

functionality.

The Run Menu contains all of the actions required to run, debug, step through code and work with
breakpoints. Different parts of the menu are visible at different times, as each perspective can be
customized to show only specific capabilities. The Run menu contains the following items:

Resume

Suspend

Terminate

Step Into

Step Over

Step Return
Run to Line
Use Step Filters

(Shift+F5)

Run

Debug

Run History

Run As

Run Configurations

Resumes execution of the currently selected Debug
target.

Halts the execution of the currently selected thread
in a debug target. Once the selected thread is
suspended, you can then examine it.

Terminates the selected debug target.
[Disabled for GVP Debugger]

Steps over the highlighted statement. Execution
will continue at the next line either in the same
method or (if you are at the end of a method) it will
continue in the method from which the current
method was called.

The cursor jumps to the declaration of the method and selects
this line.

[Disabled for GVP Debugger]
[Disabled for GVP Debugger]

Toggles step filters on and off. When on, all step
functions apply step filters.

Re-launches the most recently launched
application, or launches the selected resource or
active editor depending on the launch operation
preference settings found on the Run/Debug >
Launching preference page.

Re-launches the most recently launched application
under debugger control, or launches the selected
resource or active editor depending on the launch
operation preference settings found on the Run/
Debug > Launching preference page.

Displays a submenu of the recent history of launch
configurations launched in run mode

When a callflow is selected, displays Run Callflow.
In the Run mode, call traces are provided and the
application continues without any breakpoints.
Note: Run on Server is an Eclipse feature and is not
used by Composer.

Used for debugging callflow diagrams. Opens the

Composer Help

95

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingRoutingApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Creating_a_Run_Launch_Configuration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Creating_a_Run_Launch_Configuration

Composer Menus

Debug History

Debug As

Debug Configurations

External Tools

Create URL Breakpoint

Toggle Breakpoint

Toggle Line Breakpoint

Toggle Method Breakpoint

Toggle Watchpoint

Run Configurations dialog box that lets you create,
manage, and run launch configurations of different
types.

Displays a submenu of the recent history of launch
configurations launched in debug mode.

Displays a sub menu of registered debug launch
shortcuts. Launch shortcuts provide support for
workbench or active editor selection sensitive
launching.

Note: Debug on Server is an Eclipse feature and is not used by
Composer.

Used for debugging callflow diagrams. Opens the
Debug Configurations dialog box that lets you
create and modify launch configurations and debug
applications.

Displays external tools that allow you to configure
and run programs, batch files, Ant buildfiles, and
others using the Workbench. You can save these
external tool configurations and run them at a later
time. Output from external tools is displayed in the
console view. Selecting External Tools presents the
following sub-menus: Run As, External Tool
Configurations, Organize Favorites.

Creates a breakpoint, which suspends the
execution of a workflow at the location where the
breakpoint is set.

Appears in Debugging perspective. Select to
suspend the execution of a program at a particular
location in a callflow. When a breakpoint is
encountered during execution of a program, the
program suspends and triggers a SUSPEND debug
event with BREAKPOINT as the reason.

Select to set a breakpoint on an executable line of
a program.

Use when working with types that have no source
code (binary types).

Open the class in the Outline View, and select the method
where you want to add a method breakpoint. Select Toggle
Method Breakpoint to have a breakpoint appear in the
Breakpoints View. If source exists for the class, then a
breakpoint also appears in the marker bar in the file's editor for
the method that was selected. While the breakpoint is enabled,
thread execution suspends when the method is entered, before
any line in the method is executed.

Appears in GVP Debugging perspective. You must
select a Java field object to use this command. Use
after you have created a watchpoint on the
currently selected field. Whenever that field is
accessed or modified, execution will be suspended.
If the selected field already has a watchpoint,
selecting this command will remove it.

Composer Help

96

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingRoutingApplications#Creating_a_Debug_Launch_Configuration

Composer Menus

Skip All Breakpoints

Remove All Breakpoints

Select to mark all breakpoints in the current view
as skipped. Breakpoints marked as skipped will not
suspend execution.

Select to remove all breakpoints from the
Breakpoints View.

Composer Help

97

Composer Menus

Configuration Server Menu

URS applications may be developed either:

e With a connection to Configuration Server

e Orin an offline mode, without connecting to Configuration Server

Connect Select to connect to Configuration Server.

Disconnect Select to disconnect from Configuration Server

Composer Help 98

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Configuration_Server_Connection

Composer Menus

Window Menu

The Window menu allows you to display, hide, and otherwise manipulate the various views,
perspectives, and actions in the Workbench. The Window menu contains the following items:

New Window

New Editor

Open Perspective

Show View

Customize Perspective

Save Perspective As

Reset Perspective

Close Perspective

Close All Perspectives

Navigation

Opens a new workbench window with the same
perspective as the current perspective. The
Composer perspective is the default for building
your application.

Opens an editor based on the currently active
editor. It will have the same editor type and input
as the original.

Opens a new perspective in this workbench window

Displays the selected view in the current
perspective. Views support editors and provide
alternative presentations as well as ways to
navigate the information in your workbench. For
example, the Project Explorer and other navigation
views display projects and other resources that you
are working with. You can configure how views are
opened on the Window > Preferences > General >
Perspectives preference page.

Opens the Customize Perspective dialog box. The
Shortcuts tab lets you select shortcuts you want
added as cascade items to submenus. The
Commands tab lets you select command groups
that you want added to the current perspective.

Saves the current perspective thereby creating
your own custom perspective. You can open more
perspectives of this type using the Window > Open
Perspective > Other menu item once you have
saved a perspective.

Changes the layout of the current perspective to its
original configuration

Closes the active perspective

Closes all open perspectives in the workbench
window

Displays the following submenu and shortcut keys:

¢ Show System Menu (Alt+-): Shows the menu
that is used for resizing, closing or pinning the
current view or editor

¢ Show View Menu (Ctrl+F10): Shows the drop
down menu that is available in the toolbar of
the active view

¢ Quick Access (Ctrl+3): Shows a listing of
available quick access categories

Composer Help

99

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives

Composer Menus

* Maximize active view or editor (Ctrl+M): Causes
the active part to take up the entire screen, or if
it already is, returns it to its previous state

e Minimize active view or editor: Causes the
active part to be minimized.

e Activate Editor (F12): Makes the current editor
active

¢ Next Editor (Ctrl+F6): Activates the next open
editor in the list of most recently used editors

e Previous Editor (Ctrl+Shift+F6): Activates the
previous open editor in the list of most recently
used editors

e Switch to editor (Ctrl+Shift+E): Shows a dialog
that allows switching to opened editors. Shows
a dialog that allows switching to opened
editors.

* Next View: Activates the next open view in the
list of most recently used views

e Previous View (Ctrl+F7): Activates the previous
open view in the list of most recently used
editors

e Next Perspective (Ctrl+F8): Activates the next
open perspective in the list of most recently
used perspectives

e Previous Perspective (Ctrl+Shift+F8): Activates
the previous open perspective in the list of
most recently used perspectives

Opens a dialog box for indicating your preferences
for using the workbench. There are a wide variety
of preferences for configuring the appearance of
the workbench and its views, and for customizing
the behavior of all tools that are installed in the
workbench.

Preferences

Composer Help 100

Composer Menus

Help Menu

The Help menu contains the following items:

Welcome Displays a welcome screen.
Displays the Eclipse help system.
Note: The Composer Help, which introduces the Composer Help

wiki, is integrated as a workbook within the overall Eclipse Help
system.

Help Contents

Opens a help pane where you can enter a search

Sese expression and view results.
Dynamic Help Opens a help pane to show context-sensitive help.
Key Assist

’ Opens a help pane with a listing of keyboard
(Ctrl+Shift+L) shortcuts.

Opens a Tips and Tricks dialog box with a variety of

Tips and Tricks topics:

Opens the Cheat Sheet Selection dialog box with
Cheat Sheets several available Cheat Sheets that lead you
through key tasks.

Check for Updates Currently not used by Composer.

Opens the Install dialog box where you can select
or enter a site that has the software you want to
install. As described in the Composer 8.1
Deployment Guide, use this menu item to install
Install New Software later versions of Composer. Use the About Eclipse
SDK menu item to uninstall the current version of
Composer prior to updating to a later version. For
another usage example, see the Integrating with
Source Control Systems topic, Subversion section.

Opens the About Composer dialog box, which
displays version, licensing, and Eclipse links. It also
contains buttons to access Feature Details, Plug-in
Details, and Configuration Details.

About Composer

Composer Help 101

https://docs.genesys.com/Documentation/IW/8.1.3/Help/IntegratingwithSourceControlSystems#SubversionInstallNewSoftware

Composer Menus

Canvas Shortcut Menu

When creating a callflow or workflow in Composer or Composer Design perspective, a shortcut menu
opens when you right-click inside the canvas area. The figure below shows the menu when creating a

workflow.

&% defaulk.workFlow 23 T default ixnprocess]

L X
Entryl
File p = Texk
U -
¥ Delete From Madel 2 Oval |I Assign
T A4 Triangle Assigni
- 3
:3;6_ Select L Rectangle
0
0% Arrange Al S Lo
i 3
ket . Pertagon *
Wi P Hexagon FBranEhing
(#] Zoom ¥ () Ockagon

Sr_anl:hing 1

EI Upgrade Waorkflow Diagram led shadow Rectangle
e Rounded Rectangle

kel 3D Rectangle

Load Resource

= Shaw Properties Yiew

Fallt waskend

) Que

EFFDY-EIHIELJEEE (1 Cylinder
- Routelnteractionl

Canvas Menu

The Canvas menu contains the following items:

Add

File

QueLel

Allows you to add a note, text, or one of the shapes
shown in the figure above.

When creating note objects in a diagram there are two ways to
create them. After selecting the note tool, you can either click a
single point or drag a box to indicate initial size. In the former
case, the note will continue to grow horizontally as text is
entered. With the latter case, text will automatically wrap text
using the input width.

Gives the option of printing the diagram or saving
it as an image file.

Selecting Save as Image opens a dialog box giving the option to
save in one of the following formats: GIF, BMP, JPEG, SVG, PNG,

Composer Help

102

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#ElemDesc

Composer Menus

or PDF. You can also select Export to HTML.

Delete from Model Deletes the selected block from the workflow.

Allows you to select:
o All
Select e All Shapes

e All Connectors

Use to arrange blocks and connectors in a callflow/
workflow in @ more orderly fashion. If you don't like
the result, select Undo Arrange All from the Edit
menu.

Arrange All

Filters Allows you to show/hide connector labels.

Use to view a grid, snap to a grid, view rulers, view

YT page breaks, and re-calculate page breaks.

Use to:

e Zoom In

e Zoom Out

e Zoom 100%
Zoom e Zoom to Fit

 Fit to Width

* Fit to Height

* Fit to Selection

Upgrade Workflow Diagram
= < Use to upgrade a previously created diagram to the

or Upgrade Callflow Diagram current version of Composer.

Load Resource Allows you to browse for/load Resource URIs.

Shows the Properties view for the selected block or

Show Properties View diagram.

Composer Help 103

https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#GUI_Element_Descriptions

Composer Menus

Palette Group Menu

When creating a callflow or workflow in Composer or Composer Design perspective, a shortcut menu
opens when you right-click on a palette title bar. The figure below shows an example:

[:=% Flaw Conkral £
Lawvauk]
=] Enkr %
=] i Use Large Icons
[Exit
) Cuskomize. ..
L= Disconnec Settings. ..
=] &ssign
d Pinned
éﬂ Ecrna Script
@ Subroutine
£+ Branching
[rves i iracnl

The Palette Group menu contains the following items:

Allows you to specify how the blocks in this palette
group should be displayed:

e Columns
Layout e List
¢ |cons Only

e Detail

Allows you to increase the size of the icons

Use Large Icons representing the callflow or workflow blocks.

Opens a dialog box where you can change block
names and descriptions, hide/unhide blocks from

Customize the palette, configure the block drawer to open
upon Composer startup, and pin the block drawer
open upon Composer startup.

Opens a dialog box where you can change the font,

Settings layout, and palette drawer options.

Allows you to prevent a block drawer from closing

e when you switch to a different palette group.

Composer Help 104

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#GUI_Element_Descriptions

Composer Toolbars

Composer Toolbars

This section discusses Composer's toolbars.

Composer Help 105

Composer Toolbars

Toolbars Overview

Composer has a number of toolbars for various purposes:

Main Toolbar

View Toolbars

Perspective Switcher Toolbar
Trim Stack Toolbar
Debugging Toolbars

Minimizing and Restoring Views

Note: To see a tooltip containing the name of a toolbar button (icon), hover the cursor over the
button.

Composer Help

106

https://docs.genesys.com/Documentation/IW/8.1.3/Help/MainToolbar
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ViewToolbars
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PerspectiveSwitcherToolbar
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TrimStackToolbar
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingToolbars
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MinimizingandRestoringViews

Composer Toolbars

Main Toolbar

The main toolbar, sometimes called the workbench toolbar, is displayed at the top of the Workbench
window directly beneath the menu bar. Note: Buttons on the main toolbar change based on the
active perspective. Iltems in the toolbar might also be enabled or disabled based on the state of
either the active view or editor. Sections of the main toolbar can be rearranged using the mouse. The
figure below shows available toolbar buttons in the Composer perspective when a callflow diagram is
selected.

Composer - RoutingAfterSendingAutoResponse Workflows/RouteToAgentWithAutoResponse.workflow - Composer

File Edit Diagram Mavigate Search Project Runm Configuration Server window Help

IFS-EH o [$5-0-@-|+-|&F |2 B|ldgda @08 ei
JITahoma jlg j | - - |Eg}_£-0%v%__‘ov| |

Toolbar Buttons

The table below identifies buttons that can appear on the toolbar.

New

Select to create one of the following new resources: Java
Composer Project (includes callflows and workflows), .NET
[=<> Composer Project, Project..., Grammar builder file, VoiceXML file,
o GrammarXML file, CallControlXML file, Backend JSP file, SCXML
file, or Folder, or File. You can also select Example or Other.
Note: Before you can create a new file, you must create a
project in which to store the file.

Save

=) e
Saves the content of the active editor.
Print

= Prints the contents of the active editor.
Debug

Re-launches the most recently launched application under

ﬁ - debugger control, or launches the selected resource or active
editor depending on the launch operation preference settings
found on the Run/Debug > Launching preference page. Used for
voice applications.

Run

Re-launches the most recently launched application, or launches

ﬂ - the selected resource or active editor depending on the launch
operation settings found on the Run/Debug > Launching
preference page. Click the down arrow to select Run As or Run
Configurations. You can also organize favorites.

Composer Help 107

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Creating_a_Run_Launch_Configuration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Creating_a_Run_Launch_Configuration

Composer Toolbars

o
&

ButProjVar.gif

=) |

i

et

ButNewNet.gif

&)

B

£

il

Run Last Tool

Allows you to quickly repeat the most recent launch in run mode
or quickly run the selected resource, if that mode is supported
(based on your current launch settings). Click the down arrow to
select Run As or bring up the External Tool Configurations dialog
box.

Search
Brings up a Search dialog box where you can perform one of the
following types of searches: File, Java, Java Script. The General

> Search preference page allows you to set preferences for
searches.

Launch GAX Server portal

Launches the Genesys Administrator Extension used by the GAX
Server (see GAX Server OPM Block). Composer uses the host,
port, username, and password used on the GAX Server

Preferences page to fetch ARM parameters or audio resource IDs
list.

Access Project Variables

Opens a dialog box where you can set or delete application
variables. The appearance of this button changes depending on
what type of diagram you are working with. When working with
a callflow or workflow, the button appears as shown on the top

left. When working with an interaction process diagram, the
button appears as shown on the bottom left.

Show Properties View

Shows the properties of the selected diagram.

Create Java Composer Project

Brings up a wizard dialog box for creating a new Java Composer
Project.

Create .NET Composer Project

Brings up a wizard dialog box for creating a new .NET Composer
Project.

Create New Callflow

Brings up a wizard dialog box for creating a main callflow
diagram or a sub-callflow diagram.

Create New Workflow

Brings up a wizard dialog box for creating a main workflow
diagram or sub-workflow diagram.

Create New Interaction Process

Brings up a wizard dialog box for creating an interaction process
diagram.

Open the Prompts Manager View

Composer Help

108

https://docs.genesys.com/Documentation/IW/8.1.3/Help/OPMCommonBlock#GAX_Server
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GAXServerPreferences
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GAXServerPreferences
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Prompt_Message_Fields
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagrams

Composer Toolbars

Displays the Prompts Manager view in the lower center pane of
the Composer main window.

Open Database Connection Properties
& Opens the Connection Profiles tab where you can define a
database connection profile and test the connection. This button

becomes enabled when you select the connection.properties file
in the Project db folder.

Generate All
@ Opens the Generate all dialog box, which lets you create

properly formatted VoiceXML or SCXML files for all callflow and/
or workflows in the Project.

Start Tomcat
ﬂ i Starts the Tomcat web server, which can be used for testing and

deployment. If Tomcat has already started, displays a message
to this effect.

@ Stop Tomcat

Stops the Tomcat web server.

Connect to Configuration Server

a Opens a dialog box where you can connect to Configuration
Server. Used for routing applications.

Disconnect from Configuration Server

Disconnects from Configuration Server.

Statistics Manager

E Opens the Statistics Manager view for working with Universal
Routing Server predefined statistics. Used for routing
applications.

List Objects Manager

List Objects in Configuration Server. Use for creating
parameterized applications. This provides System
Administrators with the control to configure and change values
from inside Configuration Server. Used for routing applications.

Eq Opens the List Object Manager view, which allows you to create
=

Publish active interaction process diagram to
&E Configuration Server

If an interaction process diagram is selected, this toolbar button
appears.

Generate Code

| @ Creates a properly-formatted VoiceXML file from a callflow
diagram or a SCXML file from a workflow diagram. Static pages
(pure VXML or SCXML code) are generated in the src-gen folder

Composer Help 109

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithPrompts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Configuration_Server_Connection
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Configuration_Server_Connection
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Predefined_Statistics
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ListObjectsManager#Mgr
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagrams

Composer Toolbars

of the Composer Project.

Validate

Checks your diagram files and other source files for
completeness and accuracy. In the case of errors, the Problems

| @ view becomes visible and error markers are put on the blocks
that contain errors. Double clicking on an error in the Problems
view will take you to the corresponding blocks that contain the
errors. Review each of the errors and do the fixes, then validate
again.

Next Annotation

Selects the next annotation. Supported in the Java editor.

Previous Annotation

Selects the previous annotation. Supported in the Java editor.

Last Edit Location

Reveals the location where the last edit occurred.

Back To

Reveals the previous editor location in the location history.

Forward To

Reveals the next editor location in the location history.

Turn Grammar Constraints Off

When editing an XML file that has a set of constraints or rules
defined by a DTD or an XML schema, you can turn the
constraints on and off to provide flexibility in the way you edit,
but still maintain the validity of the document periodically. When
the constraints are turned on, and you are working in the Design
view, the XML editor prevents you from inserting elements,
attributes, or attribute values not permitted by the rules of the
XML schema or DTD, and from removing necessary or
predefined sets of tags and values.

[

Reload Dependencies

If you make changes to a DTD file or XML schema associated
with an XML file (that is currently open), click to update the XML
file with these changes. The changes will be reflected in the
guided editing mechanisms available in the editor, such as
content assist.

E

Expand All

Select to expand all of the items in the Breakpoints view.

Collapse All

Select to collapse all of the current elements in the view.

||Tahoma a Font Style

Composer Help 110

Composer Toolbars

Allows you to change the font style of the selected text.

Font Size

Allows you to change the font size of the selected text.

Bold Font Style

Allows you to bold the selected text.

Italic Font Style

Allows you to change the selected text to italics.

Font Color

Allows you to change the font color of the select text.

Fill Color

Allows you to change the fill color of the selected object.

Line Color

Allows you to change the color of the selected line.

Line Style

Allows you to change the style of the selected line.

Apply Appearance Properties

Allows you to apply the applicable appearance properties of the
first application shape to the other selected shapes.

Select All

Selects all objects in the diagram.

Arrange All

Arranges all or only the selected objects in the diagram.
Align

Aligns the selected objects in the callflow diagram: left, right,
center, top, middle, bottom.

Auto Size

Allows you to change the size of the selected object.

All Connector Labels

Shows labels for all connector lines in the diagram.

No Connector Labels

Composer Help

111

Composer Toolbars

Hides labels for all connector lines in the diagram.

Show/Hide Compartment

Shows or hides composite attributes within an editor, which can
optionally be collapsed or expanded.

Magnification

| I 5% j | Allows you to zoom and out of the current view, as well as to
change the magnification from 5% to 400%. You can also fit to
height, width, or selection.

Composer Help 112

Composer Toolbars

View Toolbars

The title bar of a view contains a toolbar. This topic describes the following view toolbars:

Project Explorer

The Project Explorer toolbar is shown below.

[E: Callflows

Each toolbar button is identified in the table below.

=

3

Collapse All

Select to collapse all of the current elements in the view.

Link Open Editors

When you have multiple files open for editing, select to bring an
open file to the foreground (make its editor session the active
editor) every time you select that open file in one of the
navigation views.

View Menu

Select to show additional actions for this view.

e Top Level Elements. Select from Projects or
Working Sets (see below).

¢ Folder Presentation. Select from Flat or
Hierarchical.

¢ Working Set. Select from Window Working Sets,
No Working Sets, Selected Working Sets.
Working sets group elements for display in
views or for operations on a set of elements.
The navigation views use working sets to
restrict the set of resources that are displayed.
If a working set is selected in the navigator,
only resources, children of resources, and
parents of resources contained in the working
set are shown.

e Deselect Working Set. Deselects the active
working sets. All elements are shown after

Composer Help

113

Composer Toolbars

invoking this action

» Edit Active Working Set. Opens the Edit Working
Set wizard to edit the currently active working
set.

* Package Presentation. Select from Flat or
Hierarchical.

e Customize View. Allows you to filter the Project
Explorer view to hide projects, folders, or files
that you do not want to see.

e Link Editor. Brings an open file to the foreground
(makes its editor session the active editor)
every time you select that open file in one of
the navigation views.

Bookmarks View

The Bookmarks view is shown below.

L Bookmarks 52 = Eq
2 ikems
Descripkion Resource Path Location
My Biookmark, lanesFile, kxk laneQuser line 3
&n important bookm JanesFile, bk laneQuser line 5 Each view button is

identified in the table below.

View Menu

Select to show additional actions for this view.

e Sort By: Select from Description, Resource, Path,
Location, Ascending.

¢ New Bookmarks View.

¢ Configure Contents. Opens a window where you
= can filter the contents of the Bookmarks tab.

e Columns. Opens a dialog box where you can set
the width and move the following columns up
and down: Description, Resource Path, and
Location columns.

e Preferences. Opens a dialog box where you can
hide and show the following columns:
Description, Resource, Path, Location, Creation
Time, ID, Type.

|| Minimize

Composer Help 114

Composer Toolbars

o

Canvas View

Minimizes the Bookmarks tab.

Maximize

Maximizes the Bookmarks tab.

The canvas is where you create callflows for your voice applications and workflows for your routing
applications. The Canvas view toolbar is shown below in the upper-right.

-,

i
LI <% Palette [
Entry m olel
o -
Startdp
a—a Cukpuk Link,

,

a—a Excepkion Link,

e‘:} Prompt

WelcornePromgt

L

|

& Record
[~ Basic Blocks &
RecordMessage =] Entry
T [Exit
* g'? Prompk
Menu B2 Input
MaintenL Men

e? Prompt
PromptPlaybad:

Each view button is identified in the table below.

COption:

Minimize

Minimizes the Canvas area.

Maximize

Maximizes the Canvas area.

Composer Help

115

Composer Toolbars

Palette View

The Palette contains link tools as well as various types of blocks. To create callflow diagrams, the
block categories are: Basic Blocks, Server Side Blocks, CTI Blocks, Reporting Blocks, External Message
Blocks, Database Blocks, and Context Services Blocks. To create workflow diagrams, the block
categories are: Flow Control Blocks, Routing Blocks, Voice Treatment Blocks, Server Side Blocks,
eService Blocks, and Context Services Blocks. The Palette view toolbar is shown below.

| =2 Palette [

m R [)~

i CbpUt Link,

w—a Exccephion Link

[~ Basic Blocks 4
=] Enkry

Each toolbar button is identified in the table below.

Select

K

Use to select a block for a callflow or workflow.

Zoom In
#]
Click left to zoom in, Shift + left click to zoom out, drag to zoom
to selection.
Zoom Out

Click left to zoom out, Shift + left click to zoom in.

Create Note

Click to create a note, text document, or note attachment. When
_______ creating note objects in a diagram there are two ways to create
Lo~ them. After selecting the note tool, you can either click a single
point or drag a box to indicate initial size. In the former case,
the note will continue to grow horizontally as text is entered.
With the latter case, text will automatically wrap text using the
input width.

Properties View

The Properties view shows the properties for a selected block and allows you to set/modify them. An
example Properties view and toolbar is shown below.

Composer Help 116

https://docs.genesys.com/Documentation/IW/8.1.3/Help/BasicBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Server-SideBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ReportingBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExternalMessageBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExternalMessageBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DatabaseBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ContextServicesCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/FlowControlBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RoutingBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VoiceTreatmentBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Server-SideBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/eServicesBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ContextServicesCommonBlocks

Composer Toolbars

fﬁ Properties 23 E Cu:-nsu:ulew ﬁ Zall Trace} Qn Searclﬂ E_L, F'ru:ul:ulems} = }:b Sy
@ Prompt Block Prompt1
m Froperty | Yalue |
= Block,
Appearance Parne I'= Prompt1
=] Prompk
Bargeintyvpe I= speech
Clear Buffer v False
Immediate Plavback. I False
Interrupkible [brue
Prompks % Hello World
Timeaouk 10

Each toolbar button is identified in the table below.

Show Categories

i If enabled, method, field and type labels contain the categories
specified in their block properties
i Show Advanced Properties
3
_ If enabled, the Properties view shows advanced properties.
Restore Default Value
Use after changing a value in the Properties view to revert back
to the default value.
View Menu
=
Select to show additional actions for this view: Show Categories,
Show Advanced Properties, and Columns.
— Minimize

Minimizes the Properties tab.
Maximize

=
Maximizes the Properties tab.

You can change settings for consoles on the Window Preferences Run/Debug Console page. An
example Query Console view is shown below.

Composer Help 117

Composer Toolbars

i -y
£l Properties El cansale 52 @% Zall Trace} ‘Qn Search\l EA Prnblems} =l
Qetry Consale B Eﬁ| = = Fﬁ- . |

Buildfile: /C:/Program Files.a"GCTI.a"gvp.a"CDmpnserfa.szcunfiguratiﬂ

Jjspo:
[echo] Projlame: JavaVoicePro]EBELH

compile:
[javac] Cowpiling 5 source files
[Javac] MNote: Sowe input files use or override a deprecated
[Javac] MNote: Recompile with -Xlint:deprecation for details

clean:

I [Arlete]l Deleting directorsy C:hvProogram Filesh GOTTY rmrnt Cnmnf
4 3]

Each toolbar button is identified in the table below.

: Clear Console
En

Clears the currently active console.
Scroll Lock

@'—ﬁ Changes if scroll lock should be enabled or not in the current
console.
Pin Console

=
Pins the current console to remain on top of all other consoles.
Display Selected Console

E T Opens a listing of current consoles and allows you to select
which one you would like to see.
Open Console

{‘hr. W

L1

Opens a new console of the selected type.

Call Trace View

The Call Trace view displays metrics which describe the events occurring in the application, such as
recognition events, audio playback, user input, errors and warnings, and application output. An
example Call Trace view and Toolbar are shown below.

Composer Help 118

Composer Toolbars

Kﬁ Propetties ﬂf‘. Prampks Man (E_l. Problems (E Console |ﬁ ii iiii ﬁ i El] Bu:u:ukmarkﬂ 0
Call Trace <terminaked: - | i
Tirmnestamp | Zake. .. I Texk | <
2009-05,,, é’? pl... appl_begin INIT_JRL=http://172.21.26.61:8030/SpeachInputsrc-gen/Mai, .
2009-05.., a’? plo.. wf_lookop htkps /172,21, 26,61 8080) SpeechInput)src-genMain, studio_di, ..
2009-05... l“ pl... Fetch_start document:htbp: 172,21, 26,61 8080/ 9peechInputsrc-genMai. ..
2009-05... l“ pl... wf_lookop file: f)C: [Program Files)GCTIigypYP Media Contral Plakform &.1),,, —

2009-05... l“ pl... Fetch_start docurment:file: /) C: [Program Files)GCTIigypYP Media Contral PLL ..
2009-05.,.. c? pl... wf_arrived s (File):file:) C: [Program Files/GCTI gvpWP Media Conkral Platfa. ., ;I

Each toolbar button is identified in the table below.

Call Trace History

@ i Lists past calls. Once you select a past call, shows call trace
history for that past call.

Terminate

Terminates the process that is associated with the current
Process Console.

Filter Metrics
@ Brings up the Filter Metrics dialog box where you can select the

following filters: Platform actions, User input, Application output,
Document flow, Errors and warnings.

Search View

The search dialog lets you perform text string, File, Java, and JavaScript searches. When you first click
the Search tab, there is a link to bring up the Search dialog box. The figure below shows the results of
an example search and the toolbar.

' e !
=l Properties I,L.=;!. Prompts Manage ﬂ__& Problems (E Console (@% all Trace ﬁ,-. iiiiii ﬁ *.\ S

| RRBE| Y e

"“Welcome' - 77 matches in workspace
= 1= SpeschInput
B2 Calflows
E E||§| Main. studio_diagram (3 matches)
----- =» 221 <blocks xsiibype="gvp:PromptElock” xmizid="_riaAFkCgvEde4vroh4iFy7a" name="""_
e 235 <prompts xmitid="_MObvCgWEdGderOhdiFY 7A" name="welcome Prumpt_PrDE
]

Each toolbar button is identified in the table below.

rFS
—

Composer Help 119

Composer Toolbars

Show Next Match

Shows the next items that meets the search criteria.
& Show Previous Match

Shows the previous item that met the search criteria.

Remove Selected Matches

Removes matched items that you have selected from the results

Remove All Matches

Removes all matches from the results.

Expand All
Select to expand all of the current elements in the view.
Collapse All
Select to collapse all of the current elements in the view.
Run Current Search Again

Rﬁ'
Repeats the search with currently-defined parameters.
Cancel Current Search
Cancels the current search.

T Show Previous Searches

Bl

Displays a list of previous searches.
; Pin the Search View

{ -
Pins the current search view to remain on top of all other views.
View Menu

=

Select from the following: Show as List, Show as tree, Filters,
Preferences.

As you work with resources in the workbench, various builders may automatically log problems,
errors, or warnings in the Problems view. For example, when you save a Java source file that contains
syntax errors, those will be logged in the Problems view. When you double-click the icon for a
problem, error, or warning, the associated block is highlighted in the canvas area. Also see topics
Diagram Validation and Validating a Single Flow Diagram.

Problems View

An example Problems view with toolbar is shown below.

Composer Help 120

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Validation
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Validation

Composer Toolbars

=5
E| Propetties ﬂ_.=' Prompks Manage Iii iiih iWi ﬁ i = Cnnsule} @93 Zall Trace} = Searchw

0 errors, 2 warnings, 0 athers

1|

Descripkion | Resource = | Path I Location | Tvpe

= & wWarnings (2 items)
locations.gbuilder doesn't he locations. gbuilder SpeechInputf... | Unknown Composer Proje
% services.gbuilder doesn't ha services.gbuilder | SpeechInput/... | Unknown Composer Proje

| 2

Each toolbar button is identified in the table below.

=)

Statistics Manager View

View Menu

Select to show additional actions for this view. Show: All Errors,
Warning on Selection, Show All. Group By: Java Problem Type,
Type, JavaScript Problem Type, Severity, None. Sort by:
Description, Resource, Path, Location, Type, Ascending New
Problems View Configure Contents. Opens a window where you
can filter the contents of the Problems tab. Columns. Opens a
dialog box where you can set the width and move the following
columns up and down: Description, Resource Path, and Location.
Preferences. Opens a dialog box where you can hide and show
the following columns: Description, Resource, Path, Location,
Creation Time, ID, Type.

Minimize
Minimizes the Problems tab.

Maximize

Maximizes the Problems tab.

The Statistics Manager view lets you easily create, delete, and organize created statistics into folders.

Composer Help

121

Composer Toolbars

- T
(ﬁ Properties (& Problems FE iiiiiiii Niﬂiiii ﬁ i C= Listobjects Manager} ECDI‘ISEJE-] C4% & | s ¥ =0

kvpe Filker bexk

Mame | Type | Cakeqgory | Subject | Filter | Arcess | :I
E allsit aiting Predefined
U5 InW QW aitTime Predefined J
E PositionInQueus Predefined
E RatatCallsInQueus Predefined
E RstatCallsInTransition Predefined
E R.5katCosk Predefined
E RSkatExpeckedl BEMWTLAS Predefined
E RStatExpectedloadBalance Predefined ;I

Each toolbar button is identified in the table below.

Add New Folder

L H
D You have the option of creating folders to organize statistics that
you create. Click this button to create a new folder.

Add New Statistic

S

Ula To build a new statistic, select a folder and click this button to
bring up Statistics Builder.
Delete Selected Item

x To delete a statistic that you have created, select the statistic

and click this button to delete.

Help View

The Help view shows the following toolbar after selecting Search from the Help menu.

Composer Help 122

https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsManagerandBuilder

Composer Toolbars

f@ Help 23 [Cheat Sheets\l = H

€,
00
ul
t
7

% Search

¥ Search expression:

|'-.-'-.-'atu:h Expression |z|

¢ Search scope Defaul

+ Local Help {1-10 of 16 hits) -

ﬂgn Reevaluate Watch Expression
Select the Reevaluate Watch Expression cormmand ko Force
the selected watkch expression to be evaluated,
[Reevaluate Watch Expression] [Felated Reference]
Expressions Yiew

H\Jn Disable Wakch Expression
Select the Disable cormmand to disable the selected watch

Each toolbar button in the Help view is identified in the table below.

Show All Topics
@ﬂ

Select to display all available Help topics.

Show Result Categories

0oo

Select to display the categories for the Help results.

Show Result Descriptions

i}

Select to display the descriptions of the Help topics.

Back

e
Move back through topics.
Forward

-

Move forward to next topic.

Once you select a topic, the toolbar changes as shown below.

Composer Help 123

Composer Toolbars

f@ Help &3 = Cheat Sheets} i
i EE I

Composer Voice = Debugging Yoice Applications

Debugging a Callflow

The following graphic shows the interface's
elements forthe GVEF Debugging perspective
(callflow debugoing):

Each toolbar button is identified in the table below.

&

Show All Topics

Select to display all available Help topics.

Show in External Window

Select to display the results in an external window.

Show in All Topics

Select to display the results in all topics.

Print

Select to print the results/topic.

Bookmark

Select to bookmark the results/topic

Highlight Search Term

Select to highlight a search term.

Back

Move back through results.

Forward

Move forward to next result.

Composer Help

124

Composer Toolbars

Perspective Switcher Toolbar

Perspectives are task-oriented layouts for organizing the views and windows in your workbench. The
Perspective Switcher Toolbar allows quick access to perspectives that are currently open.

g Composer - SpeechInput/Callflows /Main.studio_diagram - Composer

File Edit Diagram Mavigate Search Project Run Configuration Server indow Help

| - [%-0-G-|vy-|EEd D 0LREO

JITahnma ;”H x * —F v| :

T @ GVPDebuggng [0 Strategy Designer

[Project Explorar 22 =

% Camposer

ain,studio_diagram &2 SimpleRouting

& I

| Prompt |

=-%=% SpeechInput |

Open Perspective Button

An Open Perspective button 15| (displaying all Eclipse perspectives) is located at the start of the
Perspective Switcher toolbar. In the above figure, it is located in front of the GVP Debugging button.

Perspective Switcher Toolbar

The Perspective Switcher Toolbar is normally positioned below the main toolbar (top-left), but you can
also position it vertically on the left-hand side of the workbench.

Shortcut Menu for Perspective Buttons

Right-clicking the button for an active perspective opens a shortcut menu. The first three entries in
the table below do not appear if the perspective is not selected.

Customize Opens the customize perspective dialog box.

Opens a dialog box for saving a customize

Save As perspective. Once saved, the customize
perspective appears in the list that opens when
you click the Open Perspective button.

Reset Resets the changes you made to a perspective.

Close Removes the button for the perspective.

Composer Help 125

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives

Composer Toolbars

Dock On

Show Text

Allows you to dock the perspective button: Top
Right, Top Left, or Left (left-hand side of work
bench).

Toggles between an icon and text on the
perspective button.

Composer Help

126

Composer Toolbars

Trimstack Toolar

Minimizing a view stack will also produce a toolbar in the trim at the outer edge of the workbench
window (a Trim Stack). This bar will contain a button for each of the views in the stack. Clicking on
one of these icons will result in the view being displayed as an overlay onto the existing presentation.
This is an example of a Trim Stack Toolbar containing buttons for Restore, Properties, Problems,
Console, Call Trace, and Prompts Manager views:

| BB aE

=
The first button is Restore ,....’ which restores the normal view.

Composer Help 127

Composer Toolbars

Debugging Toolbars

In GVP and ORS Debugging perspectives, the first pane contains Debug and Navigator views. The

second pane contains views for Variables, Breakpoints, and Expressions. A GVP example is shown
below.

g EYPF Debugging - SpeechInput/src-gen/Main.y=ml - Composer ‘Jﬂ]ﬂ
Eile Eﬂ ﬂavl-nate Search Profeck Run Configuration Server Window Help

}r | Jf‘ i - % J‘Q"] @.u'ﬂpﬂﬁ.ml‘?m’] wipl w XD O e o -

EEEE % Gve Debuggng KD Strategy Designer %5 Composer

b D M ‘ariables 33\99 &ndq:-urt\l“-‘r';}fExpmssuw-\I o=l = il D\
i e] | o & o § |3 7| Hame | value =
El ¢ Main.v=ml {(SpeechInput) [NEI Real-time Debugg = Ao Session Object |5
& n:'F} RTD @ calidref fasdeicd 480a0r 1
= ..’% L Thread (Pauced) ;‘ : ;II:' mm ﬁﬁ .
B4 ML Excecution [URL: hetp:fil72.21, ﬂ X I ¥

Debug View

The Debug view shows the name of the callflow or workflow diagram being debugged, as well as the
status of the debug progress or result.

% 0w e S B W
= @ Main. vxml {SpeechInput) [NGI Real-time Debugger]
=i RTD
El---m"_ﬁ' WiMLI Thread (Paused)

2= WML Execution [URL: http:ff172.21.26.61:8080/SpeechInput,/src-
< | 1|

Each toolbar button is identified in the table below.

% | Remove All Terminated Launches

CVSearchRemAllMatches.gif Select to clear the Debug view of all terminated launches.

Resume
U= Select to resume the execution of the currently suspended
debug target.
I Suspend

Composer Help 128

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#GVP_Debugging_Perspective
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingRoutingApplications#ORS_Debugging_Perspective

Composer Toolbars

&

Al

&l

Navigator View

[Not supported in Composer]

Terminate

Select to terminate the launch associated with the selected
debug target. Once a launch is terminated it can be
automatically removed from the Debug view. When using the

ORS Debugger, Terminate means that the session in ORS will
end along with the debugging session.

Disconnect
Not supported for the GVP Debugger. When using the ORS

Debugger, Disconnect means that the debugging session ends,
but ORS will continue executing the SCXML.

Step Into

Disabled for both routing and voice applications.

Step Over

Step Over is the only way to step for both routing and voice
applications. Select to step over the next method call (without
entering it) at the currently executing line of code. Even though

the method is never stepped into, the method will be executed
normally.

Step Return

[Not supported in Composer]

Drop to Frame

[Not supported in Composer]

Use Step Filters

[Not supported in Composer]

View Menu
Select from the following:
e View Management

¢ Java (then select from: Show Monitors, Show
System Threads, Show Qualified Names, Show
Thread Groups)

The Navigator view shows the same Project folder structure shown in the Project Explorer window of

the Composer perspective.

Composer Help

129

Composer Toolbars

T

F-1=F March23davaoiceProj |
El'J_ﬁ SpeechInput
IE? Jsettings
E? Zallflows
¥ (2= debugging-results
[;'; include

Each toolbar button on the Navigator toolbar is identified in the table below.

-

L]

E

Back

Moves back.

Forward

Moves forward.

Up

Navigate up one level in the hierarchy

Collapse All

Select to collapse all of the current elements in the view.

Link Open Editors

When you have multiple files open for editing, select to bring an
open file to the foreground (make its editor session the active
editor) every time you select that open file in one of the
navigation views.

View Menu

Select to show additional actions for this view.

e Select Working Set. Working sets group
elements for display in views or for operations
on a set of elements. The navigation views use
working sets to restrict the set of resources that
are displayed. If a working set is selected in the
navigator, only resources, children of resources,
and parents of resources contained in the
working set are shown.

e Deselect Working Set. Deselects the active
working sets. All elements are shown after
invoking this action.

e Edit Active Working Set. Opens the Edit
Working Set wizard to edit the currently active
working set.

e Sort (by name or type).

Composer Help

130

Composer Toolbars

Variables View

* Filters (class, JETEmitters, general, or *).

e Link with Editor. Brings an open file to the
foreground (makes its editor session the active
editor) every time you select that open file in
one of the navigation views.

The Variables view displays information about the variables associated with the stack frame selected
in the Debug view. When debugging a Java program, variables can be selected to have more detailed
information as displayed below. In addition, Java objects can be expanded to show the fields that a

variable contains.

-
()= Yariables &3 g Breakpu:uints} g Expressinns} lﬁ WL Prnperw lﬁ Cnnfiguratinw 7

o

s B

Mame | Yalue

e

[Fl % session.conneckion
& callidref
@ coxml
F % local

“

Session Ohject

cfea?a1410ch95ef1 323c265340d5396@1 72,

1500 Ohiject
150N Ohject
sip: dialogi@ 135

20,54, 47 :5070; voicexml=h i

sip:dialogflis.120.584.47:5070;voicexml=http://172.21.26. El:;l

Each toolbar button in the Variables view is identified in the table below.

[

2t

Show Type Names
Select to change if type names should be shown in the view or

not. Unavailable when columns are displayed. Hint: Select
Layout from View menu and de-select Show Columns.

Show Logical Structure

Select to change if logical structures should be shown in the
view or not.

Collapse All

Select to collapse all the currently expanded variables.

View Menu

Select from the following:

¢ Layout: Vertical View Orientation, Horizontal

Composer Help

131

Composer Toolbars

View Orientation, Variables view Only, Show
Columns, Select Columns.

¢ Java: Show Constants, Show Static Variables,
Show Qualified Names, Show Null Array Entries,
Show References, Java Preferences.

Breakpoints View

The Breakpoints view and toolbar manage breakpoints within a debugging session.

Each toolbar button in the Breakpoints view is identified in the table below.

Remove Selected Breakpoints

®

Select to clear all selected breakpoints.

Remove All Breakpoints

Select to clear all breakpoints.

Show Breakpoints Supported by Selected

Targets

&,

ﬁ Select to show all breakpoints supported by the selected
targets.
Go To File For Breakpoint

= [Not supported in Composer]

Skip All Breakpoints

-3

Select to skip over all breakpoints.

Create URL Breakpoint

Select to create a breakpoint that uses a URL.

Expand All
+
Select to expand all the current breakpoints.
Collapse All
=)
—_— Select to collapse all the current breakpoints.
= Link With Debug View
o
_— [Not supported in Composer]
Ju Add Java Exception Breakpoint

Composer Help 132

Composer Toolbars

Select to open a dialog box where you can:

e Type a string that is contained in the name of
the exception you want to add. You can use
wildcards as needed ("* " for any string and "? "

for any character).

e Select the exception types you want to add.

¢ Select Caught and Uncaught as needed to
indicate on which exception type you want to

suspend the program.

[This option is not relevant to GVP Debugging in Composer.]

View Menu

Select from the following:

e Group By: Breakpoints, Breakpoint Types,
Breakpoint Working Sets, Files, Projects,
Resource Working Sets, Advanced...

* Default Working Set

e Deselect Default Working Set

e Working Sets

¢ Show Qualified Names

Expressions View

Use the Expressions view to inspect data from a stack frame of a suspended thread, and other

places.

i = !
()= Variables (‘90 Breakpoirkt Mﬁ WL F'rn:np] b CDnFiguratq B

Lo BB %% T

"

EEY oList'= ArrayList<E> (id=21)
H- @ elementData= Object[10] {id=51]

- E%’l" "args"= String[0] (id=17) J

----- < modCount= 3

Each toolbar button in the Expressions view is identified in the table below.

Show Type Names

Has

Select to change if type names should be shown in the view or
not. Unavailable when columns are displayed. Hint: Select

Layout from View menu and de-select Show Columns.

Composer Help

133

Composer Toolbars

2%

X
= ?I:'II

% |

Show Logical Structure

Select to change if logical structures should be shown in the
view or not.

Collapse All

Select to collapse all the currently expanded expressions.

Create a New Watch Expression
Select to open the Create New Expression dialog box, which

allows you to create a new watch expression based on the
selected variable and add it to the Expressions View.

Remove Selected Expressions

Select to remove the selected expressions.

Remove All Expressions

Select to remove all expressions.

View Menu

Select from the following:

e Layout: Vertical View Orientation, Horizontal
View Orientation, Expressions View Only.

¢ Java: Show Constants, Show Static Variables,

Show Qualified Names, Show Null Array Entries,

Show References, Java Preferences.

Composer Help

134

Composer Toolbars

Minimizing and Restoring Views

Panes in the Composer window contain various views. Each view has its own tab. To minimize a pane
containing views:

{ e |

¢ Click the —— button to minimize the pane. This causes the views to appear in a toolbar (trim stack
toolbar). The toolbar appears in close proximity to where the pane was located.

The toolbar could be on the side or at the bottom of the Composer window depending on the selected
perspective. For example, assume you are editing a file in Composer Design perspective and
minimize the pane below, which contains Properties, Prompts Manager, Problems, Console, Call Trace,
and Bookmark views. In this case, the minimization causes a toolbar to appear at the bottom of the
Composer window. Depending on your screen, you may have to maximize the entire Composer
window in order to see this toolbar.

| 74 ExampleSCRMLCode, scml - March23)avalioiceProj [amofzsm [|
| @ Disconnected #,AEDI’-[:“E&EHI}

restore

The first button on the toolbar is used to restore all views. The remaining buttons represent the
minimized views. To restore views:

=
¢ Click the 4, button to restore all minimize views.

¢ Click a single view button to restore an individual view.

Composer Help 135

https://docs.genesys.com/Documentation/IW/8.1.3/Help/TrimStackToolbar
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TrimStackToolbar

Voice Applications and Callflows

Voice Applications and Callflows

This section contains the following:

* Getting Started with Voice Applications
» Preferences for Voice Applications
¢ Creating Voice Applications for GVP

¢ Block Palette Reference

Composer Help 136

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GettingStartedwithVoiceApps
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PreferencesforVoiceApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VoiceBlockPaletteReference

Getting Started with Voice Applications

Getting Started with Voice Applications

This section contains the following topics:

* Callflow Post Installation Configuration
* Working with Java Composer Projects
¢ Working with .NET Composer Projects

* Accessing the Editors and Templates

Also see Upgrading Projects/Diagrams.

Composer Help 137

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithJavaComposerProjects
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Workingwith.NETComposerProjects
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AccessingtheEditorsandTemplates
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Upgrading_ProjectsandDiagrams

Getting Started with Voice Applications

Callflow Post Installation

After installation of Composer, you need to perform some post-installation configuration tasks. Note:
If you plan to use IIS as your web server for testing and deployment, you will also need to configure
IIS preferences in Composer so that your applications can be auto-deployed to IIS from within the
workbench. Composer can work only with IIS installed on the local machine. You can work with both
Tomcat and IIS from the same installation of Composer. Also see: Context Services Preferences.

Tomcat

1. Select Window > Preferences, then expand Composer and select Tomcat.

2. Provide the same port number that you specified during installation. The default user name and
password for the bundled Tomcat is admin.

3. To start Tomcat, click the ‘@ ' button on the main toolbar.

If you already have Java Composer Projects in the workspace and did not perform the Tomcat
configuration earlier, perform the following steps to deploy the project on Tomcat:
4. From the Project Explorer, right-click on the Java Composer Project and select Properties.

5. Select Tomcat Deployment and click the Deploy button.

Note: This also needs to be done if a Java Composer Project is imported.

Internet Information _Services

1. Select Window > Preferences, then expand Composer and select IIS/.NET.

2. Provide the IS website port number where you want to deploy your .NET Composer Project. The IIS
Default Website Site port number is 80.

3. If you plan to use .NET Composer Project builder to compile the server-side files (.aspx) in your .NET
Composer Project, you will need to configure the location of the aspnet compiler.exe file in the
Microsoft .NET Installed Path field.

Note: The typical location of the ASP.NET compiler is:C:\WINDOWS\Microsoft.NET\Framework\
v2.0.50727\aspnet _compiler.exe.

4. Specify the Web Services Enhancement (WSE) path. This must be specified before Composer .NET
Projects can work.

If you already have .NET Composer Projects in the workspace and did not perform the IIS
configuration earlier, perform the following steps to deploy the project on IIS:

Composer Help 138

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SettingContextServicesPreferences#Server_Port

Getting Started with Voice Applications

5. From the Project Explorer, right-click on the .NET Composer Project and select Properties.

6. Select IIS Deployment and click the Deploy button.

Note: This also needs to be done if a .NET Composer Project is imported or renamed as well.

GVP Debugger

1. Select Window > Preferences, then expand Composer and select Debugging.
2. Specify the following settings:

* Network Interface. Composer debugging uses this setting to make the socket connection
for the Debugger control channel. Select the interface that is applicable to your scenario.
The debugging server (GVP or ORS) must be able to access the Tomcat server, bundled as
part of Composer, for fetching the Voice or Routing application pages. If you have multiple
NIC cards of multiple networks (such as Wireless and LAN) select the interface on which GVP

or ORS will communicate to your desktop. In case you are connected over VPN, select the
VPN interface (such as PPP if connected via a Windows VPN connection).

¢ Client Port Range. Enter a port range to be used for connection to ORS for SCXML
debugging sessions.

3. Select GVP Debugger and specify:

¢ SIP Phone User Name. This is the user name or phone number of your SIP Phone.

SIP Phone Hostname/IP . This is the IP address on which your SIP phone is running. It is
possible to send the call to a SIP Phone located on some other machine, but it is generally
advisable to have the SIP Phone locally for ease of access. If you have multiple NIC cards or
interfaces, make sure you specify the same IP address as corresponds to the Network

Interface selected above.
SIP Phone Port. This is the port on which your SIP phone is running.

Platform IP. This is the IP address of your GVP Server. Note: Composer 8.1 is compatible
with GVP 8.1. Operation with GVP 8.0 is not supported.

Platform Port. Typically, this will be the default port 5060 or the port that you configured
for the Resource Manager (RM) or Media Control Platform (MCP) on your GVP Server. You can

make direct calls to MCP from the debugger. However, if using pre-provisioned DNIS, then
you will need to make test calls to the RM.

* Use Secure Connection. See Debugging TLS Support.

Composer may display a prompt asking if you wish to propagate these settings to an existing launch
configurations.

MIME Types

MIME (Multipurpose Internet Mail Extensions) refers to a common method for transmitting non-text
files via Internet e-mail. By default the SCXML MIME type is already configured in the Tomcat server

Composer Help 139

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Debugging_TLS_Support
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Creating_a_Debug_Launch_Configuration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Creating_a_Debug_Launch_Configuration

Getting Started with Voice Applications

bundled with Composer. If you are using the Internet Information Services (lIS) Application Server to

deploy ASP.NET projects, add the following MIME type extensions through the IIS Manager of your
webserver:

.json text/json
vxml text/plain
.scxml text/plain
xml text/xml

Prompt Resource Validation

This preference enables diagram validation warnings where prompt audio resources no longer exist in
the given file path. If the audio file is no longer present, the diagram block will show a warning icon.

1. Select Window > Preferences.
2. Select Composer > Composer Diagram.

3. Select the option Enable Validation for Prompt Resources. By default the preference is not enabled.

Media Control Platform

GVP 8.1 provides a debugger interface to allow Composer to make direct calls. By default it is turned
off and you will have to enable it to allow GVP to accept calls from the debugger interface.

1. Outside of Composer, locate your Media Control Platform (MCP) Application. For example, you can open
your MCP Application object in Configuration Manager or in Genesys Administrator for the Configuration
environment that is serving the MCP platform.

2. Under the vxmli section of the MCP, look for a setting called debug.enabled. By default, it is set to
false. Change the value to true and restart your MCP.

Firewall

If you have a local firewall on your machine, open up the following ports:

e Tomcat port (generally, this is set to port 8080). If you installed Tomcat on a different port, open its
corresponding port in the firewall.

e IS port (generally, this is set to port 80). If you installed IIS on a different port, open its corresponding
port in the firewall.

e The UDP port on which your SIP phone is running (by default, this will be either 5060 or 5070). Check
your SIP phone settings for the exact port number.

e RTP ports on which your SIP phone will get the audio stream. Check your SIP phone Help file for details
on this. Some SIP phones will autoconfigure this during installation.

Composer Help 140

Getting Started with Voice Applications

If you continue to run into problems with the firewall and calls are not coming through successfully,
consult your network administrator.

Composer Help 141

Getting Started with Voice Applications

Working with Java Composer Projects

A Java Composer Project contains voice application files, callflows, and related server side .jsp / Java
files for building an IVR application. A Java Composer Project can also contain routing workflows. It
has an associated Java Composer Project builder that will compile source files in the project.
Composer ships with a bundled Tomcat and it is used as the web/application server for Java
Composer Projects during the development and testing phase. For information on supported
operating systems for Java Composer Projects, see the Composer 8.1 Deployment Guide.

Getting Started

To start using Java Composer Projects:

1. Create a new Java Composer Project.

2. Use the Project Properties tab to deploy the Java Composer Project to Tomcat within Composer. (Right-
click the project > Properties > Tomcat Deployment.)

3. Create callflows and use Run or Debug mode to launch the call with Next Generation Interpreter.
Note: Run as / Debug as will automatically pick the port number from the preferences and form the

corresponding Application URL. For example: http://machinelP:portno/JavaVoiceProjectName/src-gen/
CallflowName.vxml

Composer Help 142

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation#Tomcat
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Run_Versus_Debug

Getting Started with Voice Applications

Working with .NET Composer Projects

A .NET Composer Project contains voice application files and related server side .aspx / C# / files for
building an IVR program. It has an associated .NET Composer Project builder based on Microsoft .NET
Framework that can incrementally compile .aspx source files as they are changed.

Prerequisites

Prerequisites for .NET Composer Projects are:

¢ Microsoft Internet Information Services (1IS) and .NET Framework as described in the Installation chapter

of the Composer 8.1 Deployment Guide.

e Microsoft Web Services Enhancements (WSE) is also required for creating .NET projects in Composer.
However, the WSE installer may not install on Windows 2008. These steps give a workaround:
Download the Microsoft WSE 3 "msi" installer bundle.

Use 7Zip to extract the contents to a folder.
In Composer, select Window > Preferences > Composer > IIS/.NET.

Set the Microsoft WSE 3.0 Installed Path field the $Folder\Microsoft.Web.Services3.dll file.

M

Create your Composer .NET Projects.

Getting Started

To prepare for using .NET Composer Projects:

1. Install Microsoft IIS.
2. Install Microsoft .NET and .NET Framework.

Note: Microsoft .NET is required for Composer Server Side blocks.

1. Enable ASP.NET in your IIS.
2. Configure the following MIME settings in your IIS:

e .ccxml - application/ccxmi+xml
e .vxml - text/xml

e .grxml - application/srgs+xml

* .vox - audio/basic

e .scxml - application/xml

Composer Help 143

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Server-SideCommonBlocks

Getting Started with Voice Applications

3. Configure the IIS Website Port number in Composer IIS Preferences (Window > Preferences > .NET)

By default, IIS comes with the DefaultWebSite which runs on port 80. If you want to deploy the .NET
Composer Project in your custom website, configure the corresponding port number in the IIS Website
Port field.

1. Create a .NET Composer Project.

2. Use the Project Properties tab to deploy the .NET Composer Project to IIS within Composer. (Right-click
Properties > 1IS Deployment.)

3. Create the diagram callflows and perform Run as / Debug as to launch the call with NGI.
Note: Run as / Debug as will automatically pick the port number from the preferences and form the

corresponding application URL. For example: http://machineIP:portno/NETProjectName/src-gen/
CallflowName.vxml Also see: Request.Form Error Message for .NET Projects

Composer Help 144

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation#Internet_Information_Services
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Run_Versus_Debug
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Request.FormErrorMessage

Getting Started with Voice Applications

Accessing the Editors and Templates

Composer editors are embedded/integrated within the user interface and are made available to you
whenever a .scxml, .vxml, .ccxml, .grxml, or .jsp file is created or accessed within Composer.

Creating a New File

In Composer or Composer Design perspective, create a new VoiceXML, SCXML, or CallControlXML
file as follows:

e Select File > New > Other > Composer > Others.

* Select the file type.

¢ Select the parent folder; usually an existing Project.

e Enter a name for the file.

» If applicable, click Advanced to link to the file system and use an existing file.

e Click Finish.

Using an Existing Template

e Select File > New > Other > Composer > Others.

* Select the file type.

e Select the parent folder; usually an existing Project.

* Enter a name for the file.

* If applicable, click Advanced to link to the file system and use an existing file.

* Click Next.

e Select the template.

¢ Click the Use SCXML Template checkbox.

* Click Finish.

The editor opens with your new file. When working with XML files, the view contains Source and
Design tabs. All editor functions described at the top of this topic are available to you. The

appropriate Composer editor also opens whenever you open an existing .vxml, .ccxml, .grxml, .aspx,
or .jsp file, whether previously created as described above, or previously imported into Composer.

Composer Help 145

Getting Started with Voice Applications

Open an Existing File
Open an existing file as follows:

* Select File > Open File.
* Navigate to the file to open, OR

Open a Composer Project's src or src-gen folder in the Project Explorer, then double-click the file to
open it in the editor.

Creating a Custom Code Template

When writing manual SCXML/VXML/CCXML/GRXML code in the file editors, you may run into code that
becomes repetitive. You may consider creating a code template to avoid retyping this block of code.
Creating templates will improve the speed and consistency for writing code. The following steps show
how to create a code template.

¢ Select Window > Preferences.

¢ In the Preferences dialog box, navigate through the Composer category, and expand the file type (VXML
Files / CCXML Files / GRXML / SXCML Files) in which you want to add your template. Then select the
Templates section. For example, select VXML Templates.

¢ Click the New button to add a new code template.

¢ Fill in the fields for the new template. The Context drop down box specifies at what context level you
want the code template to appear as a context sensitive help.

¢ Click the OK button when finished.

XML File Preferences

You can also set XML File Preferences: Window > Preferences > XML > XML Files. When
specifying Encoding formats in the XML Preference page: encoding formats are applicable only for
new File creation using the Template option: (File > New > XML > XML File > Create XML File
from an XML Template > Select XML Template). This applies only to new XML, VXML, CCXML and
SCXML files. Existing files within the Project will not get impacted.

Creating a Backend JSP File

¢ Create a new JSP file by selecting File > New > Backend JSP file.

* In the Create Backend JSP File folder, navigate to the src folder within the Java Composer Project in
which the Backend JSP file belongs.

¢ Type a name In the File Name field.

Composer Help 146

Getting Started with Voice Applications

¢ Click Finish.

The Editor opens with a JSP file template. You can see your new file in the src folder of your Java
Composer Project in the Project Explorer. A template is provided when you create a new Backend JSP
file in Composer. You implement a performLogic method as a JSON object, store a result and return it
to the voice application if desired. You have the flexibility to enter any valid JSP code that you wish.

Creating a Backend ASP NET File

e Create a new ASP.NET file by selecting File > New > Backend ASPX file.

In the ASPX File folder, navigate to the include folder within the .NET Composer Project in which the
Backend ASPX file belongs.

e Type a name In the File Name field.

Click Finish.

The Editor opens with an ASPX file template. You can see your new file in the include folder of your
.NET Composer Project in the Project Explorer. A template is provided when you create a new
Backend ASPX file in Composer. You implement a performLogic method as a JSON object, store a

result and return it to the voice application if desired. You have the flexibility to enter any valid
ASP.NET/C# code that you wish.

Composer Help 147

Preferences for Voice Applications

Preferences for Voice Applications

Composer Preferences are applicable at a workspace level. They apply to all projects within the
workspace. To open the Preferences dialog box for Composer, select Window > Preferences and

expand Composer. There are also Refresh automatically and Time zone preferences.

Composer Help 148

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkspaceFilesNotinSync#Refresh_automatically
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TimeZonePreferences

Preferences for Voice Applications

CCXML File Preferences

Select Window > Preferences > Composer > CCXML Files. The following preferences for CCXML
files can be set in the Preferences dialog box:

Creating Files

1. Under Creating Files, select the Suffix to use for CCXML files from the drop-down list: * ccxml
2. Select the Encoding type from the drop-down list. The encoding attribute in a CCXML document

specifies the encoding scheme. The encoding scheme is the standard character set of a language. The
CCXML processor uses this encoding information to know how to work with the data contained in the
CCXML document. UTF-8 is the standard character set used to create pages written in English. Select
from the following:

e |1SO 10646/Unicode(UTF-8)

¢ |SO 10646/Unicode(UTF-16) Big Endian

e |SO 10646/Unicode(UTF-16BE) Big Endian

¢ |SO 10646/Unicode(UTF-16LE) Little Endian

e US ASClI

e |SO Latin-1

e Central/East European (Slavic)

e Southern European

e Arabic, Logical

e Arabic

* Chinese, National Standard

e Traditional Chinese, Big5

e Cyrillic, ISO-8859-4

e Cyrillic, ISO-8859-5

* Greek

* Hebrew, Visual

* Hebrew

e Japanese, EUC-JP

* Japanese, ISO 2022

e Japanese, Shift-JIS

e Japanese, Windows-31]

Composer Help 149

Preferences for Voice Applications

Korean, EUC-KR
* Korean, ISO 2022
Thai, TISI

e Turkish

Validating Files

e Select or clear the Warn when no grammar is specified check box (not selected by default).

Source and Syntax Coloring

Source and Syntax Coloring preferences for CCXML files are set under the XML preferences provided
by Eclipse.

* Use Window > Preferences, expand the Web and XML entry, then expand the XML Files subentry.

Templates

In addition to previewing templates, you can create, edit, and remove selected templates. There are
also buttons to:

¢ Restore a removed template.

e Revert back to a default template

¢ Import a template.

Export a template.

Composer Help 150

Preferences for Voice Applications

Diagram Preferences

Select Window> Preferences > Composer > Composer Diagram. The following preferences for
diagrams can be set in the Preferences dialog box:

Global Settings

1. Select or clear the check box for each of the following diagram global settings:

« Show Connection Ports. If enabled, connection ports (both exception ports and out ports)
are always displayed on blocks. This makes it convenient to draw links between blocks and
to get immediate feedback on how many ports each block provides. However, in this case,
the ability to reposition connections on a block is not available. If switched off, connection
ports are not displayed by default, but repositioning or finer control over connection link
placement becomes available. Note: This preference applies to all projects and is not
available for individual projects.)

* Show popup bars. If enabled, this setting displays basic blocks from the blocks palette in a
pop-up bar if you hover your mouse on the diagram for one or two seconds without clicking.
Note: blocks are shown in icon view only.)

* Enable animated layout. If enabled, causes diagrams to gradually animate to their
location when the Diagram \> Arrange \> Arrange All menu option is clicked.

* Enable animated zoom. If enabled, while using the zoom tools, shows a gradual transition
between the initial and final state of the diagram on the canvas. If off, the zoom is
instantaneous. Similar behavior for animated layout when the Diagram \>\> Arrange \>\>
Arrange All menu option is clicked.

¢ Enable anti-aliasing. If enabled, improves the appearance of curved shapes in the
diagram. You can see its effect on the circles in the Entry and Exit blocks.

e Show CodeGen success message. If unchecked, then the confirmation dialog at the
completion of code generation will not be shown.)

* Prompt to Save Before Generating Code. If checked, when you generate code for an
unsaved diagram, a prompt appears indicating the diagram has been modified and asking if
you want to save the changes before generating code. The dialog box also contains a
checkbox: Automatically save when generating code and do not show this message again.

* Show Validation success message. If unchecked, then the confirmation dialog at the time
of Validation will not be shown.)

¢ Enable Validation for Prompt Resources. This preference is used for voice applications.
If unchecked, then a validation check for missing prompts is not performed at the time of
Validation.

e Interaction Process Diagram. If unchecked, Composer will save Interaction Process
Diagrams before publishing.

* Prompt to delete Published objects when Interaction Process Diagram is deleted. If
unchecked, Composer will attempt to delete any Published objects when an Interaction
Process Diagram is deleted. If Composer is not connected to Configuration Server, object

Composer Help 151

Preferences for Voice Applications

deletion will not work.

2. Click Apply.

Colors and Fonts

1. Select Appearance under Composer Diagram.
2. Click Change and make selections to change the default font if you wish.

3. Click the appropriate color icon beside any of the following and make selections to change color:

* Font color

¢ Fill color

e Line color

* Note fill color

¢ Note line color

4. Click Apply.

Connections
1. Select Connections under Composer Diagram.
2. Select a line style from the drop-down list:

¢ Oblique

¢ Rectilinear

3. Click Apply.

Pathmaps

1. Select Pathmaps under Composer Diagram.

2. Click New to add a path variable to use in modeling artifacts, or If the list is populated, select the check
box of a path variable in the list.

3. Click Apply.

Composer Help 152

Preferences for Voice Applications

Printing

1. Select Printing under Composer Diagram.

2. Select Portrait or Landscape orientation.

3. Select units of Inches or Millimetres.

4. Select a paper size (default is Letter).

5. Select a width and height (for inches, defaults are 8.5 and 11; formillimeters, defaults are 215.9 and
279.4).

6. Select top, left, bottom, and right margin settings (for inches, defaults are 0.5; for millimeters, defaults
are 12.7).

7. Click Apply

Rulers and Grid

You can make use of rulers and grids when creating diagrams. Rulers and grids can provide a
backdrop to assist you in aligning and organizing the elements of your callflow diagrams.

1. Select Rulers and Grid under Studio Diagram.

2. Select or clear the Show rulers for new diagram check box (not selected by default).

3. Select ruler units from the drop-down list:

¢ Inches
¢ Centimeters

¢ Pixels

4. Select or clear the Show grid for new diagrams check box (not selected by default).
5. Select or clear the Snap to grid for new diagrams check box (selected by default).

6. Type a value for grid spacing (for inches, the default is 0.125; for centimeters, the default is 0.318; for
pixels, the default is 12.019).

7. Click Apply.

Composer Help 153

Preferences for Voice Applications

GAX Server Preferences

Select Window > Preferences > Composer > GAX Server. If using the OPM Block for a voice or
routing application, you must set GAX Server Preferences. Note: GAX refers to a Genesys
Administrator Extension (GAX) plug-in application used by Genesys EZPulse, which is accessible from
a web browser. EZPulse enables at-a-glance views of contact center real-time statistics in the GAX
user interface. Composer diagrams connect to GAX using the preference login credentials for fetching
the Audio Resource Management (ARM) parameters or IDs list configured for the tenant as described
in the Configuration options appendix of the Genesys Adminstrator Extension Deployment Guide. The
following preferences can be set in the GAX Server Preferences dialog box:

e Server Host Name/IP. Enter the hostname or address of the Application server hosting the GAX
Server.
¢ Port Number. Enter the port number for the GAX Server used in your environment.

e Username. Enter the username defined in the Configuration Database for logging into the GAX
server.

¢ Password. Enter the password defined in the Configuration Database for logging into the GAX
server.

Composer Help 154

https://docs.genesys.com/Documentation/IW/8.1.3/Help/OPMCommonBlock

Preferences for Voice Applications

GRXML File Preferences

Select Window > Preferences > Composer > GRXML Files. The following preferences for GRXML
files can be set in the Preferences dialog box:

Creating Files

1. Under Creating Files, select the Suffix to use for GRXML files from the drop-down list:* grxml
2. Select the Encoding type from the drop-down list. The encoding attribute in a GRXML document

specifies the encoding scheme. The encoding scheme is the standard character set of a language. The
GRXML processor uses this encoding information to know how to work with the data contained in the
GRXML document. UTF-8 is the standard character set used to create pages written in English. Select
from the following:

e |1SO 10646/Unicode(UTF-8)

¢ |SO 10646/Unicode(UTF-16) Big Endian

e |SO 10646/Unicode(UTF-16BE) Big Endian

¢ |SO 10646/Unicode(UTF-16LE) Little Endian

e US ASClI

e |SO Latin-1

e Central/East European (Slavic)

e Southern European

e Arabic, Logical

e Arabic

* Chinese, National Standard

e Traditional Chinese, Big5

e Cyrillic, ISO-8859-4

e Cyrillic, ISO-8859-5

* Greek

* Hebrew, Visual

* Hebrew

e Japanese, EUC-JP

* Japanese, ISO 2022

e Japanese, Shift-JIS

e Japanese, Windows-31]

Composer Help 155

Preferences for Voice Applications

Korean, EUC-KR
* Korean, ISO 2022
Thai, TISI

e Turkish

Validating Files

e Select or clear the Warn when no grammar is specified check box (not selected by default).

Source and Syntax Coloring

Source, Syntax Coloring, and Template preferences for GRXML files are set under the XML
preferences provided by Eclipse.

* Use Window > Preferences, expand the Web and XML entry, then expand the XML Files subentry.

Templates

In addition to previewing templates, you can create, edit, and remove selected templates. There are
also buttons to:

¢ Restore a removed template.

e Revert back to a default template

¢ Import a template.

Export a template.

Composer Help 156

Preferences for Voice Applications

VXML File Preferences

Select Window > Preferences > Composer > VXML Files.
Note: Composer natively supports VXML 2.1.

The following preferences for VXML files can be set in the Preferences dialog box:

Creating Files

1. Under Creating Files, select the Suffix to use for VXML files from the drop-down list: *.vxml
2. Select the Encoding type from the drop-down list. The encoding attribute in a VXML document specifies

the encoding scheme. The encoding scheme is the standard character set of a language. The VXML
processor uses this encoding information to know how to work with the data contained in the VXML
document. UTF-8 is the standard character set used to create pages written in English. Select from the
following:

e 1SO 10646/Unicode(UTF-8)

¢ |SO 10646/Unicode(UTF-16) Big Endian

* 1SO 10646/Unicode(UTF-16BE) Big Endian

e |SO 10646/Unicode(UTF-16LE) Little Endian

* US ASClI

e |SO Latin-1

e Central/East European (Slavic)

e Southern European

e Arabic, Logical

e Arabic

e Chinese, National Standard

e Traditional Chinese, Big5

e Cyrillic, ISO-8859-4

e Cyrillic, ISO-8859-5

* Greek

e Hebrew, Visual

¢ Hebrew

e Japanese, EUC-JP

Composer Help 157

Preferences for Voice Applications

* Japanese, ISO 2022

¢ Japanese, Shift-JIS

* Japanese, Windows-31]
e Korean, EUC-KR

* Korean, ISO 2022

e Thai, TISI

e Turkish

Validating Files

e Select or clear the Warn when no grammar is specified check box (not selected by default).

Source, Syntax Coloring, and Templates

Source, Syntax Coloring, and Template preferences for VXML files are set under the XML preferences
provided by Eclipse.

* Use Window > Preferences, expand the Web and XML entry, then expand the XML Files subentry.

This preference allows you to add custom VXML schemas into Composer to be used in namespaces
for new VXML files created through the VXML editor.

Composer Help 158

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors#Creating_a_Custom_Code_Template

Preferences for Voice Applications

GVP Debugger Preferences

Select Window > Preferences > Composer > Debugging > GVP Debugger. GVP Debugger
preferences are usually set during callflow post-installation configuration, when you first run
Composer. Detailed post-installation configuration instructions are also provided in the Configure
Tomcat and Debugger Settings Cheat Sheet (Help > Cheat Sheets > Composer > Voice

Applications).

Composer Help 159

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation#GVP_Debugger

Preferences for Voice Applications

IIS.NET Preferences

Select Window > Preferences > Composer > IIS/.NET.

[IS/.NET preferences are usually set during post-installation configuration, when you first run
Composer. Detailed post-installation configuration instructions are provided in the Setting IIS
Preferences Cheat Sheet (Help > Cheat Sheets > Composer > Building Voice Applications),
and also in Information Services Post-Installation Configuration.

Composer Help 160

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation#Internet

Preferences for Voice Applications

Time Zone Preferences

Composer displays all date/time elements in the user-preferred time zone with the time zone
identifier. You can change the preferred time zone in Window > Preferences > Composer >
Context Services.

Composer Help 161

Preferences for Voice Applications

Tomcat Preferences

Select Window > Preferences > Composer > Tomcat Tomcat preferences are usually set during
post-installation configuration, when you first run Composer. Detailed post-installation configuration
instructions are provided in the Configure Tomcat and Debugger Settings Cheat Sheet (Help > Cheat
Sheets > Composer > Building Voice Applications), and also in Callflow Post-Installation
Configuration or Workflow Post Installation Configuration.

Composer Help 162

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation#Tomcat
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation#Tomcat
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Tomcat

Preferences for Voice Applications

XML Preferences

You can also set XML File Preferences for both routing and voice applications: Window >
Preferences > XML > XML Files. When specifying Encoding formats in the XML Preference page:
encoding formats are applicable only for new File creation using the Template option: (File > New >
XML > XML File > Create XML File from an XML Template > Select XML Template). This
applies only to new XML, VXML, CCXML and SCXML files. Existing files within the Project will not get
impacted.

Composer Help 163

Preferences for Voice Applications

Setting Context Services Preferences

When working with Context Services blocks, you may wish to use online mode. In this mode,
Composer fetches data from Universal Contact Server during design phase to help you configure the
blocks. For example, Composer can fetch customer profile attribute names, extension attribute
names, and so on. You can enable/disable this behavior in the Context Services Preferences page. If
the Context Services capability is enabled at your site, set preferences as follows:

1. Go to Window > Preferences > Composer > Context Services.

2. Check the following box to specify online or offline mode when connecting to Context Services:
Connect to the Universal Contact Server when designing diagrams. This enables the fields
below.

3. Under Universal Contact Server, enter the server host name in your Configuration Database, which is
the name (or IP address) of the Universal Contact Server. Also see the Runtime Configuration topic.

4. Enter the Server Port number for Universal Contact Server. Note: For the port number, open the
Universal Contact Server Application object in your Configuration Database, go to Options tab, select
the cview section, and the port option. Example settings are shown below.

3 C¥_8.0.100.02 (195) [localhost:20 m]'(nm perties

General | Tenants | ServerInfo | Statt Info | Connections Options | Annex | Secuity | Dependency |

| % cview A2 DXBloRme
Name Value
F Erter text here S| Enter text here F
| obe enabled e
abs port 8090
abe tenantld "o

5. Enter the Base URL for the Context Services server (UCS).

The GVP Debugger passes all host, port, and base URL parameters to the VXML platform. It uses the
parameters to make an url made of: [http:// http://]l<host-parameter>:<port-
parameter>[/<base-url>.

6. Under Security Settings, Use secure connection, select never or TLS if Transport Layer
Security is implemented as described in the Genesys 8.1 Security Deployment Guide. Also see
Debugging Transport Layer Security.

7. Select Use Authentication to require a user name and password when connecting to Universal
Contact Server. If selected, enter the User and Password fields.

8. On the Context Services Preferences page, click the Test Connection button. Clicking should cause
connection successful to appear. If not, check that Universal Contact Server is running and that the
entered host/port values are correct. Other sources of error could be:

¢ Base URL parameter value is incorrect

Composer Help 164

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ContextServicesCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OnlineandOfflineModes
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OnlineandOfflineModes
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RuntimeConfiguration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications

Preferences for Voice Applications

e UCS version is not 8.1 or higher

Note: Composer can successfully communicate with UCS at design stage whatever the UCS mode is
(production or maintenance). However, UCS needs to be in production mode at runtime stage (when
running Context Services SCXML or VXML applications, even when using GVP Debugger).
9. Under Context Services object Validation, select one of the following:
* No validation

¢ Validate if connected

¢ Validate

Composer Help 165

Creating Voice Applications for GVP

Creating Voice Applications for GVP

This section provides key information about using Composer to build VoiceXML-based callflow
applications. You should be well-versed in VoiceXML, XML, and HTML before attempting to use
Composer. You should also have reviewed Getting Started with Voice Applications. To help you get

started:

e From within Composer, select Help > Cheat Sheets > Composer to see how some basic voice
applications can be created.

* Your First Application
* Sample Applications & Templates.

To start immediately, see:

* Creating VXML Applications or
¢ Creating CCXML Applications

Composer Help 166

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GettingStartedwithVoiceApps
https://docs.genesys.com/Documentation/IW/8.1.3/Help/HelloWorld
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SampleApplicationsandTemplates
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVXMLApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingCCXMLApplications

Creating Voice Applications for GVP

What is GVP and How Do Voice Apps Work

The Genesys Voice Platform (GVP) is a VoiceXML-based media server for network service providers
and enterprise customers.

What is GVP?

At the most basic level, Genesys Voice Platform (GVP) is Interactive Voice Response software (soft
IVR). At a more complex level, GVP is a software suite that integrates a combination of call
processing, reporting, management, and application servers with Voice over IP (VoIP) networks, to
deliver web-driven dialog and call control services to callers.

Using features such as Automatic Speech Recognition (ASR) and Text-to-Speech (TTS), GVP provides a
cost-effective way to implement automated voice interactions from customers calling your contact
center. At the technology level, GVP is a collection of software components that complement and
work with other Genesys products in order to provide a complete voice self-service solution.

Notes:

Whereas GVP is commonly used in enterprise self-service environments, many other applications of
GVP —including those outside of the contact center—are possible.

A machine on which GVP components are installed is also referred to as a GVP Server in other places
in this Help system.

How Do Voice Applications Work?

Just as one uses HTML to create visual applications, VoiceXML is a mark-up language one uses to
create voice applications. With a traditional web page, a web browser will make a request to a web
server, which in turn will send an HTML document to the browser to be displayed visually to the user.
With a voice application, it's the VoiceXML interpreter that sends the request to the web server, which
will return a VoiceXML document to be presented as a voice application via a telephone. What makes
VoiceXML so powerful is that all of the most popular tools for making web pages are available for
making voice applications. Developers can use technologies they are already familiar with such as
JavaScript, JSP and ASP.NET/C# to generate exciting new voice applications.

The "Big Picture"

Composer Help 167

Creating Voice Applications for GVP

Voice App VXML

GVPServer | Page(s)

Voice App Server
Side Pages

WebService

Test

Design, develop
voice application

Composer(Voice)

Composer is a fully featured VXML application development tool. Users can develop, debug and test
their applications in its Integrated Development Environment (IDE) that provides developer-friendly
features to test and debug VXML applications and server side web pages. Once the application is
ready, it can be exported or manually deployed using an exported package onto an application
server/web server like Tomcat or Microsoft 1IS. Once deployed, GVP can access the voice application’s
VXML pages and any server side pages (JSP/ASP.NET) using HTTP.

When a call comes in to GVP, GVP determines the location of the VXML application through its
provisioning data. It then fetches VXML page(s) and uses its VXML engine to execute them. The
results are played back to the caller on his/her phone. Any server side pages that access databases
or web services or other server side pages are executed on the application server/ web server
through server side constructs implemented by Composer.

During development, Composer can use its bundled Tomcat or a local installation of Microsoft IS as
the web server and make test calls to the application right through GVP from within the IDE. This
feature provides a quick way to test applications by removing the need to of deploy applications to
another server and then point GVP to that location.

Once the application is deployed in production, Composer is no longer in the picture. The application
is usually deployed on its own dedicated web server and application server from where it is accessed
by GVP. The web/application server provides access to all pages and scripts that make up the
application and executes any server side pages of the application.

Composer Help 168

Creating Voice Applications for GVP

Creating CCXML Applications

CCXML (Call Control XML) is a specification developed by the Call Control subgroup of the Voice
Browser Working Group of the W3C. CCXML provides mechanisms for implementing advanced call
control functionality in a standards-based way. It provides the advanced call control features not
supported by VoiceXML. You develop CCXML a little differently than VXML or SCXML applications.
Rather than creating flow diagrams, you invoke a CCXML text editor and enter the code while
Composer performs syntax checking. To create a new CCXML file in Composer perspective:

1. From the menu, select File > New > Other > CallControlXML File.
2. In the wizard, select the Project folder, name the file, and click Finish or Next to use a template.

3. If you click Next, select a template and click Finish. Composer opens the view the CCXML editor view.

Composer Help 169

Creating Voice Applications for GVP

Creating VXML Applications

When building any application in Composer, you first need to create a Project. A Project contains all
the callflows, audio and grammar files, and server side logic for your application. By associating a

routing strategy with a Project, you enable Composer to manage all the associated files and
resources in the Project Explorer.

Cheat Sheet

Composer provides a cheat sheet to walk you through the steps for building a voice application.

* In the Welcome Screen (Help > Welcome), click the icon for Tutorials and select the Create a Voice

Application tutorial. It will also describe the steps for how to make test calls and debug your
application.

e If you are already inside the Workbench and Perspectives, access the same cheat sheet from the Menu

bar at the top by selecting Help > Cheat Sheets, then Create Voice Application from the Building Voice
Applications category.

Creating a New Project

You can follow the steps below to create a new Project:

1. For a Java Composer Project to be deployed on Tomcat, click the toolbar button to create a Java

Composer Project. For a .NET Composer Project to be deployed on IS, click the toolbar icon to create
a .NET Composer Project.

2. In the Project dialog box, type a name for your Project.

3. If you want to save the Composer Project in your default workspace, select the Use default location

check box. If not, clear the check box, click Browse, and navigate to the location where you wish to
store the Composer Project.

4. Select the Project type:

¢ Integrated Voice and Route. Select to create a Project that contains both callflows and
workflows that interact with each other; for example a routing strategy that invokes a GVP
voice application. For more information on both voice and routing applications, see What is
GVP and How Do Voice Apps Work? and What Is a Routing Strategy, respectively.

¢ Voice: Select to create a Project associated with the GVP 8.x. This type of Project may
include callflows, and related server-side files. For more information on this type of Project,
see topic, How Do Voice Applications Work.

¢ Route: Select to create a Project associated with the URS 8.0 SCXML Engine/Interpreter. For
more information on this type of Project, see topic, What Is a Routing Strategy.

5. Click Next.

Composer Help 170

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WhatisGVPandHowDoVoiceAppsWork
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WhatisGVPandHowDoVoiceAppsWork
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WhatisaRoutingWorkflow
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WhatisGVPandHowDoVoiceAppsWork
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WhatisaRoutingWorkflow

Creating Voice Applications for GVP

6. If you want to use templates, expand the appropriate Project type category and select a template for
your application. Templates are sample applications for different purposes. If you want to start from
scratch, choose the Blank Project template and click Next.

7. Select the default locale and click Next.

8. Optional. If using the in a VoiceXML application, select the Enable ICM checkbox to enable integration.
When checked, ICM variables will be visible in the Entry block. See the ICM Interaction Data block for
more information.

9. Click Finish. Composer now creates your new Project. Your new Project folder and its subfolders appear
in the Project Explorer.

Note: If the Project Explorer does not display or if this is your first time using Composer, click the
large workbench bubble icon on the blank screen to display the Project Explorer. Choose another
topic in this workbook to see common steps for designing a Project for voice applications. If you have
never created a Composer Project, we recommend starting with Your First Application.

Composer Help 171

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SampleApplicationsandTemplates
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ICMInteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/YourFirstApplication

Creating Voice Applications for GVP

Creating a New Callflow

To add a new callflow diagram to an existing Composer Project:

5
1. Click the button on the main toolbar to create a new callflow. Or use the keyboard shortcut:
Ctrl+Alt+0.

2. In the wizard, select the tab for the type of the callflow. There are two main types of callflows in
Composer represented by wizard tabs:
e Main Callflow: Used for the main application where the call will land or be transferred to from
another application.

e Subcallflow: Used for modularizing your applications. It is useful for structuring large
applications into manageable components.

Additionally you will benefit from the automated transaction reports associated with Subcallflows.
Action Start and Action End VAR events are auto-generated for Entry and Exit blocks.

Select either Main Callflow or Subcallflow.

Select the type of diagram.

Click Next.

Select the Project.

Click Finish.

® N o v AW

Create the callflow.

Composer Help 172

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SubdialogBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExitBlock

Creating Voice Applications for GVP

Validation

Composer can validate your diagram files and other source files for completeness and accuracy. For
more information, see Validation.

Composer Help 173

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Validation

Creating Voice Applications for GVP

Code Generation

The process of generating code creates a properly-formatted VoiceXML file from a callflow diagram
built with Composer or a SCXML file from a workflow diagram. Static pages (pure VXML or SCXML
code) are generated in the src-gen folder of the Composer Project. You can generate code in a couple
of ways:

e Select Diagram > Generate Code.

¢ Click the Generate Code icon on the upper-right of the Composer main window when the callflow/
workflow canvas is selected.

Note: If your project uses the Query Builder or Stored Procedure Helper-generated queries in DB Data
blocks, the process of code generation will create one SQL file in the db folder for each such DB Data
block. These SQL files will be used at runtime and should not be deleted.

Code Generation for Multiple Callflows

When using the Run as Callflow function, Composer automatically generates the VXML files from the
diagram file that you want to run. When generating code, with the generate code function for a Java
Composer Project that has multiple callflows, Composer attempts to generate the VXML for all the
callflows before running (because the application might move between multiple callflows for
subdialogs). However, if one of the callflows has an error, Composer provides the option to continue
running the application anyway, because the erroneous callflow may be a callflow that’'s not used by
the one being run (if there are two or more main callflows, for example). When this happens, the
VXML files are basically out of sync with the diagram files and this may affect execution. Genesys
recommends that you fix all errors before running the application.

Composer Help 174

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Using_the_Query_Builder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Stored_Procedure_Helper
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock

Creating Voice Applications for GVP

Deploying/Testing Your Application

After you have saved your files and generated code for your application, test the application as
follows:

1. Deploy the project for testing.

¢ If deploying a Java Composer Project, Composer bundles Tomcat 6.0 for running test
applications, such as routing applications. If you configured the Tomcat settings prior to
creating your Project, it will be auto-deployed on the Tomcat Server. You can double check
this by clicking on the name of the project in the Project Explorer, then right-click and select

Project Properties. Select the Tomcat deployment category and verify that the project is
deployed. If not, click Deploy.

e If deploying a .NET Composer Project, deploy your project on an IIS Server. Be sure you have
configured the IIS settings. Click on the name of the project in the Project Explorer, then

right-click and select Project Properties. Select the IIS deployment category and verify that
the project is deployed. If not, click Deploy.

2. For Voice Projects, use Run mode to run the application by selecting Run > Run As > Run Callflow, or by
right-clicking on the callflow file name in the Project Explorer and selecting Run As > Run Callflow. The
code is generated in the src-gen folder and the debugger sends the call to your SIP Phone.

3. Accept the call and you will be connected to the application on GVP. The call traces will become visible
in the Call Trace window, and you should hear the voice application run.

Composer Help 175

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CodeGeneration
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Tomcat
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Internet_Information_Services

Creating Voice Applications for GVP

Hello World Sample

Here is a simple voice application to help you get started with Composer. This application says Hello
World when the call is answered.

Simple Text-to-Speech Application

To build a simple text-to-speech (TTS) application that says Hello World to the caller:

1.
2.

e

10.
. Click OK.
12.

13.

14.

15.

16.

17.
18.

Create a new Composer Project called Hello World.

Add the following blocks from the Basic Blocks Palette to the canvas area: Entry, Prompt, and Exit, then
connect them with Output Links.

. Select the Entry block, or right-click the Entry block and select Show Properties View from the

shortcut menu, if you want to set any properties (optional).

. Select the Prompt block, or right-click the Prompt block and select Show Properties View from the

shortcut menu.

Select the Name property and type a name in the Value field.

Select the Prompts property and click the E=1 button.

Click the Add button and type a name in the Name field (optional).
Select Value in the Type drop-down list (default).

Select Text in the Interpret-As drop-down list (default).

Type HelloWorld (one word) in the Value field.

Save the file by selecting File > Save. You will not be able to generate code if you do not save the file.

Generate the code by selecting Diagram > Generate Code, or by clicking the Generate Code icon
on the upper-right of the Composer main window when the callflow canvas is selected.

If you get any errors, double-click on the error to get the details and fix the problem. For the Hello World
application, typical problems would be forgetting to add the Hello World prompt or forgetting to link the
blocks together.

If code generation succeeds, click OK at the confirmation dialog box.

Make sure the project is deployed for testing. Composer bundles Tomcat 6.0 for running test
applications. If you configured the Tomcat settings prior to creating your Composer Project, it will be
auto-deployed on the Tomcat Server. You can double check this by clicking on the name of the project
in the Project Explorer, then right-click and select Project Properties. Select the Tomcat deployment
category and verify that the project is deployed. If not, click Deploy.

Select the callflow in the Project callflows folder.

Run the application by selecting Run > Run As > Run Callflow, or by right-clicking on the callflow file

Composer Help 176

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVXMLApplications#Creating_a_New_Project
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UsingtheDesigner#Methods_for_Adding_Blocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PromptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExitBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications#Testing_Your_Application
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CallflowPostInstallation#Tomcat

Creating Voice Applications for GVP

name in the Project Explorer and selecting Run As > Run Califlow.
The code is generated in the src-gen folder and the GVP debugger sends the call to your SIP Phone.

19. Accept the call and you will be connected to the application on GVP. The call traces will become visible
in the Call Trace view, and you should hear Hello World played through the phone.

Adding Blocks

There are a few ways to add blocks from the Palette to the canvas. The most common methods are
as follows:

e Click on the block icon on the palette, release the mouse and click on the target location on the canvas
area.

¢ Double-click a block icon on the palette.

¢ Click on the block icon on the palette, and while holding down the mouse button, drag and drop the
block to the canvas.

Any of these methods will add the new block and you can then type the name of the block on the
canvas itself. Click Property here to read about block naming restrictions.

Connecting Blocks

Blocks are connected to each other using connection links. There are two types of connection links:

e Output Links used to connect one block's output port to another block's input port, and

e Exception Links used to indicate error or exception conditions by connecting from a block's exception
port to another block's input port.

To add a new Output Link (or Exception Link):

1. Click the Output Link (or Exception Link) icon in the palette.
2. Move the mouse over to the source block. The cursor will change to an upward arrow.

3. Click once on the source block and keep the mouse button pressed. Then drag the mouse onto the
target block and release the mouse button.

This will add the connection link between the two blocks. To use an Exception Link, the source block
must have an exception port defined. This is done by selecting at least one supported exception
within the block's Exceptions property.

Another method for adding an Output Link or Exception Link between two blocks is as follows:

1. Click once on the source block to select it.

2. Hold the Ctrl key and click once on the target block to select it as well.

Composer Help 177

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks

Creating Voice Applications for GVP

3. Double-click the Output Link (or Exception Link) icon in the palette to create a connection between the
two blocks.

Again, to use an Exception Link, the source block must have an exception port defined.

The preference Show Connection Ports (in Composer Diagram Preferences) affects how connection
links can be drawn to connect blocks. If it is switched on, links may be drawn directly by dragging
from an outport of a block and dropped onto a block or its inport. This method will work in addition to
using the Output link and Exception link tools. If the setting is switched off, connection ports are not
displayed and therefore the method of drawing links mentioned above is not available.

Composer Help 178

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DiagramPreferences

Creating Voice Applications for GVP

Callflow Blocks

A block is the fundamental element of a callflow. Each block defines specific properties and how to
handle specific events. You use the Link tools to connect these blocks in the order that the application
should follow. A single VXML application is generated per callflow. Each block in a callflow becomes a
form in the generated VXML document.

VXML Properties

Each block has custom VoiceXML properties. These properties appear within a Properties view at the
bottom of the Composer window when you right-click the block and then select Show Properties View
from the shortcut menu. For each block, specific properties determine how events are handled. There
are several categories of properties depending on the specific block. The blocks build a callflow or
subcallflow. Generate code either from the Toolbar or from the Diagram menu. Static VXML pages
(pure VXML code) are generated in the src-gen folder.

Main Versus Subcallflow

There are two types of callflows:

¢ Main Callflow: This is the starting callflow for any application.

e Subcallflow: This is a component callflow that can be called from the main callflow or another
subcallflow.

Each main callflow or subcallflow application should have at least three blocks:

e The Entry block to start the application. This block also specifies the relative file locations of the audio
files for the generated application code and default exception handling.

¢ At least one other block to perform specific functions such as passing a call to an agent, creating a log
of an activity, requesting caller input, playing a prompt, and so on.

¢ The Exit block to end the application, or, for example, the GoTo block to direct the application to another
application.

Subcallflows

Subcallflows are used for modularizing applications and for writing components that can be reused by
multiple applications (such as a credit card validation subcallflow). The usage of subcallflows within a
main callflow is very similar to a function call in a programming language. One or more input
parameters can be passed to a subcallflow. Similarly, the subcallflow can return one or more output
parameters. Therefore, a subcallflow can be designed to behave differently depending on the input
parameter(s) passed.

Composer Help 179

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock#Capture_Location_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock#Capture_Location_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GoToBlock

Creating Voice Applications for GVP

Variables in Callflows

You can define voice application (session) variables using the Entry block Variables property.

Types of Variables

Composer supports the following types of variables for callflow diagrams:

« System--Pre-defined application variables (System category above) hold Project and application-
related values. While you cannot delete System variables, you can have your application modify the
values.

* User--User-defined custom variables that you create by clicking the Add button in the Application
Variables dialog box above and selecting User. Your application can delete and modify User variables.

* Input--These are variables supplied as input to the called diagram. Created by clicking the Add button
in the Application Variables dialog box above and selecting User. During runtime, Input variables get
auto-filled from the calling context. Typically Input variables are created on the SubCallflow side to
notify the MainCallflow about the Parameter-passing details while designing the application flow.
Composer does auto-synchronization of the Input variables in the Subdialog block.Input variables are
also used on the MainCallflow while invoking the VoiceXML application from workflows in case of Voice
Treatment execution - computer telephony integration (CTIl) scenario (Play Application).

¢ MainCallflow--Automatically filled from either session.com.genesyslab.userdata or
session.connection.protocol.sip.requesturi based on the Non-CTIC or CTIC flow.

¢ SubcCallflow--Automatically filled from the VXML subdialog-invoking methodology.

Variable Versus Static Data

Many blocks enable the use of variables rather than static data. For example, the Prompt block can
play the value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks
must be declared here so that they appear in the list of available variables in other blocks. The value
collected by an Input block or a Menu block is saved as a session variable whose name is the same as
the block Name. Also see information on the AppState variable used by the DB Data block.

Entry Block Variables

Entry block variables can access User Data (attached data from a routing workflow) from
session.com.genesyslab.userdata and SIP Request-URI parameters from
session.connection.protocol.sip.requesturi session variables.

Request URi parameters created in IVR Profiles during the VoiceXML application provisioning are
passed to the Composer generated VoiceXML application as request-uri parameters in the
session.connection.protocol.sip.requesturi session array. An Entry block variable can use

Composer Help 180

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SubdialogBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PlayApplicationBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PromptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Records_Variable_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UserData

Creating Voice Applications for GVP

these parameters by setting the following expressions to the variable values: typeof
session.connection.protocol.sip.requesturi['varl'] == 'undefined' ?
"LocalDefaultValue" : session.connection.protocol.sip.requesturi['varl'].

If parameters are set as part of IVR Profiles provisioning in the Genesys VoiceXML provisioning
system, and if these parameters have the same names as variables set in the Entry block's
Variables property with the above mentioned sip.requesturi expression, then the SIP-Request-
URI parameters will take precedence over the user variable values set in the Entry block.

For more information on valid values and syntax for the the gvp.services-parameter
section, refer to page number 121 in the GVP 8.5 User's Guide.

IVR profiles for GVP can be created using the Genesys Administrator. For more information, refer to
the Voice Platform Solution Guide and the gvp.services-parameter section in the GVP 8.5 User's
Guide.

Attaching Results to User Data

While you can assign Classify object results to a variable, Genesys does not recommend this. The
recommended way of dealing with the classification results is to attach them to the interaction. Then
User Data will have the keys listed in the table below with the corresponding values returned by
Classification Server. As an example, User Data would have the following pairs after the attachment:

Parameter Value

Ctgld 00001a05F5U900QW
CtgRelevancy 95

CtgName Cooking
Ctgld_00001a05F5U900QW 95
Ctgld_00001a05F5U900QX 85
Ctgld_00001a05F5U900QY 75
Ctgld_00001a05F5U900QZ 65

Composer Help 181

Creating Voice Applications for GVP

VXML Properties

This page provides details about the properties used to manage platform behavior: Note: Properties
apply to their parent tag and all the descendants of the parent. A property at a lower level overrides
a property at a higher level. If you already have GVP, note that the properties in defaults-ng.vxml will
be (re)set as documented below only when a system is newly installed. If you simply upgrade from a
previous release, the old values will be preserved. This means that any manual configuration of
defaults-ng.vxml will be saved when you upgrade. It also means that when moving to newer versions
in which GVP uses different default values, the defaults will not be reset unless you newly install
(rather than upgrade).

Receive External Message

Property Description Default Value

This property specifies whether
an external message will be
received asynchronously. The
valid values are:
com.genesyslab. * True--If the value equals true,
(GVP extension) external messages will be false
received asynchronously.

* False--If the value equals
false, external messages will
be received synchronously.

This property specifies whether
an external message will be
queued or discarded. The valid
values are:

e True--If the value equals true,
external messages will be
queued. The external
message is reflected to the
application in the
com.genesyslab. application.lastmessage$
variable (an ECMAScript false

(GVP extension) .
object).

e False--If the value equals
false, external messages will
not be delivered as a
VoiceXML event (they will be
discarded).

Note:If no external messages have been
received, application.lastmessage$ is
ECMAScript undefined. Only the last

Composer Help 182

Creating Voice Applications for GVP

Speech Recognizer

Property

confidencelevel

sensitivity

speedvsaccuracy

completetimeout

incompletetimeout

received message is available. To
preserve a message for future reference
during the lifetime of the application,
copy the data to an application-scoped
variable.

Description

Specifies the speech recognition
confidence level. Values range
from 0.0 (minimum confidence)
to 1.0 (maximum confidence).
Recognition results are rejected
(a nomatch event is thrown) if
the confidence level of the
results is below this threshold.

Specifies the level of sensitivity
to speech. Values range from 0.0
(least sensitive to noise) to 1.0
(highly sensitive to quiet input).

A hint specifying the desired
balance between speed versus
accuracy when processing a
given utterance. Values range
from 0.0 (fastest recognition) to
1.0 (best accuracy).

Note: The Nuance MRCP engine uses the
value of the speedvsaccuracy property to
set its proprietary rec.Pruning parameter,
using the following algorithm: If x is the
speedvsaccuracy value, and x <= 0.5
then rec.Pruning = (x * 400) + 600 else
rec.Pruning = (x * 800) + 400

The length of silence required
following user speech before the
speech recognizer finalizes a
result (either accepting it or
throwing a nomatch event). The
completetimeout is used when
the speech is a complete match
of an active grammar and no
further words can be spoken.

The length of silence required
following user speech before the
speech recognizer finalizes a
result (by either accepting it or
throwing a nomatch event). In
contrast to completetimeout, the
incompletetimeout is used when
the speech is an incomplete

Default Value

0.5

0.5

0.5

1s

1s

Composer Help

183

Creating Voice Applications for GVP

match to an active grammar, or
when the speech is a match but
it is possible to speak further.

The maximum duration of user
speech. If this time elapses
before the user stops speaking,
the maxspeechtimeout event is
thrown. Note: Refer to your ASR
engine documentation for
support details.

maxspeechtimeout

Maximum number of results

returned by the recognizer. Also
represents the maximum size of
the application.lastresult$ array.

DTMF Recognizer

Property Description

The timeout period allowed
between each digit when
recognizing DTMF input.

interdigittimeout

The terminating timeout to use

ST when recognizing DTMF input.

The terminating DTMF character

termchar for DTMF input recognition.

This property makes it possible
to use the DTMF Recognizer that
comes with your ASR Engine

instead of using the one provided
by Genesys. The valid values are:

e True--If the value equals true,
offboard DTMF recognition is

com.genesyslab.dtmf.offboard_recognitighaPled for the call.

e False--If the value equals
false, offboard DTMF
recognition is disabled for the
call.

(GVP extension)

Note:If the value is invalid, an
error.semantic will be thrown. Note: The
recognizer will use the engine specified
by the ASR engine property. Note: If you
switch engines in mid call, any buffered
digits will be lost.

60s

=

Default Value

3s

#

False

Composer Help

184

Creating Voice Applications for GVP

Prompt and Collect

Property Description Default Value

Determines which input methods
to use. Value is a space
separated list of input methods:

inputmodes + dtmf--allows DTMF sequences dtmf voice
as input

e voice--allows voice as input

Once the prompt has finished
playing, the length of time to

timeout wait, if no speech or dtmf input 10s
occurs, before throwing a noinput
event.

Specifies universal command
grammars to activate. Value is a
space-separated list of all or
fewer of the following command
grammars:

e cancel--If this grammar is
activated, and the caller says
"cancel" (or equivalent
phrase configured for another
language), the cancel event
is thrown.

e exit--If this grammar is
activated, and the caller says
universals "exit" (or equivalent phrase none
configured for another
language), the exit event is
thrown.

¢ help--If this grammar is
activated, and the caller says
"help" (or equivalent phrase
configured for another
language), the help event is
thrown.

A setting of none disables universal
commands. A setting of all can be used
as a short form for activating all 3
command grammars.

Specifies the name of the ASR
(Automatic Speech Recognition)

com.genesyslab.asrengine engine to use. For details apout
available names, consult with latf ifi
(GVP extension) your platform administrator. platform-specihic

Note: If this property is not specified, the
per call configuration value specified in

Composer Help 185

Creating Voice Applications for GVP

com.genesyslab.ttsengine

(GVP extension)

com.genesyslab.endbeep

(GVP extension)

com.genesyslab.utterancedest

(GVP extension)

recordutterance

(VoiceXML 2.1 feature)

the vxmli.asr.defaultengine property (see
the Genesys Voice Platform 8.1
Configuration Options Reference) will be
used. The default is empty string ("").
Note: It is valid to specify a particular
engine only if that engine is installed for
the platform running the application.
Otherwise, an error.asr.unknownengine
event will be thrown. Note: The
configured name for SpeechWorks OSR
must be speechworks, otherwise a
recognition error will occur.

Specifies the name of the TTS
(Text-to-Speech) engine to use
(that is, the voice). For details
about available names, consult
with your platform administrator.

Note: If this property is not specified, the
per call configuration value specified in
the vxmli.asr.defaultengine property (see
the Genesys Voice Platform 8.1
Configuration Options Reference) will be
used. Note: It is valid to specify a
particular engine only if that engine is
installed for the platform running the
application. Otherwise, an
error.tts.unknownengine event will be
thrown.

Specifies whether a beep should
be played at the end of prompts
in fields, when bargein is
disabled. When bargein is
enabled, this attribute has no
effect (there is never a beep).
Platform owners can access the
audio file (endofprompt.vox) in
the configured audio path.

Specifies the path of the
directory to use for saved
utterance audio files. The value
will be resolved to the configured
audio path. This property can be
used with the recordutterance
property. Note: If you specify the
utterancedest and enable the
savetmpfiles property, the
utterance will only be saved
under the utterancedest path. It
will not also be saved with the
other tmp files.

This property tells the platform to
enable recording while
simultaneously gathering input
from the user. Set to true to
enable user utterance to be
recorded. Set to false otherwise.
Upon completion of user input,

platform-specific

false

files are written to the tmp
directory (may or may not be
saved, depending on whether the
savetmpfiles property is enabled)

false

Composer Help

186

Creating Voice Applications for GVP

recordutterancetype

(VoiceXML 2.1 feature)

com.genesyslab.asr.get_swi_literaltirtﬁﬂ

(GVP extension)

com.genesyslab.tts.<Your vendor
specific name>

(GVP extension)

com.genesyslab.asr.<Your
vendor specific name>

(GVP extension)

the recording shadow variable
will be set. Note: The <vxml>
version attribute must be
specified as 2.1 (or higher) to use
this property. Note: If the
recordutterance property has
been specified in a VoiceXML 2.0
page, it will behave as if itis a
VoiceXML 2.1 page.

This property specifies the audio
format to use for recording
utterances. Only used with the
recordutterance property. GVP
currently supports the following
types:

e audio/basic--Raw (headerless)
8kHz 8-bit mono mu-law
[PCM] single channel. (G.711)

e audio/x-alaw-basic--Raw audio/basic
(headerless) 8kHz 8-bit mono
A-law [PCM] single channel.
(G.711)

e audio/x-wav--WAV (RIFF
header) 8kHz 8-bit mono mu-
law [PCM] single channel.

e audio/x-wav--WAV (RIFF
header) 8kHz 8-bit mono A-
law [PCM] single channel.

Set to true to allow the special
OSR variable, SWI_literalTimings,
accessed through the
application.lastresult$ variable.
Requires
com.genesyslab.fieldobject to be
set to true. Available with
SpeechWorks ASR only.

Users will be able to define TTS
vendor-specific global properties

in the Entry block. The exact set

of property names is not known

to Composer and therefore no
validations will be performed on

the names. The general format of
these properties will follow this
pattern:
com.genesyslab.tts.<property_name>

When using GVP's MRCP direct

integration with an ASR engine,

the VoiceXML application can use parameter-specific
this property format to specify

arbitrary vendor-specific

false

Composer Help

187

Creating Voice Applications for GVP

parameters to be sent to the ASR
engine.

In the property name, <Your vendor

specific name> is replaced with the

actual vendor-specific parameter name;

and the value of the property must be a

valid value for that vendor-specific

parameter. For example, to set Nuance's
rec.GrammarWeight parameter to 10:

<property
name="com.genesyslab.asr.rec.GrammarWeight"
value="10"/> Notes:

e Vendor parameter names and
values could be case-
sensitive. Refer to the vendor
documentation to ensure you
are using valid names and
values.

* You can only set a vendor
parameter using <property>
if the parameter can be set
by the ASR engine at runtime.
Refer to the vendor
documentation to confirm
which parameters are
runtime-settable.

¢ Once a vendor parameter is
set using <property>, the
setting will stay in effect for
the remainder of the call,
unless it is set again later in
the VoiceXML application.

Many of OSR's swiep_*/swirec_*
configuration parameters can
also be set as VoiceXML
properties.

To find out whether a particular
parameter can be set as a property, look
it up in the OSR Reference Manual. If the
line under the parameter name includes
"API" (and if the description mentions
SWlepSetParameter() or

swiep_*/swirec_* SWirecRecognizerSetParameter()), then it
. can be set as a property. Some of the parameter-specific
(GVP extension) parameters that are commonly used are:

e swirec_suppress_event_logging
* swirec_suppress_waveform_logging

* swirec_audio_environment
(OSR 2.0+ only)

* swirec_backward_compatible_confidence_scores
(OSR 2.0+ only)

Composer Help 188

Creating Voice Applications for GVP

See the OSR Reference Manual for details
about the values/usage for each
parameter. These properties are specific
to Nuance OSR, and are only supported in
GVP's MRCP native integration with OSR.
(They are not supported in GVP's MRCP
direct integration with OSR, using SWMS.)

If set to true, this will enable GVP
com.genesyslab.logtoasr to log data directly to the ASR
. engine's log. Note: If this true
(VP EEEEh) property is true, then the <log>
tag's level attribute is ignored.

Prompt and Collect--Barge-in
GVP supports Recognition Based Barge-in.

Property Description Default Value

Controls whether user input can
be collected before prompts have
finished playing:

bargein * true--Any user input can

. : true
barge in during prompts.

e false--No user input can barge
in during prompts.

Specifies the bargein type:
» speech--Any user utterance
can barge in the prompt.

. e hotword (equivalent to
bargeinype recognition)--Only user input ~ speech
that matches a grammar can
barge in on the prompt.

Note: Not all bargeintypes are supported
with all ASR engines.

Prompt and Collect--Wakeup Word Spotting Recognition Mode

In GVP's MRCP native integration with Nuance OSR, OSR's "magic word" feature is exposed through
the following properties.

Property Description Default Value
com.genesyslab.wakeupword Specifies whether Wakeup Word false

Composer Help 189

Creating Voice Applications for GVP

Spotting should be used for input
in fields, menus, and initials. If
set to true, recognition is only
performed if input length is
between a minimum and
maximum length, and (only with
Nuance OSR 2.0+) if input
matches a grammar.

(GVP extension)

If com.genesyslab.wakeupword is
com.genesyslab.wakeupwordminimuet to true, this specifies the
minimum length that input must
be in order for recognition to be
performed.

(GVP extension)

If com.genesyslab.wakeupword is
com.genesyslab.wakeupwordmaximyét to true, this specifies the
maximum length that input may
be in order for recognition to be
performed.

(GVP extension)

Prompt and Collect--Magic Word / Selective Barge-in Recognition
Modes

With Nuance SWMS 3.1.4+, OSR's "magic word" and "selective barge-in" features are exposed
through the following properties. GVP does not have default values for the following properties. If the
application specifies them, GVP passes the specified values through to SWMS. Otherwise, GVP does
not pass anything to SWMS - in which case, SWMS would use its own default settings (see the SWMS
documentation for these details).

Property Description Default Value

Set to hotword to enable the OSR
selective barge-in or magic word
recognition mode:

e Selective Barge-in--Only user
input that matches a
grammar can barge in on the
prompt. (This mode is
enabled if
com.genesyslab.ASR.Hotword-
Max-Duration is set to 0.)

com.genesyslab.ASR.Recognition-

Mode

(GVP extension) « Magic Word--Only user input
that matches a grammar, and
whose duration is between a
minimum and maximum
length, can barge in on the
prompt. (The minimum and
maximum utterance lengths
are specified by
com.genesyslab.asr.Hotword-

Composer Help 190

Creating Voice Applications for GVP

com.genesyslab.asr.Hotword-Min-
Duration

(GVP extension)

com.genesyslab.asr.Hotword-
Max-Duration

(GVP extension)

com.genesyslab.asr.Hotword-
Confidence-Threshold

Min-Duration and
com.genesyslab.asr.Hotword-
Max-Duration.)

For example: <property
name="com.genesyslab.asr.Recognition-
Mode" value=""hotword""/> Note: After
setting this property, the specified mode
will remain in effect for all subsequent
recognitions (even if the property is not
set in subsequent input fields), unless a
new mode is explicitly set. So, to switch
back to normal recognition mode after
using one of the above hotword modes,
the application must explicitly set this
property back to normal (and not set any
of the three related properties listed
below). For example: <property
name="com.genesyslab.asr.Recognition-
Mode" value=""normal""/> (Available
with Nuance SWMS 3.1.4+ only.)

If
com.genesyslab.asr.Recognition-
Mode is set to hotword, this
specifies the minimum length (in
ms) that input must be in order
for recognition to be performed.
For example:

<property
name="com.genesyslab.asr.Hotword-Min-
Duration" value=""50""/> If
com.genesyslab.asr.Hotword-Max-
Duration is set to 0, this property will be
ignored.

If
com.genesyslab.asr.Recognition-
Mode is set to hotword, this
specifies the maximum length (in
ms) that input may be in order
for recognition to be performed.
For example:

<property
name="com.genesyslab.asr.Hotword-
Max-Duration" value=""2000""/> If this
property is set to 0, the OSR selective
barge-in mode will be enabled (for
example, no minimum and maximum
duration constraints are used, so
com.genesyslab.asr.Hotword-Min-
Duration will be ignored). Otherwise, the
OSR magic word mode will be enabled
(for example, the minimum and
maximum duration constraints specified
by com.genesyslab.asr.Hotword-Min-
Duration and
com.genesyslab.asr.Hotword-Max-
Duration will be used).

If
com.genesyslab.asr.Recognition-

Composer Help

191

Creating Voice Applications for GVP

(GVP extension)

Fetching

Property

audiofetchhint

audiomaxage

audiomaxstale

datafetchhint

datamaxage

Mode is set to hotword, this
specifies the speech recognition
confidence level that should be
used. Values range from 0
(minimum confidence) to 1000
(maximum confidence).
Recognition results are rejected
(a nomatch event is thrown) if
the confidence level of the
results is below this threshold.

For this property to take effect, you must
also set the standard confidencelevel
property to an equivalent decimal
percentage. For example: <property
name="com.genesyslab.asr.Hotword-
Confidence-Threshold" value=""100""/>
<property name="confidencelevel"
value="0.1"/>

Description

Defines when audio files can be
fetched:

e prefetch--audio file may be
downloaded when the page is
loaded

¢ safe--only load the audio file
when needed

Currently, all audio is fetched when
needed.

Defines maximum acceptable
age, in seconds, of cached audio
resources.

Defines maximum staleness, in
seconds, of expired cached audio
resources.

Defines when XML data files can
be fetched:

e safe--only load the XML data
file when needed

Currently, all data files are fetched when
needed.

Defines maximum acceptable
age, in seconds, of cached XML
resources.

Default Value

prefetch

undefined

undefined

safe

undefined

Composer Help

192

Creating Voice Applications for GVP

Defines maximum staleness, in
datamaxstale seconds, of expired cached XML undefined
resources.

Defines when next document can
be fetched:

e safe--only load the next

document when needed safe

documentfetchhint

Currently, all documents are fetched
when needed.

Defines maximum acceptable
documentmaxage age, in seconds, of cached undefined
documents.

Defines maximum staleness, in
documentmaxstale seconds, of expired cached undefined
documents.

Defines when grammar files can
be fetched:

e prefetch--grammar file may
be downloaded when the

page is loaded

grammarfetchhint prefetch

e safe--only load the grammar
file when needed

Currently, all grammars are fetched when
needed.

Defines maximum acceptable
age, in seconds, of cached

grammar resources. :
grammarmaxage undefined

SpeechWorks OSR 1.x does not support
this.

Defines maximum staleness, in
seconds, of expired cached

grammar resources.

grammarmaxstale undefined

SpeechWorks OSR 1.x does not support
this.

Defines when objects can be
fetched:

» prefetch--object may be

objectfetchhint downloaded when the page is prefetch
loaded

e safe--only load the object
when needed

Defines maximum acceptable

age, in seconds, of cached object IS

objectmaxage

Composer Help 193

Creating Voice Applications for GVP

resources.

Defines maximum staleness, in
objectmaxstale seconds, of expired cached undefined
object resources.

Defines when scripts can be
fetched:

e prefetch--script may be
downloaded when the page is

loaded

scriptfetchhint prefetch

» safe--only load the script
when needed

Currently, all scripts are fetched when
needed.

Defines maximum acceptable
scriptmaxage age, in seconds, of cached script undefined
resources.

Defines maximum staleness, in
scriptmaxstale seconds, of expired cached script undefined
resources.

The URI of audio to play while
fetchaudio waiting for documents to be builtin:background_audio.wav
fetched.

The length of time to wait at the
fetchaudiodelay start of a fetch delay before 1s
playing fetchaudio.

The minimum length of time to
play fetchaudio, once started,
even if the fetch result arrives in
the meantime.

fetchaudiominimum Os

Timeout for fetches. This is not
supported when using

fetchtimeout Nuance(MRCP). An error.badfetch 30s
is thrown when a fetch duration
exceeds fetchtimeout.

Audio Control

The Audio Control Feature is an extension to VoiceXML. Note: Audio control functions are only applied
to the currently playing prompt, and not across the queued prompt list. Note: These properties may
not work properly for TTS. <tbody></tbody>

Property Description Default Value
com.genesyslab.noaudiocontrol If this property is set (to any

value), the undefined
(GVP extension) com.genesyslab.audiocontrol

property is disabled.

Composer Help 194

Creating Voice Applications for GVP

(Only used if
com.genesyslab.audiocontrol com.genesyslab.noaudiocontrol
is undefined.) Set to true to
(GVP extension) enable Audio Control during
playing of audio. Set to false to
disable the feature.

true

Sets the duration of audio to be
com.genesyslab.audio.skipduration skipped when using the
skipahead/skipback features. 6000ms
Note: Time units (s or ms) must
be provided.

Sets the DTMF button for
skipping ahead in the audio file/
; ; TTS. The duration skipped

com.genesyslab.audio.skipahead depends on the value of the
(GVP extension) com.genesyslab.audio.skipduration

property. If set to "-" or

undefined, this feature is

disabled.

Sets the DTMF button for

rewinding the audio file/TTS. The
com.genesyslab.audio.skipback duration rewound depends on
the value of the undefined
com.genesyslab.audio.skipduration
property. If set to - or undefined,
this feature is disabled.

Sets the DTMF button for turning

(GVP extension)

undefined

(GVP extension)

com.genesyslab.audio.louder volume up. If set to - or
(GVP extension) updeﬁned, this_ feature is undefined
disabled. This is not supported
with VolP.
Sets the DTMF button for turning
com.genesyslab.audio.softer volume down. If set to - or
(GVP extension) updeﬁned, thig feature is undefined
disabled. This is not supported
with VolP.
Sets the DTMF button for pausing
com.genesyslab.audio.pause playback temporarily, until the

pause button is pressed a second undefined
time. If set to- or undefined, this
feature is disabled.

Sets the DTMF button for
stopping all queued audio

(GVP extension) playback. If set to - or undefined,
this feature is disabled.

Sets the DTMF button for

interrupting the current audio

playback, and starting the next

(GVP extension) audio playback in the queue. If
set to - or undefined, this feature
is disabled.

Sets the DTMF button for
increasing the rate of audio

(GVP extension)

com.genesyslab.audio.stop
undefined

com.genesyslab.audio.next
undefined

com.genesyslab.audio.faster undefined

Composer Help 195

Creating Voice Applications for GVP

(GVP extension)

com.genesyslab.audio.slower

(GVP extension)

Miscellaneous

Property

com.genesyslab.loglevel

(GVP extension)

com.genesyslab.private

playback. If set to - or undefined,
this feature is disabled.

This is not supported with VolP.

Sets the DTMF button for
decreasing the rate of audio
playback. If set to - or undefined,
this feature is disabled.

This is not supported with VolP.

Description

The loglevel limits execution of
<log> tags to the ones whose
level attribute have a value up to
(including) the loglevel value.

This property enables data
masking. This means that private
data like credit card numbers,
social insurance numbers, and so
on are converted to asterisks (for
example, 123 would be
converted to ***), The valid
values are:

e True--If com.genesyslab.
equals true, data masking is
enabled. The data that is
masked includes: - asr_trace
(result) - dtmf (digit) -
input_end (phrase) - prompt
_play (all) - subdialog_start
(param_value and URL query

string) - eval_cond - eval_expr

(expression and value) -
eval_var (expression and
value) - submit (namelist and
URL query string) - link (URL
query string) - parse_error
(URL query string) -

wf arrived (URL query string)

- wf_lookup (URL query string)

- event_handler_enter (URL
query string) - filling (value) -
filled_enter (namelist)

e False--If com.genesyslab.
equals false, data masking is
not enabled.

undefined

Default Value

Composer Help

196

Creating Voice Applications for GVP

Note: The default value is false. Note:
This attribute is overridden by the
gvp:private attribute (in the <block>,
<field>, <transfer>, <record>,
<subdialog>, and <initial> tags).

Platform

The following properties are specific to GVP. The first three are useful for debugging purposes.

Property Description Default Value
This property indicates if the
com.genesyslab.maintainer.sendwh nalntalner email message

hould be sent. Valid values are:
always, never, on_message.

on_message

The value is interpreted as a
string with a list of words. The
words may be: all, none,
prompts, inputs, pages,
recordings. When a list of
keywords is specified, the
superset of all the keywords are
saved. In particular, this means
if someone specifies <property
name=
"com.genesyslab.savetmpfiles"
value="none inputs" /> it is
equivalent to specifying
<property name=
"com.genesyslab.savetmpfiles"
value="inputs"/>.

com.genesyslab.savetmpfiles none

This property two valid
values:immediate or delayed.
This property only takes effect
when
com.genesyslab.savetmpfilesmode com.genesyslab.savetmpfiles is immediate
enabled. If set to immediate the
files are written to disk
immediately. If set to delayed the
files are stored in memory.

This property specifies whether
or not keep temp files around
after the VoiceXML session has
ended. This property will only
have meaning if at least one
com.genesyslab.onexit.keeptmpfilestemp files has been saved. If this true
value is false, all temp files on
the disk will be erased, and any
files in memory will be discarded.
If this value is true, all temp files
on disk will be kept, and files in

Composer Help 197

Creating Voice Applications for GVP

memory will be flushed to disk.

Defines the default (also the
com.genesyslab.maxrecordtime upper limit) for the maxtime 10 minutes
attribute of the <record> tag.

Order of Precedence

To find the property value that will take effect at a particular point in an application, the current form
item is checked first (to see if the property is defined there), and enclosing scopes are checked as
necessary. Here is the full order of precedence for properties:

1. First, look for a property in the current form item (for example, in <field>, <record>, <transfer>, and so
on.). If found, use its value.

2. If not found, check the current form (for example, lookdirectly under <form> or <menu>). If the
property is found, use its value.

3. If not found, check the current document (for example, look directly under <vxml>). If the property is
found, use its value.

4. If not found, check the current document's application root document (if specified by <vxml
application="..."> in the current document). If the property is found, use its value.

5. Finally, if not found in any of the above, use the setting from the interpreter context for the current call,
which includes the settings in the defaults file (for example, defaults.vxml) and hard-coded default
values that are used if no value is configured anywhere else.

Composer Help 198

Voice Block Palette Reference

Voice Block Palette Reference

When you create a voice application, You use the callflow diagram blocks, located on the palette, to
develop voice applications. The palette contains the link tools, and various categories of blocks used
to build callflow diagrams:

The Common Blocks section describes blocks that can be used by both routing and voice

Basic Blocks

Database Blocks

Computer Telephony Integration (CTI) Blocks
External Message Blocks

Reporting Blocks

Server-Side Blocks

Outbound Blocks

applications.

Composer Help

199

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVoiceApplicationsforGVP
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BasicBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DatabaseBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExternalMessageBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ReportingBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Server-SideCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonBlocks

Voice Blocks Basic

Voice Blocks Basic

The Basic Blocks provide the VoiceXML element functionalities used to perform IVR activities and GVP

platform extensible object elements:

Assign

Branching

Disconnect
End FCR

Entry

Exit
Go To

Grammar Menu

Input

Log
Looping
Menu
Prompt
Raise Event
Record

Block Name

Release ASR Engine

Set Language

SNMP

Start FCR
Subdialog

Transfer

Basic Blocks

Usage

Assign a computed value/expression or an entered
value to a variable

Specify multiple application routes based on a
branching condition

Explicitly hang-up a phone call
Indicate the end of a recording segment

Begin an application. Only one Entry block can be
present in each application.Sets global error
(exception) handlers. Defines all global application-
level properties, global variables (which appear in
the list of available variables for other blocks in the
diagram), and global commands. Sets default
application scripts and parameters.

End the application
Direct the application to a specific URL

Uses Grammar Builder files to determine the input
options

Accepts DTMF or speech input from callers
Record information about an application

Iterate over a sequence of blocks multiple times
Collects DTMF and/or speech input from the caller
Play specific data to the caller

Throw custom events

Record voice input from the caller

Control when the ASR engine(s) being used in the
current session will be released

Changes the current active language from that set
in the Entry block or a previous Set Language block

Send SNMP traps from the application using the
NGI ‘dest’ extension attribute of the <log> tag

Indicate the start of a recorded audio file

Invoke VoiceXML subdialogs, which are a
mechanism for reusing common dialogs and
building libraries of reusable applications.

Transfer the call to another destination

Composer Help

200

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GenesysVoicePlatform

Voice Blocks Basic

Use the Link tools to connect the blocks.

Composer Help 201

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks

Voice Blocks Basic

Assign Block Common

Use the Assign common block to assign a computed value/expression or an entered value to a
variable.

See the Query Services block Service Data property for an example of using the Assign block and
Expression Builder to parse a JSON string and assign the service data to a variable.

Note: Function getSIPHeaderValue(headername) returns the SIP header value associated with the
given SIP headername. You may wish to use this function with the Assign block.

The Assign block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Assign Data Property

This property assigns a value (expression) to a variable. You select the variable and then enter an
expression, either a literal or one created in Expression Builder.

To select a variable and assign a value:

1. Click the Assign Data row in the block's property table.

2. Click the EZ button to open the Assign Data to Variables dialog box.

3. Click in the Variable field to display a down arrow.

4. Click the down arrow and select a variable whose value will be evaluated to determine the branching

condition. Default application variables are described in the Property Entry block for voice applicatio
and the Property Entry block for routing applications. You can also use a custom variable.

5. Click under Expression to display the EzE1 button.

ns

6. Click the EZ button to open Expression Builder. For examples of how to use Expression Builder, see the
Expression Builder topic.
Composer Help 202

https://docs.genesys.com/Documentation/IW/8.1.3/Help/QueryServicesBlock#Service_Data_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesProjectandWorkflow
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlockRouting#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder

Voice Blocks Basic

7. Select an operator for the branching condition.Your variable's value will be equal to (==), less than (<),
greater than (>). less than or equal to (<=), greater than or equal to (>=) or not equal to (!=) to value
you enter in the Expression field.

8. In the Expression field, create a value to compare to the variable's value. Enclose the value in single
quotes (*).

9. Click the ﬁ button to validate the expression. Syntax messages appear under the Expression Builder
title.

10. Click OK to close Expression Builder and return to the Assign Data to Variables dialog box.

11. You can make multiple variable/value assignments. Click the Add button if you wish to add more
assignments and repeat the steps above.

Editing Expressions
To edit an expression:

1. Click its row under Expression in the Assign Data to Variables dialog box. This causes the EZ=3 button to
appear.

2. Click the Bz putton to re-open Expression Builder where you can edit the expression.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

e For callflows, invalid ECMAScript expressions may raise the following exception event: error.semantic.

e For workflows, invalid ECMAScript expressions may raise the following exception events:
error.script.SyntaxError, and error.script.ReferenceError.

You can use custom events to define the ECMAScript exception event handling.

Condition Property

Find this property's details under Common Properties for Callflow Blocksor Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for

Composer Help 203

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Voice Blocks Basic

Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 204

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice Blocks Basic

Branching Common Block

The Branching block is used for both routing and voice applications. For an example of using the
branching block in a strategy, see the Example Workflow Diagram section in the Creating a New
Workflow tutorial. Use the Branching block as a decision point in a callflow or workflow. It enables you
to specify multiple application routes based on a branching condition. Depending on which condition
is satisfied, the call follows the corresponding application route. A default path is automatically
created once the conditions have been defined. If the application cannot find a matching condition, it
routes the call to the default flow. Note: To support creating multiple views per interaction queue, the
Branching block is available when creating an IPD.

Date/Time Functions

You can open Expression Builder from the Condition property and access the following date/time URS
functions (Data Category=URS Functions > Data Subcategory=genesys):

e genesys.session.timeInZone(tzone)

* genesys.session.dayInZone(tzone)

e genesys.session.dateInZone(tzone)

e genesys.session.day.Wednesday

e genesys.session.day.Tuesday

e genesys.session.day.Thursday

* genesys.session.day.Sunday

* genesys.session.day.Saturday

e genesys.session.day.Monday

e genesys.session.day.Friday

The Branching block has the following properties:

Exceptions Property

The Branching block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 205

https://docs.genesys.com/Documentation/IW/8.1.3/Help/YourFirstApplication#Example_Workflow_Diagram
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionQueueViews#Multiple_Views_Per_Queue
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionProcessDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BranchingCommonBlock#Conditions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property

Voice Blocks Basic

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks. You can also define custom
events.

Condition Property

Find this property's details under Common Properties for Callflow Blocks Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 206

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice Blocks Basic

Disconnect Block

Use the Disconnect block to explicitly hang-up a phone call. It differs from the Exit block as follows:

* When an Exit block is used, if the application was called from a CCXML or CTI application, control is sent
back to the calling application.

¢ In the case of the Disconnect block, the entire call is terminated.

Notes

e The Disconnect block returns values (a list of variables) back to the calling context, such as a CCXML
application.

¢ The Disconnect block has no page exceptions.

e There is also a Disconnect Block for use in routing workflows as described below.

Use the routing Disconnect block and not this Disconnect block when invoking a callflow as part of a
Play Application treatment. GVP 8.x Integration Guide states the following: For a URS-centric
application, the incoming call arrives at a Routing Point DN configured in the SIP Server switch. A
routing strategy loading on the Routing Point executes a Play Application treatment to collect customer
input. SIP Server sends an INVITE specifying the URI for the voice application. Media Control Platform
executes the application. Customer data is collected, then returned to SIP Server in the BYE message.
The routing strategy receives the attached data and determines the next action for the call. The call
will return to URS where the call can be disconnected in the strategy.

The Disconnect block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments. Use this Property to specify a
reason for the disconnect. The content can be either an ECMAScript expression created in Expression
Builder or free-form text. The string should conform to the standard specified in RFC 3326

(http://www.ietf.org/rfc/rfc3326.txt), Reason Header Field for the Session Initiation Protocol (SIP). To
use Expression Builder to create the reason:

1. Click under Value to display the Ez=1 button.

2. Click the Bz putton to open Expression Builder. For examples of how to use Expression Builder, see the

Composer Help 207

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExitBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DisconnectBlockRouting
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DisconnectBlockRouting
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PlayApplicationBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DisconnectBlockRouting
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Voice Blocks Basic

Expression Builder topic.

Return Values Property

Use this property to specify the variable(s) whose value(s) will be returned once the Disconnect block
is executed. To select return variables:

1. Click the Return Values row in the block's property table.

2. Click the EZ button to open the Return Values dialog box.
3. Select individual variables, or click Select all or Deselect all as needed.

4. Click OK to close the Return Values dialog box.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 208

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

End FCR Block

Use the End FCR block to indicate the end of a recording segment. There must be a matching End
FCR block for each Start FCR block used.

Note: Starting and stopping at tapped points (as marked by the Start FCR block and either EndFCR
block or the end of call) depends on the Prompt Queuing feature. For this reason, all Prompts
between Start FCR and End FCR should have their Immediate Playback property set to true.

The End FCR block has the following properties:

The End FCR block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 209

https://docs.genesys.com/Documentation/IW/8.1.3/Help/PromptBlock#Immediate_Playback_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property

Voice Blocks Basic

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 210

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Entry Block

Use an Entry block to begin an application. Only one Entry block can be present in each application.
The Entry block:
* Sets global error (exception) handlers.

¢ Defines all global application-level properties, global variables (which appear in the list of available
variables for other blocks in the diagram), and global commands. See topic Variables in Callflows.

e Sets default application scripts and parameters.

¢ Accesses Expression Builder.
The Entry block is used as the entry point for a main callflow or a sub-callflow. It contains the list of all
the variables associated with the callflow (referred to as global variables). Note: Outlinks starting

from the Entry block cannot be renamed or assigned a name through the Properties view. The Entry
block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Entry block has all global exception
events, with the defaults of all, connection.disconnect.hangup, and error. Also see Exception Events.

Note on No Input and No Match Events

When selecting exceptions for the Entry block, use both
com.genesyslab.composer.toomanynoinputs / com.genesyslab.composer.toomanynomatches and
noinput/nomatch to catch all the possible no input and no match events. The selection of
com.genesyslab.composer.toomanynoinputs / com.genesyslab.composer.toomanynomatches is
required when noinput / nomatch exceeds the maximum retries in the lower block. The selection of
noinput / nomatch is required when the lower block does not retry at all.

e com.genesyslab.composer.toomanynoinputs occurs when the number of no inputs exceeds the
maximum retries in the Menu, Input, DBInput, and Record blocks, and the blocks do not have local

Composer Help 211

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#ExpressionBldr
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionLinks#Outlink
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents

Voice Blocks Basic

noinput exception ports.

e com.genesyslab.composer.toomanynomatches occurs when the number of no matches exceeds the
maximum retries in the Menu, Input, DBInput, and Record blocks, and the blocks do not have a local
nomatch exception port.

Note on error.badfetch.badxmlpage

NGI no longer supports this event. If upgrading an application from an earlier version of Composer
that supported this event in its Entry object, you will need to modify that object via the Exceptions
property dialog box.

Application Root Property

You have the option to specify a VXML file to be used as an application root document allowing
multiple callflows to share variables. Background: Starting with 8.1.1, each Composer Project can
have (at most) one root document (VXML file). If a Project has no root document, each callflow is its
own stand-alone application. If a Project contains a root document, the set of callflows with Entry
blocks that reference that root document make up the application.

* If a callflow or sub-callflow references an application root document, the variables specified in the
application root become available for selection in all dialogs in that diagram.

e Variables defined in the application root directly under the <vxml> tag become available as global
variables to callflows and sub-callflows that access them.

To select an application root document:

1. Click the Application Root row in the block property table.

2. Click the Bz putton to open the Select Resource dialog box.
3. Select the VXML file in the Project src folder and click OK.

Global Commands Property

The Global Commands property sets rootmap elements for the entire application. A rootmap element
is a phrase (user-defined phrase or external grammar) and/or tone the application reacts to at any
time the application is running. Use the Global Commands property to set rootmap elements for the
entire application. The application uses these rootmap elements as global grammars (subsets of a
spoken language that callers are expected to use) in each Input block. Composer creates one outport
for each rootmap element; the outport specifies the application path in the event to which the
rootmap element is matched. Use the Entry block Global Commands property to set rootmap
elements for a subcallflow as well. Note: The RootMap elements defined in the Entry block do not
apply to blocks inside a subcallflow. To add, delete, or arrange global phrases, DTMF keys, and
grammars:

1. Click the Global Commands row in the block's property table.

Composer Help 212

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVXMLApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock

Voice Blocks Basic

2. Click the Bz putton to open the Set Rootmap Commands dialog box.
Fields in Set Rootmap Commands Dialog Box

* Name-- Displays the name of the command.

DTMF Option--Displays the DTMF key to recognize.
¢ Phrase-- Displays the phrase to recognize.

e Grammar--Displays the built-in or custom grammar used.
Genesys recommends that you use only the GRXML grammar. Otherwise, GSL support--which is not a
part of the VoiceXML 2.1 specification--deprecates over time. Note: Built-in grammar support for

languages other than U.S. English is dependent on the ASR vendor. Before using this feature, make
sure that your ASR Engine supports built-in grammars for your language.

Add Button

Use the Add button to enter global phrases, DTMF keys, and grammars.

. Click Add to enable Command Details fields.

. In the Name* box, accept the default name or change it.

1
2
3. From the DTMF Option drop-down list, select the global DTMF key.
4. In the Phrase box, type the phrase.

5

. In the Grammar drop-down list, select a grammar. The grammar source is the custom or built-in
grammar for recognition.

Up/Down Buttons

Use the Up and Down buttons to reorder your rootmap elements. Select the element you want to
reposition, and then click Up or Down, as necessary.

Delete Button

To delete a phrase, DTMF key, or grammar entry:

1. Select an entry from the list.

2. Click Delete.

Global Properties Property

This property allows suppression of data within the Nuance 9 platform ASR logs. For more information
on this property, see the Properties topic on the Genesys Voice Platform wiki. Use Global Properties to
select global settings for VXML properties, Automatic Speech Recognition vendor-specific properties
or Text-to-Speech vendor-specific properties. To enter properties and values:

Composer Help 213

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GenesysVoicePlatform
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VXMLProperties

Voice Blocks Basic

1. Click the Global Properties row in the block's property table.

2. Click the Bz putton to open the Global Property Settings dialog box.
3. Click Add to enable the Property Name and Property Value fields.

4. Enter or select a Property Name by doing one of the following:

¢ Select the Property Name from the drop-down list, or

* Type the Property Name in the Property Name field.
5. Enter or select a Property Value by doing one of the following:

¢ Select the Property Value from the drop-down list, or

* Type the Property Value in the Property Value field.

6. Click OK.

Scripts Property

Use the Scripts property for including custom JavaScript includes into the application. The JavaScript
functions in the specified .js file can then be used in the Assign or Branching blocks in the expression.

1. For this property, enter the filename of your file (for example: script.js). If there are multiple files to be
loaded, you can delimit by using the | character; for example: scriptl.js|script2.js.

2. Then place the custom ECMAScript file in the Scripts subfolder of your project.

There is also a Global Variable SCRIPTSDIR, which specifies the default folder for the scripts files (and
works very similar to VOXFILESDIR for audio files).

Variables Property

Variables can be predefined system variables (provided by Composer, which you cannot delete) or
user-defined variables. See the Variables in Callflows topic for more information. Many Composer
blocks have properties that require you to select a variable. Examples:

e The following callflow blocks contain a mandatory Output Result property: Menu, Record, DB Input,
Grammar Menu, Input, Get Access Number Block, Transfer, and Statistics. After defining variables in the
Entry block, you supply this property by selecting the variable to contain the output result.

* When creating a new voice project, a Project-level flag, Enable_ICM, controls whether ICM variables are
available for selection and assignment to variables within Composer's Entry block.

To declare for the application or subcallflow:

1. Click the Variables row in the block's property table.

2. Click the Bz putton to open the Application Variables dialog box.

Composer Help 214

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBInputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TransferBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ICMInteractionDataBlock

Voice Blocks Basic

.nppllrat_lnn ¥arlables

Set the application wariables
Set the application variables

Yariable Mame | category | value | Description

ARP_LANGLAGE Syshem ‘en-lls" Apphcation Language
APP_ASR_LANGUAGE Sysbem ‘er-US' ASR Language

PREY_APP_LARGILIAGE Sysbem ‘undefined' Temparary Value of Previous Application ...
PREY_APP_ASR_LANGUAGE Syshem ‘wndefined' Temporary Walue of Previous Applcatian ...
GRAMMARFILEDIR: Syskam ", JResources G aminars' Grammar File Direckory

VOXFILEDIR Syskem ", JResourcesFrompts’ Audio File Directory

SCRIPTSOIR Syskem ", J5cripks’ JavaSaript Directory

EnableReparts System False Reporting Flag

EnablesnMP Syskam false Flag for enabling SMMP Traps

Caluuic: Syskemn SEs50n, cannection. uud Unrearsal ID

GYPSassionlD Syskem sesson, genasys.userdatal"GVP-Session-10"] GYP Session ID

DMIS Syshkem getDNIS() IderkiFier for the dialed number

AN Sysbem getANI) IderkFier far the caling parky

LAST_EVEMT _MAME Sysbem ‘wndefined' Lask event or &rrar name

LAST_EVEMT _M5G Syskam ‘wndefined Lask event or error details

LAST_EVEMT _URL Syskam ‘undefined URL of the last event,

LAST_EVEMT _ELEMENT Syskem ‘undefined Element name of the last event
LAST_EVEMT _LINE Syskem ‘undefined Line number of the last event

EnableFCR Syskam trug Flag For enabling Full Cal Recording
COMPOSER_WSSTUBEING Syshemn o Flag bo control WebSarvices Stubbing. ‘1. ..
USE_LCASE_LEERDATAKEY Syskem] Flag to contral lowerCase lookup in User...
APP_OPM Syskem eval('{'+session, conrection.probocol.siprequestun[p.., OPM Data Yariable

05 _RecordURI Sysbem getCallflowRecordURIO) (05 Record LRI

LS _URT Sy skem aekCallflowCHCSURIE 0405 URI

OIS _Record Sysbem getCalflowOCSRecord]) {5 Record

)

als | Canicel

| L

A
[elete
Un

Do

The above figure shows the dialog box after click the Add button. The Value field for the new variable
(Var0) contains a button to access Expression Builder. Important! When defining a variable name, the

name:

¢ Must not start with a number or underscore.

* May consist of letters, numbers, or underscores.

When you define and initialize a variable that is expected to be played as a date later on in the
callflow, define the value using the following format: yyyyymmdd. Example: MyDate=20090618. You
must use this format; Composer does not perform any conversions in this case. When you define and
initialize a variable that is expected to be played as a time later on in the callflow, define a 12 hour-
based value using the following format: hhmmssa or hhmmssp. Example: MyTime=115900a or
MyTime=063700p. Define a 24 hour-based value using the following format: hhmmssh Example:
MyTime=192000h. You must use this format; Composer does not perform any conversions in this
case. If variables are set as part of provisioning by the Genesys VoiceXML provisioning system, and if
these variables have the same names as variables set in the Variables property dialog box, the
VoiceXML provisioning system values take precedence over the global variables set here. Many
blocks enable the use of variables rather than static data. For example, the Prompt block can play the
value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks must be
declared here so that they appear in the list of available variables in other blocks. The value collected
by an Input block or a Menu block is saved as a session variable whose name is the same as the

block Name.

Composer Help

215

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder

Voice Blocks Basic

System Variables

These variables apply only to the Entry block, unless otherwise indicated.

APP_LANGUAGE--Holds the application language setting. The value should be the RFC 3066 language
tag of an installed language pack. Examples of valid RFC 3066 language tags include en-US and fr-FR.
This setting also acts as a default language for the application. This variable may be set using the Set
Language block for a multilingual application.

APP ASR LANGUAGE--Holds the language locale for ASR resources. You must define this variable if the
application needs to use a different language locale for ASR from TTS resources.

GRAMMARFILEDIR--Gives the relative path from the application to the directory that contains the
grammar files. By default, it is set to ../Resources/Grammars. If a voice application supports multiple
languages, you can enable the application to switch between them, by changing the value of this
variable. In the Subcallflow_Start block, the GRAMMARFILEDIR global variables are not defined by
default. This allows the subcallflows to inherit the value of this variable from the main callflow. If the
subcallflow overrides this value, the variable can be defined in the Subcallflow_Start block.

VOXFILEDIR--Gives the relative path in the application to the directory that contains the audio files
(.vox/.wav). By default, it is set to ../Resources/Prompts. If a voice application supports multiple
languages, you can enable the application to switch between them, by changing the value of this
variable. In the Subcallflow_Start block, the VOXFILEDIR global variables are not defined by default. This
allows the subcallflows to inherit the value of this variable from the main callflow. If the subcallflow
overrides this value, the variable can be defined in the Subcallflow_Start block.

SCRIPTSDIR--Default location for JavaScript files

EnableReports--Enables VAR reporting. (Reporting blocks)

EnableSNMP--Enables the SNMP block, if present in the application

CallUUID--Session connection Universal ID

GVPSessionlD--The Genesys Userdata Session ID

LAST_EVENT_NAME--Stores the name of the last event or error that was handled in the Entry block.
LAST_EVENT_MSG--Stores the message of the last event or error that was handled in the Entry block
LAST_EVENT_URL--Stores the URL of the last event or error that was handled in the Entry block.

LAST_EVENT_ELEMENT--Stores the element name of the last event or error that was handled in the
Entry block

LAST_EVENT_LINE--Stores the line number of the last event or error that was handled in the Entry
block

EnableFCR--A flag for enabling Full Call Recording
COMPOSER WSSTUBBING

App_OPM--Used for fetching OPM parameters. Stores JSON content passed by GVP in session variables.
Available throughout the callflow diagram. The OPM block works with this variable by extracting values
from it into application variables. Available for main callflows only.

OCS_RecordURI--Used by Outbound blocks. Its default value will be set from userdata passed into the
application. For workflows (SCXML):
_genesys.ixn.interactions[InteractionID].udata.GSW_RECORD_URI.For callflows: (VXML)
session.com.genesyslab.userdata.GSW_RECORD_URI.

OCS_URI--Used by Outbound blocks. Holds the OCS resource path ([http|https]://<host>:<port>). Its

Composer Help 216

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales#ASR_LANGUAGE
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder#Saving_the_Grammar_Builder_File
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceStubbing
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OPMCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks

Voice Blocks Basic

default value will be deduced from OCS_Record_URI. You may change this variable value in order to use
a different OCS application for all Outbound blocks in the workflow.

e OCS_Record--Used by Outbound blocks. Holds the Record Handle value deduced from
OCS_Record_URI.

Note: Request URi parameters created in IVR Profiles during the VoiceXML application provisioning
are passed to the Composer generated VoiceXML application as request-uri parameters in the
session.connection.protocol.sip.requesturi session array. An Entry block variable can use
these parameters by setting the following expressions to the variable values: typeof
session.connection.protocol.sip.requesturi['varl'] == 'undefined' ?
"LocalDefaultValue" : session.connection.protocol.sip.requesturi['varl']. If parameters
are set as part of IVR Profiles provisioning in the Genesys VoiceXML provisioning system, and if these
parameters have the same names as variables set in the Entry block's Variables property with the
above mentioned sip.requesturi expression, then the SIP-Request-URI parameters will take
precedence over the user variable values set in the Entry block.

Many blocks enable the use of variables rather than static data. For example, the Prompt block can
play the value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks
must be declared here so that they appear in the list of available variables in other blocks. The value
collected by an Input block or a Menu block is saved as a session variable whose name is the same as
the block name.

Variable Name

You can use the Variable name field for either of the following purposes:

¢ To enter the name of a new variable.

¢ To change the name of an existing variable. To do this, select an existing variable from the list of
variables. The variable's name appears in the Variable box, and you can the change its value in the
Value box.

Excluded Characters

The Variable name field will not accept the following special characters:

¢ |ess-than sign (<)

e greater-than sign (>)

e double quotation mark ()
e apostrophe (‘)
 asterisk (*)

e ampersand (&)

e pound (#)

e percentage (%)

e semi colon (;)

e question mark (?)

e period (.)

Composer Help 217

https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PromptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock

Voice Blocks Basic

The variable Value field will not accept the following special characters:

¢ less-than sign (<)

e greater-than sign (>)

e double quotation mark ()
e apostrophe (‘)

e ampersand (&)

¢ plus sign (+)

* minus sign (-)

 asterisk (*¥)

¢ percentage (%)

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 218

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice Blocks Basic

Exit Block

Use the Exit block to end the application. There will usually be an Exit block in every main callflow,
unless you use a GoTo block, blind transfer, or other mechanism to end a callflow. Return Mode
should be set to false in the main callflow's Exit block. The Exit block is typically connected to the
connection.disconnect.hangup exception handler. It is also connected to the last block in the
application (for example, when the application wants to play an error message and terminate the
call). You can have multiple Exit blocks inside a callflow. The Exit block has no page exceptions.

Using an Exit Block Inside a Subcallflow

The Subdialog block is used to create subcallflows, which are VoiceXML subdialogs. An Exit block
terminates the subcallflow application. If the control has to be returned to the main application, then
the Return Mode property should be set to true and the user can send a list of parameters to the
main call flow as the output parameters. Name

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Reason Property

This property is visible only for subcallflows. Enter a reason for the implicit ActionEnd to be used for
VAR reporting.

Return Mode Property

This property is visible only for subcallflows. Click the down arrow under Value and select one of the
following:

e true to return control back to the calling callflow.

e false to exit the application.

Composer Help 219

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SubdialogBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Voice Blocks Basic

Return Values Property

Use this property to specify the variable(s) whose value(s) will be returned once the Exit block is
executed. To select return variables:

1. Click the Return Values row in the block's property table.

2. Click the Bz putton to open the Return Values dialog box.

3. Select individual variables (including ICM variables if applicable), or click Select all or Deselect all as
needed.

4. Click OK to close the Return Values dialog box.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Result Property

This property is visible only for subcallflows. Click the down arrow and select one of the following to
be used for VAR reporting:

* UNKNOWN
* SUCCESS
* FAILED

Composer Help 220

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ICMInteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Golo Block

Use this block to direct the application to a specific URL. This block enables you to pass parameters in
the current application to the URL by selecting them from the User Parameters list. This block is
normally used to transfer to another voice application. Genesys recommends that you use
subcallflows for modularizing the application and the GoTo block for calling an external application.
Note: If an application enables Voice Application Reporting, Genesys recommends that you use
subcallflows instead of a GoTo block. The GoTo block has no page exceptions. The GoTo block has the
following properties:

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 221

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Parameters

Use to select variables/parameters to pass to the target application. Note: If the Type property is set
to ProjectFile, the Parameters property does not apply. To select parameters (Type property is set to
URL):

1. Click the Parameters row in the block's property table.

2. Click the EZ button to open the Parameters dialog box.
3. Select individual parameters, or click Select all or Deselect all as needed.

4. Click OK to close the Parameters dialog box.

Type
Sets the type of the destination application. There are two options:

e URL--The destination application can be found at the location specified in the Uri property.

e ProjectFile--The destination can be another location inside the same Composer Project.
To select a value for the Type property:

1. Select the Type row in the block's property table.

2. In the Value field, select URL or ProjectFile from the drop-down list.

URI

Specifies the destination (URL or Composer Project) depending on the value of the Type property. To
set a URL destination for the Uri property (Type property is set to URL):

1. Select the Uri row in the block's property table.
2. In the Value field:

1. e Type a valid URL, which can be specified as a relative path if the file is in the same project (for
example, .../src/WSJNews.vxml).

e Or select a variable from the drop-down list.
To set a Composer Project destination for the Uri property (Type property is set to ProjectFile):

1. Click the Uri row in the block's property table.

N

. Click the EZ putton to open the Uri dialog box.

w

. Select a Voice Project file in the list.
4. Click OK to close the Uri dialog box.

Composer Help 222

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Application_Variables_Property

Voice Blocks Basic

Grammar Menu Block

Creating a Simple Grammar Video

Below is a video tutorial on building a simple grammar with the Grammar Menu block.

Important Note: While the interface for Composer in this video is from release 8.0.1,
the steps are the basically the same for subsequent releases.

Link to video

The Grammar Menu block uses Grammar Builder files to determine the input options.

Menu Block Exception Events

The Menu block has eight local exception events.

e error
e error.noresource

¢ maxspeechtimeout

* noinput

* nomatch

¢ error.badfetch.grammar.uri

e error.badfetch.grammar.syntax

e error.badfetch.grammar.load

The Grammar Menu block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes

Can be used for both callflow and workflow blocks to add comments.

Composer Help 223

https://player.vimeo.com/video/79128534?title=0&byline=0&portrait=0
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#error
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#error_noresource
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#maxspeechtimeout
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#noinput
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#nomatch
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#error_badfetch_grammar_uri
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#error_badfetch_grammar_syntax
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#error_badfetch_grammar_load
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Voice Blocks Basic

Exceptions

Find this property's details under Common Properties.

Gbuilder File

A Gbuilder file is created using Grammar Builder and may contain grammar-related information for
multiple locales in a proprietary format. The Grammar Menu block can work with the Gbuilder file
directly. The Gbuilder File property is used to select a Gbuilder file in the project. This step also
selects the particular rule Rule ID to use for the Grammar Menu block. Once specified, the Grammar
Menu block creates menu options based on the information contained in the specified Rule ID in the
selected Gbuilder file. To select a grammar builder file and rule:

1. Select the Gbuilder File row in the block's property view.

2. Click the EZ button to open the GBuilder File dialog box.

Grammar builder files that are defined for this Composer Project are shown in the GBuilder Files pane
on the left. These files are usually located in the project folder path: [VoiceProject] > Resources
> Grammars > [locale] > [gbuilderfile].gbuilder . Note: Gbuilder files also contain DTMF
information.

1. Select a grammar builder file in the left pane.

2. Rules defined for the selected grammar builder file are displayed in the Rules in selected file pane to the
right. Select the rule you want to use in this Grammar Menu block, then click OK.

Your selection automatically populates the information for the following three properties: Rule IdRule
TagsMenu Options Note: The Grammar Menu block does not pick up changes automatically if you
change your Gbuilder file. To synchronize the block with the latest changes, click on the Gbuilder File
property. In the popup make sure that the correct Gbuilder file and RulelD are selected. Click OK to
close the dialog box. Your diagram will now reflect any menu options changes made in the Gbuilder
file.

Rule ID

The Rule Id property is automatically populated with the rule you selected from the Rules in selected
file pane in the GBuilder File dialog box. (Refer to the Gbuilder File property.) This is a read-only
property in the properties view.

Rule Tags

The Rule Tags property is automatically populated with the specific rule tags that have been defined
for the rule you selected from the Rules in selected file pane in the GBuilder File dialog box. (Refer to
the Gbuilder File property and Rule Id property.) This is a read-only property in the properties view.

Composer Help 224

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Rule_Id
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Rule_Tags
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Rule_Tags
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Menu_Options
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Gbuilder_File
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Gbuilder_File
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Rule_Id

Voice Blocks Basic

Language

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Grammar Menu block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the
language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Menu Mode

To assign a value to the Menu Mode property:

1. Select the Menu Mode row in the block's property table.
2. In the Value field, select DTMF, Voice, or Hybrid from the drop-down list.

The DTMF format indicates the menu option mode of input will be via the telephone keypad. Note:
Grammar Builder treats DTMF as another locale. The Voice format indicates the menu option mode of
input will be a voice phrase. The Hybrid menu mode will handle both DTMF and Voice inputs, that is
via telephone keypad and voice phrase. Note: If you select the Hybrid menu mode, you will have to

Composer Help 225

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

provide both voice and DTMF values for all menu options.

Menu Options

The Menu Options property is automatically populated with generated menu items (options) that
apply to the selected rule tags in the grammar builder file. You do not modify this property. (Refer to
the Gbuilder File property, Rule Id property, and Rule Tags property.) This is a read-only property in
the properties view.

Clear Buffer

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications with multiple menus, enabling the caller to key ahead the DTMF digits corresponding to
the menu choices. To assign a value to the Clear Buffer property:

1. Select the Clear Buffer row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Interruptible

The Interruptible property does not apply to the Record block. This property specifies whether the
caller can interrupt the prompt before it has finished playing. To assign a value to the Interruptible
property:

1. Select the Interruptible row in the block's property table.

2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL.

Timeout

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

Composer Help 226

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Gbuilder_File
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Rule_Id
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock#Rule_Tags
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Prompts_Property

Voice Blocks Basic

1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Security

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data entered by the caller for this block as sensitive and will suppress it in platform logs and
metrics. To assign a value to the Security property:

1. Select the Security row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Output Result

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Get Shadow Variables

Shadow variables provide a way to retrieve further information regarding the value of an input item.
By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show GrammarMenul$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: GrammarMenul$.duration. To
assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Number of Retries Allowed

This property determines how many opportunities the user will be provided to re-enter the value. If

Composer Help 227

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams

Voice Blocks Basic

Use Last Prompt Indefinitely is set to true, this property has no effect; otherwise, the
error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.

2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts

Find this property's details under Common Properties. A selection can only be made if the Number Of
Retries Allowed Property is greater than 0. U

se Last Reprompt Indefinitely

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last re-
prompt as the prompt for all further retries. Therefore, the exception handlers that come out for
nomatch and noinput are redundant--even if you set the default exceptions that come out as red dots
on the left-side of the block. To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Original Prompts

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Single Counter For Nomatch And Noinput

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block
has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user
gets up to six retry attempts while not exceeding three of each type -- noinput or nomatch. Note: This
property not available on the Record block. To assign a value to the Use Single Counter For Nomatch
And Noinput property:

Composer Help 228

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Retry_Prompts_Property

Voice Blocks Basic

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 229

Voice Blocks Basic

Input Block

The Input block accepts DTMF or speech input from callers. It differs from the Menu block in that it
enables taking input that might not belong to a simple choice list (as for the Menu block). It can be
used to collect numerical data; for example, phone numbers, account numbers, amounts, or speech
data, such as a Stock name. It uses speech or DTMF grammars to define the allowable input values
for the user responses. Built-in system grammars are available for data, such as dates and amount.
Note: Built-in grammars may not be available for all languages. If you specify a language other than
U.S. English and refer to an unsupported built-in grammar, a parse error error.unsupported.builtin will
be thrown. In case of user input blocks (Menu, Input, Record, Transfer), Composer adds a global
variable of type "Block" to the variables list. You can conveniently use this variable for accessing the
user input value. Also see Menu Block, Number of Allowed Attempts Exceeded. The Input block has
the following properties:

Input Block Exception Events

The Input block has eight exception events:

error

error.noresource
maxspeechtimeout

noinput

nomatch
error.badfetch.grammar.uri
error.badfetch.grammar.syntax

error.badfetch.grammar.load

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Composer Help

230

https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#error_unsupported_builtin
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Voice Blocks Basic

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Input block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the
language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in

Composer Help 231

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property

Voice Blocks Basic

the Problems view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications with multiple menus, enabling the caller to key ahead the DTMF digits corresponding to
the menu choices. To assign a value to the Clear Buffer property:

1. Select the Clear Buffer row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.

2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics. To
assign a value to the Security property:

1. Select the Security row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 232

https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Prompts_Property

Voice Blocks Basic

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:
1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Grammar Type Property

To assign a value to the Grammar Type property:

1. Select the Grammar Type row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

* builtinBoolean
e builtinCurrency
e builtinDate

¢ builtinDigits

e builtinNumber
* builtinPhone

¢ builtinTime

e externalGrammar

Note: All the builtinXXX selections are grammars that are provide by the platform or the ASR Engine.
Note: Built-in grammar support for locales other than U.S. English is dependent on the ASR vendor.
Before using this feature, make sure that your ASR Engine supports built-in grammars for your locale.
This feature has the following critical prerequisites:

1. The ASR Engine must support built-in grammars for that language. Contact your ASR Vendor for details.

2. If the ASR Engine supports the language you want to use, then you must install the Language Pack for
that language on the GVP Server.

builtinBoolean
Valid inputs include affirmative and negative phrases appropriate to the current locale. DTMF 1

represents " yes," and 2 represents "no." The result is ECMAScript true for yes or false for no. The
value is submitted as the string true or the string false.

builtinCurrency

Valid spoken inputs include phrases that specify a currency amount. For DTMF input, the asterisk (*)

Composer Help 233

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#builtinBoolean
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#builtinCurrency
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#builtinDate
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#builtinDigits
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#builtinNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#builtinPhone
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#builtinTime
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#externalGrammar

Voice Blocks Basic

character acts as the decimal point. The result is either a string with the format UUUmm.nn, where
UUU is the three-character currency indicator according to ISO standard 4217:1995, or null if not
spoken by the caller.

builtinDate

Valid spoken inputs include phrases that specify a date, including a month, day, and year. DTMF
inputs are: four digits for the year, followed by two digits for the month, and then two digits for the
day. The result is a fixed-length date string with format yyyymmdd--for example, 20000704. If the
year is not specified, yyyy is returned as ?7?77?; if the month is not specified mm is returned as ??; and
if the day is not specified dd is returned as ?7.

builtinDigits

Valid spoken or DTMF inputs include one or more digits, 0--9. The result is a string of digits.

builtinNumber

Valid spoken inputs include phrases that specify numbers--for example, one hundred twenty-three, or
five point three. Valid DTMF input includes positive numbers entered using digits and the star (*)
character (to represent a decimal point). The result is a string of digits from 0-9 and that can
optionally include a decimal point (.), and/or a plus sign (+) or minus sign (-).

builtinPhone

Valid spoken inputs include phrases that specify a phone number. DTMF star (*) represents x. The
result is a string that contains a telephone number consisting of a string of digits and optionally, the
character x to indicate a phone number with an extension--for example, 8005551234x789."

builtinTime

Valid spoken inputs include phrases that specify a time, including hours and minutes. The result is a
five-character string in the format hhmmx, where x is either a for AM, p for PM, h to indicate a time
specified according to the 24-hour clock, or ? to indicate an ambiguous time. Because there is no
DTMF convention for specifying AM/PM, in the case of DTMF input, the result is always end with h

or 7. If the field value is subsequently used in a prompt, the value is spoken as a time appropriate to
the current locale.

externalGrammar

The application can also define an external grammar. The grammars can be written using the GRXML
Editor, or GRXML files can be imported into the Composer Project. Note: Look at the User Input
Project voice application template in Composer for an example of the use of an external grammar
file. Note for Voice Application Developers When developing a VoiceXML application, you must set the
web server connection timeout so that it is appropriate to the task that the application performs. It
should be greater than one or all of the following callflow applications:

¢ Maximum talk time

¢ Maximum recording time

Composer Help 234

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ImportandExport

Voice Blocks Basic

¢ Maximum wait time for a user input

Input Grammar Dtmf Property

Use the Input Grammar Dtmf (Dual Tone Multi-Frequency as described below) property to specify the
DTMF Grammar for the Input Block. The DTMF Grammar is processed and handled by GVP. In the case
of external grammars, this specifies the actual path of the grammar file / resource for DTMF
Grammars. This is only valid when the Grammar Type is externalGrammar and Input Mode is dtmf or
hybrid. To assign a value to the Input Grammar Dtmf property:

1. Select the Input Grammar Dtmf row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables You can specify multiple
grammars by separating the grammars with the "|" character. About Dual Tone Multi Frequency
(DTMF) Signaling DTMF signaling is used for telecommunication signaling over analog telephone lines
in the voice-frequency band between telephone handsets and other communications devices and the
switching center. The version of DTMF used for telephone tone dialing is known by the trademarked
term, Touch-Tone. There are some situations where the interpreter (NGI) cannot accept DTMF
keypresses immediately as input. In these situations, the keypresses are stored in the DTMF input
buffer, for possible later use as input. Throughout the execution of the application, the interpreter
must decide whether to save the current contents of the DTMF input buffer (and use them at the next
input state), or to discard them. Buffering DTMF input can be useful in allowing typeahead, where
users input DTMF for multiple fields rapidly, separated by the termchar. Whatever input is left after
the first termchar, may be used in subsequent fields, meaning that the user does not have to wait to
hear each prompt.

Input Grammar Voice Property

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block. If you are
writing hybrid applications that allow both DTMF and Speech input, specify both the DTMF and Voice
grammars. The Voice Grammar is sent to the ASR Engine for processing, whereas the DTMF grammar
is processed by GVP. As a result, you need two separate grammars for Voice and DTMF in the case of
hybrid applications that allow both Voice and DTMF inputs. In the case of external grammars, this
specifies the actual path of the grammar file / resource for ASR Grammars.. This is only valid when
Grammar Type is externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input
Grammar Voice property:

1. Select the Input Grammar Voice row in the block's property table.

2. In the Value field, select a value from the drop-down list. You can specify multiple grammars by
separating the grammars with the "|" character.

Values are the Voice Application Variables described under the Variables Property.

Composer Help 235

Voice Blocks Basic

Input Mode Property

To assign a value to the Input Mode property:

1. Select the Input Mode row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

e dtmf

e voice

¢ hybrid
DTMF

The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice

The Voice format indicates the menu option mode of input will be a voice phrase.

Hybrid

The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase.

Slot Property

The Slot property enables you to specify the slot name of the return value from the grammar. If the
slot name is not specified, it is assumed that the grammar will return the value of a slot having the
same name as the INPUT block itself. To provide a slot name:

1. Select the Slot row in the block's property table.

2. In the Value field, type a slot name that conforms to the restrictions above.

Input Termination Character Property

The Input Termination Character property defines any character that callers can input in order to
indicate that they have finished entering data. For example, the prompt given to the caller may say
"Enter your account number, and then press the pound key." The pound key is the input-ending
character. To provide a value for the input termination character:

1. Select the Input Termination Character row in the block's property table.

2. In the Value field, type a value for a character to represent the end of the input string.

Composer Help 236

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#DTMF
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#Voice
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#Hybrid

Voice Blocks Basic

A typical value that is often used, as indicated above, is: # Example:
e To use # or * then type the value as # or *

Note: Only 1 character can be used as the termination character.

Inter Digit Timeout Property

The Inter Digit Timeout property defines the longest wait time between input characters before a
timeout is generated. This is mandatory if dtmf is selected as the Input Mode. Note: Inter Digit
Timeout property is applicable only for DTMF input. To provide an Inter Digit timeout value:

1. Select the Inter Digit Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Maximum Input Digits Property

Note: This property only applies if the builtinDigits grammar is selected. The Maximum Input Digits
property defines the maximum number of characters that the caller may input. If the input is
variable, an input character such as pound sign (#) should be used to terminate the input. This is
mandatory if dtmf is selected as the Input Mode. To provide a value for the maximum number of
input digits:

1. Select the Maximum Input Digits row in the block's property table.

2. In the Value field, type a value for the maximum number of input digits.

Minimum Input Digits Property

Note: This property only applies if the builtinDigits grammar is selected. The Minimum Input Digits
property defines the minimum number of characters that the caller must input. This is mandatory if
dtmf is selected as the Input Mode. To provide a value for the minimum number of input digits:

1. Select the Minimum Input Digits row in the block's property table.

2. In the Value field, type a value for the minimum number of input digits.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. By setting this property to true, it will expose the block’s shadow variable within the
callflow. When enabled, the shadow variable will be included in the list of available variables. (For
example, the Log block’s Logging Details will show Inputl$.) A shadow variable is referenced as

Composer Help 237

Voice Blocks Basic

blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: Inputl$.duration. Shadow
variables can provide platform-related information about the interaction/input. For example, for
speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. To assign a value
to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Number Of Retries Allowed Property

The Number Of Retries Allowed property determines how many opportunities the user will be
provided to re-enter the value. If Use Last Prompt Indefinitely is set to true, this property has no
effect; otherwise, the error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.

2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts Property

Find this property's details under Common Properties.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt
as the prompt for all further retries. In this case the NoMatch and Nolnput exception handlers will
never get executed, as the retry loop keeps executing forever. To assign a value to the Use Last
Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:

Composer Help 238

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Retry_Prompts_Property

Voice Blocks Basic

1. Select the Use Original Prompts row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Single Counter For Nomatch And Noinput Property

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block
has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user
gets up to six retry attempts while not exceeding three of each type -- noinput or nomatch. Note: This
property not available on the Record block. To assign a value to the Use Single Counter For Nomatch

And Noinput property:

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 239

Voice Blocks Basic

Log Common Block

Use a Log block to record information about an application. For example, you can log caller-recorded
input collected while an application is running or error messages. You can use the Log block for any of
the following purposes:

1. Informational - To log the application specific data
2. Error - for logging error details

3. Warning - to flag any warnings

4. Debug - for debugging

The categories in the Log Level property correspond to the above.

When used for a callflow, the Log block writes the log to the Genesys Voice Platform logs (Media
Control Platform) using the VoiceXML <log> tag.

The Log block has the following properties:

The Log block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

For callflows, invalid ECMAScript expressions may raise the following exception events:
error.semantic. For workflows, invalid ECMAScript expressions may raise the following exception
events:

Composer Help 240

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property

Voice Blocks Basic

e error.log.ReferenceError
e error.illegalcond.SyntaxError

e error.illegalcond.ReferenceError

You can use custom events to define the ECMAScript exception event handling.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Label Property

This property applies to workflows only. It provides meta-data for the logging details.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 241

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice Blocks Basic

Looping Common Block

Use this block to iterate over a sequence of blocks multiple times in the following scenarios:

1. Iterate over a sequence of blocks based on a self-incrementing counter (FOR).
2. lterate indefinitely until an exit condition is met (WHILE).

3. Iterate over records/data returned by the DB Data block (CURSOR/FOREACH). Also, populate variables if
variables mapping is defined.

4. lterate over data returned by Context Services blocks (FOREACH). Also, populate variables if Variables
Mapping is defined.

5. Iterate over JSON Array defined in the application.
For scenarios 1 and 2 above, use the Looping block with a reference to the block retrieving the data.

Scenarios 3 and/or 4 can be used in conjunction with 1 or 2, in which case the loop will exit when
either of the exit conditions is met.

Prerequisite

You must perform the following steps in order for the Looping block to be used to iterate over data
returned by the DB Data block:

1. Create a folder named Scripts in the Project folder.

2. In the Entry block, specify a value for the Scripts property such as ../include/DBRecordSetAccess.js

The Looping block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 242

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ContextServicesCommonBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesMapping
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesMapping
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property

Voice Blocks Basic

Counter Initial Value Property

A Counter variable controls the number of loops. Specify the initial value by entering a positive
integer (including zero) or selecting the variable that contains the initial value. Composer will
increment the Counter variable after each iteration. The value of the Counter variable is available
after the looping has exited. This is a mandatory property if the Counter Variable property is
specified.

Counter Variable Property

Enter a name for the variable used to store the Counter value or select the variable that contains the
name. This is a mandatory property if the Counter Initial Value property is specified.

Current Record Variable Property

Select a variable to be used to store the current record when iterating over records. Composer will
assign the current record after each iteration. This property is ignored if the Data Source Property is
not set

Data Source Property

Specify a block reference to the DB Data or a Context Services block (with Variables Mapping
support) that provides the data to be iterated or select the variable that contains a JSON Array. This is
a mandatory property if Counter Initial Value and Counter Variable are not specified.

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Counter Max Value Property

Specify the maximum value by entering a positive integer greater than the initial value or selecting
the variable that contains the maximum value. When the Counter variable reaches the maximum
value, then the block connected to the Exit port is executed. This is a mandatory property if the
Counter Variable property is specified or if the Data Source property is not specified.

Composer Help 243

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesMapping
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents

Voice Blocks Basic

Exit Expression Property

This property is optional. If specified, prior to each iteration the exit expression is evaluated. If true,
the flow goes out via the Exit port of the block. This condition is used in conjunction with max records
(if Data Source is specified) or Counter Max Value (if Counter Variable is specified). To enter an exit
expression

1. Opposite the Exit Expression property, click under Value to display the B button.

2. Click the Bz putton to open Expression Builder. For examples of how to use Expression Builder, see the
Expression Builder topic.

3. Create the exit expression and click OK.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Using the Looping Block (Counter-based without a Data Source)

1. Add a Looping block and connect the previous block outport to the Looping block.

2. Connect the Next outport to the sequence of connected blocks.

Composer Help 244

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice Blocks Basic

3. Connect the outport of the last block in the sequence in step 2 back to the looping block to form a loop.

4. Connect the Exit outport of the looping block to the block(s) to continue processing after the loop has
exited. The diagram when a looping block is used should appear as follows:

Entry
: . Ertry1l
................... RO et
t*Looping
Loopmgl
& L
et Exit
&
< Prompt « Prompt
FromptCourter Donelooping
L3 L]
Log # Log
L::-g:gmner Ln-%xit
=
I @ Exit ‘
Exitl

FOR loop: To iterate over the
PromptCounter block 10 times, the following properties are set:
1. Counter Initial Value is 1.
2. Counter Variable Name is Variable(MyCounterVariable).

3. Counter Max Value is 10.

WHILE loop: To iterate over the PromptCounter block until a condition is satisfied, the following
property is set: Exit expression is loginSuccessful != true.

Using the Looping Block with a DB Data/Context Services Block

1. Add a Looping block and connect the DB Data/Context Services block outport to the Looping block.

2. Connect the Next outport to the sequence of connected blocks.

3. Connect the outport of the last block in the sequence in step 2 back to the looping block to form a loop.
4

. Connect the Exit outport of the looping block to the block(s) to continue processing after the loop has

Composer Help 245

Voice Blocks Basic

exited. The diagram when a looping block is used should appear as follows:

Entry
® Entryl
w
&5
¥ DB Data
CEDatal
L
e
+*Looping
Loopingl
L L
et Exit
i S
v Prompt « Prompt
Pfc-rr'ptgd..mhl Dc-r‘leLgcpi'g
I S B
#Log #Log
Loch:Jrrni Lu%xjt

m—

=

CURSOR/FOREACH loop: To iterate over the

PromptColumn1l block for each record returned by the DBDatal block, the following property is set:
Data Source = Block Reference (DBDatal) This example assumes variables were mapped for
Columnl in DB Datal. If variables were not mapped, then another Assign block would be needed to
store the value into a variable and the variable is then specified in the PromptColumn1l block.

Composer Help 246

Voice Blocks Basic

Menu Block

The Menu block collects DTMF and/or speech input from the caller. Typically, you use it for directed
input choices (such as selecting to pay bills, get account balances, and so on) so that users are
directed to the correct place in the application to perform their transactions, talk to an operator, or
other options. In case of speech applications, tones can be associated with phrases to allow either
speech or DTMF input from the caller. The phrases and tones are defined in the Menu tab. In case of
user input blocks (Menu, Input, Record, Transfer), Composer adds a global variable of type "Block" to
the variables list. You can conveniently use this variable for accessing the user input value. The
Menu block has the following properties:

Menu Block Exception Events

The Menu block has four local exception events as described in Exception Events.

* error
* error.noresource
* noinput

¢ nomatch

Number of Allowed Retries Exceeded

Assume you need to configure the following use case:
1. User is allowed one invalid entry attempt and one no input attempt. User will then be re-prompted and
given a chance to repeat the attempt.

2. When all allowed attempts are exceeded, the user hears a prompt (something like You have exceeded
the number of possible retries; please call us later when you have correct information. Good bye).

3. At this point, the call should be terminated (or transferred to an agent or some other action taken.
To handle step 2 during application design: In Menu/Input blocks, move exceptions (nomatch,

noinput) to supported events. You can then define the flow path(s) for the case when number of
attempts is exceeded. The callflow below illustrates this configuration:

Composer Help 247

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions

Voice Blocks Basic

L

=0
. Prompt
Prormptl
O

i
Menu
P Talala Tl) Menul

— O-l-r- T "’ !
- Prompt Recard |og

8
% Record
Recordl é’?ug

o Logl

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Menu block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the

Composer Help 248

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exception_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock

Voice Blocks Basic

language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Menu Mode Property

To assign a value to the Menu Mode property:

1. Select the Menu Mode row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

DTMF

The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice

The Voice format indicates the menu option mode of input will be a voice phrase.

Hybrid

The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase. Note: If you select the Hybrid menu mode, you will have to provide both voice and

Composer Help 249

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

DTMF values for all menu options.

Menu Options Property

Use the Menu Options property to add phrases and/or tones to the VoiceMap. To add, delete, or
arrange menu options:

1. Click the Menu Options row in the block's property table.

2. Click the EZ button to open the Menu Options dialog box.

Menu Details Fields

Available Menu Details fields depend on the option selected in the Menu Mode property.

For DTMF mode:

* Name*-- Displays the name of the menu option.

* DTMF-Option*--Indicates where the option appears on the menu (1 for first option, 2 for second option,
and so on).

¢ Return Value--Displays the menu option's return value.
For Voice mode:

* Name*-- Displays the name of the menu option.
¢ Voice-Option*--Allows input of a voice phrase that will be played for the menu option.

¢ Return Value--Displays the menu option's return value.
For Hybrid mode:

¢ Name*-- Displays the name of the menu option.

* DTMF-Option*--Indicates where the option appears on the menu (1 for first option, 2 for second option,
and so on).

¢ Voice-Option*--Allows input of a voice phrase that will be played for the menu option.

Return Value--Displays the menu option's return value.

Menu Options Table

In a new Menu block, four menu options populate the Menu Options table by default. To set or change
one of the existing menu options:

1. Select a menu option in the Menu Options table to enable Menu Options fields.

2. In the Name* box, change the default name to a more descriptive name.

Composer Help 250

Voice Blocks Basic

3. From the DTMF-Option* drop-down list, select a numeric value to indicate the order that this option will
appear in the menu.

4. In the Return Value box, type a return value for this menu option.

Add Button
Use the Add button to add a new menu option.

1. In the Name* box, change the default name to a more descriptive name.

2. From the DTMF-Option* drop-down list, select a numeric value to indicate the order that this option will
appear in the menu.

3. In the Return Value box, type a return value for this menu option.
Up/Down Buttons

Use the Up and Down buttons to reorder your menu option elements. Select the element you want to
reposition, and then click Up or Down, as necessary.

Delete Button
To delete a menu option:

1. Select an entry from the list.
2. Click Delete.

Repeat Menu Options

Use for specifying a Repeat DTMF key that will cause the menu to be replayed to the caller, from the
beginning. The generated VXML will use a <reprompt/> when this DTMF is entered by the caller.
Composer's variable support and application root document support allows specifying the same key
across blocks. To enable the re-prompting functionality for both DTMF and ASR, you can connect a
Menu block outport back to the Menu block itself. To specify:

1. Click the Repeat Menu Options row in the block's property table.

2. Click the Bz putton to open the Repeat Menu Options dialog box.
3. Click Add.

4. Name the option.

5

. Click the down arrow and select a number to indicate where the option appears on the menu (1 for first
option, 2 for second option, and so on).

o

Specify the menu option's return value.

7. Click OK.

Composer Help 251

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Application_Root_Property

Voice Blocks Basic

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics. To
assign a value to the Security property:

1. Select the Security row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications the caller is familiar with. For example, the caller hears a welcome prompt but knows the
next prompt will solicit the caller's input or menu selection. The caller may start inputting with dtmf
while the welcome prompt plays and expect the input to carry forward. To assign a value to the Clear
Buffer property:

1. Select the Clear Buffer row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Composer Help 252

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Changes_as_a_Result_of_Upgrading

Voice Blocks Basic

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. By setting this property to true, it will expose the block’s shadow variable within the
callflow. When enabled, the shadow variable will be included in the list of available variables. (For
example, the Log block’s Logging Details will show Menul$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: Menul$.duration. Shadow
variables can provide platform-related information about the interaction/input. For example, for
speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. To assign a value
to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Number Of Retries Allowed Property

The Number Of Retries Allowed property determines how many opportunities the user will be
provided to re-enter the value. If Use Last Prompt Indefinitely is set to true, this property has no
effect; otherwise, the error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.

2. In the Value field, type a value for the number of retries that will be allowed.

Composer Help 253

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Prompts_Property

Voice Blocks Basic

Retry Prompts Property

Find this property's details under Common Properties.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt
as the prompt for all further retries. Therefore, the exception handlers that come out for nomatch and
noinput are redundant--even if you set the default exceptions that come out as red dots on the left-
side of the block. To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the
application first plays back the retry error prompt, and then plays back the original prompt for the
block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Single Counter For Nomatch And Noinput Property

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block
has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user
gets up to six retry attempts while not exceeding three of each type -- noinput or nomatch. Note: This
property not available on the Record block. To assign a value to the Use Single Counter For Nomatch
And Noinput property:

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 254

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Retry_Prompts_Property

Voice Blocks Basic

Prompt Block

Use the Prompt block to play specific data to the caller. The Prompt block has no page exceptions.
The Prompt block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Prompt block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the
language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 255

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property

Voice Blocks Basic

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications the caller is familiar with. For example, the caller hears a welcome prompt but knows the
next prompt will solicit the caller's input or menu selection. The caller may start inputting with dtmf
while the welcome prompt plays and expect the input to carry forward. To assign a value to the Clear
Buffer property:

1. Select the Clear Buffer row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Immediate Playback Property

Important! See Note in Timeout section below.
* When Immediate Playback is set to true, prompts are played immediately on the execution of the
prompt without queuing them.

* When Immediate Playback is set to false (default), the interpreter goes to the transitioning state and
queues the TTS Prompt until the interpreter waits for an input (such as the Menu, Input, Record,and
Transfer blocks.

To assign a value to the Immediate Playback property:

1. Select the Immediate Playback row in the block's property table.

2. In the Value field, select true or false from the drop-down list. Selecting false will causes prompts only
to be played when waiting for input. Set to false if you want prompts to be played consistent with the
VXML default behavior as described below. Otherwise select true to have Composer force immediate
playback.

VXML Behavior and Queueing of Prompts

A prompt gets played only when the platform is waiting for input. As described in Voice Extensible
Markup Language (VoiceXML) Version 2.0, section 4.1.8, a VoiceXML interpreter is at all times in one

Composer Help 256

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

of two states:

¢ waiting for input in an input item (such as <field>, <record>, or <transfer>), or

e transitioning between input items in response to an input (including spoken utterances, dtmf key
presses, and input-related events such as a noinput or nomatch event) received while in the waiting
state. While in the transitioning state no speech input is collected, accepted or interpreted...

The waiting and transitioning states are related to the phases of the Form Interpretation Algorithm as
follows:

* the waiting state is eventually entered in the collect phase of an input item (at the point at which the
interpreter waits for input), and

¢ the transitioning state encompasses the process and select phases, the collect phase for control items
(such as <block>s), and the collect phase for input items up until the point at which the interpreter
waits for input.

An important consequence of this model is that the VoiceXML application designer can rely on all
executable content (such as the content of <filled> and <block> elements) being run to completion,
because it is executed while in the transitioning state, which may not be interrupted by input. While
in the transitioning state, various prompts are queued, either by the <prompt> element in
executable content or by the <prompt> element in form items. In addition, audio may be queued by
the fetchaudio attribute. The queued prompts and audio are played either

¢ when the interpreter reaches the waiting state, at which point the prompts are played and the
interpreter listens for input that matches one of the active grammars, or

* when the interpreter begins fetching a resource (such as a document) for which fetchaudio was
specified. In this case the prompts queued before the fetchaudio are played to completion, and then, if
the resource actually needs to be fetched (i.e. it is not unexpired in the cache), the fetchaudio is played
until the fetch completes. The interpreter remains in the transitioning state and no input is accepted
during the fetch.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.

2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Note: For Prompts to be interruptible, there must be a an input block (Menu, Input, etc.) in the
execution path. If there are no such blocks further down in the execution path, the Interruptible
property has no effect.

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-

Composer Help 257

https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Prompts_Property

Voice Blocks Basic

As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.
Note: Composer does not honor the Timeout setting if you keep the Immediate Playback default

setting (=false); for example, where sequential prompts are used. In order for Composer to honor the
timeout, you must set Immediate Playback to true.

Composer Help 258

Voice Blocks Basic

Raise Event Block

Use the Raise Event block for Composer to throw custom events. You specify the event name and a
message, which is selection of a dynamic variable. It is a terminating block (can end an application
instead of an Exit block). Orchestration Server 8.1.2+ versions are required for Raise and Cancel
Event blocks.

Also see Custom Events.
The Raise Event block has the following properties:

The Raise Event block has no page exceptions.

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Delay Property

Enter the timeout or select a variable. Maps to <send delay>.

Unit Property

Select seconds or milliseconds for the delay. Maps to <send delay>.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 259

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property

Voice Blocks Basic

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Event Property

Select the variable or enter a value. Maps to <send event>.

Parameters Property

Add a list of key-values. Maps to <param>.

EFnable Status

This property controls whether or not a block contributes code to the application. You may wish to
use this property if there is a need to temporarily remove a block during debugging or, for other
reasons during development, temporarily disable a block. This saves the effort of having to remove
the block and then add it back later.

Composer Help 260

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property

Voice Blocks Basic

Record Block

The Record block records voice input from the caller. Also see Number of Allowed Attempts Exceeded
Property. In case of user input blocks (Menu, Input, Record, Transfer), Composer adds a global
variable of type "Block" to the variables list. You can conveniently use this variable for accessing the
user input value. The Record block has the following properties: Record Block Exception Events The
Record block has four exception events as described in Exception Event Descriptions:

error
error.badfetch
noinput]] (supported by default)

error.com.genesyslab.composer.recordCapture.failure

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case

of the Record block, this property affects the language of grammars of TTS output:

1.

Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the

language.

Composer Help

261

https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock#Number_of_Allowed_Attempts_Exceeded_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock#Number_of_Allowed_Attempts_Exceeded_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock

Voice Blocks Basic

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Web Server Record File Name Property

User-defined variable (to be assigned) containing the file name of the recorded file located in the
folder as specified in the Capture Location property.

1. Select the Web Server Record File Name row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

Composer Help 262

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Changes_as_a_Result_of_Upgrading

Voice Blocks Basic

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-
As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Audio Format Property

This property specifies the audio format for the recording.

1. Select the Audio Format row in the block's property table.

2. In the Value field, select a format value from the drop-down list.

You can modify this value in order to specify enhanced format information such as the codec and the
rate as in the following: audio/x-wav;codec=g726;rate=<rate>

Note: You can specify a bit rate as shown in the above example only for the g726 codec.

Beep Before Recording Property

The Beep Before Recording property indicates whether a beep sound will be played for the caller just
before recording begins. When set to true, a beep sound will be played; when set to false, no beep
will be played. To assign a value to the Beep Before Recording property:

1. Select the Beep Before Recording row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Dtmf Term Character Property

The Dtmf Term Character property defines any character that callers can input in order to indicate
that they have finished entering data. For example, the prompt given to the caller may say "Enter
your account number, and then press the pound key." The pound key is the Dtmf-ending character. To

Composer Help 263

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Prompts_Property

Voice Blocks Basic

provide a value for the Dtmf Term Character:

1. Select the Dtmf Term Character row in the block's property table.

2. In the Value field, type a value for a character to represent the end of the Dtmf string.
A typical value that is often used, as indicated above, is: # If several different DTMF tones could be
used to indicate the end of data entry, type all values for the supported tones. No separation signs or
characters are required. Examples:

e To use # or * then type the value as #*

e If any numeric key could be used for termination, type the value as 1234567890*#

Final Silence Property

The value supplied for the Final Silence property indicates the amount of silence (in seconds) that is
allowed to elapse before recording will be stopped. The default value is 3 seconds. To provide a value
for the Final Silence property:

1. Select the Final Silence row in the block's property table.

2. In the Value field, type a value for the allowable final silence before recording is stopped.

Max Duration Property

In the context of a Record block, the Max Duration property specifies the maximum recording
duration. The default is 60 seconds.

To provide a value for the maximum recording duration:

1. Select the Max Duration row in the block's property table.

2. In the Value field, type a value for the maximum recording duration.

For more information on this property, refer to the Record VXML tag topic in GVP 8.1 Voice XML Help.

Min Duration Property

In the context of a Record block, the Min Duration property specifies the minimum allowed recording
duration. The default is 1 second. To provide a value for the minimum recording duration:

1. Select the Min Duration row in the block's property table.

2. In the Value field, type a value for the minimum recording duration.

Composer Help 264

Voice Blocks Basic

Capture Filename Property

A value for the Capture Filename property is required when the Capture Filename Type property is set
to the value useSpecified. To provide a filename for the captured recording:
1. Select the Capture Filename row in the block's property table.

2. In the Value field, you can:

e Type a name for the recording file.

¢ Click the down arrow and select a variable.

Capture Filename Prefix Property

A value for the Capture Filename Prefix property is required when the Capture Filename Type property
is set to the value usePrefix. To provide a prefix for the captured recording filename:
1. Select the Capture Filename Prefix row in the block's property table.
2. In the Value field, you can:
e Type a value for the recording file prefix.

¢ Click the down arrow and select a variable.

Capture Filename Type Property

The Capture Filename Type property indicates the type of the filename for saving the recording. To
assign a value to the Capture Filename Type property:
1. Select the Capture Filename Type row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

* autoGenerate to auto-generate a recording filename.

¢ usePrefix to add the prefix value specified in the Capture Filename Prefix property to the default name
that is generated for the recording.

* useSpecified to use the value specified in the Capture Filename property as the filename for the
recording. In this case, the file will be overwritten for each call.

Capture Location Property

The Capture Location property specifies the destination path on the Web Application server where the
recording is to be saved. If no location is specified, the recordings are saved in the working directory
the web application server process. This location may change depending on the web server

Composer Help 265

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock#autoGenerate
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock#usePrefix
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock#useSpecified

Voice Blocks Basic

environment, and therefore, it is recommended that a fixed location is always specified in the
Capture Location property. To specify a capture (recording) location:

1. Click the Capture Location row in the block's property table.

2. Type a file path where the recording is to be saved that is located on the web server hosting the
application. If the web server is running on Linux, a UNIX-style path can be entered. Composer will not
validate the path.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics. To
assign a value to the Security property:

1. Select the Security row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt
as the prompt for all further retries. Therefore, the exception handlers that come out for nomatch and
noinput are redundant--even if you set the default exceptions that come out as red dots on the left-
side of the block. To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. They can provide platform-related information about the interaction/input. For example,
for speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. By setting this
property to true, it will expose the block’s shadow variable within the callflow. When enabled, the
shadow variable will be included in the list of available variables. (For example, the Log block’s
Logging Details will show Record1$.) A shadow variable is referenced as blockname$.shadowVariable,
where blockname is the value of the input item's name attribute, and shadowVariable is the name of
a specific shadow variable, for example: Record1$.duration. To assign a value to the Get Shadow
Variables property:

1. Select the Get Shadow Variables row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 266

Voice Blocks Basic

Number of Retries Allowed Property

The Number Of Retries Allowed property determines how many opportunities the user will be
provided to re-enter the value. If Use Last Prompt Indefinitely is set to true, this property has no
effect; otherwise, the error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum
retry limit. To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.

2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts Property

Find this property's details under Common Properties.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the

application first plays back the retry error prompt, and then plays back the original prompt for the

block (as specified in the Prompts property). To assign a value to the Use Original Prompts property:
1. Select the Use Original Prompts row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 267

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Retry_Prompts_Property

Voice Blocks Basic

Release ASR Engine Block

Use the Release ASR Engine block to control when the ASR engine(s) being used in the current
session will be released. The Release ASR Engine block has the following properties: The Release ASR
Engine block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Engine Name Property

The optional Engine Name property specifies the name(s) of the ASR engine(s) to release. If no
engine is specified, all open ASR engines will be released. To specify an ASR engine to release:

1. Select the Engine Name row in the block's property table.

2. In the Value field, type the name of the ASR engine to release.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 268

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property

Voice Blocks Basic

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 269

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Set Language Block

The Set Language block changes the current active language from that set in the Entry block or a
previous Set Language block. The language specified will be used for all subsequent prompts and
grammars. This updates the APP LANGUAGE and APP ASR LANGUAGE global variables to the
specified values. All audio and grammar resources will get picked from the specified language folder
under the Resource folder of the Composer Project. Set Language is only applicable for audio and
grammar files in Composer. Note: Locales that are not defined in Composer must be manually set in
the diagram’s Assign block. Example: ASR LANGUAGE="te-IN" Also see topic Developing Multi-Lingual
Applications. The Set Language block has the following properties: The Set Language block has no
page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Language
To set the active language for prompts and grammars:

1. Select the Language row in the block's property table.

2. In the Value field, select one of the following:

e Alanguage from the list of locales defined in the Project settings.

e A variable that contains the active language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 270

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales#ASR_LANGUAGE
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales#Developing_Multi-Lingual_Applications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales#Developing_Multi-Lingual_Applications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property

Voice Blocks Basic

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help

271

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

SNMP Block

Use the SNMP block to send SNMP traps from the application. This uses the NGI ‘dest’ extension
attribute of the <log> tag. All application-generated SNMP traps are mapped to a single TrapID as
defined by the MCP. The EnableSNMP voice application variable is a flag to turn SNMP traps on or off
from the SNMP block. The SNMP block has the following properties: The SNMP block has no page
exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 272

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Message Property

The Message property uses a dynamic variable as the message for the SNMP trap. To assign a
variable as an SNMP trap:

1. Select the Message row in the block's property table.

2. In the Value field, enter the name of the variable containing the message for the SNMP trap.
The SNMP block will append the following information to the log message:

¢ session-id

¢ block name

The format will be : <session-id>::<block-name>::<log message>

Composer Help

273

Voice Blocks Basic

Start FCR Block

Use the Start FCR (Start Full Call Recording) block to indicate the start of a recorded audio file. You
specify the audio format of the recorded file, which is saved in the MCP folder specified in the Capture
Location property. Once recording has started, all interactions will be recorded the End FCR block is
reached or the call is terminated Notes:

e Starting and stopping at tapped points (as marked by the Start FCR block and either EndFCR block or
the end of call) depends on the Prompt Queuing feature. For this reason, all Prompts between Start FCR
and End FCR should have their Imnmediate Playback property set to true.

e The enableFCR system variable in the Entry block must be set to true in order to use this block.

The Start FCR block has the following properties: The Start FCR block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Audio Format Property

This property specifies the audio format for the recording.

1. Select the Audio Format row in the block's property table.

2. In the Value field, select an audio format value from the drop-down list.
The following audio formats are currently supported:

* audio/vox

* audio/basic

* audio/x-alaw-basic
e audio/x-g726-24
* audio/x-g726

* audio/x-adpcm

Composer Help 274

https://docs.genesys.com/Documentation/IW/8.1.3/Help/StartFCRBlock#Capture_Location_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StartFCRBlock#Capture_Location_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PromptBlock#Immediate_Playback_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Voice Blocks Basic

* audio/adpcm

e audio/x-adpcm8

* audio/x-g726-40

e audio/L8

* audio/L16

* audio/x-wav

* audio/wav

* audio/x-wav;codec=ulaw
* audio/wav;codec=ulaw
* audio/x-wav;codec=alaw
* audio/wav;codec=alaw

* audio/x-vox

¢ audio/x-wav;codec=pcm
e audio/wav;codec=pcm

¢ audio/x-wav;codec=pcm1l6
e audio/wav;codec=pcm1l6
e audio/x-wav;codec=g726
e audio/wav;codec=g726
* audio/x-gsm

e audio/x-g729

You can modify this value in order to specify enhanced format information such as the codec and the
rate as in the following: audio/x-wav;codec=g729;rate=<rate>

Capture Location Property

The Capture Location property specifies the location for the FCR files on MCP. The default value is
.\callrec, but this value can be changed. To specify a capture (recording) location for the FCR files:

1. Click the Capture Location row in the block's property table.
2. Select the Value field and type a directory path, or keep the default ..\callrec path.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 275

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property

Voice Blocks Basic

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help

276

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Subdialog Block

Use the Subdialog block for invoking VoiceXML subdialogs, which are a mechanism for reusing
common dialogs and building libraries of reusable applications. Subcallflows called from a main
callflow encapsulate VXML subdialogs and provide modularization for large VXML applications. An
application can specify the URI of the subdialog to be invoked, pass parameters, and receive output
results. Parameters of type In, Out and InOut are supported. You have the option to select how the
parameters are to be passed to the invoked subdialog. In the case of Dynamic pages (like JSPs) you
can specify the method for sending Get / Post and Use Namelist to indicate the parameters are to be
passed as Query String values.

Note: These two choices do not apply in the case of static subdialogs (such as those generated by
Composer Voice). The Subdialog block also has the ability to invoke subcallflows created by
Composer Voice. In this case, auto-synchronization of input and output parameters is provided. A
developer will be able to select a subcallflow to invoke from the current Composer Project.

Also see Using Composer Shared Subroutines.

The Subdialog block has the following properties: The Subdialog block has no page exceptions.

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Type Property

The Type property sets the type of the invoked subdialog. There are two options:

* URL--The invoked subdialog can be found at the location specified in the Uri property.

e ProjectFile--The invoked subdialog is a subcallflow in the Composer Project.
To select a value for the Type property:

1. Select the Type row in the block's property table.

2. In the Value field, select URL or ProjectFile from the drop-down list.

Composer Help 277

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerProjectsandDirectories#Using_Composer_Shared_Subroutines
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Voice Blocks Basic

Uri Property

The Uri property specifies the destination (URL or Composer Project) depending on the value of the
Type property. To set a URL destination for the Uri property (Type property is set to URL):

1. Select the Uri row in the block's property table.

2. In the Value field, type a valid URL, or select a variable from the drop-down list.
To set a Composer Project destination for the Uri property (Type property is set to ProjectFile):

1. Click the Uri row in the block's property table.

2. Click the Ez putton to open the Uri dialog box.
3. Select a callflow in the list.
4. Click OK to close the dialog box.

Composer automatically synchronizes the Input and return variables of the selected sub-callflow with
the main callflow by adding them as Input/Output parameters in the corresponding Subdialog Block.
Open the Parameters Property of the Subdialog Block to assign the desired value. Note: For a
selected studio diagram file, right-click the block's context menu and select the Open Sub Callflow
Diagram option to open the chosen Subcallflow diagram file in the Workbench window.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 278

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Security Property

When the Security property is set to true, data for this block is treated as private (for example, credit
card account numbers, Social Security numbers, date of birth information, and so on). GVP will
consider the data associated with this block as sensitive and will suppress it in platform logs and
metrics. To assign a value to the Security property:

1. Select the Security row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Method Property

This property Indicates the method for invoking the subdialog:

e get--Invoked using HTTP Get

e post--Invoked using HTTP Post. This option is valid only when the parameters are passed as a hamelist
(Use Namelist property is set to true). This is generally used when a large amount of data needs to be
sent as an input value for a subdialog.

To select a value for the Method property:

1. Select the Method row in the block's property table.

2. In the Value field, select get or post from the drop-down list.

Parameters Property

Use the Parameters property to specify parameters to pass to the invoked subdialog. To specify
parameters:

1. Click the Parameters row in the block's property table.

2. Click the EZZ button to open the Parameter Setting dialog box.
If the Type Property is ProjectFile,all the Input/Output parameters are automatically synchronized
between the sub-callflow and the main callflow. The Input/Output parameters are automatically

added based on the sub-callflow Input/Output parameters. In this case, there are no Add and Delete
buttons in the Parameter Setting dialog box as described below. You must fill in the Variables column.

Add Button

Use the Add button to enter parameter details.

1. Click Add to add an entry to SubDialog Parameters.

2. In the Parameter Name field, accept the default name or change it.

Composer Help 279

Voice Blocks Basic

3. From the Parameter Type drop-down list, select In, Out, or InOut:

In Input parameters are variables submitted to the

subdialog.
Output parameters are variables that the subdialog
Out returns and will be reassigned back to the current
callflow.
InOut InOut parameters are parameters that act as both

input and output.

1. In the Expression drop-down list, select from among the variables shown, type your own expression, or
click the EZ putton to use Skill Expression Builder.

2. In the Definition field, type a description for this parameter.

3. Click Add again to enter another parameter, or click OK to finish.

Delete Button

To delete a parameter:

1. Select an entry from the list.
2. Click Delete.

Use Namelist

Indicates whether the subdialog parameters need to submitted as a namelist (if set to true) to the
called subdialog. To select a value for the Use Namelist property:

1. Select the Use Namelist row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 280

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SkillExpressionBuilder

Voice Blocks Basic

Transfer Block

Use the Transfer block to transfer the call to another destination. By default, blind transfer is enabled,
and it has no outports. However, if you enable bridging, the block will have one or more outports. In
case of user input blocks (Menu, Input, Record, Transfer), Composer adds a global variable of type
"Block" to the variables list. You can conveniently use this variable for accessing the user input value.
The Transfer block has the following properties:

Transfer Block Exception Events

The Transfer block has the following exception events as described in Exception Event Descriptions:

e connection.disconect.hangup

¢ connection.disconnect.transfer (supported by default)
e error (supported by default)

e error.connection.baddestination (supported by default)
* error.connection.noauthorization

* error.connection.noresource

* error.connection.noroute

e error.connection

e error.unsupported.transfer.blind

e error.unsupported.transfer.consultation

e error.unsupported.uri

Name Property

Please find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Composer Help 281

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Voice Blocks Basic

Exceptions Property

Find this property's details under Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Transfer block, this property affects the language of grammars used for ASR input:

1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the
language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note: This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in

Composer Help 282

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property

Voice Blocks Basic

the Problems view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Transfer Audio Property

The optional Transfer Audio property plays a prompt to the end user while the number is being dialed
out. You provide the URI of the audio source to play while the transfer attempt is in progress (before
the other end answers). If the callee answers, the interpreter terminates playback of the recorded
audio immediately. If the end of the audio file is reached and the callee has not yet answered, the
interpreter plays the audio tones from the far end of the call (ringing, busy). If the resource cannot be
fetched, the error is ignored and the transfer continues. To provide a Transfer Audio value:

1. Select the Transfer Audio row in the block's property table.

2. In the Value field, type a Transfer Audio value URI (HTTP or RTSP) specifying the location of the audio file
to play.

Aail Property

Use the optional Application-to-Application Information (the Aai property) for the data that is to be
transferred from the current application to another application. Use this option to transfer the call to
a number that initiates another voice application. To assign a value to the Aai property:

1. Select the Aai row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Authorization Code Property

GVP supports dialing of an authorization code as part of an outbound call on a two-leg transfer. Use
free form text to specify the authorization code in the application.

Connect Timeout Property

Use the Connect Timeout property for the connection timeout value. The default is 15 seconds. For
information on what happens if a timeout occurs, select Help > Contents and see the GVP 8.1Voice
XML 2.1 Reference Help. Specifically see Standard VoiceXML > Variables > Transfer, attribute

Composer Help 283

https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Changes_as_a_Result_of_Upgrading
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TransferBlock#Variables_Property

Voice Blocks Basic

connecttimeout. To provide a timeout value:

1. Select the Connect Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Connect When Property

This property controls when the call is connected to the end point. To assign a value:

1. Select the Connect When row in the block's property table.

2. In the Value field, select answered or immediate from the drop-down list.

Destination Property

The Destination property contains the destination phone number. The destination number can be one
of the following:

e A Virtual Route point number on which the IRD Strategy is loaded

e Extension number of an Agent

e External number
The value must be specified in one of the formats below:

e sip:[user@]host[:port]
¢ tel:phonenumber e.g., tel:+358-555-1234567

For information on this property, select Help > Contents and see the GVP 8.1Voice XML 2.1 Reference
Help. Specifically see Standard VoiceXML > Variables > Transfer, attribute dest. To assign a value
to the Destination property:

1. Select the Destination row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Max Call Duration Property

Use the Max Call Duration property for the maximum call duration. The default is 3600 seconds. (This
is not supported for Consultation Transfer Type.) Note: If this is set to 0 (zero), an infinite value is
supplied, and there is no upper limit to the call duration. To provide a value for the maximum call
duration:

Composer Help 284

https://docs.genesys.com/Documentation/IW/8.1.3/Help/TransferBlock#Variables

Voice Blocks Basic

1. Select the Max Call Duration row in the block's property table.

2. In the Value field, type a value for the maximum call duration.

Transfer Type Property

Specifies the type of the Transfer, which determines whether or not the caller’s session with the
VoiceXML interpeter resumes after the call initiated by the transfer ends. Note: Composer also
supports AT&T blind transfers with the following options: Out of Band Courtesy, Out of Band Consult,
and Out of Band Conference. For more information on these options, start with the GVP 8.1 Voice XML
Reference Help (Help > Contents). Search for ATTOOBCOURTESY, ATTOOBCONSULT, and
ATTOOBCONFERENCE (Transfer topic). Also see the Genesys Voice Platform 8.1 Deployment Guide.
To assign a value to the Transfer Type property:

1. Select the Transfer Type row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

Blind is the default setting. The platform redirects the caller to the agent without remaining in the
connection, and it does not monitor the outcome. Once the caller is handed off to the network, the
caller's session with the VoiceXML application cannot be resumed. The VoiceXML interpeter throws a
connection.disconnect.transfer immediately, regardless of whether the transfer was successful or not.
Bridge causes the platform add the agent to the connection. Document interpretation suspends until
the transferred call terminates. The platform remains in the connection for the duration of the
transferred call; listening during transfer is controlled by any included <grammar=>s.If the caller
disconnects by going onhook or if the network disconnects the caller, the platform throws a
connection.disconnect.hangup event. If the agent disconnects, then transfer outcome is set to
near_end_disconnect and the original caller resumes her session with the VoiceXML application.
Consultation causes the consultation transfer to be similar to a blind transfer except that the
outcome of the transfer call setup is known and the caller is not dropped as a result of an
unsuccessful transfer attempt. When performing a consultation transfer, the platform monitors the
progress of the transfer until the connection is established between caller and agent. If the
connection cannot be established (e.g. no answer, line busy, etc.), the session remains active and
returns control to the application. As in the case of a blind transfer, if the connection is established,
the interpreter disconnects from the session, connection.disconnect.transfer is thrown, and document
interpretation continues normally. Any connection between the caller and the agent remains in place
regardless of document execution. Note: The selected transfer type will work only if the platform is
provisioned to support that type of transfer.

Variables Property

This is the list of variables that can be optionally sent by the application as part of the Transfer
Request to the far end. It corresponds to the signalvars extension attribute of the NGI VXML
Interpreter. Check the NGI VXML Reference Guide for more details. All variables that are selected
(checked) will be sent as part of the signalvars . The name of the variable will be used as the key
name and the actual value will be the corresponding value. Note: Refer to the GVP Documentation
for details on the signalvars attribute. The variable name must match the name of the key that will
be sent as signalvars . To declare session variables for the application or subcallflow:

Composer Help 285

Voice Blocks Basic

1. Click the Variables row in the block's property table.

2. Click the Bz putton to open the Variables dialog box.
3. Select individual variables, or click Select all or Deselect all.
4. Click OK.

Method Property

The Method property specifies the type of SIP transfer method that the Media Control Platform (MCP)
uses. To assign a value to the Method property:

1. Select the Method row in the block's property table.

2. In the Value field, select one of the following from the drop-down list (descriptions below):

Bridge
A Bridge method indicates that the Media Control Platform (MCP) bridges the media path.

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The transfer fails if a non-2xx final response is received for the INVITE request.

This is a two-leg transfer (in other words, it occupies two channels on the platform). The platform
stays in the signaling path and is responsible for bridging the two call legs.

Hkf (Hookflash)

A Hookflash method indicates a transfer using DTMF digits (RFC 2833).

1. The Media Control Platform (MCP) sends DTMF digits on the media channel. The platform leaves it to the
media gateway or switch to perform the transfer on the network.

2. Configurable options enable you to specify whether the call will be disconnected by the platform or by
the remote end. Otherwise, the call is disconnected after a configured timeout.

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Refer

A Refer method indicates that the transfer is based on a SIP REFER message (RFC 3515).

1. The platform sends a REFER request to the caller, with the callee (as specified in the VoiceXML
application) in the Refer-To: header.

2. The transfer fails if a non-2xx final response is received for the REFER.

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Composer Help 286

Voice Blocks Basic

Referjoin

A Referjoin method indicates a consultative REFER transfer (RFC 3891).

=

. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

N

. The platform also sends a REFER request to the caller, with the callee’s information in the Replaces
header.

w

. The platform considers the transfer to be successful if it receives a BYE from the caller after a 2xx
response for the REFER.

4. The transfer fails if a non-2xx final response is received for the INVITE request or for the REFER request.

This is a two-leg, or join-style, transfer (in other words, it occupies two channels on the platform).

Mediaredirect

A Mediaredirect method indicates a media redirection transfer. The Media Control Platform (MCP)
uses SIP to handle call control between the caller and the callee, and the RTP media channel is
connected directly between the caller and callee.

The platform sends an INVITE request to the callee without SDP.

If the transfer is proceeding, the callee responds with a 200 OK that includes an SDP offer.

The platform forwards the SDP offer in a re-INVITE request to the caller.

The caller responds with a 200 OK that includes the SDP answer.

The platform forwards the SDP answer to the callee in an ACK response.

S

The transfer fails if a non-2xx final response is received for the initial INVITE request.

This is a two-leg transfer (in other words, it occupies two channels on the platform). attcourtesy
attconsult attconference attoobcourtesy attoobconsult attoobconference For information on these
methods, consult the section on how the Media Control Platform works in the Genesys Voice Platform
8.1 Deployment Guide.

Disconnect on Answering Machine Property

This property indicates whether or not the FAX / Answering machine has to be detected. To assign a
value:

1. Select the Disconnect on Answering Machine row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 287

Voice Blocks Basic

Do CPA Analysis Property

This property indicates whether or not the platform is enabled to detect who/what answered the call.
To assign a value:
1. Select the Do CPA Analysis row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Get Shadow Variables Property

Shadow variables (optional) provide a way to retrieve further information regarding the value of an
input item. They can provide platform-related information about the interaction/input. For example,
for speech recognition, this may be the confidence level the platform receives from the ASR engine
about how closely the engine could match the user utterance to specified grammar. By setting this
property to true, it will expose the block’s shadow variable within the callflow. When enabled, the
shadow variable will be included in the list of available variables. (For example, the Log block’s
Logging Details will show Transferl$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: Transferl$.duration. To assign
a value:

1. Select the Get Shadow Variables row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Transfer Results Property

There are several types of transfer results supported for applications. When you select a transfer
result, a corresponding outport node is added to the block to allow specific actions to be taken for
that condition. Please note that a default outport is always present. The default path is executed if
none of the selected transfer results are set. The available transfer results are:

e far_end_disconnect (selected by default)

e noanswer (selected by default)

* busy (selected by default)

* near_end_disconnect

Note: Consultation Transfer supports only noanswer, busy, and near_end_disconnect transfer results.
To select transfer results:

1. Click the Transfer Results row in the block's property table.

2. Click the EZ putton to open the Transfer Results dialog box.

3. Select items from the list of available CPA results, or click Select all or Deselect all as needed, then click
OK.

Composer Help 288

Voice Blocks Basic

Input Grammar Dtmf Property

Use the Input Grammar Dtmf (Dual Tone Multi-Frequency) property to specify the DTMF Grammar for
the Transfer block, which accepts DTMF signals or speech input from callers. The DTMF Grammar is
processed and handled by GVP. In the case of external grammars, this specifies the actual path of the
grammar file / resource for DTMF Grammars. This is only valid when the Grammar Type is
externalGrammar and Input Mode is dtmf or hybrid. To assign a value to the Input Grammar Dtmf
property:

1. Select the Input Grammar Dtmf row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property. Section 2.3.7.2.1,
of the Voice Extensible Markup Language (VoiceXML) Version 2.0 specification (http://www.w3.0org/TR/
voicexml|20/#dml2.3.7.2.1), contains the following information on listening for user input during a
transfer (interrupting a transfer): Platforms may optionally support listening for caller commands to
terminate the transfer by specifying one or more grammars inside the <transfer> element. The
<transfer> element is modal in that no grammar defined outside its scope is active. The platform will
monitor during playing of prompts and during the entire length of the transfer connecting and talking
phases:

e DTMF input from the caller matching an included DTMF grammar

e an utterance from the caller matching an included speech grammar

A successful match will terminate the transfer (the connection to the callee); document interpretation
continues normally. An unsuccessful match is ignored. If no grammars are specified, the platform will
not listen to input from the caller. The platform does not monitor in-band signals or voice input from
the callee.

Input Grammar Voice Property

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block, which
accepts DTMF or speech input from callers. If you are writing hybrid applications that allow both
DTMF and Speech input, specify both the DTMF and Voice grammars. The Voice grammar is sent to
the ASR Engine for processing, whereas the DTMF grammar is processed by GVP. As a result, you
need two separate grammars for Voice and DTMF in the case of hybrid applications that allow both
Voice and DTMF inputs. In the case of external grammars, this specifies the actual path of the
grammar file / resource for ASR Grammars.. This is only valid when Grammar Type is
externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input Grammar Voice
property:

1. Select the Input Grammar Voice row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Composer Help 289

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#Input_Grammar_Dtmf_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder

Voice Blocks Basic

Input Mode Property

To assign a value to the Input Mode property:

1. Select the Input Mode row in the block's property table.

2. In the Value field, select one of the following from the drop-down list (descriptions below):

DTMF

The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice

The Voice format indicates the menu option mode of input will be a voice phrase.

Hybrid

The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase.

Composer Help 290

Voice Blocks Basic

VXML Form Block

Use this block to embed VXML code directly into a callflow diagram with using <subdialog>.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties.

Enable Status Property

Find this property's details under Common Properties.

Body Property

This property contains all the executable content of the <form> element before directing to a block
or external application.

1. Click opposite Body under Value. This brings up the Ez1 pbutton.
2. Click the Bz putton to bring up the Configure Body dialog box.

3. Enter the executable content of the <form> element. .

4. When through, click OK. Note: The editor does not validate against the VXML schema.

Composer Help 291

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Blocks Basic

Gotostatements Property

This property allows the you to configure the output nodes of the blocks. An output port is created for
every GOTOStatement item with target enabled.

1. Click opposite Gotostatements under Value. This brings up the =2 button.

2. Click the Bz putton to bring up the Gotostatements dialog box.
3. Click Add.
4. When Target is disabled, select ProjectFile or URL to indicate the destination application type. When

ProjectFile is selected, you can click the button to enter the URI. When URL is selected, you can click
the URI button and specify a literal or a variable.

5. When URL is selected, you can also click the Parameters button to select a system variable.
6. For each goto statement, specify at least one event, condition, or target (you are not required to
complete all three fields). An output port is created for every goto statement.
* Name--Composer uses the name of the goto statement to label the outport.
¢ Event--Use to select the event that will trigger the goto statement.

* Condition--The guard condition for this goto statement. The goto statement is selected only
if the condition evaluates to true.

* Target--If a target is set, an outport for that Goto Statement will appear and you can
connect it to other blocks. If a target is not set, an outport for that Goto Statement does not
appear; in this case, you can add some VXML code to handle the event.

Composer Help 292

Voice Database Blocks

Voice Database Blocks

The Database palette provides blocks that enable VXML applications to use databases.

Video Tutorial

Below is a video tutorial on using the Database Blocks.

Important Note: While the interface for Composer in this video is from release 8.0.1,
the steps are the basically the same for subsequent releases.

B Geresyo inks et Roonssas Coveuly Dopicyrmend Goids L]

Using the Database Blocks

Using these blocks, VXML applications can connect to databases and query data from them. It also
provides blocks that consume this retrieved data and perform high level operations on it like
speaking out the returned data or accepting user input against a grammar generated from the
returned data.

Types of Blocks

There are three Database blocks:

e DB Data Block for connecting to a database and retrieving/manipulating information from/in a database.

e DB Prompt Block for speaking out prompts generated using TTS based on the data returned by an
associated DB Data block.

¢ DB Input Block for accepting a DB Data block as its data source and acting as an input field that accepts
input based on a grammar created from the results returned from the database.

Also see Working with Database Blocks for an overview of database support in Composer including a
high level description of how it works as well as level of support for various databases.

Composer Help 293

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBPromptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DatabaseInputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks

Voice Database Blocks

DB Data Block

The DB Data block is used for both routing and voice applications. See the DB Data Block topic in the
Common Blocks book. Also see Working with Database Blocks.

Composer Help 294

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks

Voice Database Blocks

Database Input Block

The DB Input block accepts a DB Data block as its data source and acts as an input field that accepts
input based on a grammar created from the results returned from the database.

It accepts DTMF or speech input. This block differs from the Menu block in that it enables taking input
that might not belong to a simple choice list (as for the Menu block). The DB Input block can be used
to collect numerical data; for example, phone numbers, account numbers, amounts, or speech data,
such as a Stock name. It uses speech or DTMF grammars to define the allowable input values for the
user responses. Built-in system grammars are available for data, such as dates and amount.

The user input result will be stored in a block name variable in the VXML application.

Note: If the DB Input block uses a DB Data block as its data source, it uses only the first column from
returned results to generate the grammar.

The DB Input block can also use a variable as a data source instead of a DB Data block. In this case,
grammar for the input is generated based on data in the array. The variable should represent a JSON
array similar to the sample below:

myvariab|e="[[""GOOgle""],[""App|e""],[""M0t0r0|a""],[""Samsung""],[""NOkia""]]"

The DB Input block has the following properties:

DB Input Block Exception Events

The DB Input block has four exception events as described in Event Descriptions Exception Event
Descriptions:

* error
* error.noresource
* noinput

¢ nomatch

Name Property

Please find this property's details under Property Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Composer Help 295

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DB_Data_Common_Block
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Menu_Block
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DB_Data_Common_Block
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Name

Voice Database Blocks

Data Source Property

The Data Source property allows you to select the DB Data block that contains a previously-defined
database query. This is used when DBDataBlock is selected as the Data Source Type property value.
The results of this database query will be used to create the input field.

To select the data source (a DB Data block):

1. Select the Data Source row in the block's property table.
2. In the Value field, select the appropriate DB Data block from the drop-down list.

Data Source Type Property

The Data Source Type property allows you to select whether your data source is the contents of a DB
Data block or a variable.

To select the data source type:

1. Select the Data Source Type row in the block's property table.

2. In the Value field, select DBDataBlock or Variable from the drop-down list.

Data Source Variables Property

The Data Source Variables property allows you to select the contents of a Property variable as your
data source. This is used when Variable is selected as the Data Source Type property value.

To select the variable that serves as your data source:

1. Select the Data Source Variable row in the block's property table.

In the Value field, select one of the available variables from the drop-down list. This can also be a

2.
custom variable you assigned in the Entry block.

Exceptions Property

Find this property's details under Property Common Properties.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this

Composer Help 296

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Exceptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock

Voice Database Blocks

block, and the language setting reverts back to its previous state after the block is done. In the case
of the DB Input block, this property affects the language of grammars of TTS output:

1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the
language.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications that the caller is familiar with. For example, the caller hears a welcome prompt but
knows the next prompt will solicit the caller's input or menu selection. The caller may start inputting
with DTMF while the welcome prompt plays and expect the input to carry forward.

To assign a value to the Clear Buffer property:

1. Select the Clear Buffer row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Interruptible Property
This property specifies whether the caller can interrupt the prompt before it has finished playing.
To assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts Property

Find this property's details under Property Common Properties.

Note: When Type is set to Value and Interpret-As is set to Audio, you can specify an HTTP or RTSP
URL. When Type is set to Variable and Interpret-As is set to Audio, you can specify a variable that
contains an HTTP or RTSP URL.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block.

Composer Help 297

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Prompts

Voice Database Blocks

To provide a timeout value:

1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Security Property

When the Security property is set to true, data for this block is treated as private. GVP will consider
the data associated with this block as sensitive and will suppress it in platform logs and metrics.

To assign a value to the Security property:

1. Select the Security row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined Property
variable for further processing.

* Note! This property is mandatory. You must select a variable for the output result even if you do not
plan on using the variable. If this is not done, a validation error will be generated in the Problems view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Get Shadow Variables Property

Shadow variables provide a way to retrieve further information regarding the value of an input item.
By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show DBInputl$.)

A shadow variable is referenced as blockname$.shadowVariable, where blockname is the value of the
input item's name attribute, and shadowVariable is the name of a specific shadow variable, for
example: DBInputl$.duration.

To assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.

Composer Help 298

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Output_Result_Property

Voice Database Blocks

2. In the Value field, select true or false from the drop-down list.

Number of Retries Allowed Property

The Number Of Retries Allowed property determines how many opportunities the user will be
provided to re-enter the value. If Use Last Prompt Indefinitely is set to true, this property has no

effect; otherwise, the error.com.genesyslab.composer.toomanynomatches or
error.com.genesyslab.composer.toomanynoinputs errors will be raised on reaching the maximum

retry limit.

To provide a value for the number of retries allowed:

1. Select the Number Of Retries Allowed row in the block's property table.

2. In the Value field, type a value for the number of retries that will be allowed.

Retry Prompts Property

Find this property's details under Property Common Properties.

Use Last Reprompt Indefinitely Property

If you set the Use Last Reprompt Indefinitely property to true, the application uses your last reprompt

as the prompt for all further retries. In this case the NoMatch and Nolnput exception handlers will
never get executed, as the retry loop keeps executing forever.

To assign a value to the Use Last Reprompt Indefinitely property:

1. Select the Use Last Reprompt Indefinitely row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Use Original Prompts Property

If you set the Use Original Prompts property to true, in the event of an error requiring a retry, the

application first plays back the retry error prompt, and then plays back the original prompt for the

block (as specified in the Prompts property).

To assign a value to the Use Original Prompts property:

1. Select the Use Original Prompts row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help

299

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Retry_Prompts

Voice Database Blocks

Use Single Counter for Nomatch And Noinput Property

If you set the Use Single Counter For Nomatch And Noinput property to true, the application
maintains a single combined counter for the nomatch and noinput errors. For example, if the block
has three nomatch retry messages and three noinput retry messages, the user gets three retry
attempts. If you do not select this option, the application generates a total of six retries; and the user
gets up to six retry attempts while not exceeding three of each type - noinput or nomatch.

Note: This property not available on the Record block.

To assign a value to the Use Single Counter For Nomatch And Noinput property:

1. Select the Use Single Counter For Nomatch And Noinput row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Condition Property

Find this property's details under Property Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 300

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Database Blocks

DB Prompt Block

The DB Prompt block speaks out prompts generated using TTS based on the data returned by an
associated DB Data block. The DB Prompt block will speak each row of the data result set as a
sentence. To speak data returned by a DB Data block in a specific format, Genesys recommends
using the Prompt block along with ECMA script. A template application (Database Query Result
Access Project) is provided which demonstrates the use of ECMA script to allow Prompting of currency
and data formats as an example. DB Prompt Block Tip: The DB Prompt block speaks out all
columns for each record returned by the database as the result of a query. The ordering of columns
and of the records is controlled by the query itself and DB Prompt plays them all in the same order
without any breaks. To introduce breaks or to add prefix or suffix text to individual columns, you can
use a custom query and introduce these features in that query. For example: SELECT ‘name ‘ +
employee.firstname + employee.lastname + ‘. . . FROM employee WHERE employee.emp _id < 10
This query will speak out the text name with a small gap before speaking out each name of each
employee returned from the database. After each record, it will pause for a small period due to the ‘..
." literal in the query. The DB Prompt block has no page exceptions. The DB Prompt block has the
following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Data Source Property

The Data Source property allows you to select the DB Data block that contains a previously-defined
database query. The results of this database query will be used to create the voice prompt. To select
the data source (a DB Data block):

1. Select the Data Source row in the block's property table.

2. In the Value field, select the appropriate DB Data block from the drop-down list.

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only fr the duration of this

Composer Help 301

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SampleApplicationsandTemplates
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Query_File_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock

Voice Database Blocks

block, and the language setting reverts back to its previous state after the block is done. In the case
of the DB Prompt block, this property affects the language of grammars of TTS output:
1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the
language.

Clear Buffer Property

Use the Clear Buffer property for clearing the DTMF digits in the key-ahead buffer. If it is not set to
true, the DTMF digits entered are carried forward to the next block. It is commonly used for
applications the caller is familiar with. For example, the caller hears a welcome prompt but knows the
next prompt will solicit the caller's input or menu selection. The caller may start inputting with DTMF
while the welcome prompt plays and expect the input to carry forward. To assign a value to the Clear
Buffer property:

1. Select the Clear Buffer row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Immediate Playback Property

When Immediate Playback is set to true, prompts are played immediately on the execution of the
prompt without queuing them. When Immediate Playback is set to false, the interpreter goes to the
transitioning state and queues the TTS Prompt until the interpreter waits for an input (such as the
Menu, Input, Record,and Transfer blocks). To assign a value to the Immediate Playback property:

1. Select the Immediate Playback row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Interruptible Property

This property specifies whether the caller can interrupt the prompt before it has finished playing. To
assign a value to the Interruptible property:

1. Select the Interruptible row in the block's property table.
2. In the Value field, select true,false,or DTMF (for DTMF barge-in mode support) from the drop-down list.

Prompts Property

Find this property's details under Common Properties. Note: When Type is set to Value and Interpret-

Composer Help 302

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Prompts_Property

Voice Database Blocks

As is set to Audio, you can specify an HTTP or RTSP URL. When Type is set to Variable and Interpret-
As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL.

Timeout Property

The Timeout property defines the length of the pause between when the voice application plays the
last data in the list, and when it moves to the next block. To provide a timeout value:

1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Condition Property

Find this property's details under Property Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 303

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice Database Blocks

Working with Database Blocks

This page contains general information on working with the Database blocks.

Database Connection Profiles

Before you can connect to a database in your application, you need to define a database connection
profile that will maintain all information necessary to connect to a particular instance of a database.
The figure below shows an example connection profile.

ﬁ defaulk.workFlow L =0
. : a
& Connection Profiles B =
Profiles =) Details
Set the properties of the Connection Profile. Required Fields are denoted bey "+,
Click "+" to add a new profile and "x" to delete a REER) i ¥
selected profile, Select a profile to edit its details Prafile Mame* | ConnectionProfile 1 |
on the Details pane,
d Connection Pooling Enable
ConneckionProfilel
Connection Pool Mame | jdbc/oraclePooled |
Database Type* |oRACLE &
Hostname* | dev-iron |
Fort [1521 |
Instance Mame | |
Database Name* [compoe | OQso
Username® [br |
Password |**| | O show O Encrypt

Encryption

Connection String

Preview and add the custom parameters to the Connection String.

jdbc:aracle: thin: @({DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dev-iron)(PORT=152 1) COMNECT_DATA=(SERWICE_N | —
AME=COMPDE1)))
bk

| Cuskom Parameters | | Test Connection |

The DB Data block requires that you specify the name of a connection profile in its properties so that
it can use that information to connect to the database at runtime. Multiple connections profiles can
be defined in one Project and these profiles can be shared by multiple DB Data blocks even if they
are in different callflows. A connection profile consists of the basic information required to connect to
a database. The information provided in a connection profile includes the following:

¢ Profile Name. The internal name that Composer uses to identify connections uniquely.

¢ Connection Pooling. Select to enable connection pooling, which maintains a set of database
connections that can be reused for requests to databases. You can use this feature to enhance
performance by avoiding time-consuming re-establishment of connections to databases.

Composer Help 304

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock

Voice Database Blocks

¢ Connection Pool Name. Specify a Java Naming and Directory Interface (JNDI) name for the pooled
data source. Composer applications can use any JNDI data source exposed by the web server. The .war
files exported by Composer contain configuration files to support connection pooling with JBoss and
WebSphere; other configuration changes to the web application may be required for other web servers

 Database Type. The type of database from the list of supported databases

 Hostname. The host on which the database server is running. In case of Database Cluster, Virtual IP/
Cluster Alias/SCAN Name is specified here.

e Port. The TCP port on which the database server is listening for connections. The most commonly used
defaults for supported database types are pre-populated by Composer. If your database server uses
custom ports, you will need to specify them here.

¢ Instance Name. The MSSQL Instance that need to connect in SQL Server. Port will take precedence if
specified. This field is disabled when Database Type is selected as ORACLE.

¢ Database Name. The name of the database/catalog for SQLServer and the SID in case of Oracle.

e SID. The check box to specify if value provided in "Database Name" is SID. This check box is disabled
when "Database Type" is MSSQL

* Username. The username that should be used to access the database
¢ Password. The password that should be used to access the database
¢ Encrypt. Select the encrypt the password.

¢ Show. Select to show the password

¢ Custom Parameters. The supported custom parameters can be included in connection string along
with other parameters. To define custom parameters click on the button "Custom Parameters". In the
dialog opened add the parameter name and value, in the order that need to be appended to
connection string.

Configuration for Database Cluster:

¢ For MSSQL Cluster, Virtual IP/Cluster Alias is specified in Hostname field of Connection Profile. To
connect to particular named instance in cluster, Instance parameter is configured.

e For ORACLE Cluster, Cluster Alias/SCAN Name is specified in Hostname field of Connection Profile.

Additionally, to enable TAF functionality in ORACLE clusters, connection pool is created similar to
pooling capability in other application servers. Connection pool can be created as the example below
(This need to be added in Tomcat server.xml present in Composer installed path) <Resource
name="jdbc/oraclePooled" auth="Container"

type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming.factory.BeanFactory"
driverClass="oracle.jdbc.driver.OracleDriver"

user="scott"

password="tiger" jdbcUrl="jdbc:oracle:oci:@(DESCRIPTION=(LOAD BALANCE=on) (FAILOVER=0n)
(ADDRESS=(PROTOCOL=tcp) (HOST=172.21.184.70) (PORT=1521)) (ADDRESS=(PROTOCOL=tcp)
(HOST=172.21.184.71) (PORT=1521)) (CONNECT DATA=(SERVICE NAME=rac.genesyslab.com)
(FAILOVER _MODE=(TYPE=session) (METHOD=basic))))" />

Encryption:

Parameters under "Encryption" tab allows you to configure SSL encryption and server authentication

Composer Help 305

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications#Deploying_a_Java_Composer_Project
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications#Deploying_a_Java_Composer_Project

Voice Database Blocks

for Database connections made during Design time (Query Builder, Stored Procedure) and Runtime.
When security is enabled, SSL encryption is used for all data sent between composer and SQLServer,
if the SQL server has a certificate installed.

* Encryption

Set connection properties ko encrypt the connection to the database

Secure Conneckion Enable
Trusk Certificate [Enable

Match Certificate Subject [Enable

Certificate Hostname |dev-irnnlus.int.genesyslab.mm |
Trust 3tore Location ||::'|,I:rustst|:|re |
Trusk Skare Type |JKS |
Trust Store Password |******** | O show

Connection String

Preview and add the custom parameters ko the Connection Skring.

jdbc: oracle:thin: @{DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)fHOS T=dev-iron)(PORT=1521 1)(COMNECT_DATA={SERVIC
E_MAME=COMPDEL 1)

b+

jawax.net.ssl bruskStore=c: ftruststore

javax, net, sl truskStore Type=1K3

Cuskorm Pararneters | | Test Connection

To establish a Secure Database connection from Composer, following parameters are to be configured
under encryption tab:

e Secure Connection. Enabling this check box will make all connections from Composer to Database
Server encrypted with a choice of server authentication

¢ Trust Certificate. Enabling "Secure Connection" and "Trust Certificate" will be sufficient to establish
SSL Connection. When "Trust Certificate" is disabled, other optional attributes are enabled to validate
server certificate,

¢ Match Certificate Subject. This is enabled in order to force the matching of the certificate subject
available in Server Certificate and client's trusted copy.

¢ Certificate Hostname. This parameter is specified in case the client certificate carries a different
subject name than the server certificate and user wishes to ignore the difference by providing the
subject name expected in the server certificate explicitly.

* Trust Store Location. Location where the Trust Store file is present. The trust store file contains all the
certificates trusted by the client, including the certificate that the server uses to autheticate itself.

¢ Trust Store Type. JKS truststore is supported when Database Type is ORACLE. This parameter is not
editable. This is not applicable when Database Type is MSSQL

¢ Trust Store Password. Password to access the trust store.

Composer Help 306

Voice Database Blocks

Certificate configuration for Secure Connection:

* For Java Composer Projects, when "Secure Connection" is enabled and "Trust Certificate" is disabled,
certificates are placed in "TrustStore Location" specified in connection profile.

For .NET Composer Projects Design time (i.e. for Query Builder and Stored Procedure Builder),
certificates are placed in "TrustStore Location" specified in connection profile.

For .NET Composer Projects Runtime and MSSQL database, certificates are installed in "Certificate
Windows Snap-In" accessed from MMC console in Windows.

For .NET Composer Projects Runtime and ORACLE database, certificates are installed in Oracle wallet
both in client and server. tnsnames.ora configuration will have service name with TCPS protocol.
Example is given below.

SSLTEST =

(DESCRIPTION =
(ADDRESS LIST =
(ADDRESS = (PROTOCOL = TCPS) (HOST = dev-rose.us.int.genesyslab.com) (PORT = 2484))

)
(CONNECT DATA =
(SERVER = DEDICATED)
(SERVICE _NAME = SSLTEST)
)
)

Notes:

To establish a connection profile, you must be working with a Project file that was upgraded to
Composer 8.0.2 or higher from an earlier Composer release. Connection profiles are not available in
Projects created using Composer 8.0. They become available after the Project is upgraded. The
method for specifying additional pooling parameters varies based on the database being used and
the Project type. Java Composer Projects use the c3p0 library for both SQLServer and Oracle
databases. Otherwise, in the case of Oracle databases, Composer uses the c3p0 library and the
library exposes its own configuration parameters for pooling via an XML file. In case of SQLServer,
additional pooling parameters can be specified in the connection string.

Creating/Editing a Connection Profile

To create (or edit) a connection profile:
1. Select the Project for which you are creating a connection profile in the Project Explorer, and expand
your project folder set.
2. Expand the db folder.

3. Double-click the connection.properties file. The Connection Profiles view opens.

4. To create a new profile, click the Add Profile - icon in the Profiles pane. (If you wish to edit an
existing profile, you can select an existing profile in the Profiles pane.)

5. In the Details pane, enter (or update) the appropriate information in each field (fields containing the *

Composer Help 307

Voice Database Blocks

character are required).

(]
6. Click the Save Profile ['3] icon in the upper-right of the Connection Profiles window. You must save the
profile in order for it to be available for selection in the Select Connection Profile dialog box.

7. Test the connection profile by clicking the Test Connection button to connect to the database.

¢ The message Database connection was successful indicates your connection profile
successfully connected to the intended database.

* The message Database connection failed followed by additional details indicates a
problem with your connection profile. Update the profile, save it, and test it again.

Note: For information on creating the configuration for the connection pool on the application server
side, see Connection Pooling.

Preview Connection Strings

The connection to the database with the specified parameters in the connection profile can be
previewed and tested in the Connection profile editor. In case of Java project as the design and
runtime connections use JDBC connection , JDBC connection string is available to preview and test. In
case of Dotnet projects as the design time uses JDBC connection and runtime uses OLEDB
conneciton, both strings are available to preview and test. Note: The Dotnet project must be
deployed correctly in 1IS to preview the OLEDB connection string. The parameters apart from ones
explicitly collected in the editor can be added using the custom parameters dialog which takes the
parameters as a name value pair.

Using the Query Builder

The Composer Query Builder provides a visual method of building a database query without the need
to type SQL code. The Query Builder is accessed through the Query Type property in the DB Data
block. It can be used for both voice callflows and routing workflows. Note: The Query Builder can
only be accessed when a valid connection profile has been created and selected in the Connection
Profile property of the DB Data block. The Query Builder with an example query is shown below.

Composer Help 308

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Query_Type_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Connection_Profile_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Connection_Profile_Property

Voice Database Blocks

B Query Bullder

Database Structure Selected Colemns and Sorting
Uise the tree bo select the tabies and columrs thatyou. Sorting (Urder By clause) can be specified by selectng the Sort Order and Soct Pricrity, To sort by miitipk
woLkd e b include in the querny. Colmne Sort Prionity shoukd be specfied.
= 10 testabl | | Golsmnname | Table Mame |sortorde | SortErionty Imw W |
=& doo stock_symbeod chostock_price Ascending 2 StockMame
® [0 Prompadames | | quote_vale cbostock_prce Descendng 1 ShockPrice m
® []m Prompts quete_datetime o stock_prce T
O comparess |
w7 prompt_fles
[F] O stock_price [
@[] M stock_purchase_order _ _ [I _
%]/ t_peompts [
& []m t_prompts2 Concitions

CorddiBons cam be Lsed to narmow the query results to the spacfisd parametars. The Bockean colenn definss the
retatonship of the condtons, 1t can be ANDJOR,

Conditon |Bockean |
|
SO View
The curment SOL queny & dsplayed here. Yiou can also execute the query o geta préview of the results.
SELECT 'md"."sm_pﬂce"."sm_wmbd'. “dioa. "stock_pnice™, “quicte_valuse®, "dbo"."stock_pnce”."quiote_datetime" -
EROM _I Ereview Diata
"™, "shock_price” 0 Limitrows
CROER BY "dpo'."stock _pnce”,"quate_value™ DESC, “dbo."stock_price"."stock _symbal” ASC T -
Quiery Result Preview
|
K | Cancel

Building a Database Query

The Query Builder opens when Composer is successfully able to connect to the database specified in
your connection profile. Any schemas, tables (and table synonyms) and columns of the database
accessible from the specified user account are shown in hierarchical format in the Database Structure
pane of the Query Builder. In the example below, EMPLOYEESSYNONYM is a table synonym.

Composer Help 309

Voice Database Blocks

Database Structure

Iise the bres to select the kables and colurnns that vou would like to
include in the query.
=200 =« -
B[& cTesys
6 [& DBSHMP
=[] FLOWS_020100
-] FLOWS_FILES
-0 iR
- = [coUNTRIES
[] 7] DEPARTMENTS
=-[] = empLOYEES
[= E @1 EMPLOYEESSYMNOMYM
00 B * (Al columns)
“[J 8 MANAGER_ID : DECIMAL
] ¥ DEPARTMENT IO : DECIMAL
----- g salLary : DECIMAL
| HIRE_DATE : DATE
g FIRST_MAME : YARCHAR
8 COMMISSION_PCT : DECIMAL
B
H
g

EMAIL : YARCZHAR,
EMPLOYEE _ID - DECIMAL
J0E_ID : YARCHAR x|

TableSyn.gif

Note: MSSQLServer table synonyms are read from the system table sys.synonyms. Oracle table
synonyms are read from the system table user_synonyms. To build a query:

1. Specify which table columns are returned as query results.

e Select the tables and columns to include in your query by checking appropriate items in the
Database Structure pane. Expand table entries to see the columns. To select all columns
in a table, select the appropriate (All columns) check box under the appropriate table.

e Selected columns and tables appear in the Selected Columns pane. To alter the order in
which selected columns are returned in query results, use the Up and Down buttons to
reorder columns within the list.

* To specify the order in which query results should be sorted, click on the Sort Order field for
a column and select a Sort option (ascending or descending). This will automatically fill in
the Sort Order, which indicates the sequence in which multiple sort criteria will be applied. It
is possible to sort by multiple columns and you can change the sorting sequence by clicking
on the Sort Priority column. For example, you might sort a query of names by last name
and then sort by first name for those people with the same last name. In that case, last
name has Sort Order 1, and first name has Sort Order 2.

Note: The order in which columns appear in the Selected Columns list does not affect the sort order.

¢ To specify the variables into which the column values need to be copied, click on the
Variable Mapping field for a column and select a variable. If a variable is specified for a
column, DB Data block execution will result in the column values of the first record being
copied into the specified variable. If more than one record is returned by the query, then use

Composer Help 310

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock

Voice Database Blocks

the Looping block along with the DB Data block to iterate over records and populate the
variables specified for the columns.

2. Specify filter criteria. In the Conditions pane, you build the search or filter criteria to identify the data
you want to retrieve from the database. You can can specify multiple conditions.

e Click Add to create a new condition. A new row will be added to the Conditions list. Click on
the Condition column, and then click the =] to open the Condition Builder.

¢ Select a column from the Select Column drop-down list which the search condition will
operate on.

¢ Select the operator (=, <>, <, >, and so on) from the Operator drop-down list. This
operator will be used to compare the specified column with the value specified in the next
step.

* In the Value field, type or select your value for the condition depending on the value type
option:

e Column Reference: a table column that you can select from a drop-down list.
This option will compare the two selected columns based on the specified
operator.

* Application Variable: a variable defined in your application that can be
selected from a drop-down list. At runtime the current value of the selected
variable will be used for comparing the column’s value based on the specified
operator.

¢ Custom Value: a value that is not validated by the query builder and is added
directly to the query. It can be used to specify SQL functions or more complex
expression.

¢ Literal: a value that is interpreted as a string or a number. Type in the literal
value. The value will be enclosed in quotes automatically if it is a string. If the
literal value represents a number, you will need to enclose it in quotes
depending on the data type of the selected column. This option will compare
the selected column’s value to the specified literal using the specified operator.

¢ Click OK to complete the condition.

¢ Using the above steps, you can define multiple conditions. These conditions can be
combined using logical operators to further refine your search criteria. You can select AND
or OR in the Boolean field to specify the logical operator.

3. Test your query.

» To test the query, you can click the Preview Data button. This executes the query against
the appropriate database. If the database tables contain data and if any records match the
specified conditions, they will be displayed in the Query Results Preview pane. A message
will also show the number of records returned as a result of the query.

¢ If you expect that the number of matching records will be large and want to preview a subset
of returned data, click the Limit Rows check box and enter a numeric value to limit the
number of returned results.

Note: The message will now show the number of records displayed rather than the actual number of
matching records. The query results preview is shown in the Query Result pane.

Composer Help 311

https://docs.genesys.com/Documentation/IW/8.1.3/Help/LoopingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property

Voice Database Blocks

4. Click OK to save your query and update the DB Data block with the new query. If you click Cancel, all
changes are discarded and no changes are made to the DB Data block.

Specifying Custom Queries

The DB Data block can use queries specified in a SQL (.sql) file in your Project instead of a query
created using the Query Builder. To use a custom query:

e Create a .sql file in your db folder and specify the filename in the Query File property of the DB Data
block. Make sure that the operation type is SQLScriptFile. Composer will read this file at runtime and
use it to query the specified database.

The ability to use custom queries is useful in cases where the SQL query is already created using
other tools, or if the query uses features not supported by the Visual Query Builder. The next topic
describes limitations of the query builder.

Application Variables

You can use Application variables in custom query files as part of the SQL statement. To use a
variable, include its name within curly braces without the AppState. prefix. For example, the following
statement uses varnamel and varname?2. Their values will be substituted at the time the DB Data
block queries the database. SELECT name_of function({varnamel}, {varname2}) from dual
Results of the query are stored in a variable as a two-dimensional JSON array. This data can then be
accessed via a Looping block or via scripting in the Assign or ECMAScript block. For example, if the
database result set looks like this in tabular form:

Vegetables Animals
lettuce chicken
broccoli lion

The JSON for the result will look like this: {"db_result":[["lettuce", "chicken"], ["broccoli",
"lion"]1],"db result columns":["vegetables", "animals"]} Note: An example of custom
queries is in the Database Stocks Template application.

Stored Procedure Helper

If you select StoredProcedure for the Query Type property in the DB Data Block, you can click the

EZ1 button on the property row to open the Stored Procedure Helper dialog box. Here you can
select a stored procedure, execute it, and get query results. A completed example is shown below.

Composer Help 312

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Using_the_Query_Builder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Query_File_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Limitations_and_Workarounds
https://docs.genesys.com/Documentation/IW/8.1.3/Help/LoopingBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScriptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Query_Type_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock

Voice Database Blocks

irnrm‘l Procedure Helper BEE

Stored Procedures Parameters
Use the tree ko select the: stared pracedure you would liks to The selected columns can be reordered in this table, Sort ade; of the returned data can alsa be defined
invake, here.
=[O0 compossraoz é Parameter Hame | Type | pstaType | value I
= O dbo ! RETLRK_MaLLE RETLIRN INTEGER
. 2EAE gerstockprice skock_quot Hiour DECIMAL
B O s ock_guote

ILD [sp_ActiveDiractary Ok
- O E sp_activeDirectory_SCP
#-[J E] sp_ActiveDirectory_Start
F=-O E sp_iHSerpxid«rle

B[O E sp_HSerickSchFile
#-[OE sp_tHvaldaterowFiker
B[] E sp_IHxactSetIoh

-] sp_IH_LR_GetCacheDista
®- 5 sp_Hadd_sync_command
ILD [E] sp_IHartickecolumn

I -1 e THnak bwnehack detacky _rvl
‘ i ,

Stored Procedure Call

The: 501 statement to call the sslected procedure is dsplayved here, You can also execute the procedure to get the results,
E{P = call dbo,getStackPrice(?, 7)- -

Query Result Parameters Query Result Preview

Resuk parameters after stored procedure execution, 0 Shored procedure did not reburn resulk set,

Parameter bane I Yalug | [I
stack_quabe null
RETURM_WALUE]

(7 (o3 Cancel

Setting up a Stored Procedure Call

The Stored Procedure Helper opens when Composer is successfully able to connect to the database
specified in your connection profile. Any stored procedures in the database accessible from the
specified user account are shown in hierarchical format in the Database Structure pane of the Stored
Procedure Helper. To set up a stored procedure call:

1. Specify which stored procedure should be executed.
2. Select the stored procedure to execute by checking appropriate item in the Database Structure pane.

3. Parameters and Return Value appear in the Parameters pane. Specify the value (application variable) for
each of the parameter into which the output value is stored after the stored procedure has executed.

Composer Help 313

Voice Database Blocks

4. To test the stored procedure, click the Execute button. This executes the stored procedure in the
appropriate database. If the stored procedure returns any records, they are displayed in the Query
Results Preview pane. Any output values are displayed in the Query Result Parameters pane. A
message shows the number of records returned as a result of the query.

5. Click OK to save your query and update the DB Data block with the new query. If you click Cancel, all
changes are discarded and no changes are made to the DB Data block.

Note: Composer does not support the REF CURSOR return type in a stored procedure.

Password Encryption

Composer can now encrypt the database connection profile passwords so that they are not written in
the clear to the connection.properties file.

Encryption Key

In order to enable encryption, you must first create an encryption key. Composer requires a 128-bit
(16 bytes) key, in hex-encoded format. This can be randomly generated by the OpenSSL tool, using
the following command line:

$ openssl rand -hex 16 75b8ec9a3ce60a21c4f94236alb55fh2

Any random source will do. Another example is http://www.random.org/cgi-bin/
randbyte?nbytes=16&format=h (With this example, you will have to remove the spaces in the
output.)

Save the encryption key to a text file. Note that this file should be securely stored, so that it can only
be read by the Composer process and the backend Tomcat/IIS processes.

Configuring Composer Preferences

In the Composer > Security preference page, set the Encryption Key Location preference to point
to the encryption key file created in the previous step.

Encrypting the Database Connection Profile Password

In the Connection Profile Editor, next to the Password field, enable the Encrypt checkbox. Now, when
you save the Connection Profile, the password will be scrambled in the connection.properties file.

Enabling Decryption in the Backend

When the application runs, the application server will need to be able to decrypt the password so that
it can connect to the database. For this, the application needs to be configured with the location of
the encryption key file.

Composer Help 314

Voice Database Blocks

Java Composer Projects

If it doesn't already exist, create the file WEB-INF/composer.properties inside the project. Inside the
file, enter the following line:

composerEncryptionKey=C:\\secrets\\encryption-key.txt

(Note that the backslashes here must be escaped.)

.NET Composer Projects
Edit the web.config file's appSettings entry:
<appSettings>

<add key="composerEncryptionKey" value="C:\secrets\encryption-key.txt" />

</appSettings>

(Backslashes here are fine.)

Limitations and Workarounds

The Query Builder supports creating SELECT statements. The following is a list of limitations along
with suggested workarounds:

¢ INSERT, UPDATE, and DELETE statements cannot be created using the Query Builder. Advanced SQL
features, such as outer joins, subqueries, and unions are also not supported. A custom query can be
used to overcome these limitations.

e if you rename a DB Data block, its corresponding SQL statement file in the db folder will not be updated
and will not be valid until you generate code again.

e For details on SQL datatypes supported by Composer, see Supported SQL Datatypes.

Oracle Client Setup for IIS

To set up an Oracle client for Internet Information Services:

1. Install the Oracle client components on the application server.

2. Create a tnsnames.ora file in the C:\oracle\ora81l\network\ADMIN folder where C:\oracle is the
installation folder of Oracle client components.

3. Add the following lines to tnsnames.ora where COMPDBL1 is any alias of choice, XYZ is the Oracle
server, COMPOSER is the Service Name as configured on the Oracle listener (server). After doing this,
you should be able to connect to Oracle using sqlplus user/pwd@COMPDB1 as the command at the
command prompt.

Composer Help 315

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Specifying_Custom_Queries
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SupportedSQLDatatypes

Voice Database Blocks

COMPDB1 = (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST =
XYZ.us.int.genesyslab.com)(PORT = 1521))) (CONNECT_DATA = (SERVICE_NAME =
COMPOSER)))

4. Create a System DSN using the Data Sources (ODBC) under Administrative Tools.

5. Make sure that Data Source Name specified above is exactly same as the Database Name specified
in the Composer database connection profile and TNS Service Name is the same as the alias in step
3.

6. Click on Test Connection in the database connection profile. The connection should be successful and
the Composer VXML application should be able to connect to the database.

Steps 4, 5 and 6 can be avoided if the alias used in the tnsnames.ora file is same as the database
name specified in Composer.

Composer Help 316

Voice Database Blocks

Supported SQL Datatypes

Composer's DB Data Block can access many common types of data stored in supported databases.
The following tables summarize the level of support that Composer provides. The tables are
organized by the Composer project type (Java or .NET), and by whether you're doing a standard SQL
query or executing a stored procedure. The levels of support that Composer claims:

The levels of support that Composer claims:

? Datatype is fully supported.

Datatype is supported, but in the Composer Uls
(Query Builder and Stored Procedure Helper), it

2%

’ may appear as "Unknown" or "Other." The queries
themselves will work

? Datatype is not currently supported.

Supported SQL Server Datatypes

Java Project .NET Project

Java Project .NET Project

patatype (L G Prit:oerg:re R Pritcc:er::re
bigint ? ? ? ?
int ? ? ? ?
decimal ? ? ? ?
int ? ? ? ?
numeric ? ? ? ?
smallint ? ? ? ?
tinyint ? ? ? ?
float ? ? ? ?
real ? ? ? ?
date ? ? ? ?
datetime ? ? ? ?
datetimeoffset 7% 7% 7 7%
char ? ? ? ?
text ? ? ? ?
varchar ? ? ? ?
nchar ? ? ? ?
ntext ? ? ? ?
nvarchar ? ? ? ?

Composer Help 317

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataBlock

Voice Database Blocks

Java Project R el

patatype Selb GG Priit:er;l?re
binary ? ?
sql_variant ? ?
timestamp ? ?

Supported Oracle Datatypes

Java Project L L e

patatype b G Pritcoerc?t?re
number ? ?
binary_float [>
binary_double s ?
date ? ?
char ? ?
varchar ? ?
varchar2 [[
nchar [?
nvarchar2 [?

7%

7%

Vil

Vel
7%

réol

.NET Project
SQL query

.NET Project
SQL query

7%

7%

o

o

.NET Project

Stored
Procedure

.NET Project

Stored
Procedure

Composer Help

318

Voice CTI Blocks

Voice CTI Blocks

CTI (which stands for Computer Telephony Integration) blocks provide interfaces between Genesys
Voice Platform (GVP) and Genesys Framework components and SIP Server. There are six CTl blocks:

* Get Access Number Block for using Get access number to retrieve the access code (number) of a
remote site from an IVR Server.
¢ Interaction Data Block for sending attached data. Get and Put operations are supported.

* Route Request Block for sending route requests. It uses the Userdata extension attribute for sending
back data attached to an interaction (attached data).

e Statistics Block to retrieve statistics from Stat Server via IServer.

¢ ICM Interaction Data Block to work with a Cisco product called Intelligent Contact Management
(ICM), which provides intelligent routing and Computer Telephony Integration. You can use the GVP ICM
Adapter in VoiceXML applications when invoking services, responding to requests, and sharing data.

¢ ICM Route Request Block to transfer a call to Intelligent Contact Management.

CTI Scenarios: SIPS versus CTIC

Composer will generate code for both SIP Server and CTI Connection scenarios simultaneously. The
code to be executed at runtime depends on which scenario is active when the voice application runs.
No decision is required at design time. For more information, see the topic CTl Scenarios. Also see the
VoiceXML Reference on the Genesys Voice Platform Wiki.

Composer Help 319

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIScenarios
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GenesysVoicePlatform

Voice CTI Blocks

CTI Scenarios

There are feature differences between the SIPS and CTIC scenarios. The following table gives a
summary of the CTI blocks, and for each CTI block it lists the differences in behavior for the two CTI
scenarios.

CTI Block Name Supports CTIC Case? Supports SIPS Case? Comments

Supported operations in
each scenario:

CTIC:

« PUT

. GET

« DELETE

« DELETEALL
« REPLACE

Interaction Data Yes Yes SIPS:

. PUT
. GET

Types of interaction data
supported: CTIC:

e USERDATA

SIPS:

e USERDATA

Get access number
block can only be used
in the CTIC scenario.

Types of interaction data
Get access number Yes No supported: CTIC:

e USERDATA
* EXTENSIONDATA

Statistics block can only
Statistics Yes No be used in the CTIC
scenario.

Types of interaction

data supported:
Route Request Yes Yes

CTIC:

Composer Help 320

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock

Voice CTI Blocks

« USERDATA

« EXTENSIONDATA
SIPS:

« USERDATA

Types of transfers supported:
CTIC:

 Blind

e Bridge

SIPS:

» Consultation
* Blind

* bridge

In case a CTI block or feature is used in a CTl scenario in which it is not supported, appropriate
exceptions will be thrown at runtime indicating that the feature is not supported. The table below
gives a list of all exceptions that can be thrown by CTI blocks and other possible CTl-related
exceptions that can be thrown if errors are encountered at runtime.

Block(s)
Interaction Data

Get access number Statistics

Interaction Data

Get access number Statistics
Route Request

Interaction Data

Get access number Statistics
Route Request

Interaction Data

Interaction Data

Interaction Data

Exception Error Message
Missing <block name>
error.com.genesyslab.comp'g) >t,ar [gé?/“réa%%

error.com.genesyslab.compOperapendtimmidnoadout

<Error strin é:]e rned

error.com. genesyslab compgs%r,lrlecgel

Delete operation not
error.com.genesyslab.compagepartednparaed of CTI
using SIPServer.

DeleteAll operation not
error.com.genesyslab.compasgeperiediparésd of CTI
using SIPServer.

Replace operation not
error.com.genesyslab.compagepartedpparaed of CTI
using SIPServer.

Description

This is the event error
for handling an invalid
key name.

This exception will be
thrown when a
<receive> operation,
executed in the context
of a CTIC specific
operation, times out.

If the <receive> fails
and an error is reported
by CTIC, this exception
will be thrown.

If the user wants to do a
userdata DELETE in the
CTIl using SIPS scenario.

If the user wants to do a
userdata DELETEALL in
the CTI using SIPS
scenario.

If the user wants to do a
userdata REPLACE in
the CTI using SIPS
scenario.

Composer Help

321

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Statistics
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock

Voice CTI Blocks

Get access number

Statistics

Route Request

AccessNumGet
error.com.genesyslab.comp%%%i%ﬁ%@@%ﬁ:%%%oned
SIPServer.

Statistics block not
error.com.genesyslab.compagepartedpparaed of CTI
using SIPServer.

Consultation transfer is
error.com.genesyslab.composesupgapeadrirdtase of
CTI using CTIConnector.

If the user wants to do a
AccessNumGet in the
CTI using SIPS scenario.

If the user wants to do a
PeekStatReq or
GetStatReq in the CTI
using SIPS scenario.

If user sets Transfer
type to consultation in
case of CTl using SIPS.

Composer Help

322

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumber
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock

Voice CTI Blocks

Get Access Number

The Get access number block uses Get access number to retrieve the access code (humber) of a
remote site from an IVR Server. It can be used to get the agent number when the application
transfers a call to an agent at a remote site (remote switch transfers).

Notes:

e This block can be used in CTIC scenario only. It will not work when CTI functionality is accessed using SIP
Server.

e This block is not supported when GVP is configured in Network mode.

Get Access Number Block Exception Events

The Get access number block has four exception events as described in Event Descriptions Exception
Event Descriptions:

error.com.genesyslab.composer.invalidkey error.com.genesyslab.composer.receiveerror
error.com.genesyslab.composer.operationtimeout error.com.genesyslab.composer.unsupported
(preselected into the Supported column as a default exception)

The Get access number block has the following properties:

Name Property

Find this property's details under Property Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Property Common Properties. The exception
error.com.genesyslab.composer. unsupported is preselected into the Supported column of the
Exceptions dialog box as a default exception.

Composer Help 323

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Name
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Exceptions

Voice CTI Blocks

Variables Property

To declare session variables for the application or subcallflow:

1. Select the Variables row in the block's property table.

2. Click the EZ putton to open the Variable Settings dialog box.
These variables apply only to the Property Entry block, unless otherwise indicated.

Note: Request URi parameters created in IVR Profiles during the VoiceXML application provisioning
are passed to the Composer generated VoiceXML application as request-uri parameters in the
session.connection.protocol.sip.requesturi session array. An Entry block variable can use
these parameters by setting the following expressions to the variable values: typeof
session.connection.protocol.sip.requesturi['varl'] == 'undefined' ?
"LocalDefaultValue" : session.connection.protocol.sip.requesturi['varl']. If parameters
are set as part of IVR Profiles provisioning in the Genesys VoiceXML provisioning system, and if these
parameters have the same names as variables set in the Entry block's Variables property with the
above mentioned sip.requesturi expression, then the SIP-Request-URI parameters will take
precedence over the user variable values set in the Entry block.

Many blocks enable the use of variables rather than static data. For example, the Prompt block can
play the value of a variable as Text-to-Speech. Variables whose values are to be used in other blocks
must be declared here so that they appear in the list of available variables in other blocks.

The value collected by an Input block or a Menu block is saved as a session variable whose name is
the same as the block name.

Destination Dn Property

To enter a Destination Dn:

1. Select the Destination Dn row in the block's property table.

2. In the Value field, type a Destination Dn.

Remote Switch Location Property

To enter a remote switch location:

1. Select the Remote Switch Location row in the block's property table.

2. In the Value field, type a value specifying the remote switch location.

Remote switch transfers use the AccessNumGet message, which is sent by the IVR to the IVR Server
to request that the call be routed to a remote site. For information on AccessNumGet and the
Location parameter, refer to the IVR SDK XML Developer’s Guide, which is available on the Genesys
Technical Support website or on the Developer Documentation Library DVD. Refer to the Location

Composer Help 324

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Prompt_Block
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Input_Block
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Menu_Block

Voice CTI Blocks

parameter. The value of the Location parameter will be the name of the switch defined in the
Configuration Database.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined Property
variable for further processing.

Note! This property is mandatory. You must select a variable for the output result even if you do not
plan on using the variable. If this is not done, a validation error will be generated in the Problems
view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Condition Property

Find this property's details under Property Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 325

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice CTI Blocks

Interaction Data Block

Use the Interaction Data block for sending attached data. Get and Put operations are supported.
Background: Attached data can be attached to calls by different T-Server clients. For example, an IVR
might attach data to a call by collecting the numbers that callers press on their telephone keypads in
response to a prompt. An agent might also attach data to a call using a desktop application. Once T-
Server attaches the data, it becomes interaction data, which can be used in expressions and for
reporting. T-Server stores attached data in AttributeUserData of event messages.

* Get values are extracted from the User Data received at the start of the call as part of the INVITE to the
GVP.

e For Put, the NGI extension <send> tag will be used to send data immediately to the SIP Server. The
data will be sent in the SIP INFO Body.

This block supports working with both SIPServer and CTIConnector CTI scenarios. There are feature
differences as listed in CTl scenarios. Also see the standard VoiceXML session variables documented
in the GVP 8.1 VoiceXML 2.1 Reference Help (Help > Contents). The Interaction Data block has the
following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Interaction Data block has the following
Exception Events:

e error.com.genesyslab.composer.receiveerror

e error.com.genesyslab.composer.operationtimeout

e error.com.genesyslab.composer.unsupported (pre-selected as a default exception)

e error.com.genesyslab.composer.invalidkey

Composer Help 326

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIScenarios
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents

Voice CTI Blocks

Operation Property

This property indicates the type of operation to perform:

e get--to fetch the user data (CTIC and SIPS)
e put--to send updated user data (CTIC and SIPS)

¢ delete--to delete selected user data (CTIC only)

deleteall--to delete all user data (CTIC only)

e replace--to replace existing user data with alternate user data (CTIC only)
To select a value for the Operation property:

1. Select the Operation row in the block's property table.

2. In the Value field, select get, put, delete, deleteall, or replace from the drop-down list.

Note: delete, deleteall, and replace are not supported for CTI using SIP Server.

Values Property

The Values property holds the list of variables to be fetched or sent. The name of the variable must
match the UserData key name. Note: All key names for attached data passed from an IRD Strategy
must be in all lower case. To select values:

1. Click the Values row in the block's property table.

2. Click the EZ button to open the Values dialog box.

3. Select individual global variables, or click Select all or Deselect all.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 327

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Voice CTI Blocks

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

1. Click OK.

Composer Help 328

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice CTI Blocks

Route Request Block

Use the Route Request block for sending route requests. It uses the Userdata extension attribute for
sending back data attached to an interaction (attached data). Attached data can be attached to calls
by different T-Server clients. For example, an IVR might attach data to a call by collecting the
numbers that callers press on their telephone keypads in response to a prompt. An agent might also
attach data to a call using a desktop application. Once T-Server attaches the data, it becomes
interaction data, which can be used in expressions and for reporting. T-Server stores attached data in
AttributeUserData of event messages. You can select any application variables to pass as interaction
data. The name of the variable will be used as the Key of the interaction data. The Destination
number represents the target to which the call will be routed. It can be one of following:

¢ Virtual Route Point Destination Number

e Direct extension of an Agent

e External Number to dial out

This block supports working with both SIPServer and CTIConnector CTI scenarios. There are feature
differences as listed in CTl scenarios. The Route Request block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Route Request block supports the following
Exception Event Descriptions:

¢ connection.disconect.hangup

e connection.disconnect.transfer

* error

e error.com.genesyslab.composer.unsupported

e error.connection.baddestination (supported by default)

e error.connection.noauthorization

Composer Help 329

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIScenarios
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions

Voice CTI Blocks

e error.connection.noresource

e error.connection.noroute

e error.connection

e error.unsupported.transfer.blind

e error.unsupported.transfer.consultation

e error.unsupported.uri

Language Property

The language set by this property overrides any language set by the Set Language block, the Project
preferences, or the incoming call parameters. The property takes effect only for the duration of this
block, and the language setting reverts back to its previous state after the block is done. In the case
of the Route Request block, this property affects the language of grammars used for ASR input:

1. Click under Value to display a down arrow.

2. Click the down arrow and select English - United States (en-US) or the variable that contains the
language.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 330

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetLanguageBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice CTI Blocks

Interaction Data Property

To select session variables:

1. Click the Interaction Data row in the block's property table.

2. Click the EZ putton to open the Interaction Data dialog box.
3. Select individual global variables, or click Select all or Deselect all.
4. Click OK.

Transfer Audio Property

The optional Transfer Audio property plays a prompt to the end user while the number is being dialed
out. You provide the URI of the audio source to play while the transfer attempt is in progress (before
the other end answers). If the callee answers, the interpreter terminates playback of the recorded
audio immediately. If the end of the audio file is reached and the callee has not yet answered, the
interpreter plays the audio tones from the far end of the call (ringing, busy). If the resource cannot be
fetched, the error is ignored and the transfer continues. To provide a Transfer Audio value:

1. Select the Transfer Audio row in the block's property table.

2. In the Value field, type a Transfer Audio value URI (HTTP or RTSP) specifying the location of the audio file
to play.

Aal Property

Use the optional Application-to-Application Information (the Aai property) for the data that is to be
transferred from the current application to another application. Use this option to transfer the call to
a number that initiates another voice application. To assign a value to the Aai property:

1. Select the Aai row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Connect Timeout Property

Use the Connect Timeout property for the connection timeout value. The default is 30 seconds. To
provide a timeout value:

1. Select the Connect Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Composer Help 331

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables

Voice CTI Blocks

Destination Property

The Destination property contains the destination phone number. The destination number can be one
of the following:

e A Virtual Route point number on which the IRD Strategy is loaded
¢ Extension number of an Agent

¢ External number
The value must be specified in one of the formats below:

e sip:[user@]host[:port]

e tel:phonenumber e.qg., tel:+358-555-1234567
For information on this property, select Help > Contents and see the VoiceXML Reference Help.
Specifically see Standard VoiceXML > Variables > Transfer, attribute dest. To assign a value to the
Destination property:

1. Select the Destination row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described in the Entry block.

Max Call Duration Property

Use the Max Call Duration property for the maximum call duration. The default is 3600 seconds. (This
is not supported for Consultation Transfer Type.) Note: If this is set to 0 (zero), an infinite value is
supplied, and there is no upper limit to the call duration. To provide a value for the maximum call
duration:

1. Select the Max Call Duration row in the block's property table.

2. In the Value field, type a value for the maximum call duration.

Transfer Type Property

The Transfer Type property specifies the type of transfer required. To assign a value to the Transfer
Type property:

1. Select the Transfer Type row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

Note: The selected transfer type will work only if the platform is provisioned to support that type of
transfer.

Composer Help 332

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GenesysVoicePlatform
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property

Voice CTI Blocks

Blind

This is the default setting. The platform redirects the caller to the agent without remaining in the
connection, and it does not monitor the outcome. The platform generates a
connection.disconnect.transfer event immediately, regardless of the transfer outcome.

Bridge

The platform adds the agent to the connection, and it remains in the connection for the duration of
the transferred call. Any included grammars control the listening during the transfer. Control of the
call always returns to the application when the transfer ends, regardless of the transfer result. If the
caller or network disconnects the call, the platform generates connection.disconnect.hangup event. If
the agent disconnects the call, the transfer outcome is set to far_end_disconnect. Note: Use this
option if the application needs to continue in self-service after the agent and caller communication is
over; for example, to present a survey to the end user.

Method Property

The Method property specifies the type of route request required. To assign a value to the Method
property:

1. Select the Method row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

Bridge
A Bridge method indicates that the Media Control Platform (MCP) bridges the media path.

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The route request fails if a non-2xx final response is received for the INVITE request.

This is a two-leg route request (in other words, it occupies two channels on the platform). The
platform stays in the signaling path and is responsible for bridging the two call legs.

Hkf (Hookflash)

A Hookflash method indicates a route request using DTMF digits (RFC 2833).

1. The Media Control Platform (MCP) sends DTMF digits on the media channel. The platform leaves it to the
media gateway or switch to perform the route request on the network.

2. Configurable options enable you to specify whether the call will be disconnected by the platform or by
the remote end. Otherwise, the call is disconnected after a configured timeout.

This is a one-leg route request (in other words, it occupies only one channel on the platform).

Composer Help 333

Voice CTI Blocks

Refer

A Refer method indicates that the route request is based on a SIP REFER message (RFC 3515).

1. The platform sends a REFER request to the caller, with the callee (as specified in the VoiceXML
application) in the Refer-To: header.

2. The route request fails if a non-2xx final response is received for the REFER.

This is a one-leg route request (in other words, it occupies only one channel on the platform).

Referjoin
A Referjoin method indicates a consultative REFER route request (RFC 3891).

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The platform also sends a REFER request to the caller, with the callee’s information in the Replaces
header.
3. The platform considers the route request to be successful if it receives a BYE from the caller after a 2xx

response for the REFER.

4. The route request fails if a non-2xx final response is received for the INVITE request or for the REFER
request.

This is a two-leg, or join-style, route request (in other words, it occupies two channels on the
platform).

Mediaredirect

A Mediaredirect method indicates a media redirection route request. The Media Control Platform
(MCP) uses SIP to handle call control between the caller and the callee, and the RTP media channel is
connected directly between the caller and callee.

. The platform sends an INVITE request to the callee without SDP.
. If the route request is proceeding, the callee responds with a 200 OK that includes an SDP offer.

. The platform forwards the SDP offer in a re-INVITE request to the caller.

1

2

3

4. The caller responds with a 200 OK that includes the SDP answer.

5. The platform forwards the SDP answer to the callee in an ACK response.
6

. The route request fails if a non-2xx final response is received for the initial INVITE request.

This is a two-leg route request (in other words, it occupies two channels on the platform).

Get Shadow Variables Property

Shadow variables provide a way to retrieve further information regarding the value of an input item.

Composer Help 334

Voice CTI Blocks

By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show RouteRequestl$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: RouteRequestl$.duration. To
assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Transfer Results Property

To select transfer results:

1. Click the Transfer Results row in the block's property table.

2. Click the Bz putton to open the Transfer Results dialog box.

3. Select items from the list of available CPA results, or click Select all or Deselect all as needed, then click
OK.

For each item selected, an outport node is added to allow specific actions to be taken for that
condition.

Input Grammar Dtmf Property

Use the Input Grammar Dtmf property to specify the DTMF Grammar for the Input Block. The DTMF
Grammar is processed and handled by GVP. In the case of external grammars, this specifies the
actual path of the grammar file / resource for DTMF Grammars. This is only valid when the Grammar
Type is externalGrammar and Input Mode is dtmf or hybrid. To assign a value to the Input Grammar
Dtmf property:

1. Select the Input Grammar Dtmf row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Grammar Voice Property

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block. If you are
writing hybrid applications that allow both DTMF and Speech input, specify both the DTMF and Voice
grammars. The Voice Grammar is sent to the ASR Engine for processing, whereas the DTMF grammar
is processed by GVP. As a result, you need two separate grammars for Voice and DTMF in the case of
hybrid applications that allow both Voice and DTMF inputs. In the case of external grammars, this
specifies the actual path of the grammar file / resource for ASR Grammars.. This is only valid when

Composer Help 335

Voice CTI Blocks

Grammar Type is externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input
Grammar Voice property:

1. Select the Input Grammar Voice row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Mode Property

To assign a value to the Input Mode property:
1. Select the Input Mode row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

DTMF

The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice

The Voice format indicates the menu option mode of input will be a voice phrase. The Hybrid menu
mode will handle both DTMF and Voice inputs, that is via telephone keypad and voice phrase.

Composer Help 336

Voice CTI Blocks

Statistic Block

Use the Statistics block to retrieve statistics from Stat Server via IServer. The Statistics block enables
you to receive data on statistics such as CurrNumberWaitingCalls and ExpectedWaitTime.
Additionally, you can get a full report on the requested statistics for a specified object in the
Configuration Layer. The object may be a queue, route point, or group of queues.

This block supports the following actions (operations):

* GetStatReq
* PeakStatReq

The Statistics block also uses the <send> tag.

Note: This block can be used in CTIC scenario only. It will not work when CTI functionality is accessed
using SIPServer.

The Statistics block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The Statistics block has four page exceptions:

e error.com.genesyslab.composer.invalidkey
e error.com.genesyslab.composer.receiveerror
e error.com.genesyslab.composer.operationtimeout

e error.com.genesyslab.composer.unsupported (pre-selected by default)

Composer Help 337

https://docs.genesys.com/Documentation/IW/8.1.3/Help/#Configuring
https://docs.genesys.com/Documentation/IW/8.1.3/Help/#Configuring
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents

Voice CTI Blocks

Operation Property

The Operation property indicates the type of operation to perform:

* get—to execute a GetStatReq to return the current value of the requested statistics for the specified
object (queue, routepoint, or group of queues)

¢ peek—to execute a PeekStatReq to return the value of CurrNumberWaitingCalls or ExpectedWaitTime. It
cannot return any other value.

To select a value for the Operation property:

1. Select the Operation row in the block's property table.

2. In the Value field, select get or peek from the drop-down list.
The following properties apply and must be set if you choose get:

¢ Object Id
¢ Object Type
e Server Name

e Statistic Type
The following property applies and must be set if you choose peek:
e Peek Return Value
Note: Statistics can be requested at any time during the call. They must be preconfigured in Genesys

Administrator before they can be used. For more information on configuring statistics, see the
Framework Stat Server User's Guide.

Object Id Property

The Object Id property is used for a GetStatReq (get) operation.

This property works with the Object Type property.

¢ For RoutePoint, the value is the Alias of the corresponding DN in the Configuration Database.

e For Queue and GroupQueues, the value is the name of the corresponding object in the Configuration
Database.

To provide a value for the Object Id:

1. Select the Object Id row in the block's property table.
2. In the Value field, type a value for the Object Id.

Composer Help 338

Voice CTI Blocks

Object Type Property

The Object Type property is used for a GetStatReq (get) operation. As described in the Stat Server
Object Types chapter in the Framework Stat Server User's Guide, valid Object types are:

¢ Queue
¢ RoutePoint

e GroupQueues
To provide a value for the Object Type:

1. Select the Object Type row in the block's property table.
2. In the Value field, type a value for the Object Type.

Server Name Property

The Server Name property is used for a GetStatReq (get) operation. This can be the IP address/
hostname or the fully qualified domain name of the Stat Server.

To provide a value for the Server Name:

1. Select the Server Name row in the block's property table.

2. In the Value field, type a value for the Server Name.

Statistic Type Property

The Statistic Type property is used for a GetStatReq (get) operation. Refer to the Framework Stat
Server User's Guide for details on what the values of these objects can be.

To provide a value for the Statistic Type:

1. Select the Statistic Type row in the block's property table.
2. In the Value field, type a value for the Statistic Type.

Peek Return Value Property

The Peek Return Value property is used for a PeekStatReq (peek) operation. This specifies the
application variable to hold the result-the current number of calls in the queue.

To select a value for the Peek Return Value property:

Composer Help 339

Voice CTI Blocks

1. Select the Peek Return Value row in the block's property table.

2. In the Value field, select CurrNumberWaitingCalls or ExpectedWaitTime from the drop-down list.

Configuring GetStatReq/PeakStatReq Requests
To get GetStatReq/PeakStatReq requests to work

Configure I-Server as follows:

1. In the I-Server Options tab, create the following section: Stat:ExpectedWaitTime

2. Under that section, create the following options/values:

e obj_id = dn@switch (DN is the DNIS/Routing Point being called. The switch used is that to
which SIP Server is associated in case of behind the switch and the Virtual switch in case of
in front of the switch. Example: 9020@CTI_Switch

e obj_type = SObjectQueue

e server_name = stat_server_name (The name of the Stat Server object in the Configuration
Database).

e stat_type = ExpectedWaitTime

e update_frequency =5
Configure Stat Server as follows:

1. In the Stat Server options tab, create the following section: ExpectedWaitTime

2. Under that section, create the following options/values:

e Category = ExpectedWaitTime
¢ MainMask = CallWait
¢ Objects = Queue

e Subject = DNAction
3. Connect applications as follows:

* T-Server IVR - Message Server

e Ixn-Server - T-Server_IVR, Stat Server
* URS - T-Server_IVR, Stat Server, Message Server
e Stat Server - T-Server_IVR, Message Server

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing.

Composer Help 340

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables

Voice CTI Blocks

Note! This property is mandatory. You must select a variable for the output result even if you do not
plan on using the variable. If this is not done, a validation error will be generated in the Problems
view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

For more information, see Upgrading Projects/Diagrams.

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks .

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 341

https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpgradingProjectsandDiagrams#Output_Result_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice CTI Blocks

ICM Interaction Data Block

ICM refers to a Cisco product called Intelligent Contact Management, which provides intelligent
routing and Computer Telephony Integration. You can use the GVP ICM Adapter in VoiceXML
applications when invoking services, responding to requests, and sharing data. Use this block to send
interaction data to ICM. It functions the same way as the existing Interaction Data block. Composer
uses the VXML <gvp:send> tag to implement the ICM Interaction Data functionality.

ICM Variables

Voice Projects have a Project-level flag (Enable ICM) which controls whether ICM variables are
available for selection and assignment to variables within Composer's Entry block. The Exit block’s
Return Values property dialog allows you to select the ICM variables to be returned. You can also set
the Enable ICM flag by right-clicking the Project in the Project Explorer, selecting Properties, and
ICM Support. The types of variables supported by ICM are:

» CED--This is a single variable with the name ICM_CED. It is automatically added to the variables list in
the Entry block.

e Call variables--There are 10 CallVars, with names ICM_CallVarl through ICM_CallVar1l0. They are
automatically added to the variables list in the Entry block.

e ECC variables--These are user-named variables, which are identified by having a prefix of
ICM_ECC user; for example, ICM_ECC _userMyVariable. In the Application Variables dialog, you can
enter the names of the variables with or without the prefix. Composer provides a mechanism to
automatically add the prefix.

Note: In all cases, the Enable ICM flag must be set for ICM variables to be selectable in the Entry
block. The ICM Interaction Data block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The ICM Interaction Data block has the

Composer Help 342

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreatingVXMLApplications#Creating_a_New_Project
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExitBlock#Return_Values_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property

Voice CTI Blocks

following exception events:

e error.com.genesyslab.composer.receiveerror
e error.com.genesyslab.composer.operationtimeout
e error.com.genesyslab.composer.unsupported (pre-selected as a default exception)

e error.com.genesyslab.composer.invalidkey

Values Property

The Values property holds the list of variables to be fetched or sent. The name of the variable must
match the UserData key name. To select values:

1. Click the Values row in the block's property table.

2. Click the Bz putton to open the Values dialog box.
3. Select individual global variables, or click Select all or Deselect all.
4. Click OK.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 343

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice CTI Blocks

ICM Route Request Block

ICM refers to a Cisco product called Intelligent Contact Management, which provides intelligent
routing and Computer Telephony Integration (CTI). You can use the GVP ICM Adapter in VoiceXML
applications when invoking services, responding to requests, and sharing data. Use the ICM Route
Request block to transfer a call to ICM. Note:This block functions in the same way as the existing
Route Request block. Composer uses the VXML <transfer> tag to implement the ICM Route Request
functionality. The ICM Route Request block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Exceptions Property

Find this property's details under Common Properties. The following events are supported:

e connection.disconnect.hangup
e connection.disconnect.transfer
* error

e error.connection.noauthorization
e error.connection.baddestination
e error.connection.noresource

e error.connection.noroute

e error.connection

e error.unsupported.transfer.blind
e error.unsupported.transfer.consultation
e error.unsupported.uri

e error.com.genesyslab.composer.unsupported

Custom events are also supported.

Composer Help 344

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents

Voice CTI Blocks

Interaction Data Property

To select session variables:

1. Click the Interaction Data row in the block's property table.

2. Click the EZ putton to open the Interaction Data dialog box.
3. Select individual global variables, or click Select all or Deselect all.
4. Click OK.

Output Result Property

You must use the Output Result property to assign the collected data to a user-defined variable for
further processing. Note! This property is mandatory. You must select a variable for the output result
even if you do not plan on using the variable. If this is not done, a validation error will be generated in
the Problems view.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

Aai Property

Use the optional Application-to-Application Information (the Aai property) for the data that is to be
transferred from the current application to another application. Use this option to transfer the call to
a number that initiates another voice application. To assign a value to the Aai property:

1. Select the Aai row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Transfer Audio Property

The optional Transfer Audio property plays a prompt to the end user while the number is being dialed
out. You provide the URI of the audio source to play while the transfer attempt is in progress (before
the other end answers). If the callee answers, the interpreter terminates playback of the recorded
audio immediately. If the end of the audio file is reached and the callee has not yet answered, the
interpreter plays the audio tones from the far end of the call (ringing, busy). If the resource cannot be
fetched, the error is ignored and the transfer continues. To provide a Transfer Audio value:

1. Select the Transfer Audio row in the block's property table.

Composer Help 345

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property

Voice CTI Blocks

2. In the Value field, type a Transfer Audio value URI (HTTP or RTSP) specifying the location of the audio file
to play.

Connect Timeout Property

Use the Connect Timeout property for the connection timeout value. The default is 30 seconds. To
provide a timeout value:

1. Select the Connect Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.

Connect When Property

This property controls whether the connection is made after the call is picked up, or immediately.
Select one of the following:

¢ Immediate

¢ Answered

Destination Property

The Destination property contains the destination phone number. The destination number can be one
of the following:

¢ A Virtual Route point number on which the IRD Strategy is loaded
e Extension number of an Agent

¢ External number

The value must be specified in one of the formats below:

e sip:[user@]host[:port]

e tel:phonenumber e.qg., tel:+358-555-1234567
For information on this property, select Help > Contents and see the GVP 8.1Voice XML 2.1 Reference
Help. Specifically see Standard VoiceXML > Variables > Transfer, attribute dest. To assign a value
to the Destination property:

1. Select the Destination row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described in the Entry block.

Composer Help 346

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property

Voice CTI Blocks

Max Call Duration Property

Use the Max Call Duration property for the maximum call duration. Default value is 0. This property is
not supported for Consultation and Blind transfer types. Note: If this is set to 0 (zero), an infinite
value is supplied, and there is no upper limit to the call duration. To provide a value for the maximum
call duration:

1. Select the Max Call Duration row in the block's property table.

2. In the Value field, type a value for the maximum call duration.

Transfer Type Property

The Transfer Type property specifies the type of transfer required. To assign a value to the Transfer
Type property:

1. Select the Transfer Type row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

Blind

This is the default setting. The platform redirects the caller to the agent without remaining in the
connection, and it does not monitor the outcome. Once the caller is handed off to the network, the
caller's session with the VoiceXML application cannot be resumed. The VoiceXML interpreter throws a
connection.disconnect.transfer immediately, regardless of whether the transfer was successful or not.

Bridge

The platform adds the agent to the connection. Document interpretation suspends until the
transferred call terminates. The platform remains in the connection for the duration of the transferred
call; listening during transfer is controlled by any included <grammar>s. If the caller disconnects by
going onhook or if the network disconnects the caller, the platform throws a
connection.disconnect.hangup event. If the agent disconnects, then transfer outcome is set to
near_end_disconnect and the original caller resumes her session with the VoiceXML application.

Consultation

The consultation transfer is similar to a blind transfer except that the outcome of the transfer call
setup is known and the caller is not dropped as a result of an unsuccessful transfer attempt. When
performing a consultation transfer, the platform monitors the progress of the transfer until the
connection is established between caller and agent. If the connection cannot be established (e.g. no
answer, line busy, etc.), the session remains active and returns control to the application. As in the
case of a blind transfer, if the connection is established, the interpreter disconnects from the session,
connection.disconnect.transfer is thrown, and document interpretation continues normally. Any
connection between the caller and the agent remains in place regardless of document execution.
Note: The selected transfer type will work only if the platform is provisioned to support that type of
transfer.

Composer Help 347

Voice CTI Blocks

Method Property

The Method property specifies the type of route request required. To assign a value to the Method
property:

1. Select the Method row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

Bridge
A Bridge method indicates that the Media Control Platform (MCP) bridges the media path.

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The transfer fails if a non-2xx final response is received for the INVITE request.

This is a two-leg transfer (in other words, it occupies two channels on the platform). The platform
stays in the signaling path and is responsible for bridging the two call legs.

Hkf (Hookflash)

A Hookflash method indicates a transfer using DTMF digits (RFC 2833).

1. The Media Control Platform (MCP) sends DTMF digits on the media channel. The platform leaves it to the
media gateway or switch to perform the transfer on the network.

2. Configurable options enable you to specify whether the call will be disconnected by the platform or by
the remote end. Otherwise, the call is disconnected after a configured timeout.

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Refer

A Refer method indicates that the transfer is based on a SIP REFER message (RFC 3515).

1. The platform sends a REFER request to the caller, with the callee (as specified in the VoiceXML
application) in the Refer-To: header.

2. The transfer fails if a non-2xx final response is received for the REFER.

This is a one-leg transfer (in other words, it occupies only one channel on the platform).

Referjoin
A Referjoin method indicates a consultative REFER transfer (RFC 3891).

1. The platform sends an INVITE request to the callee, and a dialog is established between the callee and
the platform.

2. The platform also sends a REFER request to the caller, with the callee’s information in the Replaces

Composer Help 348

Voice CTI Blocks

header.

3. The platform considers the transfer to be successful if it receives a BYE from the caller after a 2xx
response for the REFER.

4. The transfer fails if a non-2xx final response is received for the INVITE request or for the REFER request.

This is a two-leg, or join-style, transfer (in other words, it occupies two channels on the platform).

Mediaredirect

A Mediaredirect method indicates a media redirection transfer. The Media Control Platform (MCP)
uses SIP to handle call control between the caller and the callee, and the RTP media channel is
connected directly between the caller and callee.

1. The platform sends an INVITE request to the callee without SDP.

2. If the transfer is proceeding, the callee responds with a 200 OK that includes an SDP offer.

3. The platform forwards the SDP offer in a re-INVITE request to the caller.

4. The caller responds with a 200 OK that includes the SDP answer.

5. The platform forwards the SDP answer to the callee in an ACK response.

6. The transfer fails if a non-2xx final response is received for the initial INVITE request.
This is a two-leg transfer (in other words, it occupies two channels on the platform). attcourtesy
attconsult attconference attoobcourtesy attoobconsult attoobconference For information on these

methods, consult the section on how the Media Control Platform works in the Genesys Voice Platform
8.1 Deployment Guide.

Do CPA Analysis Property

Triggers whether the platform will detect who or what answered the call. Select one of the following:

* True

¢ False (default, no detection)

Get Shadow Variables Property

Shadow variables provide a way to retrieve further information regarding the value of an input item.
By setting this property to true, it will expose the block’s shadow variable within the callflow. When
enabled, the shadow variable will be included in the list of available variables. (For example, the Log
block’s Logging Details will show RouteRequestl$.) A shadow variable is referenced as
blockname$.shadowVariable, where blockname is the value of the input item's name attribute, and
shadowVariable is the name of a specific shadow variable, for example: RouteRequestl$.duration. To
assign a value to the Get Shadow Variables property:

1. Select the Get Shadow Variables row in the block's property table.

Composer Help 349

https://docs.genesys.com/Documentation/IW/8.1.3/Help/LogCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/LogCommonBlock

Voice CTI Blocks

2. In the Value field, select true or false from the drop-down list.

Transfer Result Property

To select transfer results:

1. Click the Transfer Results row in the block's property table.

2. Click the Bz putton to open the Transfer Results dialog box.

3. Select items from the list of available CPA results, or click Select all or Deselect all as needed, then click
OK.

For each item selected, an outport node is added to allow specific actions to be taken for that
condition.

Input Grammar Dtmf Property

Use the Input Grammar Dtmf property to specify the DTMF Grammar for the Input Block. The DTMF
Grammar is processed and handled by GVP. In the case of external grammars, this specifies the
actual path of the grammar file / resource for DTMF Grammars. This is only valid when the Grammar
Type is externalGrammar and Input Mode is dtmf or hybrid. To assign a value to the Input Grammar
Dtmf property:

1. Select the Input Grammar Dtmf row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Input Grammar Voice Property

Use the Input Grammar Voice property to specify the Voice Grammar for the Input block. If you are
writing hybrid applications that allow both DTMF and Speech input, specify both the DTMF and Voice
grammars. The Voice Grammar is sent to the ASR Engine for processing, whereas the DTMF grammar
is processed by GVP. As a result, you need two separate grammars for Voice and DTMF in the case of
hybrid applications that allow both Voice and DTMF inputs. In the case of external grammars, this
specifies the actual path of the grammar file / resource for ASR Grammars.. This is only valid when
Grammar Type is externalGrammar and Input Mode is voice or hybrid. To assign a value to the Input
Grammar Voice property:

1. Select the Input Grammar Voice row in the block's property table.

2. In the Value field, select a value from the drop-down list.

Values are the Voice Application Variables described under the Variables Property.

Composer Help 350

Voice CTI Blocks

Input Mode Property

To assign a value to the Input Mode property:

1. Select the Input Mode row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

DTMF

The DTMF format indicates the menu option mode of input will be via the telephone keypad.

Voice

The Voice format indicates the menu option mode of input will be a voice phrase.

Hybrid

The Hybrid menu mode will handle both DTMF and Voice inputs, that is via telephone keypad and
voice phrase.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 351

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Voice CTI Blocks

Working with CTI Applications

Composer provides CTI blocks for two CTI scenarios supported by GVP:

e SIP Server (SIPS) scenario, which uses the Genesys SIP Server component to gain access to CTI
functionality.

e CTI Connector (CTIC) scenario, which uses GVP’s CTI Connector component to access CTI functionality
provided by Genesys Framework.

These two scenarios do not provide identical capabilities and key differences are highlighted later in
these topics. Composer provides four CTI blocks for accessing CTI functions. It generates VXML for
each of these blocks that can work in either CTI scenario (SIPS or CTIC), and does not ask the user to
choose between the SIPS or CTIC scenarios at design time. The decision to use CTIC or SIPS is made
at runtime based on the X-Genesys headers received from GVP’s Resource Manager. Therefore, the
Composer user interface does not need to expose a Project-level preference for specifying the CTI
scenario. Note: The CTI Connector provides different capabilities depending on the configuration in
which other Genesys components like the IServer are deployed. For more details, please refer to the
GVP documentation. Also see GVP Debugging Limitations.

Design Paradigms for CTI Applications

There are two design paradigms for building CTI applications with GVP in which Composer can be
used:

e Standard VXML Applications
¢ URS-Centric Applications

These paradigms differ in the extent to which the VXML application is involved in performing call
control. Standard VXML Applications In this paradigm, the VXML application gets invoked first and
can go through VXML interactions with the caller before using the <transfer> tag to transfer the call
to another party such as queuing for an agent. At this point, the control of the call is passed to the
SIP Server or CTI Connector while waiting for an agent. During this time, SIP Server or CTI Connector
may invoke additional call treatments on GVP like playing music or invoking other applications. URS-
Centric Applications In this paradigm, the VXML application is always invoked as a treatment by
Genesys URS. The incoming call is controlled by Genesys URS and a strategy retains full control of
the call. The strategy invokes specific treatments on GVP IVR as a media server to play prompts, play
music, collect user input or execute a VXML application. In this paradigm, the VXML application does
not use tags like <transfer> nor does any other kind of call control. Those decisions are left to the
strategy. The VXML application returns user input collected during the call back to the strategy and
lets the strategy make all call control decisions. Composer can be used to write VXML applications
following either of the above paradigms.

Composer Help 352

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Limitations

Voice CTI Blocks

Typical CTI Callflow

Before you start building a typical CTI application, the following information is required:

* The Genesys Virtual Route Point destination address. This is the address/location where the Genesys
strategy is present (an integer number--for example, 5001).

e Strategy application on the Framework side (IRD) to find and transfers the call to an agent.

;.'m *WHIW ﬁ i = El\l

Srrar . Entry
. StartApp
R —
B
« Prompt
| !
| Welcome Prompt
|
BiInput |
renioros. | — |
'\J. I
- &
noinpu _ 3 mput
----------- | CollectlUserDatasccountDetai

Exit | &
s 1l
[® Endspn] [# Route Req...

| | RouteToDM | =

PR S F

The following describes the interaction flow of this callflow:

1. GVP starts executing the generated VoiceXML application script.
2. The caller hears the Welcome prompt.

3. The caller is requested to enter the account details.

4

. If the caller does not enter the required details within the maximum time frame provided, the caller is
asked to retry.

5. The application issues a route request to the route DN configured in the Route Request block. (This
occurs via the <transfer> tag, supported in both CTIC and SIP Server scenarios.)

6. The caller-entered data is sent as UserData to the routed DN, and the called strategy does the
knowledge based transfer to the available agent based on the User Data .

Composer Help 353

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock

Voice CTI Blocks

7. This application ends after the Route Request has been issued.

8. The called strategy can play Voice treatments to the caller until the next available agent is available.

9. Finally, the caller will be transferred to the Agent.

Note: The Route Request block can be configured in various Transfer modes (Bridge / Consultation) to
gain back the control of the callflow after the called strategy returns back the execution. Please check

the Route Request topic block for more details.

CTIl Scenarios

There are feature differences between the SIPS and CTIC scenarios. The following table gives a
summary of the CTI blocks, and for each CTI block it lists the differences in behavior for the two CTI

scenarios.

CTI Block Name

Interaction Data

Get access number

Supports CTIC Case?

Yes

Yes

Supports SIPS Case?

Yes

No

Comments

Supported operations in
each scenario:

CTIC:

* PUT

. GET

- DELETE

» DELETEALL
- REPLACE

SIPS:

. PUT
. GET

Types of interaction data
supported: CTIC:

e USERDATA

SIPS:

* USERDATA

Get access number
block can only be used
in the CTIC scenario.

Types of interaction data
supported: CTIC:

* USERDATA
* EXTENSIONDATA

Composer Help

354

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock

Voice CTI Blocks

Statistics

Route Request

Yes No

Yes Yes

Statistics block can only
be used in the CTIC
scenario.

Types of interaction
data supported:

CTIC:
e USERDATA
* EXTENSIONDATA

SIPS:

e USERDATA

Types of transfers supported:
CTIC:

 Blind

* Bridge

SIPS:

» Consultation
* Blind

* bridge

In case a CTI block or feature is used in a CTl scenario in which it is not supported, appropriate

exceptions will be thrown at runtime indicating that the feature is not supported. The table below
gives a list of all exceptions that can be thrown by CTI blocks and other possible CTl-related
exceptions that can be thrown if errors are encountered at runtime.

Block(s)
Interaction Data

Get access number Statistics

Interaction Data

Get access number Statistics
Route Request

Interaction Data

Get access number Statistics
Route Request

Interaction Data

Interaction Data

Exception Error Message

error.com.genesyslab.comqtgeﬁfgs@[i/él?éa%%igame>
error.com.genesyslab.compOperaipendtiioednoedout

error.com.genesyslab.compég%%%ﬁwgeF?glrjrned

Delete operation not
error.com.genesyslab.compageparedpoparasd of CTI
using SIPServer.

error.com.genesyslab.compslgnugplc)a(;:f).toﬁr'rﬁ‘élLch%:ﬁ%grgt%i r; fn EFI'I

Description

This is the event error
for handling an invalid
key name.

This exception will be
thrown when a
<receive> operation,
executed in the context
of a CTIC specific
operation, times out.

If the <receive> fails
and an error is reported
by CTIC, this exception
will be thrown.

If the user wants to do a
userdata DELETE in the
CTI using SIPS scenario.

If the user wants to do a
userdata DELETEALL in

Composer Help

355

https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock

Voice CTI Blocks

the CTI using SIPS

ing SIPServer. .
using SIPServe scenario.

If the user wants to do a
userdata REPLACE in
the CTI using SIPS
scenario.

Replace operation not
Interaction Data error.com.genesyslab.compagepartedpoparasd of CTI
using SIPServer.

AccessNumGet If the user wants to do a

Get access number error.com.genesyslab.compfc’%%?i%h%@@%rﬁt%%%orted AccessNumGet in the
SIPServer. CTI using SIPS scenario.
If the user wants to do a
PeekStatReq or
GetStatReq in the CTI
using SIPS scenario.

Statistics block not
Statistics error.com.genesyslab.compagepartedpoparasd of CTI
using SIPServer.

Consultation transfer is If user sets Transfer
Route Request error.com.genesyslab.composesuppgofedriedase of type to consultation in
CTl using CTIConnector. case of CTl using SIPS.

Script ID Usage in the GVP 8 Environment

In Genesys VoiceXML 2.1, Scriptld refers to the script identifier, as generated by the CTI Connector, to
handle call treatments. The use of Scriptld is specific to GVP 7.x and was mandatory for treatments.
Since the GVP 7.x design is "IVR-centric," the treatment would be invoked on the same VXML session.
Things are a bit different with GVP 8.x and the Next Generation Interpreter (NGI) where APP_URI is
used instead of Scriptld and the treatments are executed on different VXML sessions. GVP 8 and
NGI In GVP 8.x, request for treatment execution comes in as a NETANN request with the APP_URI
being passed in as a VoiceXML parameter. GVP executes the requested page to kick off the
treatment. Unlike the GVP 7.x environment, treatments get invoked as separate VXML sessions and
terminated at the end of the treatment execution. Hence, Scriptld switching is no longer needed
here, unless an application wants to do branching based on Scriptld.

¢ Note: Composer provides support for both SIPS and CTIC scenarios for achieving the CTI functionality.
However, SIPS may not support passing additional request-uri parameters like Scriptld, therefore, this
option is limited only to CTIC scenarios.

Please refer to GVP 8.x VXML Help under Sample Voice XML Applications > CTI Interactions >
Treatments for more details on this topic.

Accessing Scriptld in Composer

Use if you want your application to do Scriptld-based switching like GVP 7.x. CTIC Scenario (IRD
strategy + Composer Callflow)

1. Use the APP_ID property in IRD's Play Application block.

2. Define a new Input type variable named Scriptld in the Entry block of your callflow to collect the
Scriptld.

Composer Help 356

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows#Types_of_Variables

Voice CTI Blocks

Composer Workflow + Composer Callflow)

1. On the VXML callflow side, define a new Input type variable named Scriptld in the Entry block to collect

the APP_ID (i.e., Scriptld) passed from the workflow.

. On the SCXML workflow side, use the Play Application block to invoke the callflow created using step#1.
Then do an auto-synchronize for the parameters, and specify the Scriptld value.

3. The Scriptld (i.e., APP_ID) passed from the workflow will be automatically collected on the VXML side
from the session.connection.protocol.sip.requesturi array.

SIPS Scenario
1. SIPS may not support passing additional request-uri parameters. Pass Scriptld as attached data on the
strategy side (If using IRD) or on the SCXML side (If using Composer workflows).
2. Define a new Input type variable named Scriptld in the Entry block to collect the Scriptld.

3. The Scriptld (i.e., APP_ID) passed from the strategy will be automatically collected on the VXML side
from the session.com.genesyslab.userdata array.

Composer Help 357

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows#Types_of_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PlayApplicationBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows#Types_of_Variables

Voice External Message Blocks

Voice External Message Blocks

The External Messaging palette provides blocks for NGl extensions to send and receive external

messages to/from external entities such as CCXML applications. There are four External Message
blocks:

¢ Receive Block for receiving synchronous and asynchronous SIP INFO messages. This is can be used to
receive messages from CCXML applications.

¢ Send Data Block, which is a wrapper around the <send namelist> tag) for sending a list of variables

as SIP INFO to the other end point. The data is sent in the form-url-encoded format, in the BODY of the
SIP INFO.

¢ Send Info Block generates the NGI VXML <send body> tag for sending any content in the Body of the

SIP INFO. By default, content-type is set to text/plain. Typically, this can be used in conjunction will
CCXML applications.

¢ Send Event Block generates the NGI VXML <send event> tag to send SIP INFO events or custom
events between the VXML dialog and the CCXML application.

For all the Send [xxx] blocks, you have the option to specify the Wait for response property as true in
those blocks to send the message synchronously.

Composer Help 358

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Receive
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SendData
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SendInfo
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SendEvent

Voice External Message Blocks

Recelve Block

Use the Receive block for receiving synchronous and asynchronous SIP INFO messages. This is can be
used to receive messages from CCXML applications.

A typical use case is for a CCXML application to interrupt the VXML dialog in order to take some
action.

Depending upon how the data is sent, the content, content-type or event properties will be filled.
The Receive block has the following properties:

The Receive block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Content Property
The Content property is the variable used to collect the content of the received event.
To select a variable:

1. Select the Content row in the block's property table.

2. In the Value field, select one of the available Property variables from the drop-down list.

Content Type Property
The Content Type property is the variable used to collect the content type of the received event.
To select a variable:

1. Select the Content Type row in the block's property table.

2. In the Value field, select one of the available Property variables from the drop-down list.

Composer Help 359

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#NameProperty
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables

Voice External Message Blocks

By default, Content Type is set to text/plain.

Event Name Property

The Event Name property is the variable used to collect the name of the received event.

To select a variable:

1. Select the Event Name row in the block's property table.

2. In the Value field, select one of the available Property variables from the drop-down list.

Condition Property

Find this property's details under Property Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 360

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice External Message Blocks

Send Data Block

Use the Send Data block (a wrapper around the <send namelist> tag) for sending a list of variables
as SIP INFO to the other end point. The data is sent in the form-url-encoded format, in the BODY of
the SIP INFO.

Typically, Send Data can be used by VXML applications to send data to a CCXML application or to CTI
applications.

For example, CCXML use cases that use Composer External Messaging Blocks (such as Send Data,
Send Info, and Send Event), see the Genesys Voice Platform 8.1 CCXML Reference Manual. See the
Features chapter, Dialogs section.

When using either the Send Data or Send Info block, the result on the CCXML side is to create a
dialog.user. * event. The name of the event is set to dialog.<event name>.

Dialog User Event Example

The VoiceXML dialog may send a user event to the CCXML application by using the <send
namelist="name type uri"/> tag. Here is an example of the VoiceXML <send> block:

<var name="name" expr="'transfer'"/>

<var name="type" expr="'bridge'"/>

<var name="uri" expr="'1111@205.150.90.19"'"/>

<gvp:send namelist="name type uri"/>

The CCXML session receives the following:

15:02:04.416 Int 51030 F9187A00-E558-44C6-61AE-FFA9A066180C-FF326086-ECB5 dlg event
7|dialog.user.transfer|DD92E8B2-51AD-4F3F-8C8D-

40AFA169EA9B | values.name="transfer";values.type="bridge";values.uri="1111@205.150.90
.19

This raises a dialog.user.transfer event to the CCXML application that owns the dialog. The event
itself contains the following properties:

event$.values.name=transfer
event$.values.type=bridge
event$.values.uri=1111@205.150.90.19

Note: The event$ is a generic name for CCXML events, and in the preceding example, it is

Composer Help 361

Voice External Message Blocks

dialog.user.transfer. The contenttype attribute is not supported by the <send> tag if the namelist is
used.

The Send Data block has the following properties:

The Send Data block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Values Property

The Values property holds the list of variables to be sent.
To select values:

1. Click the Values row in the block's property table.

2. Click the Bz putton to open the Values dialog box.
3. Select individual variables, or click Select all or Deselect all.

4. Click OK.

Wait For Response Property

The Wait For Response property allows a message to be sent synchronously (when set to true). By
default, data is sent asynchronously for all the Send [xxx] blocks (when this property is set to false).

To assign a value to the Wait For Response property:

1. Select the Wait For Response row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 362

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#NameProperty

Voice External Message Blocks

Condition Property

Find this property's details under Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 363

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#ConditionProperty
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice External Message Blocks

Send Event Block

Use the Send Event block, which generates the NGI VXML <send event> tag, to send SIP INFO events
or custom events between the VXML dialog and the CCXML application. Examples: logging events or
any event specific to the dialog and the CCXML application. For more information, see the Genesys
Voice Platform 8.1 CCXML Reference Manual, Event/IO Processor, Sending Events.

The Send Event block has the following properties:

The Send Event block has no page exceptions.

Name Property

Find this property's details under Property Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Event Name Property

The Event Name property is the variable used to collect the name of the sent event.
To select a variable:

1. Select the Event Name row in the block's property table.

2. In the Value field, select one of the available Property variables from the drop-down list.

Wait For Response Property

The Wait For Response property allows a message to be sent synchronously (when set to true). By
default, data is sent asynchronously for all the Send [xxx] blocks (when this property is set to false).

To assign a value to the Wait For Response property:

1. Select the Wait For Response row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Composer Help 364

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Name
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables

Voice External Message Blocks

Condition Property

Find this property's details under Property Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 365

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Voice External Message Blocks

Send Info Block

Use the Send Info block, which generates the NGI VXML <send body> tag, for sending any content in
the Body of the SIP INFO. By default, content-type is set to text/plain.

Typically, this can be used in conjunction will CCXML applications.

For example, CCXML use cases that use Composer External Messaging Blocks (such as Send Data,
Send Info, and Send Event), see the Genesys Voice Platform 8.1 CCXML Reference Manual. See the
Features chapter, Dialogs section.

When using either the Send Data or Send Info block, the result on the CCXML side is to create a
dialog.user. * event. The name of the event is set to dialog.<event name>.

For an example, see the Dialog User Event Example in the Send Data block description.
The Send Info block has the following properties:

The Send Info block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Content Property
The Content property is the variable used to collect the content of the sent event.
To select a variable:

1. Select the Content row in the block's property table.

2. In the Value field, select one of the available Property variables from the drop-down list.

Composer Help 366

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SendData_Block
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#NameProperty
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables

Voice External Message Blocks

Content Type Property

The Content Type property is the variable used to collect the content type of the sent event.

To select a variable:

1. Select the Content Type row in the block's property table.

2. In the Value field, select one of the available Property variables from the drop-down list.

By default, Content Type is set to text/plain.

Wait For Response Property

The Wait For Response property allows a message to be sent synchronously (when set to true). By
default, data is sent asynchronously for all the Send [xxx] blocks (when this property is set to false).

To assign a value to the Wait For Response property:

1. Select the Wait For Response row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Condition Property

Find this property's details under Property Common Properties for Callflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks.

Composer Help 367

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Entry_Block#Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property

Reporting Blocks

Reporting Blocks

Reporting Blocks provide interfaces for GVP and Reporting Server whenever the application needs to
perform Voice Application Reporting for IVR actions. There are four Reporting blocks:
e Action Start Block indicates the start of a Voice Application Report (VAR) transaction.

¢ Action End Block allows the application to indicate the end of a Voice Application Report (VAR)
transaction.

¢ Set Call Data Block allows the application to report custom data for the call.

¢ Set Call Result Block allows the application to indicate the end of a call.

Composer Help 368

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ActionStartReportingBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ActionEndReportingBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetCallDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SetCallResultReportingBlock

Reporting Blocks

Action Start Block

The Action Start block indicates the start of a Voice Application Report (VAR) transaction. You can
specify the Action Id and Parent Action for the action. Composer generates Subcallflow start and End
events whenever a <SubDialog> (Subcallflow) got executed in the call. Composer-generated VXML
code automatically generates the events. With this feature all the events (Main and Sub callflow
events) generated for a call can be found with in a single umbrella in the Reporting server.

Eample report page in the Reporting server for an inbound YR call with Custom VR Action Start and End.
W} Instructions: Y&F Events

¥AR Call Events - Filters: [Date-time: from 2008-11-20 00:00 to 2008-11-20 23:45]

Call ID Action Start Time Details
29CA0092-100060... incall_begin 1172002005 06: 2700 11 2|zip: dialogiE@ 92.165.10.1 29: 3070, voicexmi=http: /101003010980
29CA0092-100060... ivr_action_start 11 2002008 08:27:01 CustomactionStart
29CA0092-1000680... ivr_action_end 1172002005 082701 CustomactionStart|URKMNOW
29CA0092-100080... incal_end 1120020058 08: 2701 aplend

The Action Start block has no page exceptions.

The Action Start block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Action |d Property

Note: The GVP 8 platform provides an extension to the <log> tag that allows application developers
to indicate the start of an IVR Action The Action Id and Parent Action Id properties are used for this
purpose. The syntax is as follows:

<log label="com.genesyslab.var.ActionStart">actionID[|parentiID=<PID>]</log>

The Action Id property specifies a variable containing the name of the IVR action to report as being

Composer Help 369

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Common_PropertiesforCallflowBlocks#Name_Property

Reporting Blocks

started. The actionID is any valid UTF8 string that does not contain spaces or pipes, and is restricted
to a maximum of 64 characters.

1. Select the Action Id row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list.

Parent Action Property

See Note in Action Id property description.
If an IVR action is to be nested inside some other active action, then the parent action’s ID must also

be included (PID). The Parent Action property specifies the variable used for the name of the parent
action in which the new Action has to be contained.

1. Select the Parent Action row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list that contains the
identifier for the Parent Action.

Important! If the Parent Action ID specified does not refer to an action that was already started, the
Genesys Voice Platform Reporting Server will ignore the entire Action Start request.

Note: If the Parent Action ID specified does not refer to an action that was already started, the GVP
Reporting Server will ignore the entire Action Start request.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 370

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property

Reporting Blocks

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 371

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Reporting Blocks

Action End Block

The Action End block allows the application to indicate the end of a Voice Application Report (VAR)
transaction. You can specify the reason, results and notes corresponding to the action. Composer
generates Subcallflow start and End events whenever a <SubDialog> (Subcallflow) got executed in
the call. Composer-generated VXML code automatically generates the events. With this feature all
the events (Main and Sub callflow events) generated for a call can be found with in a single umbrella
in the Reporting server.

You are responsible for making sure to provide a valid Action Id name, for an action that was
previously started in the application using the Action Start block.

By default an action end event will be sent by each terminating block of a callflow. This includes the
Exit and Disconnect blocks.

The Action End block has no page exceptions.

The Action End block has the following properties:

Name Property

Find this property's details under Property Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Action |d Property

The Action Id property is the variable used in the Action Start block for the action to report as ended.
It must be the same Action Id variable used in the Action Start block.

To select a variable:

1. Select the Action Id row in the block's property table.

2. In the Value field, select one of the available Property variables from the drop-down list.

Composer Help 372

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ActionStartBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExitBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DisconnectBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ActionStartBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables

Reporting Blocks

Notes Property

The Notes property allows you to enter text (up to 4 KB of data) associated with the Action End event.
Since Composer generates <log> labels for the Reporting blocks, text entered here can appear on
voice application reports as described in the Genesys Voice Platform 8.1 User's Guide. See
Provisioning GVP.

To enter notes:

1. Click the Notes row in the block's property table.

2. Click the E& button to open the Notes dialog box.
3. Type text notes as needed and click OK.

Reason Property

The Reason property allows you to enter text for a reason for ending the action. The Reason field
allows up to 4 KB of data. Note text appears on voice application reports.

To enter reason text:

1. Click the Reason row in the block's property table.

2. Click the dropdown arrow and select the variable that contains the reason text.

Result Property

The Result property contains the result of the action that was just ended.
To assign a value to the Result property:
1. Select the Result row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:

UNKNOWN

The action had an unknown result.

SUCCESS

The action completed successfully.

Composer Help 373

Reporting Blocks

FAILED

The action did not complete successfully (failed).

Condition Property

Find this property's details under Property Common Properties for Callflow Blocks or Property
Common Properties for Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Details Property Common
Properties for Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Level Property Common
Properties for Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 374

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Reporting Blocks

Set Call Data Block

The Set Call Data block allows the application to report custom data for the call. You can select the
list of variables to be reported. The name of the variable is used as the CustomData key. If eight keys
are provided, the Reporting server will reject the data for any new keys received after that.

The Set Call Data block has no page exceptions.

The Set Call Data block has the following properties:

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Variables Property

Use the Variables property to create custom variables. Variable content appears on GVP Voice
Application reports (the VAR CDR Details Report). For more information, refer to the Per-Call IVR
Actions Report section on page 367 in the GVP 8.1 User Guide. To create custom variables:
Click the Variables row in the block's property table.

Click under Value to add an entry to define application variables.

In the Application Variables dialog box, click Add.

In the Variable Name field, accept the default name or change it.

In the Value field, select a variable from the drop-down list.

In the Description field, type a description for this variable.

N o Vv A w N

Click Add again to enter another parameter, or click OK to finish.

Delete Button

To delete a custom variable:

1. Select an entry from the list.

Composer Help 375

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Reporting Blocks

2. Click Delete.

Note: In version 8.1.300.xx, ignore the Restore System Variables Default Values button.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help

376

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Reporting Blocks

Set Call Result Block

The Set Call Result block allows the application to indicate the end of a call. You can specify the
reason, results and notes corresponding to the call result. In addition to tagging calls for Voice
Application Reporting (VAR), you can also use this block for Service Quality Analysis (SQA) call status
(success, failure) reporting. For information on SQA, see Genesys Voice Platform 8.1 Deployment
Guide and Genesys Voice Platform 8.1 User's Guide.

The Set Call Result block has the following properties:

The Set Call Result block has no page exceptions.

Name Property

Find this property's details under Common Properties.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments.

Notes Property

The Notes property allows you to enter text (up to 4 KB of data) associated with the end of a call.
Since Composer generates <log> labels for the Reporting blocks, text entered here can appear on
voice application reports as described in the Genesys Voice Platform 8.1 User's Guide. See
Provisioning GVP.

To enter notes:

1. Click the Notes row in the block's property table.

2. Click the Kz button to open the Notes dialog box.
3. Type text notes as needed and click OK.

Reason Property

The Reason property allows you to enter text for a reason for ending the call (maximum length of 256
characters).

Composer Help 377

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property

Reporting Blocks

To enter reason text:

1. Click the Reason row in the block's property table.

2. Click the dropdown arrow and select the variable that contains the reason text.

Result Property

The Result property contains the result of the call that was just ended.

To assign a value to the Result property:

1. Select the Result row in the block's property table.

2. In the Value field, select one of the following from the drop-down list:
UNKNOWN
SUCCESS

FAILED

UNKNOWN

The call had an unknown result.

SUCCESS

The call completed successfully.

FAILED

The call did not complete successfully (failed).

This property can be used for reporting both VAR metrics and SQA services as described above. Refer
to Genesys Voice Portal documentation for information usage of this field for VAR (<log> label

com.genesyslab.var.CallResult) and SQA (<log>label com.genesyslab.quality.failure).

Notes:
¢ Composer will not log SUCCESS and UNKNOWN call results, already available for VAR, to SQA.

e MCP will still log a call as a failure if it fails to meet one of the thresholds, even if the application never
explicitly calls the <log> tag to indicate SQA failure.

Composer Help 378

https://docs.genesys.com/Documentation/IW/8.1.3/Help/#UNKNOWN
https://docs.genesys.com/Documentation/IW/8.1.3/Help/#SUCCESS
https://docs.genesys.com/Documentation/IW/8.1.3/Help/#FAILED

Reporting Blocks

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help

379

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

Server-Side Common Blocks

Both routing and voice applications use the Server-Side blocks.

e Backend (voice and route). Use to invoke custom backend Java Server Pages (JSP).

e Business Rule (voice and route). Use this block to have Composer query the Genesys Rules Authoring
Tool (GRAT). For the Rule Package that you specify, Composer will query the GRAT for the Facts
associated with the Rule Package. You can then set values for the Facts, call the Genesys Rules Engine
for evaluation, and save the results in a variable.

DB Data (voice and route). Use for connecting to a database and retrieving/manipulating information
from/in a database. This block uses a connection profile to read database access information. It accepts
a SQL query or a Stored Procedure call, which can be defined using the Query Builder or Stored
Procedure Helper. It can also use a SQL script file.

e DB Input (voice only). Accepts a DB Data block as its data source and acts as an input field that
accepts input based on a grammar created from the results returned from the database.

¢ External Service (route only). enables routing applications to invoke methods on third party servers
that comply with Genesys Interaction Server (GIS) protocol. Use to exchange data with third party (non-
Genesys) servers that use the Genesys Interaction SDK or any other server or application that complies
with the GIS communication protocol.

e OPM Block (voice and route). Enables VXML and SCXML applications to use Operational Parameters
(OPM) which allow a business user to control the behavior of these applications externally. Operational
Parameters are defined and managed in the Operational Parameter Management (OPM) feature of
Genesys Administrator Extension (GAX)

« Web Request (voice and route). Use to invoke any supported HTTP web request or REST-style web
Service. It supports PUT, DELETE, GET and POST methods.

* Web Service (voice and route). Use to invoke Web Services for both routing and voice applications.
Based on common Web Services standards such as XML, SOAP and WSDL instead of proprietary
standards. You can pass parameters (as in subdialogs) and store the return values in variables. GET,
POST, and SOAP are supported.

e TLib Block (route only). Use this block in workflows and sub-workflows that will use <session:fetch>
method="tlib". The block exposes properties to form a TLib request to set agent status not ready
equivalent to TAgentSetNotReady. It also sets srcexpr and <content> element to make it possible to
form generic TLib requests.

Server-Side blocks provide the ability to interact with internal and external custom server-side pages,
Web Services, and URLs. These blocks can be used to exchange data like VoiceXML and SCXML
variables, JSON strings between GVP interpreter, and custom server-side pages. With the exception of
the Business Rule block, Composer uses server-side pages (ASP.NET or JSP) for implementing Server-
Side block functionality. If you include these blocks in a diagram, server-side pages provided in
Composer Projects are used at run time.

Composer Help 380

https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DatabaseInputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExternalServiceBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OPMCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebRequestCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/TLibBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock

Server-Side Common Blocks

Example Web Scenarios

In a typical scenario for the Web Service or Web Request block, the Composer-provided server-side
page is invoked first via the platform through language appropriate tags (<session:fetch for SCXML
and <data>, <subdialog> for VXML). This page, based on the input parameters specified in the
block, invokes any external URL for the Web Service or Web Request blocks. In case of the Web
Service block, it forms the appropriate SOAP request and sends it out. It then parses the response it
receives from the external request and makes it available to the application. The figure below depicts
the flow.

Application VXML
J SCXML Page(s)

ServerSide Page VEML/ SCHMIL

Engine

inComposer
Project

VXML =data>, <subdialog> |
SCXML: <session:fetch> :
I

Userspecified parameters

esEEET P

External URL request h{lsed on supplied parameters

1
|
1
Response fram external service/ URL

3

Parsed Response

i T e et e e W e e s

External Data availhible in application variables
1

e = ==

Composer application and included server side pages Platform l [External Service/ URL

The Need for Server-Side Pages

Composer provides the Server-Side blocks in anticipation that users will usually map either their
callflows or workflows to their business logic via these blocks. For example, the Backend block offers
the ability to create custom backend server pages that can be more tightly coupled with business
logic and at the same time provides more flexibility since the backend logic is provided by the user.
The different server-side functions offer a proxy service that can be used to query Web Services, web
servers and backend server pages while providing a user interface that is simple enough to use, but
also offering advanced features. Regarding security, the Web Request and Web Service blocks offer
proxy clients which support HTTP, as well as SOAP. Composer supports Server-Side pages in both Java
and .NET.

e Java server pages are hosted on Apache Tomcat, which is packaged and deployed with Composer.

Composer Help 381

Server-Side Common Blocks

e .NET applications are hosted on Microsoft IIS. The latter should be deployed by the user on the same

server as Composer.

The choice between using Java or .NET is mainly dependent on what technologies are available to the
user as well as the platforms. Below is a decision matrix outlining the some common situations where

the most appropriate server-side block is recommended.

Situation

A callflow/workflow needs to
consume a Web Service which
has a WSDL definition.

A callflow/workflow needs to
query a web server for data

A REST-style web service needs
to be consumed by the
application.

A callflow/workflow needs to
access some data using some
specific interface not using HTTP
or SOAP

A callflow/workflow needs to do
some customized post-
processing to data retrieved

My application does not work
with either the Web Service or
the Web Request blocks. What
can | use?

Recommended Block

Web Service block

Web Request block

Web Request block

Backend block

Backend block

Backend block

Comments

The Web Service block provides
utilities to design the way the
Web Service will be consumed,
such as a WSDL parser. During
runtime, the output results can
also easily be assigned to
callflow or workflow variables.

The Web Request block provides
a proxy client for sending the
web request, while offering
functionality such as assigning
the result to variables, and so on.

The Backend block offers a proxy
service to a backend application
that is developed by the user and
customized accordingly.

The Backend block allows you to reuse
custom JARs and .NET assemblies quickly
since it provides an easy mechanism to
pass parameters to and from the backend
server page. The backend pages provide
a skeleton implementation, which makes
it easy and quick to start implementing
custom logic which can use other user-
provided libraries.

The backend application will
have to be created such that it
retrieves the data and post-
processes it accordingly.

Try starting with the Backend
block since the implementation is
open by nature. The Backend
application is designed to provide
a simple interface to the actual
user-specific application.

Note: The Backend server-side page
called from the Backend block will be part
of the project and will be included when
the application project is deployed.

Composer Help

382

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebRequestCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebRequestCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock

Server-Side Common Blocks

Backend Common Block

The Backend block is used for both routing and voice applications. Use to invoke custom backend
Java Server Pages (JSP). You have the option to pass back all the application session state data to the
backend logic page on the server. Data being returned will be sent back as a JSON string. Other
features:

* Provides a mechanism for creating new backend logic JSP. The added JSP file will have a basic template
code already filled out. As the application developer, you will only need to implement a performLogic
function. The VXML/SCXML to return back control will be auto-generated in the template.

e User-written custom backend logic pages are stored in the Java Composer Project's src folder.
Composer provides standard include files for Backend logic blocks in the Java Composer Project's
include folder.

Note: If any custom backend logic pages use libraries, place the libraries in the Java Composer
Project's WEB-INF/lib directory. This directory typically contains JAR files that contain Java class files
(and associated resources) required for the application. Note: The Tomcat application server should
be restarted after changing any JAR files in this folder.

e Composer includes a CHEAT SHEET for creating a Backend logic application as well.

The Backend block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for voice blocks or Common Properties for
Workflow Blocks.

Composer Help 383

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property

Server-Side Common Blocks

Uri Property
The Uri property specifies the http:// page to invoke. To set a URL destination for the Uri property:

1. Select the Uri row in the block's property table.

2. In the Value field, click the EZ3 button to open the Uri dialog box.

3. Select a file from the available projects.

Encoding Type Property

The Encoding Type property (used for callflows only) indicates the media encoding type of the
submitted document. GVP 8.1 supports two encoding types:

e application/x-www-form-urlencoded

* multipart/form-data
To select a value for the Encoding Type property:

1. Select the Encoding Type row in the block's property table.

2. In the Value field, select application/x-www-form-urlencoded or multipart/form-data from the
drop-down list.

Parameters Property

Note: Parameters cannot be entered until the Uri property is specified. Use the Parameters property
to specify parameters to pass to the invoked backend JSP. To specify parameters:

1. Click the Parameters row in the block's property table.

2. Click the Bz putton to open the Parameter Settings dialog box.
Add Button Use the Add button to enter parameter details.

1. Click Add to add an entry to Backend Parameters.
2. In the Parameter Name field, accept the default name or change it.

3. From the Parameter Type drop-down list, select In, Out, or InOut:

Input parameters are variables submitted to the
Backend application.

Output parameters are variables that the Backend
Out application returns and will be reassigned back to
the current callflow.

In

Composer Help 384

Server-Side Common Blocks

InOut parameters are parameters that act as both

InOut input and output.

4. In the Expression drop-down list, select from among the listed variables, type your own expression, or
click the EZ2 button to use Skill Expression Builder.

5. In the Description field, type a description for this parameter.

6. Click Add again to enter another parameter, or click OK to finish.
Delete Button To delete a parameter:

1. Select an entry from the list.

2. Click Delete.

Pass State Property

Note: This property is used for callflows only. The Pass State property Indicates whether or not to
pass the application state to the backend. The application state includes all the variables shown in
the Entry block as well as all variables containing returned values from user Input blocks. You can find
Instructions on how to access these backend variables in Creating a Backend JSP File and Creating a
Backend ASP.NET File. The Parameters property can also be used to pass specific parameters into the
backend and, for efficiency reasons, should be considered first. There is also a Cheat Sheet, Creating
a Backend Logic Block (Help > Cheat Sheets > Composer > Building Voice Applications). To
select a value for the Pass State property:

1. Select the Pass State row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for

Composer Help 385

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SkillExpressionBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors#Backend_JSP
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors#Backend_ASP_NET
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors#Backend_ASP_NET
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock#Parameters
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property

Server-Side Common Blocks

Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 386

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

Business Rule Common Block

Business Rules

Composer interfaces with the Genesys Rules Engine, which is part of the Genesys Rules System. A
business rule is an external piece of business logic, which can be customized, and then invoked by
Genesys applications. Here is an example business rule for a bank: IF product = 'mortgage' and
loanAmount >=200000 THEN TTSMsg = 'You must have a credit score of 300 or great to
qualify for this loan.' To simplify rule creation, the Genesys Rules System uses Rule Templates.
These are initially created by developers and IT professionals. A Composer-compatible plug-in is
available for developing business Rule Templates. This plug-in is provided as part of the Genesys
Rules System. For information on installing the plugin, refer to the Genesys Rule System 8.1
Deployment Guide. See Chapter 2, Installation. Once validated and deployed, Rule Templates are
available for customization in the Genesys Rules Authoring Tool GUI. Business analysts then use the
templates to create related sets of business rules called Rule Packages. Packaging rules together
allows the business analyst to define which rules will support a particular application. You can use
Composer's Business Rule block to request the Genesys Rules Engine to execute a Rule Package in a
routing workflow or voice callflow and write the results back to a variable. A business rule preference
specifies the Genesys Rules Authoring Tool server to work with. Find information on using the
business rules GUI in the following documents:

e Genesys Rules System 8.1 Deployment Guide
e Genesys Rules System 8.1 Rules Authoring Tool Help
e Genesys Rules System 8.1 Rules Development Tool Help

Note: In the Genesys 8.1 release, the Genesys Rules System is packaged only with the intelligent
Workload Distribution product and the Conversation Manager product.

Business Rules Preferences

The preferences entered here are used in the Business Rule block, Business Rule Package property. To
set Business Rules Preferences:

1. Select Window > Preferences > Composer > Business Rules.

2. Configure the connection to the Genesys Rules Authoring Tool (GRAT) server by entering the following
fields:

* GRAT Server. Enter the address of the Application server hosting the GRAT Server. When
using the Business Rule Package property in the Business Rule block, Composer will connect
to this server to query information about packages and rules. Example only: http://ca-to-
lennon:8080.

¢ Server Path. Enter the name of the web application deployed as the GRAT. For example, if
you have the GRAT running at http://ca-to-lennon:8080/genesys-rules-authoring, then the

Composer Help 387

https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Business_Rule_Templates
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Business_Rule_Package_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Business_Rules_Preferences
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Business_Rule_Package_Property

Server-Side Common Blocks

GRAT server is http://ca-to-lennon:8080 and the Server Path is /genesys-rules-authoring.

¢ Tenant. To obtain a list of Rule Packages, Composer will query the GRAT server using an

HTTP request to http://{server-address:port}/tenant/packages. Enter the name of the tenant
as defined in the Configuration Database.

* Username. Enter the username defined in the Configuration Database for logging into the
GRAT server.

¢ Password. Enter the password defined in the Configuration Database for logging into the
GRAT server.

* Genesys Rules Engine (Optional). GRE URL. Enter the URL for the GVP Debugger to use
when starting a call. The GRE URL will be passed to the VXML application in the SIP URL. If
set, this value will be passed to the voice or routing application and will override the value
set in the Rules Engine URL property of the Business Rule Block (see that section below).

Business Rule Templates

This functionality is enabled by an Eclipse plug-in that can be installed within Composer or in a
standalone Eclipse environment.

¢ To install the plugin, refer to the Genesys Rule System 8.1 Deployment Guide. See Chapter 2,
Installation.

The plug-in enables developers to create Rule Templates. Rule Templates consist of rule parameters,
conditions, actions, and functions. When a Rule Template is published to the Rules System repository,
it is made available to be added to Rule Packages. Rule Packages are the deployable objects, which
are used to expose rule conditions and actions to business users for creating rules through the
Genesys Rules Authoring tool. A brief summary of Rule Templates is presented below. For detailed
information, see the Genesys Rules System 8.1 Rules Development Tool Help. Once you install the
plugin, this help system is available within Composer by selecting Help > Contents.

Genesys Rules System Architecture

A logical view of the Genesys Rules System architecture is shown below.

Composer Help 388

https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Rules_Engine_URL

Server-Side Common Blocks

Execute Rules in

Develop Template Author Rules L anibexd

Froduct ='Gadget!

Froduct ="wid

Facts Supplied

e The first category reflects Rule Template creation, which can be done in Composer if the set of plugins is
installed.

* The second category reflects rule creation by business analysts in the Genesys Rules Authoring Tool.

¢ The third category reflects rule evaluation by the Genesys Rules Engine using the Business Rule block
once the Facts are known.

Type of Rules

The Genesys Rules System supports both basic and decision table rules.

Basic Rule

A basic or linear business rule is of this form: WHEN {condition} THEN {action} In other words, when
the condition is true, the action will occur. This is a rule template. When a business analyst uses the
Genesys Rules Authoring Tool to customized a template with valid values, this creates a business
rule. The following rules are all valid instances:

e WHEN Product = 'Gadget' THEN Select Agent Group 'Gadget Agents'

e WHEN Product

e WHEN Customer Segment = 'Gold' THEN Assign Credit Limit '200000'

'Widget' THEN Select Agent Group 'Widget Agents'

This form of rule is preferred for simple actions, such as assigning a value to return back to the
application.

Composer Help 389

https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Facts_Property

Server-Side Common Blocks

Decision Table Rule

A business rule can also take form of a decision table. For example, assume in a particular scenario
that there are 3 customer levels: Gold, Silver, and Bronze. For each of these levels, we wish to make
an offer to customers based on a qualifying purchase they may have made. Gold customers
automatically qualify for a Premium Offer. Silver customers need to have spent $1000 or more to
qualify for that offer, otherwise they get the Special Offer. Finally, Bronze customers need to have
spent $5000 or more for the Premium Offer; or $2000 or more for the Special Offer; otherwise they
are informed of the offers available if they make the qualifying purchase level. Note: The Genesys
Rules Engine cannot execute Rule Templates.

Business Rule Block

Once the Rule Package (created from Rule Templates) that you want to work with are deployed to the
Genesys Rules Engine, you can use the Business Rule block on the Server Side palette to create voice
and routing applications that use business rules. Use this block to have Composer query the Genesys
Rules Authoring Tool (GRAT) for deployed packages. For the Rule Package that you specify, Composer
will query the GRAT for the Facts associated with the Rule Package. You can then set values for the
Facts, call the Genesys Rules Engine for evaluation, and save the results in a variable. Note: This
last step (evaluation) happens as part of a VXML or SCXML application that Composer developer
creates, not as part of Composer. A business rule preference specifies the Genesys Rules Engine to
work with. Runtime Parameters The following parameters (defined in Preferences) are used at
runtime, when the VXML and SCXML application queries the GRAT to execute the rule.

e grat_username -- a user login for accessing the GRAT server
e grat_password -- the password for the above login
e grat _server -- a URL for the GRAT server, for example: http://hostname:8080/genesys-rules-authoring

e grat_tenant -- the tenant associated with the login, e.g. Environment

The Business Rule block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 390

https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Business_Rule_Templates
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Business_Rules_Preferences
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property

Server-Side Common Blocks

Business Rule Package Property

Use to select the Rule Package (collection of related rules) you would like to execute. Packaging rules
together allows the business analyst to define which rules will support a particular application.
Before using this property, you must set Business Rules Preferences.

1. Click the EZ putton to request Composer to connect to the Genesys Rules Authoring Tool Server using

the information specified in Business Rule Preferences. After a successful connection, the Business Rule
Package dialog appears.

2. Select a Rule Package and click OK. The dialog closes and the name of the Rule Package appears under
Value.

Facts Property

Use this property to execute the logic contained in the selected Rule Package by supplying input
parameters called Facts. To specify Facts:

1. Click the Facts row in the block's property table.

2. Click the Ez putton to open the Facts dialog box.

3. Click Add. The dialog box adds additional fields consisting of the Facts to use when executing the Rule

Package. You then click the down arrow and select a value or a variable that contains the value for
each Fact. An example dialog box is shown below.

Composer Help 391

https://docs.genesys.com/Documentation/IW/8.1.3/Help/BusinessRuleCommonBlock#Business_Rules_Preferences

Server-Side Common Blocks

| -

Facts
Create a kst of Facts bo pass to the rule package execution,
Hame i| Add... | Fact Mame | facr)
= Fackl Fact Clase [ﬂ-l‘lll‘l‘l&l 3
[Name [pata Type [value |
bvpe string AnimalFact 1
waight integer AnimalFact2
colar stringCallerDay -
ClerTime
ArimalPactl
arrmalFacts
ArrmalFact3 !
Test ==
T =
Facts.qgif

. Enter the Fact Name field.

4
5. Click the down arrow and select an entry for the Fact Class field.

6. Click the down arrow and select a value or a variable that contains the Fact value.
7

. Click Add again to enter another Fact, or click OK to finish.
Delete Button To delete a Fact:

1. Select an entry from the list.

2. Click Delete.

Rules Engine URL

Select the variable containing the Genesys Rules Engine URL. Background: Starting with 8.1.2,
Composer-generated applications no longer interact with the GRAT server at runtime. Previous
requests to the GRAT Server were done to retrieve the URL of the GRE server to which a rules
package is deployed. Instead, the runtime applications now use the Rules Engine URL property, which
is passed into the application via the IVR Profile or an Enhanced Routing Script object. You can use
this Rules Engine URL property to override any GRE URL configured in the IVR Profile or

Composer Help 392

Server-Side Common Blocks

EnhancedRouting Script object.

Exceptions Property

The Business Rule block supports the following exceptions. They correspond to the HTTP status
codes returned by the Business Rule Server (BRS).

Exception Event

Name HTTP Return Code BRS Error Code Description
The received URI does
error.com.genesyslab.comp#8@r.badrequest 610 not match the Engines
REST specification.
The package for the
error.com.genesyslab.comp®@ér.notfound 620 evaluation request
received was not found.
error.badfetch.http Any other HTTP error.

The evaluation request
received could not be
converted to a valid
knowledgebase-request

error.com.genesyslab.comp®@ér.notacceptable 602 message, or the
evaluation request
received could not be
evaluated due to an
exception.

Details of the exception can be obtained from the body of the response. The Composer application
will log the description. The JSON body of the response will look like the following: { error:{

code:6xx, description:error message } } Also see Common Properties for
Callflow Blocks or Common Properties for Workflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 393

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Server-Side Common Blocks

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Interaction ID Property

Set to a meaningful value or keep the default value, which is the system variable Interactionld.
Applicable to workflows only. Can be used for "interaction-less" processing for scenarios where the
Interactionld variable is not automatically initialized, but instead must wait for an event. An example
would be an SCXML application triggered by a Web Service that does not add an interaction.
Background: Previous to 8.1.1, Composer did not expose an Interaction ID property. Instead, when
ORS started processing an interaction, a generated SCXML application automatically initialized the
system variable, Interactionld. This variable was then used internally by Routing and certain
eServices blocks when interacting with ORS. With the introduction of support for Interaction-less
processing, you can now define a specific event (IPD Wait For Event property) to initialize
Interactionld, or not define an event at all. For scenarios with an interaction (IPD Diagram/Wait For
Event=interaction.present for example), you may keep the default value for the Interaction ID
property. The default value is the system variable Interactionld, which is initialized automatically in
this case. For other scenarios (any scenario where the system variable Interactionld is not set), you
may choose to:

1. Not use blocks that require an Interaction ID

2. And/or set the Interaction ID property to a meaningful value

3. And/or assign a meaningful value to the Interactionld system variable

Output Result Property

Use this property to save the results of the business rule execution to a variable. To select a variable:

1. Select the Output Result row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list. Does not need to match
the variable name that is coming back as a result of the web request.

The format of returned data is JSON. Any post-processing work to be done on returned results can be
done in the existing Assign block which provides access to ECMAScript functions. It supports writing
simple or complex expressions to extract values out of JSON strings and arrays. In a workflow, the
Output Result can be attached to User Data. In the Specify Output Result Location dialog box, select

Composer Help 394

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StartingaNewIPD#Wait_For_Event_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignCommonBlock

Server-Side Common Blocks

User Data or Variable. If User Data is selected, the specified name is used as a prefix of the keys that
will be added to user data. For example, if you specify abc, then the User Data will look like:

'abc_factl'(list) '@class'’ ‘com.genesyslab.animals.Animal'’
‘color' "red’
"type’ 1903
'weight' 123 'abc fact2'(list)
'@class' com.genesyslab.animals.Car' 'make’

'mazda’ Note: The Output Result property takes effect only during application runtime. Its
purpose is to take the output of the rule execution (at runtime) and store returned results back in the
specified application variable so other parts of the application can access the data.

Business Rules Block Runtime Configuration

The table below shows the parameters that must be set up in Genesys Administrator in order for the
Business Rules block to work.

ERS Object Key Names IVRprofile Object Key Names
GRS grat_server grat_server

grat_tenant grat_tenant

grat_username grat_username

grat_password grat_password

The figure below shows an example Enhanced Routing Script object created by Composer. It creates
these parameters in the ApplicationParms section in the Annex, so you do not have to key in
parameter names. Note: If you accidentally changes parameter names, these functions will not work.

% JavaComposerProject2.default.defaultWorkflow [10.10.15.157:6666/] Properties

General Annex I Securit_l,ll Dependenc_l,ll

%= ApplicationParms j
Mame * Yalue
Enter kext here S| Enter test here

'ﬁﬂ context_management_services_pazsward
.ﬁ_b-; context_management_services_url "hittp:/A10.10.15.165:9080"

- .
abe context_management_services_username

[
abe grat_pazsword

'ﬁg arak_server "z Buziness Rules Preferences not zet: <Busines:
'ﬁg arat_tenant "zBuzsinezs Rules Preferences not et
f&g arak_usernanme "zBuzinezs Rules Preferences not zet:"

Working With Returned Data

Below is an example on how to work with data returned by the Business Rules block. A sample of the

Composer Help 395

Server-Side Common Blocks

output can look like the snippet below, which will be stored in the output variable myOutputVar.

myOutputsiar="[{
'knowledgebase-response;{

inOutFacts:{
harn ed-fact':[{
fact:{
fwelass ' "abc sample?, GRS Environment",
businessContext_ Levell:"Raleigh",
phase!"prioritization"
h
id:"environment"
i
{
fact:{
fwelass"abec sample?. Caller",
disposition:true
i

ich"ourcCaller"
HH To

extract the value of the disposition field, an expression like this can be used: myDisposition
myOutputVar["knowledgebase-response"].inOutFacts["named-fact"][1l].fact.disposition

This will return true.

Composer Help

396

Server-Side Common Blocks

DB Data Common Block

Important Note: When using the DB Data block, database errors (such as failure to connect to a
database) could result in an invalid JSON message being returned to the workflow or callflow, which
could cause an application to fail. In order to avoid this potential issue, Genesys recommends
upgrading to Release 8.1.301.02 as it contains an update to the database access library.

The DB Data block is available for both routing and voice applications. Use for connecting to a
database and retrieving/manipulating information from/in a database. This block uses a connection
profile to read database access information. It accepts a SQL query or a Stored Procedure call, which
can be defined using the Using the Query Builder or Stored Procedure Helper. It can also use a SQL
script file. Note: When using the DB Data block to connect to and query information from an Oracle
database, some connections may remain in the TIME_WAIT state. If you encounter this situation, use
connection pooling in order to avoid exhausting the number of allowed Oracle connections. This block
acts as a data source for the DB Prompt and DB Input blocks (available only in callflows). An Entry
block user variable can also be used to access the results of a Stored Procedure call specified in a DB
Data block for both voice and routing applications. Note: The Looping block can work with the DB
Data block. For example, you can use the Looping block to Iterate over a data set returned by the DB
Data block to map values returned from a database query to application variables. Also see: Working
with Database Blocks. The DB Data block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. Note: if you rename a DB Data block, its corresponding SQL statement file in the db
folder will not be updated and will not be valid until you generate code again.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Connection Profile Property

The Connection Profile property allows you to select a previously-created database Database
Connection Profiles that specifies database details for this DB Data block. If you have not created a
connection profile, open the Connections Profile editor as follows:

1. Under Value, click the down arrow.

2. Select Create New Profile Using Editor...

Refer to the topic Database Connection Profiles for instructions. To select a connection profile for your

Composer Help 397

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Using_the_Query_Builder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Stored_Procedure_Helper
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBPromptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DatabaseInputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/LoopingBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Database_Connection_Profiles
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Database_Connection_Profiles
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Database_Connection_Profiles

Server-Side Common Blocks

database query:

1. Select the Connection Profile row in the block's property table.

2. Select the connection profile to use for this query.

Connection Properties Property

The Connection Properties property allows you to override the parameters in connection profile
during runtime. The properties that can be overriden are Hosthame, Password, Port, Database,
Username and other Custom Parameters. Variable mapping can be configured in the dialog box
provided for the property. To define the variable mapping for Connection Parameters:

1. Click the EZ putton to open the Connection Properties variable mapping dialog.

2. Dialog displays the parameter name and value in connection profile. Select the system variable in the
drop down combo against each property.

3. Click OK

Connection String Property

The Connection String Property allows you to define the value of Connection String that need to be

used at Runtime. If this property is specified, the parameters from Connection Profile is ignored. To

define this property enter either literal value or select system variable from the combo provided for
the property.

Timeout Property

The Timeout property defines the length of time in seconds that the voice application will wait for
query execution to complete. To provide a timeout value:

1. Select the Timeout row in the block's property table.

2. In the Value field, type a timeout value, in seconds.
The default value (20 seconds) of this property is used if not specified explicitly. Disable the timeout
by setting to -1. If the query takes longer than this specified time to complete the

error.com.genesyslab.composer.dbtimeout exception is thrown. In order to select a query type,
the Connection Profile property must be set.

Query Type Property

To define a query type:

Composer Help 398

Server-Side Common Blocks

1. Select the Operation Type row in the block's property table.

2. Select one of the following:

¢ SQLQuery

¢ SQLScriptFile

e StoredProcedure
Based on the value selected for Operation Type, the specified value is used and some properties
are not used. Query Property The Query property opens the Query Builder in which you can visually
build the database query. Note: The Query property and Query File property are mutually exclusive.

If both are entered, then the Query File property takes precedence over the query defined in the
Query property. To define a query:

1. Select the Query row in the block's property table.

2. Click the Bz putton to open the Query Builder.

Query File Property

The Query File property accepts a filename that points to a SQL file that the user has written. To
provide a filename for a user-written SQL file:
1. Select the Query File row in the block's property table.

2. In the Value field, type the filename of the SQL file (the file is usually in the db folder of your project. If it
is present in a different location, specify a relative path, such as ../myfolder/myquery.sql.

Stored Procedure Property

The Stored Procedure property opens the Stored Procedure Helper in which you can visually build the
database query. To define a stored procedure call:

1. Select the Stored Procedure row in the block's property table.

2. Click the Bz putton to open the Stored Procedure Helper.

Column Names Variable Property

The Column Names Variable property maps the list of column names in the result to the specified
variable. The default is Use system default, in which case the system uses an internal variable which
is named in the format below. Genesys recommends that you define a user variable for this purpose
in the Entry block and specify it in the DBData block. For Callflow diagrams:
AppState.<blockname>DBResultColumnsNames For Workflow diagrams:
App_<blockname>['DBResultColumnsNames'] To select a variable:

Composer Help 399

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Using_the_query_builder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Stored_Procedure_Helper

Server-Side Common Blocks

1. Select the Column Names Variable row in the block's property table.

2. In the Value field, select the variable from the dropdown list.

Records Variable Property

The Records Variable property maps the records (data) in the result set to the specified variable. The
default value is Use system default, in which case the system creates an internal variable which is
named in the format below. However, Genesys recommends that you specify a user variable in the
Entry block. For Callflow diagrams: AppState.<blockname>DBResult For Workflow diagrams:
App_<blockname>['DBResult'] To select a variable:

1. Select the Records Variable row in the block's property table.

2. In the Value field, select the variable from the dropdown list.
Note: The following applies to all methods of getting database results (query builder, stored
procedure helper, custom queries): Results are stored in a variable as a two-dimensional JSON array.

This data can then be accessed via a Looping block or via scripting in the Assign or ECMAScript block.
For example, if the database result set looks like this in tabular form:

Vegetables Animals
lettuce chicken
broccoli lion

The JSON for the result will look like this: {"db result":[["lettuce", "chicken"], ["broccoli",
“lion"]1],"db result columns":["vegetables", "animals"]}

Suppress Empty Result Set Exception Property

The Suppress Empty Result Set Exception property determines if the dbemptyresultset exception
should be thrown if a query or a stored procedure execution results in an empty result set (hnumber of
records returned is zero). To provide a value:

1. Select the Suppress Empty Result Set Exception row in the block's property table.

2. Select true or false.

Exceptions Property

Find this property's details under Common Properties for voice blocks or Common Properties for
Workflow Blocks. The Exceptions dialog box for the DB Data block has the following exception events:

e error.com.genesyslab.composer.dbconnectionerror

e error.com.genesyslab.composer.dberror (pre-selected in the Supported column)

Composer Help 400

https://docs.genesys.com/Documentation/IW/8.1.3/Help/LoopingBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScriptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions

Server-Side Common Blocks

e error.com.genesyslab.composer.dbemptyresultset (pre-selected in the Supported column)

e error.com.genesyslab.composer.dbtimeout

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help

401

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

External Service Block

This block enables routing applications to invoke methods on third party servers that comply with
Genesys Interaction Server (GIS) protocol. Use to exchange data with third party (non-Genesys)
servers that use the Genesys Interaction SDK or any other server or application that complies with
the GIS communication protocol. Can be used for both voice and non-voice interactions. Notes:

e In order to use this object, the third party server/application must already be defined in the
Configuration Database as a server of type Third Party Server or Third Party Application. Before
completing the External Service block properties, you must already know the names of Services,
Methods, and Signatures (requested input/output parameters) provided by the external service.

e The Composer External Service block does not automatically pass user data in the ESP call unlike the
legacy IRD External Service object. Therefore, ESP methods that expect user data cannot be called
using this block. Please refer to the ESP method/API documentation to determine if user data is
required. To call an ESP API that requires user data, a hand coded SCXML page can be used and invoked
using the SubRoutine block. Please refer to the <session:fetch> documentation in the Orchestration
Server Developers Guide. See Action Elements under Session Interface for details on how to pass user
data in ESP requests.

Use Case

A customer has a custom integration to a third party application (a workflow system), through the
Open Media API. The workflow system uses Genesys to distribute work items at various times during
the workflow. At some point in the IPD handling a work item, there is a need to update the workflow
system and assign a new value to one of the attributes of the work item. The Genesys developer has
the IPD call a routing strategy, which uses the External Service block to call a specific method
exposed by the third party application. This allows the developer to update the value of the specific
attribute of the work item. The External Service block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 402

https://docs.genesys.com/Documentation/OS/8.1.3/Developer/CoreExt#Session_Interface
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property

Server-Side Common Blocks

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events.

Application Property

Use this property to select the name of the third party application to be contacted or the general
application type to be contacted, which must be defined in the Configuration Database.

1. Click under Value to display the Ez3 button.

2. Click the button to open the Application Selection dialog box.
3. Select the third party application to be contacted.

4. Click OK.

Method Name Property
Use this property to specify the Method defined by the third party server or application.

1. Click under Value to display the 2 button.

N

. Click the button to open the Method Name dialog box.

w

. Opposite Type, select one of the following as the source for the name:

e Literal to enter the method name manually in the Value field.

¢ Variable to select a variable for the method name in the Value field.

4. Click OK to close the dialog box.

Method Parameters Property

Use this property to specify the list of input parameters to be passed to the specified external
service. Click the button to add a new entry:

1. Click under Value to display the =2 button.

. Click the E putton to open the Method Parameters dialog box.

w N

. Click Add to open the Select Items dialog box.

b

Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.

Composer Help 403

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents

Server-Side Common Blocks

5. Opposite Value, click the down arrow and select either literal or variable.

e If you select Literal, enter the name of the key in the second field.

* If you select Variable, select the name of the variable from the second field.

6. Click OK to close the Select Items dialog box. The Method Parameters dialog box shows your entry.
7. Continue adding parameters in this fashion.

8. Click OK when through in the Method Parameters dialog box. .

Service Name Property

Use this property to specify the name of the Service defined by the third party server or application
for the functionality requested.

Click under Value to display the =2 button.

N B

. Click the button to open the Service Name dialog box.

w

. Opposite Type, select one of the following as the source for the name:

e Literal to enter the service name manually in the Value field.

¢ Variable to select a variable for the service name in the Value field.

4. Click OK to close the dialog box.

Service Timeout Property

Use this property to specify the timeout in seconds (s) to be used for invoking this method. If not
checked, URS uses the Reconnect Timeout entered for third party server or application in
Configuration Server. In the case of a connection or service request failure, error codes are returned.
The default is 30 seconds.

User Data Property

Use this property to specify the list of User Data parameters to be passed to the specified external
service. Click the button to add a new entry:

1. Click under Value to display the £z button.

2. Click the EZ button to open the User Data dialog box.
3. Click Add to open the Select Items dialog box.
4. Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.

Composer Help 404

Server-Side Common Blocks

5. Opposite Value, click the down arrow and select either literal or variable.

e If you select Literal, enter the name of the key in the second field.

* If you select Variable, select the name of the variable from the second field.

6. Click OK to close the Select Items dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.

8. Click OK when through in the User Data dialog box.

Result Property

Use this property to specify an application variable to store the results. These results will then be
available in other blocks in the application for further processing. The format of returned data is
JSON. Any post processing work to be done on returned results can be done in the existing Assign
block which provides access to ECMAScript functions. It already supports writing simple or complex
expressions to extract values out of JSON strings and arrays.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 405

https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignBlockCommon
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignBlockCommon
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

OPM Common Block

The OPM block enables VXML and SCXML applications to use Operational Parameters (OPM) which
allow a business user to control the behavior of these applications externally. Operational Parameters
are defined and managed in the Operational Parameter Management (OPM) feature of Genesys
Administrator Extension (GAX). The OPM block is available for both Callflows (VXML) and Workflows
(SCXML).

The OPM block allows browsing through a JSON structure based on metadata retrieved from the GAX
server in order to form a JSON expression. The OPM block generates code to evaluate the specified
expression and assign results to the App_OPM (voice application) or system.OPM (routing
application) application variable accessible via the Entry block.

GAX Server

GAX refers to a Genesys Administrator Extension (GAX) plug-in application used by Genesys web
application EZPulse. EZPulse enables at-a-glance views of contact center real-time statistics in the
GAX user interface. A button on the Composer main toolbar, Launch GAX Server Command, lets you
launch the Genesys Administrator Extension used by the GAX Server. Composer uses the server host,
port, username, and password entered on the GAX Server Preferences page to fetch audio resource
management parameters or an audio resource IDs list. Before using this block set GAX Server
Preferences.

Note: The OPM block in Composer 8.1.2 supports GAX 8.1.2.

Note: GVP 8.1.6 supports OPM parameters only with lowercase key names - Composer includes a
warning to that effect. Please consult your GVP version's documentation for any changes to this
behavior.

Note: OPM Complex parameters like 'Schedule', 'Custom List' types are not supported by GVP 8.1.6
and also not supoprted in Composer 8.1.3.

The OPM block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for

Composer Help 406

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesProjectandWorkflow#Default_Routing_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GAXServerPreferences
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#NameProperty
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property

Server-Side Common Blocks

Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Assign OPM Data Property
Use this property to assign OPM parameters from GAX to variables.

1. Click opposite Assign OPM Data under Value. This brings up the E=3 button.

2. Click the K& button to bring up the Assign OPM Data dialog box.
3. Click Add.

4. Select the variable or click the Variables button to add a new variable.

Composer Help 407

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

5. Enter a value for the variable or click the E&&d button where you can create an expression with
Expression Builder.

Composer Help 408

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder

Server-Side Common Blocks

TLib Block

Use this block in workflows and sub-workflows that will use <session:fetch> method="tlib". The block
exposes properties to form a TLib request to set agent status not ready equivalent to
TAgentSetNotReady. It also sets srcexpr and <content> element to make it possible to form generic

TLib requests. The TLib block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks.

Condition Property

Find this property's details under Common Properties for Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Workflow Blocks.

Composer Help

409

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property

Server-Side Common Blocks

Result Property

Response returned from the TLib function. You may use this property to assign the collected data to a
user-defined variable for further processing.

1. Select the Output Result row in the block's property table.

2. In the Value field, click the down arrow and select a variable.

Application Property

The T-Server application object in Configuration Server that represents the third party server to be
contacted. You can select Configuration Server, enter a literal or enter a value.

Content Property

Use this property to specify input parameters to be passed to the specified TLib function. You can
enter as literals and enter property names and values or select a variable.

URL Property

Select the variable that contains the URI for the TLib function that is to be used.

Enable Status Property

Find this property's details under Common Properties for Workflow Blocks.

Composer Help 410

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

Web Request Common Block

The Web Request block is used for both routing and voice applications. Use to invoke any supported
HTTP web request or REST-style web Service.

e |t supports PUT, DELETE, GET and POST methods over HTTPS.

¢ |t is based on common Web Services standards such as XML, SOAP and WSDL instead of proprietary
standards that are currently being replaced.

REpresentational State Transfer (REST) is an XML-based protocol for invoking Web Services over
HTTP. REST is a lighter version of SOAP, which has evolved into a more complex protocol. REST-style
web services offer a less coupled paradigm whereby simpler requests and responses are used. As an

example, a simple HTTP request follows the REST methodology. The Web Request block allows the
user to query "RESTful" Web services. The supported return formats for the Web Request block are:

e plain text

Note: For workflows, the result will be returned in a JSON string with key name result, e.qg.,
{"result":"This is a plain text result"}

e plain XML
e JSON string (See an issue pertaining to JSON objects in Troubleshooting.)

Composer does not support fetching URLs using HTTPS in Web Request and Web
Service blocks.

The Web Request block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Composer Help 411

https://docs.genesys.com/Documentation/IW/8.1.3/Help/JSONobjectsandJavaScriptkeywords
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property

Server-Side Common Blocks

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks You can also define custom events.

Request Method Property

This property Indicates the method for invoking the web request:

e get--Invoked using HTTP Get

e post--Invoked using HTTP Post. This option is valid only when the parameters are passed as a namelist
(Use Namelist property is set to true). This is generally used when a large amount of data needs to be
sent as an input value for a subdialog.

¢ put--Invoked using HTTP Put

delete--Invoked using HTTP Delete
To select a value for the Request Method property:

1. Select the Request Method row in the block's property table.

2. In the Value field, select get, post, put, or delete from the drop-down list.

Uri Property

The Uri property specifies the http:// page to invoke. To set a URL destination for the Uri property:

1. Select the Uri row in the block's property table.

2. In the Value field, click the down arrow and select the variable that contains URL.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 412

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Server-Side Common Blocks

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Authentication Type Property

The Authentication Type property specifies whether to use an anonymous or basic authentication for
the web request. To assign a value to the Authentication Type property:
1. Select the Authentication Type row in the block's property table.

2. In the Value field, select anonymous (default) or basic from the drop-down list. With the anonymous
type of access, no user name/password is passed to Web service for client authentication in order to
get data. If you select the basic type of access, you must supply the Login Name and Password
properties.

Encoding Type Property

The Encoding Type property (used for callflows only) indicates the media encoding type of the
submitted document. GVP 8.1 supports two encoding types:

* application/x-www-form-urlencoded

e multipart/form-data
To select a value for the Encoding Type property:

1. Select the Encoding Type row in the block's property table.

2. In the Value field, select one of the following:

* application/x-www-form-urlencoded (default)

» application/json

Composer Help 413

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

Input Parameters Property

Use the Input Parameters property to specify a list of required Name/Value pairs to pass as
parameters to the http:// page. To specify input parameters:

1. Click the Parameters row in the block's property table.

2. Click the Bz putton to open the Parameter Settings dialog box.
Add Button Use the Add button to enter parameter details.

1. Click Add to add an entry to Web Request Parameters.
2. In the Parameter Name field, accept the default name or change it.
3. From the Parameter Type drop-down list, select In, Out, or InOut:

Input parameters are variables submitted to the

3 web request.

Output parameters are variables that the web
Out request returns and will be reassigned back to the
current callflow/workflow.

InOut parameters are parameters that act as both

InOut input and output.

1. In the Expression drop-down list, select from among the variables shown, type your own expression, or
click the EZZ button to use Skill Expression Builder.

2. In the Definition field, type a description for this parameter.

3. Click Add again to enter another parameter, or click OK to finish.
Delete Button To delete a parameter:

1. Select an entry from the list.
2. Click Delete.

JSON Content Property

If the HTTP request to be invoked expects JSON content, this property can be used to specify that
input. It expects a variable whose content will be sent to the API specified in the HTTP URI property of
the block. Set the Encoding Type property of the block to application/json. In this case, the Input
Parameters property will not be used.

The variable selected in this property should contain a JavaScript object. The object can be built from
a JSON string, or using the ECMAScript block.

For example, if you would like to pass a JSON content to the HTTP URI, using a variable named
"content", the variable can be initialized in the following ways:

Composer Help 414

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SkillExpressionBuilder

Server-Side Common Blocks

e If you have a JSON string, you can use the Assign block to assign the following value to "content":
JSON.parse('{"abc": "def", "xyz": 3}')

e Alternately, you can build a JavaScript object using an ECMAScript block with code like the following:
var content = new Object(); content['abc'] = 'def'; content['xyz'] = 3;

In both cases, set the JSON Content property of the Web Request block to the variable named
"content".

Timeout Property

Select the variable containing the number of seconds that the application will wait when fetching the
result of the Web Service or the Web Request. If the requested resource does not respond in that
time, then a timeout event will occur.

Custom HTTP Headers Property

Use this property to add Custom headers to be sent along with the HTTP request during the runtime
execution of the Server Side block.

1. Click the row in the block's property table.

2. Click the EZ putton to open the Custom HTTP Headers dialog box.
3. Click Add to open Configuration Custom HTTP Headers dialog box.
4. Select a Header type.

5. Select Literal or Variable.

6. Type the literal value or select the variable that contains the value.

Login Name Property

Used when Authentication type = basic. The Login Name property specifies the login name for the
invoked web page. To provide a login name for the web request:

1. Select the Login Name row in the block's property table.

2. In the Value field, type a valid login name.

Composer Help 415

Server-Side Common Blocks

Password Property

Used when Authentication type = basic. The Password property specifies the password for the
invoked web page. To provide a password for the web request:

1. Select the Password row in the block's property table.

2. In the Value field, type a valid password that corresponds to the login name above.

Result Property

The Result property is the variable used to get back a result from the web request. To select a
variable:

1. Select the Result row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list. Does not need to match

the variable name that is coming back as a result of the web request.

Composer Help

416

Server-Side Common Blocks

Web Service Common Block

Video Tutorial

Below is a video tutorial on using the Web Service block.

Important Note: While the interface for Composer in this video is from release 8.0.1,
the steps are the basically the same for subsequent releases.

gl o a

B Geromyn infs Vet fumnsas Corinly Daplcymend Geide L

SOAP-Compliant Web Services

This block can be used to invoke SOAP 1.1 compliant Web Services. It accepts and parses WSDL
content for the WebService and collects input parameters based on this WSDL content.

¢ Uses common Web Services standards such as XML, SOAP and WSDL.

* You can pass parameters (as in subdialogs) and store the return values in variables.

GET, POST and SOAP over HTTPS are supported.

e Supports SOAP 1.1 and therefore requires a WSDL file to describe endpoints and services. The Web
Service block will not work without this WSDL file.

e WSDL-based Web Services are supported with certain limitations. The WSDL is parsed and you are
provided the option to select the service name, bindings type, operations, service end point, and mode
(GET / POST). The Input and Output parameter list is pulled by default from the WSDL.

Data returned by the Web Service is converted to JSON format and made available in the application.
(See an issue pertaining to JSON objects in Troubleshooting.)

SOAP 1.2 is not supported.

Composer Help 417

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessageExamples
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MediaServerBlock#Endpoints_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock#WSDL
https://docs.genesys.com/Documentation/IW/8.1.3/Help/JSONobjectsandJavaScriptkeywords

Server-Side Common Blocks

Additional Information

For additional information, see:
* Web Service Block and Signed SOAP Requests and Web Service SOAP Message Examples.

* WSDL_SOAP_XSD_WSSE_Support

Web Service Block Security

For Java and .NET Composer projects, the Web Service Block supports secured SOAP communication
using XML Digital Signature with a Client Certificate for Java Composer Projects. XML Digital
Signature authentication is in compliance with the Second Edition of the XML Signature Syntax and
Processing Specification and the OASIS Web Services Security SOAP Messages Security Specification.
The Authentication Type property below allows you to select various types of authentication.

Composer does not support fetching URLs using HTTPS in Web Request and Web
Service blocks.

Testing the Web Service Block

When working with either a callflow or workflow, the Web Service block provides menu option to test
the configured SOAP Web Service using the Web Services Explorer. Right-click the Web Services block
and select Test with Web Services Explorer. The Web Service block has the following properties:

Name Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 418

https://docs.genesys.com/Documentation/IW/8.1.3/Help/SignedSOAPRequests
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock#Authentication_Type_Propety
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property

Server-Side Common Blocks

Exceptions Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks. You can also define custom events. The Web Service block Exceptions dialog box
has the following pre-set exceptions:

e Callflows: error.badfetch and error.com.genesyslab.composer.webservice.badFetch

e Workflows: error.session.fetch and error.com.genesyslab.composer.webservice.badFetch

Service URL Property

The Service URL property specifies the WSDL URL of the Web Service to invoke. To set the Service
URL:

1. Select the Service URL row in the block's property table.

2. In the Value field, type a valid URL.

When you provide the WSDL URL in the Service URL property, Composer will try to access the URL
and parse it to populate the drop-down lists for the remaining properties:

* Available Services

¢ Bindings

* Operations

e Service End Point

¢ Use Protocol

Note: When upgrading older diagrams to 8.1.1 and higher, it is necessary to clear out the
service URLand specify it again. This is needed in newer versions to re-parse the WSDL obtained
from the specified URL and not use the cached information stored in the diagram.

Available Services Property

When Composer accesses the Service URL, the available Web Services will populate the drop-down
list of the Available Services property. To select an available service:

1. Click the Available Services row in the block's property table.

2. In the Value field, select an available Web Service from the drop-down list.

Composer Help 419

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CustomEvents

Server-Side Common Blocks

Bindings Property

When Composer accesses the Service URL, the available bindings will populate the drop-down list of
the Bindings property. To select a binding:

1. Click the Bindings row in the block's property table.

2. In the Value field, select an available bindings setting from the drop-down list.

Operations Property

When Composer accesses the Service URL, the available operations will populate the drop-down list
of the Operations property. To select an operation:

1. Click the Operations row in the block's property table.

2. In theValue field, select the desired operation from the drop-down list.

Service End Point Property

When Composer accesses the Service URL, the service end point options will populate the drop-down
list of the Service End Point property. To select a service end point:

1. Click the Service End Point row in the block's property table.

2. In the Value field, select the service end point from the drop-down list.

Service End Point Variable Property

Property to parameterize the Service End Point in the Web Service Block. This property will overwrite
the 'Service End Point' properties literal value.

Use Protocol Property

When Composer accesses the Service URL, the protocol options (SOAP and HTTP) will populate the
drop-down list of the Use Protocol property. To select a protocol:

1. Click the Use Protocol row in the block's property table.

2. In the Value field, select SOAP or HTTP from the drop-down list.

Composer Help 420

Server-Side Common Blocks

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Input Parameters Property

Note: The Web Service block won't work with IRD if the Web Service parameters are named double
since URS considers it a reserved keyword. The same Web Service block will work fine in the voice
application. After you have chosen the available service and operations which you want to invoke,
along with bindings, service end point, and protocol, use the Input Parameters property to specify a
list of required Name/Value pairs to pass as parameters to the Web Service URL. To specify input
parameters:

1. Click the Parameters row in the block's property table.

2. Click the Bz putton to open the Parameter Settings dialog box.

Add Button
Use the Add button to enter parameter details.

1. Click Add to add an entry to Web Service Parameters.
2. In the Parameter Name field, accept the default name or change it.

3. From the Parameter Type drop-down list, select In, Out, or InOut:

Composer Help 421

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Server-Side Common Blocks

Input parameters are variables submitted to the

In .
web service.

Output parameters are variables that the web
Out service returns and will be reassigned back to the
current callflow/workflow.

InOut parameters are parameters that act as both

InOut input and output.

4. In the Expression drop-down list, select from among the variables shown, type your own expression,
or click the EZ3d button to use Skill Expression Builder.

5. In the Definition field, type a description for this parameter.

6. Click Add again to enter another parameter, or click OK to finish.
Delete Button
To delete a parameter:

1. Select an entry from the list.

2. Click Delete.

Timeout Property

Select the variable containing the number of seconds that the application will wait when fetching the
result of the Web Service or the Web Request. If the requested resource does not respond in that
time, then a timeout event will occur.

Custom HTTP Headers Property

Use this property to add Custom headers to be sent along with the HTTP request during the runtime
execution of the Server Side block.

1. Click the row in the block's property table.

2. Click the EZ putton to open the Custom HTTP Headers dialog box.
3. Click Add to open Configure Custom HTTP Headers dialog box.

Note: The list of headers is a standard list defined by the HTTP protocol. You can optionally specify a
list of headers. For each header, the name can be selected from the drop down list or keyed in. The
value can be specified as literal values or as variable. There is no special format.

1. Select a Header type.

2. Select Literal or Variable.

3. Type the literal value or select the variable that contains the value.

Composer Help 422

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SkillExpressionBuilder

Server-Side Common Blocks

Authentication Type Property

To assign a value to the Authentication Type property:

1. Select the Authentication Type row in the block's property table.

2. In the Value field, select from the following:

Anonymous--With the anonymous type of access, no user name/password is passed to Web
service for client authentication in order to get data.

HTTP Basic Authentication--HTTP Protocol level Basic Authentication using Authorization
header. If you select the basic type of access, you must supply the Login Name and
Password properties.

SOAP Message Level Basic Authentication--SOAP Message level Basic Authentication for
legacy Web Services using <BasicAuth> header.-- Rarely used but for compatibility.

SOAP XML Signature Authentication--SOAP Message level XML Digital Signature
Authentication using Client Certificate.

SOAP Signature with HTTP Basic Authentication--SOAP Message Level XML Digital
Signature Authentication using Client Certificate + HTTP Basic Authentication (for the Web
Server level).

Basic HTTP Authentication properties in the Web Service block are validated only
during runtime in the server-side pages (ASPX/JSP). For design time, WSDL parsing
authentication is not supported. You can copy the WSDL file to the Include folder
within the required Composer Project folder and specify include/<filename.wsdl>
in the Service URL property to parse the WSDL file and configure the block.

Login Name Property

The Login Name property specifies the login name for the invoked web page. To provide a login name
for the web request:

1. Select the Login Name row in the block's property table.

2. In the Value field, type a valid login name.

Password Property

The Password property specifies the password for the invoked web page. To provide a password for
the web request:

Composer Help 423

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessageExamples#Basic_Authentication

Server-Side Common Blocks

1. Select the Password row in the block's property table.

2. In the Value field, type a valid password that corresponds to the login name above.

Certificate Store Name Property

Use this property to specify the name of the Windows Certificate Store. See Web Service Block and
Signed SOAP Requests. To select a variable:

1. Select the Certificate Store Name row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list.

Certificate Alias Property

Use this property to specify the Client Certificate Name. See Web Service Block and Signed SOAP
Requests. To select a variable:

1. Select the Certificate Alias row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list.

Certificate or Key Store Location Property

Use this property to specify the location of the Certificate Store or Key Store. See Web Service Block
and Signed SOAP Requests. To select a variable:

1. Select the Certificate or Key Store Location row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list.

Key Algorithm Property

Select DSA (default) or RSA to specify the Key Algorithm to sign the SOAP Digital Signature. See Web
Service Block and Signed SOAP Requests. Use this property to specify the Key Store Password. See
Web Service Block and Signed SOAP Requests. To select a variable:

1. Select the Key Algorithm row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list.

Composer Help 424

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSOAPMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables

Server-Side Common Blocks

Key Store Password Property

To select a variable:

1. Select the Key Store Password row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list. Does not need to match
the variable name that is coming back as a result of the web request.

Private Key Property

Use this property to specify private key of the Client Certificate. See Web Service Block and Signed
SOAP Requests. To select a variable:

1. Select the Private Key row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list.

Private Key Password Property

Use this property to specify the private key password. See Web Service Block and Signed SOAP
Requests. To select a variable:

1. Select the Private Key Password row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list.

Custom Prefix Property

Use this property to set custom namespace to the generated SOAP message tags. If this property is
set it will overwrite the default / WSDL namespace prefix.

Note: To access this property, ensure that the Show Advanced Properties option is selected on
the toolbar.

Add Namespace Prefix Property

Use this property to add Namespace prefix to the generated SOAP message. By default Composer
Web Service client doesn't generate namespace prefixes.

1. None - Do not add any namespace prefix to the SOAP:Body elements.

2. Method Name Tag Only - Add namespace prefix only to the Method Name tag (Operational name tag).

Composer Help 425

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSoapMessage
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSoapMessage
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSoapMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceSoapMessages
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Voice_Application_Variables

Server-Side Common Blocks

3. Method Name Tag and Child Tags - Add namespace prefix to all the tags in the SOAP message.

Note: To access this property, ensure that the Show Advanced Properties option is selected on
the toolbar.

Custom SOAP Envelope Property

Use this property to set Custom SOAP Envelope messages. If this property is set, the Composer Web
Service run-time client will use this message to get a Web Service response.

1. Click the Custom SOAP Envelope property under the SOAP Message Generation category. The
Custom SOAP Envelope dialog is displayed.

2. Add the custom SOAP Envelope message (the message can be generated using any Web Service client
tool).

{:-'r SOAP Envelope Builder

Buld Custom SOAP Erwvelope message by selecting the Application variables

Expression field | type fiter text

; <soapeny:Envelope xmins:soapeny ="hitp:/fschemas. xmlsoap. org fsoap fenvelope/™> :J B [Workfiow variabb '

<soapenyv:Header > ol

3 <ServiceOutputHeader xmins="http: [fbrokerage. fmr.com fns/fbe/messages/2003-08"> H [System

4 <ControllerHostame/> B O user

5 <fServiceOutputHeader >

s o e
7 <spapenv:Body:> 4 varl Enter O
8 <INBOUND _UPDATE_SERVICE ST xmins="http: fbrokerage. fr .com/ns fedbfservices/eDB InBoundCSDServices 2003

9 <SERVICE_REQUEST_ID > VICE_REQUEST _ID =

10 <SYSTEM_STATUS_CD>PENDING</SYSTEM_STATUS (D>

11 < /INBOUND _UPDATE _SERVICE_REQUEST >

12 <fsoaperv:Body>

13 <fsoapenyv:Envelope >

i4

15

Insert |
E\ternemi:tinn
itial valuewundefined
a| | _rIJ

Row:9 Column;:39

Composer Help 426

Server-Side Common Blocks

Custom SOAP Envelope Dialog

The custom message is sent to the Web Service URL at run-time. Diagram application variables can
be used to form dynamic contents. Variables can be used in the custom message with a
$<Variable_Name>$ notation.

Note:
1. To access this property, ensure that the Show Advanced Properties option is selected on the toolbar.

2. This property is supported for both Java Composer Projects and .NET Composer Projects.

3. Callflow-Root document variables and Workflow-Project variables are not supported in this property.

Output Result Property

When the Map Output Values to Variables property above is set to true, the Output Result property
maps the Web Service response keys to AppState variables. If Map Output Values to Variables is set
to false, the entire Web Service response will be assigned to a variable. The Output Result property is
the variable used to get back the invoked Web Service result. To select a variable:

1. Select the Output Result row in the block's property table.

2. In the Value field, select one of the available variables from the drop-down list. Does not need to match
the variable name that is coming back as a result of the web request.

Map Output Values to Variables Property

The Map Output Values to Variables property indicates whether or not to map the Web Service
response keys to AppState variables. To select a value for the Map Output Values to Variables
property:

1. Select the Map Output Values to Variables row in the block's property table.

2. In the Value field, select true or false from the drop-down list.

Example Block Properties

Example properties for a Web Service block are shown below.

Composer Help 427

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock#Map_Output_Values_to_Variables

Server-Side Common Blocks

Pr Valus

M 12 getGoldr.ate
[=] Information

Service URL LZ hitkpe: fwnane, webservices. net fCurrency Convertor . asmx PWSDL
= Irvvoking Configurations

Aovailable Services 'S CurrencyConverbor

Eandings L2 CurrencyConverborSoap

Ohpisrakions SE Conwversionf.abe

Service End Poink V5 hitkp: fhwnenar, webservices.net fCurrency Convertor . asm

Use Protocol 12 S0AP
[= Paramsters

Input Parameters < Skubbed Parameten{FromCurrency,input), Stubbed Parameter(ToCurrency, input)
=l Security

Authentication Type 15 anomymous

Login Manme =

Password =

[= “Web Service Result
Map Qutput Yalues To Varisbles e rue
Cutpuk Result < Stisbbed Parameter(\WebServiceResponseiessage, output)

ExampleWebService.gif

Web Services Description Language (WSDL) Support

Composer supports WSDL definitions conforming to the version WSDL 1.1 schema.

Errors in WSDL Parsing

The following Composer symptom may indicate errors in WSDL parsing:

e If the WSDL definition contains any of the unsupported types and elements, Composer may not be able
to parse the WSDL correctly to identify the input and output parameters of the Web Service.

e |f the Composer WSDL parser is unable to properly parse the WSDL definition for the Web Service, the
input and output parameters fields in the Web Service Parameters dialog box might be empty, with no
pre-configured parameters as shown below.

Composer Help 428

Server-Side Common Blocks

Parameter Settings |

Web Service Parameters

Parameter Mame | Type | Yariable | Data Tvpe | add

Ik Zancel

Workarounds
Currently, the following workarounds are available to change the schemas to work with Composer:

¢ Use qualified elementFormDefault (elementFormDefault="qualified") and define types with fully
qualified namespace definitions.

¢ Define all wsdl types in one schema.
* Replace reference attributes with the actual types being referenced.

e Use the Add/Delete buttons to add or remove any parameters that may not have been automatically

displayed. The SOAP request that will be generated at application runtime will take these changes into
account.

Note

Composer Web Service Block generated SOAP messages does not have prefix in the SOAP elements.
Web Services created using Metro / JAX-WS framework may return Null Pointer Exception or
Unexpected Result due to the prefix limitation. Updating the JAX-WS API's / GlassFish server / Metro
WS Framework to latest versions may help.

Composer Help 429

Server-Side Common Blocks

Composer Help 430

Server-Side Common Blocks

Web Service Stubbing

Composer's Web Services stubbing feature allows you to work with Web Services in off-line mode
when you do not have access to the Web Service itself or if the Web Service is under development.
This feature is intended to be used in a test environment. It is not intended for a production
environment unless there is need to remove an active Web Service from a callflow for debugging

purposes.

Using Web Services Stubbing

To use Web Services stubbing:

1. To enable stubbing, add the variable COMPOSER_WSSTUBBING to your Entry block and set its value to 1
indicating stubbing is turned on (0 = stubbing is turned off). In Composer 8.0.2 and later, this variable

is present by default in the Variables Setting dialog box, which opens from the Entry object.

2. Create the Web Service block.

3. Place the Web Service Description Language (WSDL) file in your Project. The assumption is that the

WSDL file for the Web Service is available at all times.

4. For the Service URL property, use a local URL to the WSDL file. When the Web Service is ready to be

used, change this local URL to the correct URL.)

5. To specify the expected output value for the Web Service result as well as any output parameters, use

the Output Result property of the Web Service block. An example is shown below.

f Farameter SEHII'II;I'S !I
WebService Parameters
Narne | Paramster T Variable | Daka T alue
|SquareiethodwithinCutResponse. SquareiiethodwithInOutResul Out _ rwyResuk sint Some resuk
SquarettethodWithInOutResponse. num 13 yCastput] szint S outbpuk
1] |]
O I Cancel I

above examples:

Using the

e |f stubbing is on, the myResult variable will be assigned the value Some result and myOutputl will be

Composer Help

431

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows#Variable_Settings
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock#Service_URL_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock#Output_Result_Property

Server-Side Common Blocks

assigned the value of Some output.

e |f stubbing is off, the value returned by the Web Service will be stored in these two variables.

Limitation

Web Service stubbing currently does not support auto-synchronization of output parameters in case
of Web Services with complex return types.

Composer Help 432

Server-Side Common Blocks

Web Service SOAP Messages

Use the examples below when configuring the Web Service block.

SOAP Message Level Basic Authentication

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<h:BasicAuth xmlns:h="http://soap-authentication.org/basic/2001/
10/" mustUnderstand="1">
<Name>UserName</Name>
<Password>Pass</Password>
</h:BasicAuth>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<p:getNumber xmlns:p="http://webservice.com"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Message Signed Using Client Digital Certificate (DSA Key
Algorithm)

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd" SOAP-ENV:mustUnderstand="1">

<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#" Id="SIG-2">

<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
<ec:InclusiveNamespaces xmlns:ec="http://www.w3.0rg/2001/10/xml-exc-cl4n#" PrefixList="SOAP-

ENV" />

</ds:CanonicalizationMethod>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal"/>

<ds:Reference URI="#id-1">

<ds:Transforms>

<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"><ec:InclusiveNamespaces
xmlns:ec="http://www.w3.0rg/2001/10/xml-exc-cl4n#" PrefixList=""/>

</ds:Transform>

</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal"/><ds:DigestValue>yMmgdHRevOnFPGtnSZx4JV9hiul=</ds:DigestValue></ds:Reference></ds:SignedInfo><ds:
Id="KI-8D7856F18A7AB8CF5613098009924472">

<wsse:SecurityTokenReference wsu:Id="STR-8D7856F18A7AB8CF5613098009924473">

<wsse:KeyIdentifier EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
soap-message-security-1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-x509-token-
profile-1.0#X509v3">MIICwDCCAn2gAwIBAgIETfBxZzALBgcqhkj00AQDBQAwQzELMAKGA1UEBhMCVVMxDDAKBgNVBAOTAIN1bjERMA8SGA1U
yZmC3a51QpaSfn+gEexAiwk+7qdf+t8Yb+DtX58aophUPBPuD9tPFHSMCNVQTWhaRMvZ1864rYdcq7/
TiAxmdOUgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGBAPfhoIXWmz3ey7yrXDad4V7151K+7+jrqgvXTAs9B4InUV1Xj rruwu/

Composer Help 433

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock

Server-Side Common Blocks

mcQcQgYCOSRZxI+hMKBYTt88IMozIpuE8FngLVHYNKOC]j rh4rs6Z1kW6j fwv6ITVi8ftiegEkO8yk8b60oUZCIqIPf4VrinwaSi2ZegHtVIWQBTD
5Ykhco61MBRRncIwGuWB/mFPhaX80dfj8NMEih1+ICIjhVwGk1lp6P3Gu2Dm+45TYJICxBktdOlUQuy/
Uj8E61NZSaeQL9WA49gGz5Hb5uMAsGBYyqGSM44BAMFAAMWADATAhQQqTbMbOhd1vpBAAINntCDSOY5uP2AIVAIGY1E7Zx4268n3fD34gLlcpkZoKc</
</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-

utility-1.0.xsd" wsu:Id="id-1">

<p:methodName xmlns:p="http://example.com"><key>value</key></p:methodName>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Message Signed Using Client Digital Certificate (RSA Key
Algorithm)

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd" SOAP-ENV:mustUnderstand="1">

<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#" Id="SIG-2">
<ds:SignedInfo><ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#">
<ec:InclusiveNamespaces xmlns:ec="http://www.w3.0rg/2001/10/xml-exc-cl4n#" PrefixList="SOAP-
ENV" />

</ds:CanonicalizationMethod>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

<ds:Reference URI="#id-1">

<ds:Transforms>

<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"><ec:InclusiveNamespaces
xmlns:ec=

"http://www.w3.0rg/2001/10/xml-exc-cl4n#" PrefixList=""/>

</ds:Transform>

</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>yMmgdHRevOnFPGtnSZx4JV9hiul=

</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>
<ds:SignatureValue>MX9c9C5Tpfvp32e2pPjkCv4ycZhcuZVMFHo8D1GKWi331fnG3oqXLg==</ds:SignatureValue>
<ds:KeyInfo Id="KI-8D7856F18A7AB8CF5613098009924472">

<wsse:SecurityTokenReference wsu:Id="STR-8D7856F18A7AB8CF5613098009924473">

<wsse:KeyIdentifier EncodingType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
soap-message-security-1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/2004/01/
0as1s-200401-wss-x509-token-
profile-1.0#X509v3">MIICwDCCAn2gAwIBAgIETfBxZzALBgcqhkj00AQDBQAwWQzELMAKGA1UEBhMCVVMxDDAKBgNVBAOTAIN1bjERMA8SGA1U
yZmC3a51QpaSfn+gEexAiwk+7qdf+t8Yb+DtX58aophUPBPuD9tPFHSMCNVQTWhaRMvZ1864rYdcq7/
TiAxmdOUgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGBAPfhoIXWmz3ey7yrXDad4V7151K+7+jrqgvXTAs9B4InUV1Xj rruwu/
mcQcQgYCOSRZXI+hMKBYTt88JIMozIpuE8FngLVHYNKOC]j rh4rs6Z1kW6j fwv6ITVi8ftiegEkO08yk8b60UZCIqIPf4VrinwaSi2ZegHtVIWQBTD
5Ykhco61TMBRRncIwGuWB/mFPhaX80dfj8NMEih1+ICIjhVwGk1lp6P3Gu2Dm+45TYJICxBktd0OlUOuUy/
Uj8E61NZSaeQLI9WA4gGz5Hb5uMAsGByY qGSM44BAMFAAMWADAtAhQQqTbMb9hd1vpBAAINntCDSOY5uP2AIVAIGY1E7Zx4268n3fD34gLcpkZoKc</
</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-

Composer Help 434

Server-Side Common Blocks

utility-1.0.xsd" wsu:Id="id-1">

<p:methodName xmlns:p="http://example.com"><key>value</key></p:methodName>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Composer Help 435

Server-Side Common Blocks

Signed SOAP Requests

The Web Service block enables Composer applications to invoke Web Services, which require
message-level authentication. The message level security support provided by the Web Service block
is limited to one-way signed SOAP requests from the Composer application to the Web Service. Web
Services can then verify that the request received from a Composer application includes a valid
certificate.

Prerequisites

The prerequisites are:
e Web Service is able to verify only the signature (Timestamp, UsernameToken and Encryption are not
supported).

* Web Service sends an unsigned response, i.e., Web Service is not configured to process outgoing
response (only InflowSecurity is configured).

e X.509 certificate for the client is available and is trusted by the Web Service. Certificates can be
purchased from a certificate authority or can be generated (for testing) using tools, such as OpenSSL.

¢ Certificates should be based on one of the supported encryption algorithms, RSA or DSA.
» Certificate Stores:

e For Java projects, certificates and keys should be available in a Java Keystore (*.jks file). OpenSSL and
Keytool (available in JDK 1.6) can be used to create and import certificates.

e For .NET projects, certificates and keys should be available in the Windows Certificate Store. OpenSSL
can be used to create certificates and Certificates (snap-in in Microsoft Management Console) can be
used to import certificates.

e For .NET projects, WSE 3.0 (runtime) should be installed on the machine running Composer.

Enabling Signing of SOAP Messages

To enable signing of SOAP messages, set the Authentication Type property in the Security section to
one of the following values
* SOAPDigitalSignatureAuthentication -- for signing messages when not using HTTP Basic authentication.

¢ SOAPSignatureWithHTTPBasicAuthentication -- for signing messages when used along with HTTP Basic
Authentication (Security Basic Authentication Credentials section is specified)

Once enabled to sign the request, the application will need information regarding the public key
(certificate) and private key (key) as below:

e Certificate Store Name (.NET only) -- Windows Store Name containing the client certificate and private
key. Value should be one of the following predefined Windows Certificate Stores or the name of a

Composer Help 436

Server-Side Common Blocks

custom Store in which the certificate and key are stored. Note that this Store should contain the client
certificate (should include the private key as well).

e AddressBook -- The X.509 Certificate Store for other users.
¢ My -- The X.509 Certificate Store for personal certificates.
e TrustedPeople -- The X.509 Certificate Store for directly trusted people and resources.

» Certificate Alias -- Alias that identifies the certificate and key in the Store. For .NET projects, this refers
to the subject of the certificate, e.g., CN=ComposerCertificate.

e Certificate or Key Store Location -- Path to the Certificate Store location containing the certificate and
private key. In .NET, the value should be set to one of the following:

¢ StorelLocation.LocalMachine (default when value is not one of these)
e StorelLocation.CurrentUser

e Key Algorithm -- Algorithm to be used for encryption. This is the same as the algorithm that was
specified when the key was generated; usually received from the certificate authority issuing the
certificate.

e Key Store Password (Java only) -- Java Key Store password for the key store specified as the key store
location.

* Private Key Alias (Java only) -- Alias by which the private key is identified in the key store.

e Private Key Password (Java only) - Password to access the private key to be used when signing a
message. For .NET projects, it is expected that the password be stored as part of the settings for the
certificate.

At run time, the Composer application will create a SOAP message and then sign it using its private
key. The signed message will include an encrypted signature in the SOAP header and the SOAP
request as the body. This sighed message is sent to the Web Service for processing. Web Service will
decrypt the signature using the client certificate (public key previously imported into the Web Service
certificate store) and hence authenticating that the source of the request is valid.

Signature Validation Failure Causes

Signature Validation by the Web Service may fail for the following reasons:

e Syntax of request (signature) doesn't conform to the policy enforced by the Web Service. Example:
Timestamp is required by the Web Service but was not included in the request because Composer
doesn't support Timestamp policy.

* Validation of signature failed. Example: Web Service uses RSA key, but the request was signed using
DSA key.

e Application validation policy rejects the request. Example: Signature created by an untrusted key.

Once signature validation is successful, the Web Service will process the request and then send the
unsigned response back to the Composer application. Composer processes the response without
signature validation. The above will ensure that Web Services will process requests only from
legitimate clients, the Composer application being one of them.

Composer Help 437

Server-Side Common Blocks

Connection and Read Timeout

By default, the Web Service and Web Request blocks use 20 seconds each for the connection timeout
and read timeout. The following steps describe how to configure the timeouts:

1. Create a new folder called WEB-INF inside the Composer Project.

2. Create a property file named composer.properties inside the WEB-INF folder.

3. Add the following properties (case-sensitive) to composer.properties with the timeout values:

e web.connectionTimeout=40000

¢ web.readTimeout=40000

The value specified should be in milliseconds. The connectionTimeout property is a specified timeout
value, in milliseconds, to be used when opening a communications link to the resource referenced by
the URL. The readTimeout property is a nonzero integer value, in milliseconds, to be used when
reading from an input stream when a connection is established to a URL resource.

Composer Help 438

Server-Side Common Blocks

Server-Side Troubleshooting

The table below lists Server Side block troubleshooting situations and steps to remedy.

Situation

| entered the Service URL but
getting a pop-up with Check the
Web Service URL

| entered the Service URL and |
can choose the SOAP operations,
but the parameters do not show
up in the dialogs

Using the Web Services Explorer
utility

Errors during runtime

| copied my callflow/workflow
from one project to another but
my Backend block does not work

Block

Web Service Block

Web Service Block

Web Service Block

Web Service Block

Web Request Block Backend Block

Backend Block

Steps to Troubleshoot

Verify that the WSDL definition is
accessible in a web browser.

Check the Composer logs for possible
errors in fetching the WSDL. Location:
<workspace>\.metadata Check that the
WSDL definition is accessible and test
with the Web Services Explorer utility as
described in the Troubleshooting section.

Verify that the WSDL definition is
accessible in a web browser.

Check the Composer logs for possible
errors in fetching the WSDL. More details
can be found in the logs in the following
location:
<workspace>\.metadata\.plugins\
com.genesyslab.studio.model folder
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

The Web Services Explorer is a
JSP Web application hosted on
the Apache Tomcat servlet
engine contained within Eclipse.
The Web Services Explorer is
provided with Composer and
allows you to explore, import,
and test WSDL documents.

Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

Check the Composer logs for
possible errors in fetching the
WSDL.

Check the backend logs. For ASP.NET
projects, check the IIS logs For Java
Projects, check the Tomcat standard logs.
Check that the WSDL definition is
accessible and test with the Web Services
Explorer utility as described in the
Troubleshooting section.

Check that any custom backend
libraries or applications have also
been copied to the new project.

Composer Help

439

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceBlockIssues#Explorer_Utility
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceBlockIssues#Explorer_Utility
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceBlockIssues#Explorer_Utility
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceBlockIssues#Explorer_Utility
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceBlockIssues#Explorer_Utility
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebRequestCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceBlockIssues#Explorer_Utility
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WebServiceBlockIssues#Explorer_Utility
https://docs.genesys.com/Documentation/IW/8.1.3/Help/BackendCommonBlock

Server-Side Common Blocks

Backend block

Logs:
¢ Java Composer Projects Server Side Backend logging can be controlled using the log4j.xml file present
in the $ComposerInstalledLocation\tomcat\lib folder.
* For DotNetComposer Projects web.config file can be used to control the Server Side logging.

¢ Java Composer Projects exported as WAR files will have the 1og4j.xml bundled inside the WEB-INF\1lib
folder. If the lLog4j .xml configuration format is not working, you can add a log4j.properties in the
tomcat/webapps/<application name>/WEB-INF/classes folder.

Notes:

e Service URL has to end with wsdl or WSDL

e Cannot use - or other reserved characters in the Entry block for a variable value. Enter the value
directly in the input parameters dialog by typing the value in the Expression column as a string;
example: 'atm near 37.771008, -122.41175'

Composer Help 440

Outbound Common Blocks

Qutbound Common Blocks

The Outbound blocks support Genesys Outbound Contact, an automated product for creating,
modifying, running, and reporting on outbound campaigns for proactive customer contact. Outbound
Contact Solution (OCS) provides automated dialing and call-progress detection, so that an Agent is
required only when a customer is connected. Composer supplies the following Outbound blocks:

Block Name Block Description
Automates building of Calling Lists by adding a new
Dl LR record to a specified Calling List.
Cancel Record Cancels a customer record in a calling list.
Adds a contact record, such as a phone number or
Do Not Call an e-mail address, to a specified Do Not Call List
and marks the corresponding record as Do Not Call.
Record Processed Marks a record as requiring no further handling.

Reschedules a customer interaction from the

Reschedule Record specified Calling List.

Updates a Calling List record that you specify via a

Update Record RecordHandle parameter.

OCS Variables

The Outbound blocks use OCS variables for SCXML applications and OCS variables for VXML

applications, present in the Entry blocks of their respective diagrams. These variables are prefixed by
"OCS_" and are added to the Entry by default.

Using the Outbound Blocks

Outbound blocks are specifically designed to be used in callflows/workflows that are configured to
work with Outbound records, the essential element of which is communication between Universal
Routing Server (URS) and Interaction Server, and between Interaction Server and OCS. For additional
information, see:

e Qutbound Contact 8.1 Deployment Guide

e Qutbound Contact 8.1 Reference Manual

Composer Help 441

https://docs.genesys.com/Documentation/IW/8.1.3/Help/AddRecordBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CancelRecordBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DoNotCallBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordProcessedBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RescheduleRecordBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UpdateRecordBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesProjectandWorkflow#System_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#System_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#System_Variables

Outbound Common Blocks

Add Record Block

Use this block to automate building of Calling Lists by adding a new record to a specified Calling List.
For example, you can use the Add Record block to automatically develop a Calling List, such as one to
follow up on inbound calls that were abandoned during traffic peaks. You can then configure a routing
workflow to detect abandoned calls and add records to the Calling List with the parameters of the
incoming interactions. The Calling List can then be used by an outbound campaign that dials out to
these customers during off-peak hours and has the Agent apologize and follow up. Also see:

¢ OCS Application Variables
¢ Using the Outbound Blocks

This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Contact Info Property

Click the down arrow and select the variable that contains the contact telephone number (home,
work, cell), FAX number, or e-mail address.

Contact Info Type Property

Click the down arrow and select a Contact Information Type: No Contact Type, Home Phone,
Direct Business Phone, Business with Extension, Mobile, Vacation Phone, Pager, Modem,
Voice Mail, Pin Pager, Email Address, Instant Messaging.

Composer Help 442

https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks#OCS_Application_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks#Using_the_Outbound_Blocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property

Outbound Common Blocks

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Record Status Property

Click the down arrow and select a record status, such as Ready, Retrieved, Updated, Stale,
Cancelled, Agent Error, Missed Callback.

Record Type Property

Click down arrow and select the Type of record, such as No Record Type, Unknown, General,
Campaign Rescheduled, Personal Rescheduled, Personal Callback, Campaign CallBack, No
Call.

Composer Help 443

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Outbound Common Blocks

Call Time Property
This property specifies the time when record was called.

1. Click under Value to display the 3 button.

. Click the E&&d putton to open the Call Time dialog box.

N

3. From the Type dropdown, do one of the following:

e Select Literal from the dropdown menu and then specify the call date and time.

¢ Select Variable from the dropdown menu and then select the variable that contains the call
timetime.

4. Click OK to close the dialog box.

Call Time From Property

This property specifies the time frame when a record can be called.

1. Click under Value to display the Ez1 button.
2. Click the K& button to open the Call Time From dialog box.

3. From the Type dropdown, do one of the following:

e Select Literal from the dropdown menu and then specify the time.

e Select Variable from the dropdown menu and then select the variable that contains the
time.

4. Click OK to close the dialog box.

Call Time Until Property
This property specifies the time frame when a record can be called.

1. Click under Value to display the £ button.

2. Click the EZ button to open the Call Time Until dialog box.

3. From the Type dropdown, do one of the following:

e Select Literal from the dropdown menu and then specify the time.

e Select Variable from the dropdown menu and then select the variable that contains the
time.

Composer Help 444

Outbound Common Blocks

4. Click OK to close the dialog box.

Scheduled Date and Time Property
This property specifies the date/time at which scheduled call should be dialed.

1. Click under Value to display the B button.

. Click the Ez putton to open the Scheduled Data and Time dialog box.

N

3. From the Type dropdown, do one of the following:

e Select Literal from the dropdown menu and then specify the date and time.

¢ Select Variable from the dropdown menu and then select the variable that contains the date
and time.

4. Click OK to close the dialog box.

Time Zone Property

This property specifies the name of a Time Zone, associated with the customer record and configured
in Configuration Server.

1. Click under Value to display the E= putton.

. Click the EZ putton to open the Time Zone dialog box.

N

3. From the Type dropdown, do one of the following:

e If you are connected to Configuration Server, select Configuration Server from the
dropdown menu. Select the Time Zone from the Value field.

¢ Select Literal from the dropdown menu and then enter the Time Zone in the Value field.

¢ Select Variable from the dropdown menu and then select the variable that contains the
Time Zone from the Value field.

4. Click OK to close the dialog box.

Attempts Property

Click the down arrow and select the variable that specifies the maximum number of attempts to dial
the record in the Calling List during one Campaign.

Composer Help 445

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Configuration_Server

Outbound Common Blocks

Calling List Property
This property specifies the name of a Calling List, which is configured in Configuration Server.

1. Click under Value to display the 3 button.

. Click the E& pbutton to open the Calling List dialog box.

N

3. From the Type dropdown, do one of the following:

e If you are connected to Configuration Server, select Configuration Server from the
dropdown menu. Select the Calling List from the Value field.

¢ Select Literal from the dropdown menu and then enter the Calling List in the Value field.

¢ Select Variable from the dropdown menu and then select the variable that contains the
Calling List from the Value field.

4. Click OK to close the dialog box.

Call Result Property

Click the down arrow and result code as defined in a Configuration Manager Enumeration table, such
as Abandoned, Agent Callback Error, All Agents Busy, Answer, Answering Machine Detected, Bridged,
Busy, Call Drop Error, and so on.

Campaign Property

This property specifies the name of an Outbound Campaign associated with the Calling List, which is
configured in Configuration Server.

1. Click under Value to display the =2 button.

. Click the EZ putton to open the Campaign dialog box.

N

3. From the Type dropdown, do one of the following:

e If you are connected to Configuration Server, select Configuration Server from the
dropdown menu. Select the Campaign from the Value field.

e Select Literal from the dropdown menu and then enter the Campaign in the Value field.
¢ Select Variable from the dropdown menu and then select the variable that contains the
Campaign from the Value field.

4. Click OK to close the dialog box.

Composer Help 446

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Configuration_Server
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkflowPostInstallation#Configuration_Server

Outbound Common Blocks

Chain ID Property

Click the down arrow and select the variable that contains a unique chain identifier (optional). If
missing, it is assumed that a record forms a new chain.

Chain N Property

Click the down arrow and select the variable that contains a uniqgue number in a chain (optional). If
missing, the next available number is assigned.

OC Server Property

This property identifies the Outbound Contact Server that will interact with the block. You can specify
a different OCS application for a specific block. By default, the OCS_URI application variable is used. If
the datasource is Config Server, Composer will read the OCS host, listening port and connection
protocol from config server. If the datasource is Literal/Variable, the format should be
[http|https]://<host>:<port>.

User Data Property

Use this property to specify key-value pairs for user data attached to the interaction.

1. Click under Value to display the Ez3 button.

2. Click the EZ button to open the User Data dialog box.

3. Click Add to open the Select Items dialog box.

4. Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.
5. Opposite Value, click the down arrow and select either literal or variable.

e If you select Literal, enter the name of the key in the second field.
e If you select Variable, select the name of the variable from the second field.

e Select the Value is numeric box if applicable.

6. Click OK to close the Select Items dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.

8. Click OK when through in the User Data dialog box.

Composer Help 447

https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks#OCS_Application_Variables

Outbound Common Blocks

Cancel Record Block

Use this block to cancel a customer record in a calling list. You can identify the customer record to
cancel by using the Record Handle, Contact Info, or Customer ID property (one of these must be
specified). If you specify more than one of these properties, the identifiers are prioritized as follow:
Record Handle (highest), Contact Info, Customer ID (lowest). This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 448

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Outbound Common Blocks

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Contact Info Property

Select the variable that contains contact information, such as telephone number (home, work, cell),
FAX number, or e-mail address. This parameter can be used for Inbound calls to reference the
customer record when Record Handle is not available.

Customer ID Property

Select the variable that identifies the customer when a user-defined field is present in the calling list
as described in the Outbound Contact 8.1 Deployment Guide. You can use for Inbound calls to
reference the customer record when Record Handle is not available.

OC Server Property

This property identifies the Outbound Contact Server processing this Calling List. By default, the
OCS_URI application variable is used. If the datasource is Config Server, Composer will read the OCS
host, listening port and connection protocol from config server. If the datasource is Literal/Variable,
the format should be [http|https]://<host>:<port>.

Record Handle Property

Select the variable that identifies the customer using the Record ID assigned by Outbound Contact
Server if available. Either Record Handle, Contact Info or Customer ID must be specified.

Composer Help 449

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks#OCS_Application_Variables

Outbound Common Blocks

Tenant Property

Select the variable that identifies the tenant associated with the Calling List.

Update Record Chain Property

Select False to indicate if only the customer record should be cancelled. Select True if all records
chained to the customer record should be canceled.

Composer Help 450

Outbound Common Blocks

Do Not Call Block

Use this block to add a contact record, such as a phone number or an e-mail address, to a specified
Do Not Call List and marks the corresponding record as Do Not Call. Note: Do not use the Do Not Call
and Record Processed blocks to finalize Outbound record processing. You cannot use other Outbound
blocks to process records with the same Record Handle after using Processed or Do Not Call in a
workflow. This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 451

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Outbound Common Blocks

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Contact Info Property

Select the variable that contains contact information, such as telephone number (home, work, cell),
FAX number, or e-mail address. This parameter can be used for Inbound calls to reference the
customer record when Record Handle is not available.

Customer ID Property

Select the variable that identifies the customer when a user-defined field is present in the Calling List
as described in the Outbound Contact 8.1 Deployment Guide. You can use for Inbound calls to
reference the customer record when Record Handle is not available.

OC Server Property

This property identifies the Outbound Contact Server processing this Calling List. By default, the
OCS_URI application variable is used. If the datasource is Config Server, Composer will read the OCS
host, listening port and connection protocol from config server. If the datasource is Literal/Variable,
the format should be [http|https]://<host>:<port>.

Record Handle Property

Select the variable that identifies the customer using the Record Handle if available. Either Record
Handle, Contact Info or Customer ID must be specified.

Composer Help 452

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks#OCS_Application_Variables

Outbound Common Blocks

Tenant Property

Select the variable that identifies the tenant associated with the Calling List.

Update Record Chain Property

Select False to indicate if only the customer record should be cancelled. Select True if all records
chained to the customer record should be canceled.

Composer Help 453

Outbound Common Blocks

Record Processed Block

Use the Record Processed block to mark a record as requiring no further handling. When an Agent
finishes processing a Calling List record, Genesys Desktop sends a RecordProcessed event to indicate
that the record is processed and Outbound Contact Server updates the record accordingly. Use the
Record Processed block in a workflow to have URS request (through Interaction Server) that
Outbound Contact Server finish processing a record created as a result of a customer inquiry. For
additional information on using this block, including returned results and fault codes, consult the
Universal Routing 8.1 Reference Manual and the section on updating call results and custom fields in
the Outbound Contact 8.1 Reference Manual. Note: Do not use the Do Not Call and Record Processed
blocks to finalize Outbound record processing. You cannot use other Outbound blocks to process
records with the same Record Handle after using Processed or Do Not Call in workflow. This block has
the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for

Composer Help 454

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Outbound Common Blocks

Workflow Blocks.

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

OC Server Property

This property identifies the Outbound Contact Server that will interact with the block. You can specify
a different OCS application for a specific block. By default, the OCS_URI application variable is used. If
the datasource is Config Server, Composer will read the OCS host, listening port and connection
protocol from config server. If the datasource is Literal/Variable, the format should be
[http|https]://<host>:<port>.

User Data Property
Use this property to specify key-value pairs for user data attached to the interaction.

1. Click under Value to display the £ button.

Click the K& button to open the User Data dialog box.
Click Add to open the Select Items dialog box.

Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.

vk W

Opposite Value, click the down arrow and select either literal or variable.

¢ If you select Literal, enter the name of the key in the second field.
e If you select Variable, select the name of the variable from the second field.

¢ Select the Value is numeric box if applicable.

6. Click OK to close the Select Iltems dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.

8. Click OK when through in the User Data dialog box.

Composer Help 455

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/OutboundCommonBlocks#OCS_Application_Variables

Outbound Common Blocks

Composer Help 456

Outbound Common Blocks

Reschedule Record Block

Use this block to Reschedule a customer interaction from the specified Calling List. A record is
typically rescheduled during a call when a customer requests a callback at a certain time. For
additional information on using this block, including returned results and fault codes, consult the
Universal Routing 8.1 Reference Manual and the section on updating call results and custom fields in
the Outbound Contact 8.1 Reference Manual. This block has the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 457

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Outbound Common Blocks

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

OC Server Property

This property identifies the Outbound Contact Server (OCS) application that the block will interact
with. It allows you to specify a different OCS application for a specific block. By default, the
OCS_Record_URI application variable is used.

1. Click under Value to display the 3 button.

2. Click the E&id button to open the Application Selection dialog box.

3. The next step depends on whether you are connected to Configuration Server.

e If you are connected, select Configuration Server from the Type dropdown menu. Select the
name of the Outbound Contact Server object from the Value field.

* You can also select Literal and enter the name of the server in the Value field.
* You can also select Variable and select the variable containing the name from the Value field.
If the datasource is Configuration Server, Composer reads the OCS host, listening port, and

connection protocol from Configuration Server. If the datasource is Literal/Variable, use the format
[http|https]://<host>:<port>.

Scheduled Date and Time Property
Specify the date/time at which scheduled call should be dialed.

1. Click under Value to display the £z button.

2. Click the Bz putton to open the Scheduled Date and Time dialog box.
3. The next step depends on whether you are connected to Configuration Server.

4. Do one of the following.

¢ Select Literal and select the date and time from the Value field.

Composer Help

458

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Outbound Common Blocks

¢ Select Variable and select the name of the variable containing the date and time.

¢ Select Delay and select an amount of time to delay from the Value field.

Composer Help 459

Outbound Common Blocks

Update Record Block

Use this block to update a Calling List record that you specify via a RecordHandle parameter. For
example, in Predictive dialing mode, this request can be used to overwrite the call result detected by
call progress detection when needed. Or you can overwrite an answer call result with the wrong party
call result. Note: When this block is executed in a workflow, it results in an External Service Request
(through Interaction Server) to Outbound Contact Server. Since the request goes through Interaction
Server, you must have the Genesys Multimedia product installed and an Open Media component to
handle External Service processing. For additional information on using this block, including returned
results and fault codes, consult the Universal Routing 8.1 Reference Manual and the section on
updating call results and custom fields in the Outbound Contact 8.1 Reference Manual. This block has
the following properties:

Name Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Block Notes Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Exceptions Property

Find this property's details under Common Properties for Workflow Blocks or Common Properties for
Callflow Blocks.

Condition Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Logging Details Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Composer Help 460

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Name_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Block_Notes_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Exceptions_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Condition_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Logging_Details_Property

Outbound Common Blocks

Log Level Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

Enable Status Property

Find this property's details under Common Properties for Callflow Blocks or Common Properties for
Workflow Blocks.

OC Server Property

This property identifies the Outbound Contact Server (OCS) application that the block will interact
with. It allows you to specify a different OCS application for a specific block. By default, the
OCS_Record_URI application variable is used.

1. Click under Value to display the 3 button.

2. Click the E&id button to open the Application Selection dialog box.

3. The next step depends on whether you are connected to Configuration Server.

e If you are connected, select Configuration Server from the Type dropdown menu. Select

the name of the Outbound Contact Server object from the Value field.
¢ You can also select Literal and enter the name of the server in the Value field.

* You can also select Variable and select the variable containing the name from the Value
field.

If the datasource is Configuration Server, Composer reads the OCS host, listening port, and
connection protocol from Configuration Server. If the datasource is Literal/Variable, use the format
[http|https]://<host>:<port>.

User Data Property

Use this property to specify key value pairs for user data attached to the interaction.

Click under Value to display the EZ2 button.

=

Click the EZ21 button to open the User Data dialog box.
Click Add to open the Select Items dialog box.

Opposite Key, leave Literal in the first field and enter the input parameter name in the second field.

vk W

Opposite Value, click the down arrow and select either literal or variable.

Composer Help

461

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Log_Level_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforWorkflowBlocks#Enable_Status_Property

Outbound Common Blocks

e If you select Literal, enter the name of the key in the second field.
e If you select Variable, select the name of the variable from the second field.

e Select the Value is numeric box if applicable.

6. Click OK to close the Select Items dialog box. The User Data dialog box shows your entry.
7. Continue adding parameters in this fashion.

8. Click OK when through in the User Data dialog box.

Composer Help 462

Using Voice Blocks

Using Voice Blocks

This section describes:

¢ Common Properties for Callflow Blocks
* Working with Grammar Builder

¢ Working with CTI Applications

e Working with Prompts

* Working with Database Blocks

* User Data Voice

* Connection Pooling

Composer Help 463

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonPropertiesforCallflowBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithGrammarBuilder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithCTIApplications
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithPrompts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UserDataVoice
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling

Using Voice Blocks

Common Properties for Callflow Blocks

The following properties are common to multiple blocks. Their descriptions are placed here to
minimize duplication of content:

Name Property

The Name property is present in all blocks in Composer. The Name property is the first property for all
blocks. Use the Value field beside in the Name property row of the block's property table to name the

block.
¢ Block names should conform to ECMAScript and VoiceXML identifier naming conventions.
e There is no maximum limit to the number of characters allowed.
¢ Names must consist only of numbers, letters, and underscore characters.
* Names must begin with a letter or underscore.

» Except for the Entry and Exit blocks, you should give all blocks a descriptive name. For example, if an
Input block asks the caller to input an account number, then the name of the block could be
Input_Account_Number.

e The name of the block is used as the Name of the VXML <form> tag that gets generated for that block.
To provide a name for a block:

1. Select the Name row in the block's property table.

2. In the Value field, type a block name that conforms to the restrictions above.

Block Notes Property

Can be used for both callflow and workflow blocks to add comments. When migrating strategies
created with Interaction Routing Designer into Composer as workflow diagrams, this property is the
equivalent of the IRD Object Comments feature. For the IRD objects migrated into Composer blocks,
Composer supplies the note text by combining the IRD equivalent object name plus the original
comments from the IRD object.

Exceptions Property

Use this property to define which exception events the block is designed to handle. These are
VoiceXML events that are either thrown by the interpreter, or generated in response to a caller
action. Note: A catch handler called all has been added to catch all exception events. To handle

(support) a specific event:

Composer Help 464

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents

Using Voice Blocks

1. Click the Exceptions row in the block's property table.

2. Click the Bz putton to open the Exceptions dialog box.
3. From the list of events on the Not Supported pane, select the event that you want to handle.

4. Click the Add > button to move the event to the Supported pane.

An example is shown below.
B3 Exceptions Ed |

Select the items to be supported

Mot Supported Supported
a connection, disconnect. hangup
com.genesyslab, externalmessage Errar
error.com.genesyslab, subdialog, ma: error,com, genesyslab, composer, dbemp
com.genesyslab, composer . boomany all

com.genesyslab, composer, boomany
connection. disconnect. transfer
error.badfetch

error.badfekch. grammar . uri

error . badfetch, grammar, synkax

-1 |
error. badfekch.grammar. load | < Remove |
error. badfetch.http | |

Add =

errar.cam.genesyslab . camposer, ser =< Remove Al
errar.com.genesyslab . composer.inw.
errar.com.genesyslab . composer . rec
errar . com.genasyslab, composer,uns
errar.cam.genesyslab . composer. rec
errar.com.genesyslab . composer, ope
error,com.genesyslab, composer, dbe

error,com.genesyslab, composer, dbtk -
REFOF Com I'|I=II'II=IC'\||'CI.=|I'I Chamnrnser tli—l
3

Add Custom Event

L

< | B

QK I Zancel

To explicitly not handle (not support) a specific event marked as supported:

1. Click the Exceptions row in the block's property table.

2. Click the EZ putton to open the Exceptions dialog box.
3. From the list of events on the Supported pane, select the event that you do not want to handle.

4. Click the < Remove or < Remove All button to move the event (or all events) to the Not Supported
pane.

To rearrange (reorder) the sequence of events on the Supported pane:

1. Click the Exceptions row in the block's property table.

2. Click the EZ putton to open the Exceptions dialog box.

Composer Help 465

Using Voice Blocks

3. From the list of events on the Supported pane, select an event that you want to rearrange.

4. Do one of the following:

* To move the event higher in the sequence, click the Up button.

¢ To move the event lower in the sequence, click the Down button.

Notes:

e Each block has its own predefined set of events on the Exceptions property dialog box. Genesys
recommends that you not remove any of the predefined events from the Supported list.

* Before generating code, each supported event must be handled by connecting its red node on the side
of the block to the inport (input node) of another block.

¢ The events in the Entry block are global in scope.

¢ Events defined in other blocks are local to that block only. When an event is thrown, if a handler for that
event is declared in the current block, that local event handler is called.

e If there is no local event handler for the event, but there is a global event handler declared in the Entry
block, then the global event handler from the Entry block is called.

Condition Property

The Condition property indicates that the log will be active only if the given condition is true at
runtime. To provide a condition setting for a log:

1. Select the Condition row in the block's property table.

2. Type the condition to evaluate against.

For example, assume in Entry block, there is a variable "MyVar==3". Assume also that you would
like to log the session ID (GVPSessionID variable in Entry block) for all sessions where MyVar=3. In
this case you must set the condition to "AppState.MyVar=3". If this condition is true, then
GVPSessionID will be written to the log, otherwise it will be ignored.

Enable Status Property

This property controls whether or not a block contributes code to the application. Diagrams visually
indicate when a block is disabled. You may wish to use this property if there is a need to temporarily
remove a block during debugging or, for other reasons during development, temporarily disable a
block. This saves the effort of having to remove the block and then add it back later. You can also
right-click a block and select Toggle Enable Status. The GVP Debugger skips over deactivated
blocks.

Composer Help 466

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock

Using Voice Blocks

Logging Details Property

Logging details contains the expression that will be logged at runtime by GVP. If logging details are
specified, then logging is generated for the block; if no logging details are specified, no logging is
generated. To create logging details:

1.

2.

Click the Logging Details row in the block's property table.

Click the EZ& button to open the Logging Details dialog box.
In the Logging Details dialog box, click Add to open Expression Builder.

Create an expression to be used for logging details, such as an expression based on the variables whose
content you wish to log.

Log Level Property

To assign a value to the Log Level property:

1.
2.

Select the Log Level row in the block's property table.
In the Value field, select one of the following from the drop-down list:
* Project Default. The block uses the project's default log level, which can be configured through
the Project properties.
¢ Info. This is an Informational level to log application-specific data.
* Debug. This is a Debug level used for application debugging.
e Error. This is an Error level to log error details.
« Warn. This is a Warning level to flag any application warnings.

¢ Alarm. This is an Alarm level to send the message as an alarm to the Genesys management
framework.

Prompts Property

Use the Prompts property to specify the audio prompts that are played to the caller. You can specify
pre-recorded prompts, text, video, and several standard data types. SSML tags can be used inline in
TTS prompts. To add, delete, or arrange prompts:

1. Click the Prompts row in the block's property table.

2. Click the Bz putton to open the Set Prompts Properties dialog box.

Composer Help 467

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder

Using Voice Blocks

Set Prompt Properties Dialog Box

Prompt Messages Area

¢ Name--Displays the name of the prompt based on what you enter under the Prompt Details area.
* Value*--Displays the prompt's value based on what you enter in the Prompts Details area.

¢ Interpret-As--Displays the data type of the prompt. The table below details available selections.

Prompt Details Area

Type--Displays whether the prompt is ARM, Resource, Value, or Variable based on what you enter
under the Prompt Details area. Note that when Type is Variable, the runtime values of the specified
variable should be of type string. Numerical values should be quoted, e.g. when assigning a value
using the Assign block, or during a debugging session. Type/Interpret-As Combinations When
Type is set to Value and

* Interpret-As is set to Time, you can select the Time Format in the drop-down list. The time format is
displayed in 12-hour mode (1:00 PM, 2:00 PM, and so on), or 24-hour mode (13:00, 14:00, and so
on).

e Interpret-As is set to Audio, you can specify an HTTP or RTSP URL.

When Type is set to Variable and Interpret-as is set to Custom, a Custom-Interpret As field is
enabled, which can be used for custom prompt types as detailed in the table below. When Type is set
to Resource and Interpret-As is set to Audio, an Alternative Text field displays. This alternative text
is played back to you in the event that the audio file is not available. When Type is set to ARM and
Interpret-As is set to Audio, you can specify a base URL, audio resource ID, and personality ID. These
can be used for managing audio resources in the arm (Audio Resource Management (ARM)) section of
the Genesys Administrator Extension Server Application object. When Type is set to Variable and
Interpret-As is set to Audio, you can specify a variable that contains an HTTP or RTSP URL. This
applies to the Prompt, DB Prompt, Input, Menu, and Record blocks. Add Button Use the Add button
to enter prompt details.

1. Click Add to enable the fields.

2. In the Name box, accept the default name or change it.

3. From the Type drop-down list, select ARM, Resource, Value, or Variable.
4

. In the Interpret-As drop-down list, select from among the data types shown in the following table:

Plays an audio sound file.

Notes: If you select Audio, an audio file is optional, and you
select the audio file if needed using the Browse button. Use the
Clear button to remove an audio resource file selection. You can
then specify an audio resource URL through Expression Builder,
AUDIO an audio resource identifier, personality identifier, and audio
format. When you select ARM from the Type dropdown list,
Interpret-As defaults to Audio. The VOXFILEDIR variable in the
Entry block defines the audio file directory. For more
information, see the Entry block help. You can also specify an
alternative text for the audio file. This alternative text is played

Composer Help 468

https://docs.genesys.com/Documentation/IW/8.1.3/Help/PromptBlock#Prompts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBPromptBlock#Prompts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock#Prompts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock#Prompts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock#Prompts
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock

Using Voice Blocks

back to you in the event that the audio file is not available or is
not provided. Typically, you can use this option during
development, when the production audio files are not recorded
yet.

An indicator that sets the place in a sequence of
prompts. It can be used to detect the barge-in

BOOKMARK position during playback of a prompt. It uses the
TTS engine.

An optional currency specifier followed by a
number with at most two decimal places. The
currency specifier can be:

CURRENCY e $, British pound sign, yen sign, or Euro sign, OR

e 3-character ISO4217 currency code

In the U.S. English locale, 11234 would be spoken as "eleven
thousand, two hundred and thirty-four dollars."

Plays DTMF tones.

DTMF Any string of numerical digits, the characters a to d, #, or *
Speaks the specified date.

DATE yyyyMMdd, e.g. 20080604 Note: If you select the DATE type,
click the drop-down arrow to display a calendar from which you
can select the date.

Speaks a number. For example, 1234 would be
spoken as "one thousand, two hundred, thirty-four."

NUMBER
Any integer (no decimals)

Speaks the number as an ordinal. For example, 1
would be spoken as "first."

ORDINAL
Any integer (no decimals)

Speaks a string of letters or numbers one character
at a time. For example, 1234 would be spoken as
"one, two, three, four."

STRING
Note: The STRING type for U.S. English local accepts 0-9, A-Z,
and +<=%->&.#*@. All other locales accept only 0-9 and A-Z.

TEXT Plays the specified text with text-to-speech

software
Speaks the specified time.

hhmml[ss][?hap] (seconds is optional, and format specifier is
optional) The format specifiers mean the following: ? -- neither
am or pm, e.g. two o’clock or two fifteen h -- 24-hour clock, e.g.
TIME fourteen hundred hours or fourteen fifteen a -- AM, e.g. two AM
or two fifteen AM p -- PM, e.g. two PM or two fifteen PM If no
format specifier is given, it defaults to ?, i.e. am/pm is unknown.
Note: 12 hour time selection will show the Time value in 24 Hr
format in the Prompt Message Table. (e.g. 1:45:39 PM will be

Composer Help 469

Using Voice Blocks

VIDEO

CUSTOM

shown as 134539) whereas it will work as expected in the
generated code to read the value in 12 hour format during
runtime.

Use to allow VoiceXML to insert text into an existing
video image/stream.

If Video is selected, you can check the Enable Text Overlay box.

e Click the Fx button to open the Video Text
Overlay dialog box.

e Click Add to specify: text (required), font name,
font style, font color, background color, font
size, font width, X axis offset, and Y axis offset.

This Interpret-As option can be used to define
Custom Prompts to customize the Prompt reading
functions. To define a Custom Prompt:

¢ Open the predefined customprompts. js file
inside each language locale folder applicable
for the Project. (Resource\
Prompts\$Language$).

e Use the customprompts. js file present inside to
define custom prompt methods.

e Refer to the syntax and rules mentioned in the
default customprompts. js file
inside./Resources/Prompts/en-US folder.

e Start each Custom Prompts methods with the
language locale name to achieve Multilangual
support during runtime execution (mandatory).

The Prompts property dialog will only parse methods defined in
the customprompts.js file.

During design time, the default language locale

customprompts.js file is parsed and listed for method
selection.

During the runtime call, the APP_LANGUAGE variable value is
used to dynamically select the language local folder.

¢ Use 'audio’ option to play audio files in the
Custom Prompts methods using <audio> tag
and 'value' option to play expressions using
<value> tag.

5. In the Value box, enter data for the selected data type.

Place the audio files in the Resources\Prompts\{APP_LANGUAGE} folder under the Java Composer
Project. Audio files can be added to the project by copying and pasting from the Windows file system
into the Java Composer Project in the Project Explorer. Note: By default, Genesys supplies .vox files
only for mulaw 8Khz. If you are using any other audio format for playback of audio files, replace the
files with the corresponding audio files in the required audio format. Up/Down Buttons Use the

Composer Help

470

Using Voice Blocks

Up and Down buttons to reorder your prompt elements. Select the element you want to reposition,
and then click Up or Down, as necessary. Delete Button To delete a prompt:
1. Select an entry from the list.

2. Click Delete.

This property is used in the following blocks: Prompt Block Menu Block Input Block Record Block

Retry Prompts Property

The Retry Prompts property in a Menu block, Input block, or Record block enables you to set different
retry prompts that are played to the caller when the voice application encounters a nomatch or
noinput condition. You are allowed up to three retries for either a noinput or a nomatch error
condition. You must select the listed items in sequence and add the necessary vox file or text input.
To set retry prompt properties:

1. Click the Retry Prompts row in the block's property table.

2. Click the e | button to open the Retry Prompts dialog box.

Note: You must set the Number Of Retries Allowed property to a value greater than 0 in order to have
access to the Retry Prompts dialog box. Prompts Fields

¢ Name*-- Displays the name of the retry prompt.

¢ Type--Displays whether the retry prompt is a Resource, Value, or Variable.

* Interpret-As-- Displays the data type of the retry prompt.

¢ Alternate Text--(Enabled only when Interpret-As is set to Audio.) This alternative text is played back to
you in the event that the audio file is not available.

e Value*--Displays the retry prompt's value (Retry Prompt).
Note: When Interpret-As is set to Time, you can select the Time Format in the drop-down list. The

time format is displayed in 12-hour mode (1:00 PM, 2:00 PM, and so on), or 24-hour mode (13:00,
14:00, and so on).

Retry Prompt Messages Property

For Input and Menu Blocks:

After setting a value for the Number Of Retries Allowed property, Retry Prompt Messages will contain
one noinput and one nomatch entry per retry. For example, if Number Of Retries Allowed is set to 2,
the Retry Prompt Messages table contains the following entries: noinputl nomatchl noinput2
nomatch2

Composer Help 471

https://docs.genesys.com/Documentation/IW/8.1.3/Help/PromptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/MenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RecordBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExceptionEvents#Exception_Event_Descriptions

Using Voice Blocks

For Record Blocks:

Retry Prompt Messages will contain one noinput entry by default. To set or change retry prompt
properties:

1. Select a retry prompt in the Retry Prompt Messages table to enable Prompt Details fields.
2. In the Name* box, accept the default name or change it.

3. From the Type drop-down list, select Resource, Value, or Variable.

4

In the Interpret-As drop-down list, select from among the data types shown in the following table:

Plays an audio sound file. This is available only
when Resource or Variable is selected as the Type.

Note: If you select Audio, an audio file is optional, and you select
the audio file if needed using the Browse button. Use the Clear
button to remove an audio resource file selection. The

AUDIO VOXFILEDIR variable in the Entry block defines the audio file
directory. For more information, see the Entry block help. You
can also specify an alternative text for the audio file. This
alternative text is played back to you in the event that the audio
file is not available or is not provided. Typically, you can use this
option during development, when the production audio files are
not recorded yet.

An indicator that sets the place in a sequence of
prompts. It can be used to detect the barge-in
position during playback of a prompt. It uses the
TTS engine.

BOOKMARK

An optional currency specifier followed by a
number with at most two decimal places. The
currency specifier can be:

CURRENCY e $, British pound sign, yen sign, or Euro sign, OR
e 3-character ISO4217 currency code

In the U.S. English locale, 11234 would be spoken as "eleven
thousand, two hundred and thirty-four dollars."

Speaks the specified date.

DATE yyyyMMdd, e.g. 20080604 Note: If you select the DATE type,
click the drop-down arrow to display a calendar from which you
can select the date.

Plays DTMF tones.
DTMF

Any string of numerical digits, the characters a to d, #, or *

Speaks a number. For example, 1234 would be

spoken as "one thousand, two hundred, thirty-four."
NUMBER

Any integer (no decimals)

Speaks the number as an ordinal. For example, 1

ORDINAL would be spoken as "first."

Composer Help 472

https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock

Using Voice Blocks

Any integer (no decimals)

Speaks a string of letters or numbers one character
at a time. For example, 1234 would be spoken as
"one, two, three, four."

STRING
Note: The STRING type for U.S. English local accepts 0-9, A-Z,
and +<=%->&.#*@. All other locales accept only 0-9 and A-Z.
TEXT Plays the specified text with text-to-speech

software
Speaks the specified time.

hhmml[ss][?hap] (seconds is optional, and format specifier is
optional) The format specifiers mean the following: ? -- neither
am or pm, e.g. two o’clock or two fifteen h -- 24-hour clock, e.g.
fourteen hundred hours or fourteen fifteen a -- AM, e.g. two AM

TIME or two fifteen AM p -- PM, e.g. two PM or two fifteen PM If no
format specifier is given, it defaults to ?, i.e. am/pm is unknown.
Note: 12 hour time selection will show the Time value in 24 Hr
format in the Prompt Message Table. (e.g. 1:45:39 PM will be
shown as 134539) whereas it will work as expected in the
generated code to read the value in 12 hour format during
runtime.

5. In the Value box, enter data for the selected data type, or keep the default value of Retry Prompt.

See template samples that use the Menu or Input blocks.

Composer Help 473

Using Voice Blocks

Working with Grammar Builder

Grammar Builder provides a solution for supplying simple grammars, without requiring GRXML
expertise. This editor provides a hierarchical view of certain grammar concepts in a simple, abstract
way. Each level of this tree contains properties which affect all child members. Following is a brief
description of the key concepts of the Grammar Builder model as well their relationship with GRXML.

Note: A Grammar built with the Grammar Builder is not a GRXML file.

Grammar

The grammar is the root object of the tree. It serves to provide an implicit description of the intended
use of a grammar. For example, a grammar which would be used for a bank customer could be
called bankmenuinput. The selection of a grammar name is determined by the file name or the
related gbuilder file, and its setting influences the file name(s) of any exported GRXML data.

Within the grammar object are properties for the setting of languages. These languages, or locales,
indicate support for a particular language. For each locale that is added to a grammar, a distinct
GRXML file will be created specifically to support that language. DTMF, or touch-tone input, is
considered a language even though it is not spoken.

Rule

Every grammar must contain at least one rule, but may contain many. Rules provide a grouping for a
spoken (or DTMF) items. Continuing the bank customer scenario, we could have rules for yes/no
responses, another for menu options and perhaps another for branch cities. Rules are the product
that is referenced in a voice application.

At a point in an application where we wish to retrieve the branch city, we must refer to that
grammar’s rule. If an application designer does not specify a rule and instead only specifies the
grammar file, the default rule is used. Additionally, a rule may be hidden from outside applications by
declaring it as private. Usually this is for more sophisticated grammar cross-referencing, which is not
currently supported in the more elementary Grammar Builder.

Keywords

Within a rule are specific keywords that will be used to add intelligence to an end application.
Keywords become the value which can be identified within the application for use in branching or
other application constructs. However, this keyword is independent of what may actually be spoken
and is instead an internal identifier.

To bridge the gap between what a caller says or presses on their keypad, locale-specific synonyms
are defined. Remember that the languages supported are defined at the grammar level. It is at this

Composer Help 474

Using Voice Blocks

point that those defined languages come into play. Each keyword will have a list of words (synonyms)
which relate to the keyword for a given language.

For example, assuming as part of our yes/no rule, we have a keyword for yes. This keyword could
contain the word yes for English, 1 for DTMF and oui for French. Regardless of which locale ends up
being used in the running application, yes (the keyword identifier) will be returned.

Working with Grammars will guide you through the process of creating a simple grammar, using a
user color selection problem as the example to model.

Using the Grammar Builder

Let's create a simple grammar for use with a project and the Grammar Menu block. Our example will
be a user color selection problem. You will perform the following steps:

1. Create a new grammar builder file with initial settings.

2. Add keywords and synonyms for a rule.

3. Save the grammar builder file.

4. Export the grammar builder file to standard GRXML format.

Composer provides a cheat sheet for building a simple grammar file:

¢ Select Help > Cheat Sheets > Composer > Building Voice Applications > Creating a
simple grammar.

Creating a New Grammar Builder File With Initial Settings

The first step is to create a new grammar builder file and provide its initial settings. Follow these
steps:

1. Select File > New > Other.

2. From the New dialog box, expand the Composer folder, then expand the Grammars folder.
3. Select Grammar builder file and click Next to continue.
4

. In the Container field of the wizard dialog box, click Browse to select a project-specific folder to contain
the new .gbuilder file. Genesys recommends <voiceprojectname>/Resources/Grammars for the
location.

5. Set the file name to use for this grammar. File names should give an indication of the context this
grammar will be used in. For example, type colors.gbuilder in the File name field.

Note: The Grammar Menu block does not pick up changes automatically if you change your Gbuilder
file. To synchronize the block with the latest changes, click on the Gbuilder File property of the
Grammar Menu block. In the popup make sure that the correct Gbuilder file and RulelD are
selected. Click OK to close the dialog. Your diagram will now reflect any menu options changes made
in the Gbuilder file.

Composer Help 475

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/#Creating_a_New_Grammar_Builder_File_With_Initial_Settings
https://docs.genesys.com/Documentation/IW/8.1.3/Help/#Adding_Keywords_and_Synonyms_for_a_Rule
https://docs.genesys.com/Documentation/IW/8.1.3/Help/#Saving_the_Grammar_Builder_File
https://docs.genesys.com/Documentation/IW/8.1.3/Help/#Exporting_the_Grammar_to_GRXML_Format
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GrammarMenuBlock

Using Voice Blocks

6. Next, set the initial default rule. Rules contain items which form a category. All grammar builder files
must have at least one rule. Since our example grammar only deals with one such categorization, type
Colors in the Initial Default Rule field.

7. Locales are languages that this grammar will support. By default, English and digit input (DTMF) are
selected in the Initial locale(s) field. If you knew you would need to support additional languages for the
grammar, you would select the appropriate check box(es). For our example, the default selections are
adequate.

Note: Grammar Builder treats DTMF as a separate language (locale), even though technically it is
not categorized as such.

8. After making the selections described above, click Finish.

The file is added to the selected project (as you can see in the Project Explorer), and the Grammar
Builder opens as shown in the image below.

' oy
fm Sample.scaml (iﬂu *ain, callFlow]
2 Grammar Builder BE| &4

Overall Structure g X Grammar Properties
Grammat ID is used to name the exported GRXML files and is determined by the gbuilder
= (5 colors File: niarme,
=] eolors Grammar 1D codoes

Configured Locales

The Following locales are defined in the project property configuration,

f} en-15 (English - United States)

+ Additional Information

Grammar nodes represent
the root of a builder. There is
only one grammar per
ghuilder File,

¢ Available Locales

Adding Keywords and Synonyms for a Rule

Grammar builder files are created with a default rule. The next step is to define keywords for this
rule. Each rule can have any number of input-agnostic keywords. These keywords will be returned

Composer Help 476

Using Voice Blocks

from either the speech or digit processor for use in your callflow.

By default, a keyword is not usable in an application. This is because multiple languages may use
different words/sounds for your keyword. In our example, red may be an appropriate English
pronunciation, but in Spanish this would not be true. Because of this, each configured locale must
provide accepted input for the keyword. These inputs are called synonyms. Therefore, keywords
consist of a logical identifier and a list of locale-specific synonyms.

Once you have defined keywords and synonyms for the default rule, you can then create additional
rules and define keywords and synonyms for those rules as well.

To add a new keyword:
1. Select the Colors (default) rule in the Overall Structure tree.

e The Rule Properties area shows the Public Visibility and Default Rule settings for the selected
Rule ID.

e Default Rule. This is selected only for the rule that has been set as the default (as is the
Colors rule in this example).

* Note: Not all aspects of Composer allow for specific rule targeting within grammar files
(grxml). As such, it is highly recommended that you specify a default rule. This rule will be
used by default when a reference to the grammar exists that does not target a specific rule.

Considering that a default rule (e.g., root) is not mandatory in GRXML, no warning is given
when one is not specified

¢ Public Visibility. If selected, this indicates that this rule can be referenced by an external
grammar (in a ruleref element in the grammar making the reference). A public rule can
always be activated for recognition. If not selected, the rule is private, which indicates that
the rule is visible only within its containing grammar. A private rule can be referenced by an
external grammar if the rule is declared as the root rule of its containing grammar.

2. Click the + (Add) button.

3. In the Add new keyword dialog box, type a name for this keyword, which is normally an instance of the
category that the rule defines. In our example, type Red in the Keyword ID field and click OK.

4. You can repeat the steps above to add more keywords to this rule.

To add a new synonym:
1. Select a keyword from the Overall Structure tree. In our example, select Red.

The Synonyms area allows you to add synonyms for each of the locales you have defined (each
locale is a tab at the bottom of the synonyms table). Note in our example that the window has both

English - United States and DTMF as bottom tabs. This allows you to switch the synonym context for
the selected keyword.

1. With the English - United States tab selected, click Add ID as Synonym. This button allows you to add

a synonym that is identical to the keyword, thus allowing red to be spoken in English and associated
with the keyword Red.

2. You may at this time add other values, such as Crimson for example, which will also be accepted as
Red.

Composer Help 477

Using Voice Blocks

3. Select the DTMF tab. To associate the digit 1 with the keyword Red, type 1 in the Digits field and click
the Add button.

4. You can repeat the steps above to add more synonyms to this keyword.

Note: If you are using locales representing other languages, the synonyms you create for each locale
would represent acceptable values for the keyword in that language. In our example, if you also
defined Spanish and French locales, you could create a synonym rojo for the Red keyword in the
Spanish locale, and a synonym rouge for the Red keyword in the French locale.

Saving the Grammar Builder File

When you have finished building your grammar builder file, or periodically during the course of
building the file, be sure to save the changes you make to the file.

[} (=]
5. To save the file, click ['3] (Save), or to save the file under a different name, click E:’] (Save As) and
provide a new file name and location.

Exporting the Grammar to GRXML Format

Because the Grammar Builder saves your grammar to a non-standard GRXML format (denoted with a
.gbuilder extension on the file name), you will want to export the grammar to the standard GXML
format as follows:

A
1. Click = (Export) , located at the top-right corner of the Grammar Builder editor.

2. If prompted to save, click Yes.

You will see a message indicating the file has been successfully exported. The exported GRXML file
names are displayed in the success window, and the .grxml file will display in the appropriate locale
folder(s) in the Project Explorer under <voiceprojectname>/Resources/Grammars. It's important to
note that DTMF is considered a locale for the purpose of exportation. As such, an export result for a
GBuilder resource with English and DTMF would be placed in <voiceprojectname>/Resources/
Grammars/en-US and <voiceprojectname>/Resources/Grammars/DTMF directories, respectively.
These files can now be edited in the GRXML Editor.

Locales and Grammar Builder

When using the Grammar Builder, you specify locales, which are the languages that a grammar file
will support. The Grammar builder wizard uses the active locales for the Composer Project.

See Locales in Common Blocks & Functionality.

Composer Help 478

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ComposerCodeEditors
https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CommonBlocks

Using Voice Blocks

Dynamic Grammars

Dynamic grammars are used for automated speech recognition (ASR). They are generated "on-the-
fly" based on information dynamically pulled out from data sources such as databases, web services,
or the file system. Contrast this to using a static grammar file whose content is fixed. The ASR engine
matches the user utterance with the grammar. Returned values are then passed back to the
application based on any matches in the grammar.

There are several ways to include dynamic grammars in voice dialogs:

¢ Use a dynamic VXML page template that creates the dynamic grammar and insert it in-line into the
VXML page. Using a dynamic VXML page will provide flexibility in terms of the data source used to
generate the grammar.

« |If data is being retrieved from a database, using the DB Input block may be another alternative. It
generates a grammar based on data retrieved from a database using the DB Data block. It can also
generate a grammar based on contents of a JSON array that may have been retrieved from alternate
data sources e.g., a Web Service.

Composer Help 479

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBInputBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataBlock

Using Voice Blocks

Working with CTI Applications

Composer provides CTI blocks for two CTI scenarios supported by GVP:

e SIP Server (SIPS) scenario, which uses the Genesys SIP Server component to gain access to CTI
functionality.

e CTI Connector (CTIC) scenario, which uses GVP’s CTI Connector component to access CTI functionality
provided by Genesys Framework.

These two scenarios do not provide identical capabilities and key differences are highlighted later in
these topics. Composer provides four CTI blocks for accessing CTI functions. It generates VXML for
each of these blocks that can work in either CTI scenario (SIPS or CTIC), and does not ask the user to
choose between the SIPS or CTIC scenarios at design time. The decision to use CTIC or SIPS is made
at runtime based on the X-Genesys headers received from GVP’s Resource Manager. Therefore, the
Composer user interface does not need to expose a Project-level preference for specifying the CTI
scenario. Note: The CTI Connector provides different capabilities depending on the configuration in
which other Genesys components like the IServer are deployed. For more details, please refer to the
GVP documentation. Also see GVP Debugging Limitations.

Design Paradigms for CTI Applications

There are two design paradigms for building CTI applications with GVP in which Composer can be
used:

e Standard VXML Applications
¢ URS-Centric Applications

These paradigms differ in the extent to which the VXML application is involved in performing call
control. Standard VXML Applications In this paradigm, the VXML application gets invoked first and
can go through VXML interactions with the caller before using the <transfer> tag to transfer the call
to another party such as queuing for an agent. At this point, the control of the call is passed to the
SIP Server or CTI Connector while waiting for an agent. During this time, SIP Server or CTI Connector
may invoke additional call treatments on GVP like playing music or invoking other applications. URS-
Centric Applications In this paradigm, the VXML application is always invoked as a treatment by
Genesys URS. The incoming call is controlled by Genesys URS and a strategy retains full control of
the call. The strategy invokes specific treatments on GVP IVR as a media server to play prompts, play
music, collect user input or execute a VXML application. In this paradigm, the VXML application does
not use tags like <transfer> nor does any other kind of call control. Those decisions are left to the
strategy. The VXML application returns user input collected during the call back to the strategy and
lets the strategy make all call control decisions. Composer can be used to write VXML applications
following either of the above paradigms.

Composer Help 480

https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DebuggingVoiceApplications#Limitations

Using Voice Blocks

Typical CTI Callflow

Before you start building a typical CTI application, the following information is required:

* The Genesys Virtual Route Point destination address. This is the address/location where the Genesys
strategy is present (an integer number--for example, 5001).

e Strategy application on the Framework side (IRD) to find and transfers the call to an agent.

;.'m *WHIW ﬁ i = El\l

Srrar . Entry
. StartApp
R —
B
« Prompt
| !
| Welcome Prompt
|
BiInput |
renioros. | — |
'\J. I
- &
noinpu _ 3 mput
----------- | CollectlUserDatasccountDetai

Exit | &
s 1l
[® Endspn] [# Route Req...

| | RouteToDM | =

PR S F

The following describes the interaction flow of this callflow:

1. GVP starts executing the generated VoiceXML application script.
2. The caller hears the Welcome prompt.

3. The caller is requested to enter the account details.

4

. If the caller does not enter the required details within the maximum time frame provided, the caller is
asked to retry.

5. The application issues a route request to the route DN configured in the Route Request block. (This
occurs via the <transfer> tag, supported in both CTIC and SIP Server scenarios.)

6. The caller-entered data is sent as UserData to the routed DN, and the called strategy does the
knowledge based transfer to the available agent based on the User Data .

Composer Help 481

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock

Using Voice Blocks

7. This application ends after the Route Request has been issued.

8. The called strategy can play Voice treatments to the caller until the next available agent is available.

9. Finally, the caller will be transferred to the Agent.

Note: The Route Request block can be configured in various Transfer modes (Bridge / Consultation) to
gain back the control of the callflow after the called strategy returns back the execution. Please check

the Route Request topic block for more details.

CTIl Scenarios

There are feature differences between the SIPS and CTIC scenarios. The following table gives a
summary of the CTI blocks, and for each CTI block it lists the differences in behavior for the two CTI

scenarios.

CTI Block Name

Interaction Data

Get access number

Supports CTIC Case?

Yes

Yes

Supports SIPS Case?

Yes

No

Comments

Supported operations in
each scenario:

CTIC:

* PUT

. GET

- DELETE

» DELETEALL
- REPLACE

SIPS:

. PUT
. GET

Types of interaction data
supported: CTIC:

e USERDATA

SIPS:

* USERDATA

Get access number
block can only be used
in the CTIC scenario.

Types of interaction data
supported: CTIC:

* USERDATA
* EXTENSIONDATA

Composer Help

482

https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CTIBlocks
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock

Using Voice Blocks

Statistics

Route Request

Yes No

Yes Yes

Statistics block can only
be used in the CTIC
scenario.

Types of interaction
data supported:

CTIC:
e USERDATA
* EXTENSIONDATA

SIPS:

e USERDATA

Types of transfers supported:
CTIC:

 Blind

* Bridge

SIPS:

» Consultation
* Blind

* bridge

In case a CTI block or feature is used in a CTl scenario in which it is not supported, appropriate

exceptions will be thrown at runtime indicating that the feature is not supported. The table below
gives a list of all exceptions that can be thrown by CTI blocks and other possible CTl-related
exceptions that can be thrown if errors are encountered at runtime.

Block(s)
Interaction Data

Get access number Statistics

Interaction Data

Get access number Statistics
Route Request

Interaction Data

Get access number Statistics
Route Request

Interaction Data

Interaction Data

Exception Error Message

error.com.genesyslab.comqtgeﬁfgs@[i/él?éa%%igame>
error.com.genesyslab.compOperaipendtiioednoedout

error.com.genesyslab.compég%%%ﬁwgeF?glrjrned

Delete operation not
error.com.genesyslab.compageparedpoparasd of CTI
using SIPServer.

error.com.genesyslab.compslgnugplc)a(;:f).toﬁr'rﬁ‘élLch%:ﬁ%grgt%i r; fn EFI'I

Description

This is the event error
for handling an invalid
key name.

This exception will be
thrown when a
<receive> operation,
executed in the context
of a CTIC specific
operation, times out.

If the <receive> fails
and an error is reported
by CTIC, this exception
will be thrown.

If the user wants to do a
userdata DELETE in the
CTI using SIPS scenario.

If the user wants to do a
userdata DELETEALL in

Composer Help

483

https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock

Using Voice Blocks

the CTI using SIPS

ing SIPServer. .
using SIPServe scenario.

If the user wants to do a
userdata REPLACE in
the CTI using SIPS
scenario.

Replace operation not
Interaction Data error.com.genesyslab.compagepartedpoparasd of CTI
using SIPServer.

AccessNumGet If the user wants to do a

Get access number error.com.genesyslab.compfc’%%?i%h%@@%rﬁt%%%orted AccessNumGet in the
SIPServer. CTI using SIPS scenario.
If the user wants to do a
PeekStatReq or
GetStatReq in the CTI
using SIPS scenario.

Statistics block not
Statistics error.com.genesyslab.compagepartedpoparasd of CTI
using SIPServer.

Consultation transfer is If user sets Transfer
Route Request error.com.genesyslab.composesuppgofedriedase of type to consultation in
CTl using CTIConnector. case of CTl using SIPS.

Script ID Usage in the GVP 8 Environment

In Genesys VoiceXML 2.1, Scriptld refers to the script identifier, as generated by the CTI Connector, to
handle call treatments. The use of Scriptld is specific to GVP 7.x and was mandatory for treatments.
Since the GVP 7.x design is "IVR-centric," the treatment would be invoked on the same VXML session.
Things are a bit different with GVP 8.x and the Next Generation Interpreter (NGI) where APP_URI is
used instead of Scriptld and the treatments are executed on different VXML sessions. GVP 8 and
NGI In GVP 8.x, request for treatment execution comes in as a NETANN request with the APP_URI
being passed in as a VoiceXML parameter. GVP executes the requested page to kick off the
treatment. Unlike the GVP 7.x environment, treatments get invoked as separate VXML sessions and
terminated at the end of the treatment execution. Hence, Scriptld switching is no longer needed
here, unless an application wants to do branching based on Scriptld.

¢ Note: Composer provides support for both SIPS and CTIC scenarios for achieving the CTI functionality.
However, SIPS may not support passing additional request-uri parameters like Scriptld, therefore, this
option is limited only to CTIC scenarios.

Please refer to GVP 8.x VXML Help under Sample Voice XML Applications > CTI Interactions >
Treatments for more details on this topic.

Accessing Scriptld in Composer

Use if you want your application to do Scriptld-based switching like GVP 7.x. CTIC Scenario (IRD
strategy + Composer Callflow)

1. Use the APP_ID property in IRD's Play Application block.

2. Define a new Input type variable named Scriptld in the Entry block of your callflow to collect the
Scriptld.

Composer Help 484

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/GetAccessNumberBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/StatisticsBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows#Types_of_Variables

Using Voice Blocks

Composer Workflow + Composer Callflow)

1. On the VXML callflow side, define a new Input type variable named Scriptld in the Entry block to collect

the APP_ID (i.e., Scriptld) passed from the workflow.

. On the SCXML workflow side, use the Play Application block to invoke the callflow created using step#1.
Then do an auto-synchronize for the parameters, and specify the Scriptld value.

3. The Scriptld (i.e., APP_ID) passed from the workflow will be automatically collected on the VXML side
from the session.connection.protocol.sip.requesturi array.

SIPS Scenario
1. SIPS may not support passing additional request-uri parameters. Pass Scriptld as attached data on the
strategy side (If using IRD) or on the SCXML side (If using Composer workflows).
2. Define a new Input type variable named Scriptld in the Entry block to collect the Scriptld.

3. The Scriptld (i.e., APP_ID) passed from the strategy will be automatically collected on the VXML side
from the session.com.genesyslab.userdata array.

Composer Help 485

https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows#Types_of_Variables
https://docs.genesys.com/Documentation/IW/8.1.3/Help/PlayApplicationBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/VariablesinCallflows#Types_of_Variables

Using Voice Blocks

Working with Prompts

Note: There is both a Prompts Manager perspective and a Prompts Manager perspective. The Prompts
Manager provides the ability to quickly review all prompts in a Composer Project from a central place.
It displays the relevant information about all prompts in all callflows present in your workspace, one
project at a time. It displays prompt item text, associated audio file(s) and allows you to play prompt
resource files directly from the Prompts Manager view. The Prompts Manager also enables you to
tweak your prompts by rearranging prompt items, changing prompt item text, and recording new
audio files using microphone input and associating them with prompts in your Projects. It provides the
ability to quickly jump to a specific prompt block in the callflow diagram with a simple right-click so
that other changes can be made to the prompt. Prompt Manager works in conjunction with the
prompts properties popup dialog.

Opening the Prompts Manager

To open the Prompts Manager perspective:

e Select Window > Open Perspective > Other > Prompts Manager.

_I
=

¢ Or select the Prompts Manager Perspective toolbar button.

To open the Prompts Manager view:

¢ Select Window > Show View > Prompts Manager.

= Properties | - blﬂ|‘i}{5|.|ﬁ£ﬂvmﬁ
Select a Composer Project to manage prompts

Composet Projeck: I j Language Resource: I vl

Prompks | Tvpe | Prompt Ikem Text | Audio File | Tirne Skarp | Instructions Mokes

| | ®

Composer Help 486

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InterfaceOverview#Perspectives

Using Voice Blocks

Selecting a Composer Project

To select a Composer Project for which to manage prompts, the Prompts Manager view:

* Select a project from the Composer Project drop-down list.

Selecting a Language Resource

e Select a Language Resource. If not using en-US, see the special note on Non-US Locales.

The Prompts Manager displays all the prompt-related blocks for all the callflows in the selected
project.

i Ny
£ Prompts Manager 52 | S | | Tpdl | 9 | Rt P
atwyy e aE T) Tl T 5 sbas e Stocks JavaComposerProject Language Resource: IE”'US vl
Prompks | Tvpe I Prompk Ikem Texk I Audio File I Tirne Skarmp I Inskru, .. I Mokes I =
= [z Main

[[DBConnectionError
" DBConnectionError_Promp Yalue There was an error connec... N4
= @ DEConneckionErrors
. DBConnectionError_Promp Yalue There was an efror connec.,. MiA
E?'. DEInputGetZomparny oz
= |:F' Prompkl
7 Promptl_PromptMsgl Yalue Goodbye (7S
= £ PromptDEErrar
7 PromptDEErrar_Promptist value & database error occurred L. NJA

" PromptDEErTor_Promptise Yarisble LAST_EVEMT_MSG m
<7 PromptDBError_PromptMst Yalue This call will now end. MiA
B Et' PromptDBErrorz
: PromptDEErTor2_Prompth: Yalue A database error occurred ... MfA 5

Notes

e The Prompts Manager will not work with non-Composer projects (such as hand-coded applications).

* Note the Language Resource dropdown selection box. The prompt audio resource is located in the
appropriate language resource folder location (for example:/Resources/
Prompts/<locale>/audioResourceFile.vox.

e Starting with 8.0.2, a Composer Project upgrade sets the default Project locale to en-US. If other than
en-US, right-click the Composer Project in the Project Explorer, and select Properties > Locales to set
the default and active locales.

Columns in the Prompts Manager View

A prompt item row in the Prompts Manager view displays the following column details:

Composer Help 487

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales#Processing_Prompts_Other_Than_en-US

Using Voice Blocks

* Prompts -- A tree hierarchy consisting of the following elements; Root elements, studio diagram
callflow/sub-callflow file name. Studio diagram elements may have diagram block elements. These
diagram block elements may have prompt/retry prompt item elements.

¢ Type -- The type of prompt item (audio resource/value/variable)
* Prompt Item Text -- Any associated text with the prompt item.
e Audio File -- The relative path of the audio file associated with this prompt item.

* Time Stamp -- The Date/Time stamp when the audio file was created or recorded. This helps in
identifying the newer/older prompts.

* Instructions -- If additional item specific information needs to be given, such as a certain word needs
to be emphasized when recording at the recording studio.

* Notes -- Any notes that you would like to associate with the prompt item for later reference.

Non-US Locales

By default, Composer provides prompts audio resources for the en-US locale. The supplied
PlayBuiltinType.js under Resources/Prompts in the Project Explorer defines a global variable
called promptBaseUrl with the value en-US. When using a different locale in a callflow (other than
en-US in the Language Resource field in Prompts Manager), you must provide the associated audio
files and PlayBuiltinType. js. Adjust the path with the associated prompt resource locale folder
path.

Reviewing and Managing Prompts

Once you have laid out your diagram and wish to review the flow of the application, you can use the
Prompts Manager to do the review. It is useful to have the callflow and Prompts Manager view open
together so that the flow of the application can be traced using the callflow while reviewing prompts
using the Prompts Manager. Select the Composer Project(s) containing prompts you wish to manage.
You can review and manage your prompts as follows:

1. Expand a Prompt block in the Prompts column of the Prompts Manager view to display all prompts
associated with that block.

2. Select a prompt row. The Prompts Manager view displays detailed information about the prompt.

3. You can view prompt item text in the Prompts Manager.

B

* For prompts that have an associated audio file, click the Play icon in the Prompts

Manager view to hear the audio file.
e Click the Stop icon = to stop playing the audio file.

Note: To play back VOX audio files in their correct encoding (U-Law/A-Law), you may need to set the
encoding properties in the Composer Project settings. To change the settings, go to the Project
Explorer, right-click the Composer Project folder, and select Properties. Select the Prompts
Management section and set the Encoding property accordingly.

Composer Help 488

https://docs.genesys.com/Documentation/IW/8.1.3/Help/Locales

Using Voice Blocks

4. To modify the sequential order of the prompt items within a block, select a prompt item element row
and click the Up or Down icon o in the Prompts Manager view.

5. To locate the diagram block in the studio diagram callflow that is associated with a selected row, right-
click a prompt row and select Display in callflow from the context menu. If the callflow (or studio
diagram) is not currently open, it will be opened in the editor and the selected block will be highlighted
with a blue outline as shown below.

L1 L

< Prompt I § § | error.corm.genesyslab.composer . dbconnechonstor

PromptR.etriesExoeeded I

Ii' """""""" N _>ILI

£l _
EPererkiele‘- Prompts Manager &3 > @ | ‘i} d

Composer Project: IDatal:uaseStucksJavaC-:umpl:userPrl:uject j Language Resource: Ien-LIS vI
Prompks | Tvpe | Prompk Ikem Te:xk | Audio File | Time Skamp | Inskruckion
7 PromptQueryTimeout! Yalue Database guery timed out ... M/A
7 PromptQueryTimeout! Yariable DEInputEetCompany {1
=] E:' PrompkR.etriesExceeded
¥ Fromptl Promptisg 10N Sorry, the number of retrie,.. MN/A
= L Prompt_SayCompany
7 Prompt2_PromptMsgl Yalue Flease say a company name. N/
= L SorryDidMotHear Arything
7 Promptl_PromptMsgl Yalue Sorry, I did not hear anvth... WA

6. To modify a value (for example, the prompt item name, the prompt item text, and so on) from within the
Prompts Manager view, double-click the table cell, type a new value, and press Enter. Certain table cell
values may not be modified.(for example, callflow diagram name, prompt type, and so on).

Supported Audio File Formats Audio files are encoded and outputted in various audio file formats.
The following audio file formats are recommended and supported for playback and recording within
Prompts Manager:

File . Bit rate . .
Extension Sample Rate Sample Size (Bandwidth) File Format Encoding
. . Raw audio
.VOX 8000 Hz 8-bit 64 bits/sec (mono) u-law
. . Raw audio
.VOX 8000 Hz 8-bit 64 bits/sec (mono) a-law
Audio with
.wav 8000 Hz 8-bit 64 bits/sec .wav header PCM
(mono)

Refer to the VoiceXML 2.1 Reference Help on the Genesys Voice Platform Wiki for additional formats
that GVP supports. Those additional formats can be played back and recorded using third party tools
outside of Composer.

Composer Help 489

https://docs.genesys.com/Documentation/IW/8.1.3/Help/GenesysVoicePlatform

Using Voice Blocks

Recording Prompts

The Prompts Manager view provides a button to launch a recorder/player that can record and play
back a single prompt item’s audio file. The newly-recorded file will replace any existing audio file

associated with the highlighted prompt item. Notes:

¢ Related prompt audio settings are located in the Composer Project Settings. In the Project Explorer,
right-click the Composer Project folder, and select Properties. Select the Prompts Management

section for prompt audio settings.

e To record a prompt item using Prompts Manager, the prompt item must be of type Resource in the
Prompts Manager view. If you do not want to specify an audio resource at this time or wish to record
your own resource prompt using the Prompts Manager, you may instead define a value in the

Alternate Text field shown below.

¢ Please note for recording prompts that are of type Value to interpret-as "Text," you will need to change
the prompt type to Resource. Supply the prompt text value in the Alternate Text field for the

Resource prompt type.

To record a prompt from within the Prompts Manager view:

1. Select an existing prompt row of type Resource.

2. Click the Record icon ® to open the Prompts Manager - Recorder dialog box as shown below:

Composer Help 490

Using Voice Blocks

Prompts Manager - Recorder : . ﬂ

Record Audio: BronzeQueuePrompt_Prompt

Resource file | Resources|Prompts/en-U5/Quele_Bronze_PFS.viox >
~Recording
My Mokes

Effective 01/01/09. |

Alkernake Text

For Bronze customers

Location : I ResourcesiPrompts/en-U5 Browse

IILI*_IL

File: Marme |Queue_Bru:unze_F‘F5

Audio Format @ [wo - Encoding : ||_||_,.:.,-.,-.|.- j

> |]| | i | |Resn:nurn:es,l'F‘rn:nmpts,l'en-LlS,l'Queue_Ern:nnze_PFS.vn:nx
i [I Cancel |

The Prompts Manager - Recorder dialog box assists in the recording, playback, and storing of the
audio file.

1. Type any notes for this prompt in the My Notes field.

2. Type an alternate text string in the Alternate Text field. This text is used to generate audio using
#Text-to-Speech in place of the audio file should the audio file not be available at runtime.

3. Select the default recording location, or click Browse to navigate to an alternate location. Note:
Genesys recommends that you keep your language specific audio files in the/Resources/
Prompts/<language-code> folder.

4. Type a recording file name or keep the current name.

5. If the audio recording format displayed in the Recorder is not the format you wish to use, click Audio
Recording Format to open the Properties dialog box for this Composer Project, from which you can
change the audio format to WAV or VOX. You can also specify the encoding as ALAW or MULAW.

Composer Help 491

Using Voice Blocks

10.
11.

. Click OK in the Properties dialog box to accept the new audio format setting for this Composer Project.

. Click Clear if you want to clear the current resource file and create a new one.

. Click the Record icon e to record your audio prompt. A microphone should be connected and volume

levels should already be set properly.

. Click the Stop icon = to stop the recording.

Click the Play icon B to play back the new audio prompt. You can re-record if necessary.

Click OK when you are finished to close the Prompts Manager - Recorder dialog box. At this point,
Prompt Manager will save any changes you have made. If you click Cancel, no changes are saved to
the project.

Exporting a Prompt Listing

The Composer Prompts Manager provides the ability to export a prompt listing of all prompts in a
Composer Project along with the attributes shown in Prompts Manager, such as instructions and
notes. This facility is useful if you need to send your prompts out for professional recording and want
to include instructions and text to be recorded along with prompt names. To export a prompt listing
from within the Prompts Manager view:

1.

P
Click the Export Composer Project Prompts icon = in the Prompts Manager view, or

¢ From the File menu, select Export. Expand Composer and select Export Prompt Listing,
or

* Right-click with any prompt or Prompt block selected, and select Export Composer Project
Prompts from the context menu, to open the Export dialog box as shown below:

Composer Help 492

Using Voice Blocks

Prompt Listing Export

@ Please input a destination or use the Browse bukbon to select,

=10 |

Select the Composer Project:

IDatabaseStu:ucksJavaCDmsterPrDject j
Select the type of file format:
E

File system destination:

Erowse, .. |

(7) Einish I

Cancel

2. Select the Composer Project whose prompts you wish to export from the drop-down list.

3. Select the file format for your exported data from the drop-down list. You may select either xml or csv

format.

4. Click Browse to navigate to a destination location to hold your prompt export file. The exported file will
have the name: <voiceprojecthame>.xml or <voiceprojectname>.csv].

5. Click Finish to complete the export request.

XML Format Description Below is an example snippet from a prompt listing export in XML format:
<prompts project="JavaComposerProject Voice Business"> <prompt callflow="Main"
block="WelcomePrompt" name="WelcomePrompt Promptl" type="Resource" interpret-

as="Audio" value="Resources/Prompts/en-US/Brand A.vox" format="" alternateText=""
instructions="" notes="" />..</prompts>
XML Tag Attribute Name Description
. The Composer project that is
<prompt> project being exported.
The name of the callflow diagram
S[ETEE.= e where the prompt resides.
<prompt> block The name of the diagram block

where the prompt resides.

Composer Help

493

Using Voice Blocks

<prompt> name The name of the prompt item.
The type of prompt, such as
<prompt> type Value, Resource, or Variable.
<prompt> interpret-as The interpretation of the prompt
value.
<prompt> value The value of the prompt item.
If applicable, the format of the
<prompt> format value. Used for interpret-as, Date

or Time. For example, 24 Hour or
12 Hour.

The alternate text for the prompt.
Used for an invalid value. For

<prompt> alternatetext example, if an audio resource
does not exist or the variable
data is invalid.

Text for additional or specific
information instructions. For
<prompt> instructions example, if a certain word needs
to be emphasized when
recording at the recording studio.

Any further notes from the user.
For example, identify if an
associated audio file was
recorded by the Prompts

<prompt> notes Manager or if the audio file was
from a recording studio. Shows
the source, which will be set by
the user (Recorded/Imported/
Unknown).

CSV Format Description The CSV format separates each prompt-related value by commas. The
ordered values represents the following:

Callflow

Block Name

Prompt Type

Interpret-As

Prompt Name

Value

Format

Alternate Text

© o N o U A W N

Instructions

=
o

Notes

The following is a snippet from the prompt listing Export in CSV format:
Main,WelcomePrompt,Resource,Audio,WelcomePrompt Promptl, "Resources/Prompts/en-US/
BrandiA.VOXII’ n II' , n II, mnn

Composer Help 494

Using Voice Blocks

Prompt Listing Usage For a Recording Studio

A recording studio may use the details in the sample exported prompt listing below when preparing
an audio recording for a prompt item. This transcript-like format is intended to assist with producing
professional sounding recordings. The five prompt items are in sequenced order to provide a sense of
tone in relation to where the recorded message is at the beginning/middle/end of the overall
message. The recorder:

e Uses the block name attribute to determine which set of prompt items belong together.. For example,
the last five prompt items are from the same Menul prompt block.

¢ |s typically interested in prompts where type="Resource" and interpret-as="Audio", as these are the
audio resources that are to be professionally replaced.

* Uses the value from the alternateText attribute to determine what should be said for the recording.

e Uses the instructions attribute for additional details from the developer, such as instructions to
emphasize a certain word in the prompt message.

Sample Exported Prompt Listing

<prompts project="JavaComposerProject Voice Business"> <prompt callflow="CompanyABC"
block="Promptl" name="Promptl PromptMsgl" type="Resource" interpret-as="Audio"
value="Resources/Prompts/en-US/Welcome.vox " format="" alternateText="Welcome to A B
C bank." instructions="" notes="Prompts Manager recorded file." /> <prompt
callflow="CompanyABC" block="Menul" name="Menul PromptMsgl" type="Resource"
interpret-as="Audio" value="Resources/Prompts/en-US/MainMenu A.vox" format=""

alternateText="Main menu." instructions="" notes="Default Composer audio file." />
<prompt callflow="CompanyABC" block="Menul" name="Menul PromptMsg2" type="Resource"
interpret-as="Audio" value="" format="" alternateText="To check your balance press

one or say check balance." instructions="Place emphasis on 'check balance'" notes=""
/> <prompt callflow="CompanyABC" block="Menul" name="Menul PromptMsg3"

type="Resource" interpret-as="Audio" value="" format="" alternateText="To make a bank
to bank transfer press two or say transfer." instructions="Place emphasis on the word
"transfer'" notes="" /><prompt callflow="CompanyABC" block="Menul"

name="Menul PromptMsg4" type="Resource" interpret-as="Audio" value="" format=""
alternateText="To repeat these options press five or say repeat." instructions="Place
emphasis on the word 'repeat'" notes="" /> <prompt callflow="CompanyABC"

block="Menul" name="Menul PromptMsg5" Naming For ease of importing the new audio recordings
into Composer, Genesys recommends making the name the same as the attribute value of the
respective prompt entry. For example, MainMenu_A.vox in the below snippet. This avoids having to
rename the files when they are imported into Composer as described in the Importing Prompt
Resources topic. <prompt callflow="CompanyABC" block="Menul" name="Menul PromptMsgl"
type="Resource" interpret-as="Audio" value="Resources/Prompts/en-US/MainMenu_ A.vox"
format="" alternateText="Main menu." instructions="" notes="Default Composer audio
file." />

Composer Help 495

Using Voice Blocks

Importing Prompt Resources

See the Sample Exported Prompt Listing, which should be used as a transcript by the recording
studio. After receiving the prompt audio resources from the professional audio recording studio, be
sure to place the audio files in the correct Composer Project resource path. This ensures that the
resources will work properly with the existing callflows that will use them. The Composer prompt
resources are stored under the Composer Project folder ../Resources/Prompts. Example: ../Resources/
Prompts/en-US/Brand_A.vox For a prompt item with audio resource Resources/Prompts/en-US/
Brand_A.vox, the new professionally recorded audio file must be identically located and named
Resources/Prompts/en-US/Brand_A.vox. If you do not do this, you must go to the callflow diagram
block properties to set the new prompt resource path, or rename the file to match existing prompt
settings. Note: When importing multilingual prompts, be sure to place the audio resource files in
their corresponding prompt resource locale folder. For example,

e English -- United States ../Resources/Prompts/en-US

e Spanish -- Spain ../Resources/Prompts/es-ES

To import file resources to the target Composer Project, use the Project Explorer. Or simply copy and
paste the files to the target prompts resource folder location of the Project Explorer. As an alternative,
importing may be achieved by using File > Import... Expand and select General > File System. In
the Import dialog, set the From directory field and Into folder fields, select the desired files, and click
Finish. A sample is shown below.

Composer Help 496

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithPrompts#Sample_Exported_Prompt_Listing

Using Voice Blocks

I

: i o [=]1E3
File system
Impart resources From the local file syskem,| @
L

From directory: | CiiDocuments and Settingsibyo . CAMELO T\ DeskioplAudio Thingsh, [Browse, .,]

------ [B] = wavinout [] Elrun.bat
;“J test,way

|:| ;'}] testout.way

ol wavIO.cIass

[[3] wavio.java

[Clwavio.zip

[] ElwavioTest bat

[wavIOTest.cIass
] m wavIOTest, java

<]

[Filter T':.fpes...][Select Al] [Deselect Al J

Into Faolder: |JavaCDmsterF‘ru:ujeu:I:_'u'u:uice_Business,l'Resu:uuru:es,l'F‘ru:umpts,l'en-LlS | [Browse, .,]

Opkions
|:| Crverwrite existing resources withouk warning
() Create complete Folder structure

{(®) Create selected Folders only

@ Mext = i Finish i[Cancel]

Composer Help 497

Using Voice Blocks

Working with Database Blocks

This page contains general information on working with the Database blocks.

Database Connection Profiles

Before you can connect to a database in your application, you need to define a database connection
profile that will maintain all information necessary to connect to a particular instance of a database.
The figure below shows an example connection profile.

ﬁ defaulk.workFlow L =0
. : a
& Connection Profiles B =
Profiles =) Details
Set the properties of the Connection Profile. Required Fields are denoted bey "+,
Click "+" to add a new profile and "x" to delete a REER) i ¥
selected profile, Select a profile to edit its details Prafile Mame* | ConnectionProfile 1 |
on the Details pane,
d Connection Pooling Enable
ConneckionProfilel
Connection Pool Mame | jdbc/oraclePooled |
Database Type* |oRACLE &
Hostname* | dev-iron |
Fort [1521 |
Instance Mame | |
Database Name* [compoe | OQso
Username® [br |
Password |**| | O show O Encrypt

Encryption

Connection String

Preview and add the custom parameters to the Connection String.

jdbc:aracle: thin: @({DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dev-iron)(PORT=152 1) COMNECT_DATA=(SERWICE_N | —
AME=COMPDE1)))
bk

| Cuskom Parameters | | Test Connection |

The DB Data block requires that you specify the name of a connection profile in its properties so that
it can use that information to connect to the database at runtime. Multiple connections profiles can
be defined in one Project and these profiles can be shared by multiple DB Data blocks even if they
are in different callflows. A connection profile consists of the basic information required to connect to
a database. The information provided in a connection profile includes the following:

¢ Profile Name. The internal name that Composer uses to identify connections uniquely.

¢ Connection Pooling. Select to enable connection pooling, which maintains a set of database
connections that can be reused for requests to databases. You can use this feature to enhance
performance by avoiding time-consuming re-establishment of connections to databases.

Composer Help 498

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock

Using Voice Blocks

¢ Connection Pool Name. Specify a Java Naming and Directory Interface (JNDI) name for the pooled
data source. Composer applications can use any JNDI data source exposed by the web server. The .war
files exported by Composer contain configuration files to support connection pooling with JBoss and
WebSphere; other configuration changes to the web application may be required for other web servers

 Database Type. The type of database from the list of supported databases

 Hostname. The host on which the database server is running. In case of Database Cluster, Virtual IP/
Cluster Alias/SCAN Name is specified here.

e Port. The TCP port on which the database server is listening for connections. The most commonly used
defaults for supported database types are pre-populated by Composer. If your database server uses
custom ports, you will need to specify them here.

¢ Instance Name. The MSSQL Instance that need to connect in SQL Server. Port will take precedence if
specified. This field is disabled when Database Type is selected as ORACLE.

¢ Database Name. The name of the database/catalog for SQLServer and the SID in case of Oracle.

e SID. The check box to specify if value provided in "Database Name" is SID. This check box is disabled
when "Database Type" is MSSQL

* Username. The username that should be used to access the database
¢ Password. The password that should be used to access the database
¢ Encrypt. Select the encrypt the password.

¢ Show. Select to show the password

¢ Custom Parameters. The supported custom parameters can be included in connection string along
with other parameters. To define custom parameters click on the button "Custom Parameters". In the
dialog opened add the parameter name and value, in the order that need to be appended to
connection string.

Configuration for Database Cluster:

¢ For MSSQL Cluster, Virtual IP/Cluster Alias is specified in Hostname field of Connection Profile. To
connect to particular named instance in cluster, Instance parameter is configured.

e For ORACLE Cluster, Cluster Alias/SCAN Name is specified in Hostname field of Connection Profile.

Additionally, to enable TAF functionality in ORACLE clusters, connection pool is created similar to
pooling capability in other application servers. Connection pool can be created as the example below
(This need to be added in Tomcat server.xml present in Composer installed path) <Resource
name="jdbc/oraclePooled" auth="Container"

type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming.factory.BeanFactory"
driverClass="oracle.jdbc.driver.OracleDriver"

user="scott"

password="tiger" jdbcUrl="jdbc:oracle:oci:@(DESCRIPTION=(LOAD BALANCE=on) (FAILOVER=0n)
(ADDRESS=(PROTOCOL=tcp) (HOST=172.21.184.70) (PORT=1521)) (ADDRESS=(PROTOCOL=tcp)
(HOST=172.21.184.71) (PORT=1521)) (CONNECT DATA=(SERVICE NAME=rac.genesyslab.com)
(FAILOVER _MODE=(TYPE=session) (METHOD=basic))))" />

Encryption:

Parameters under "Encryption" tab allows you to configure SSL encryption and server authentication

Composer Help 499

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications#Deploying_a_Java_Composer_Project
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DeployingComposerApplications#Deploying_a_Java_Composer_Project

Using Voice Blocks

for Database connections made during Design time (Query Builder, Stored Procedure) and Runtime.
When security is enabled, SSL encryption is used for all data sent between composer and SQLServer,
if the SQL server has a certificate installed.

* Encryption

Set connection properties ko encrypt the connection to the database

Secure Conneckion Enable
Trusk Certificate [Enable

Match Certificate Subject [Enable

Certificate Hostname |dev-irnnlus.int.genesyslab.mm |
Trust 3tore Location ||::'|,I:rustst|:|re |
Trusk Skare Type |JKS |
Trust Store Password |******** | O show

Connection String

Preview and add the custom parameters ko the Connection Skring.

jdbc: oracle:thin: @{DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)fHOS T=dev-iron)(PORT=1521 1)(COMNECT_DATA={SERVIC
E_MAME=COMPDEL 1)

b+

jawax.net.ssl bruskStore=c: ftruststore

javax, net, sl truskStore Type=1K3

Cuskorm Pararneters | | Test Connection

To establish a Secure Database connection from Composer, following parameters are to be configured
under encryption tab:

e Secure Connection. Enabling this check box will make all connections from Composer to Database
Server encrypted with a choice of server authentication

¢ Trust Certificate. Enabling "Secure Connection" and "Trust Certificate" will be sufficient to establish
SSL Connection. When "Trust Certificate" is disabled, other optional attributes are enabled to validate
server certificate,

¢ Match Certificate Subject. This is enabled in order to force the matching of the certificate subject
available in Server Certificate and client's trusted copy.

¢ Certificate Hostname. This parameter is specified in case the client certificate carries a different
subject name than the server certificate and user wishes to ignore the difference by providing the
subject name expected in the server certificate explicitly.

* Trust Store Location. Location where the Trust Store file is present. The trust store file contains all the
certificates trusted by the client, including the certificate that the server uses to autheticate itself.

¢ Trust Store Type. JKS truststore is supported when Database Type is ORACLE. This parameter is not
editable. This is not applicable when Database Type is MSSQL

¢ Trust Store Password. Password to access the trust store.

Composer Help 500

Using Voice Blocks

Certificate configuration for Secure Connection:

* For Java Composer Projects, when "Secure Connection" is enabled and "Trust Certificate" is disabled,
certificates are placed in "TrustStore Location" specified in connection profile.

For .NET Composer Projects Design time (i.e. for Query Builder and Stored Procedure Builder),
certificates are placed in "TrustStore Location" specified in connection profile.

For .NET Composer Projects Runtime and MSSQL database, certificates are installed in "Certificate
Windows Snap-In" accessed from MMC console in Windows.

For .NET Composer Projects Runtime and ORACLE database, certificates are installed in Oracle wallet
both in client and server. tnsnames.ora configuration will have service name with TCPS protocol.
Example is given below.

SSLTEST =

(DESCRIPTION =
(ADDRESS LIST =
(ADDRESS = (PROTOCOL = TCPS) (HOST = dev-rose.us.int.genesyslab.com) (PORT = 2484))

)
(CONNECT DATA =
(SERVER = DEDICATED)
(SERVICE _NAME = SSLTEST)
)
)

Notes:

To establish a connection profile, you must be working with a Project file that was upgraded to
Composer 8.0.2 or higher from an earlier Composer release. Connection profiles are not available in
Projects created using Composer 8.0. They become available after the Project is upgraded. The
method for specifying additional pooling parameters varies based on the database being used and
the Project type. Java Composer Projects use the c3p0 library for both SQLServer and Oracle
databases. Otherwise, in the case of Oracle databases, Composer uses the c3p0 library and the
library exposes its own configuration parameters for pooling via an XML file. In case of SQLServer,
additional pooling parameters can be specified in the connection string.

Creating/Editing a Connection Profile

To create (or edit) a connection profile:
1. Select the Project for which you are creating a connection profile in the Project Explorer, and expand
your project folder set.
2. Expand the db folder.

3. Double-click the connection.properties file. The Connection Profiles view opens.

4. To create a new profile, click the Add Profile - icon in the Profiles pane. (If you wish to edit an
existing profile, you can select an existing profile in the Profiles pane.)

5. In the Details pane, enter (or update) the appropriate information in each field (fields containing the *

Composer Help 501

Using Voice Blocks

character are required).

(]
6. Click the Save Profile ['3] icon in the upper-right of the Connection Profiles window. You must save the
profile in order for it to be available for selection in the Select Connection Profile dialog box.

7. Test the connection profile by clicking the Test Connection button to connect to the database.

¢ The message Database connection was successful indicates your connection profile
successfully connected to the intended database.

* The message Database connection failed followed by additional details indicates a
problem with your connection profile. Update the profile, save it, and test it again.

Note: For information on creating the configuration for the connection pool on the application server
side, see Connection Pooling.

Preview Connection Strings

The connection to the database with the specified parameters in the connection profile can be
previewed and tested in the Connection profile editor. In case of Java project as the design and
runtime connections use JDBC connection , JDBC connection string is available to preview and test. In
case of Dotnet projects as the design time uses JDBC connection and runtime uses OLEDB
conneciton, both strings are available to preview and test. Note: The Dotnet project must be
deployed correctly in 1IS to preview the OLEDB connection string. The parameters apart from ones
explicitly collected in the editor can be added using the custom parameters dialog which takes the
parameters as a name value pair.

Using the Query Builder

The Composer Query Builder provides a visual method of building a database query without the need
to type SQL code. The Query Builder is accessed through the Query Type property in the DB Data
block. It can be used for both voice callflows and routing workflows. Note: The Query Builder can
only be accessed when a valid connection profile has been created and selected in the Connection
Profile property of the DB Data block. The Query Builder with an example query is shown below.

Composer Help 502

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Query_Type_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Connection_Profile_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Connection_Profile_Property

Using Voice Blocks

B Query Bullder

Database Structure Selected Colemns and Sorting
Uise the tree bo select the tabies and columrs thatyou. Sorting (Urder By clause) can be specified by selectng the Sort Order and Soct Pricrity, To sort by miitipk
woLkd e b include in the querny. Colmne Sort Prionity shoukd be specfied.
= 10 testabl | | Golsmnname | Table Mame |sortorde | SortErionty Imw W |
=& doo stock_symbeod chostock_price Ascending 2 StockMame
® [0 Prompadames | | quote_vale cbostock_prce Descendng 1 ShockPrice m
® []m Prompts quete_datetime o stock_prce T
O comparess |
w7 prompt_fles
[F] O stock_price [
@[] M stock_purchase_order _ _ [I _
%]/ t_peompts [
& []m t_prompts2 Concitions

CorddiBons cam be Lsed to narmow the query results to the spacfisd parametars. The Bockean colenn definss the
retatonship of the condtons, 1t can be ANDJOR,

Conditon |Bockean |
|
SO View
The curment SOL queny & dsplayed here. Yiou can also execute the query o geta préview of the results.
SELECT 'md"."sm_pﬂce"."sm_wmbd'. “dioa. "stock_pnice™, “quicte_valuse®, "dbo"."stock_pnce”."quiote_datetime" -
EROM _I Ereview Diata
"™, "shock_price” 0 Limitrows
CROER BY "dpo'."stock _pnce”,"quate_value™ DESC, “dbo."stock_price"."stock _symbal” ASC T -
Quiery Result Preview
|
K | Cancel

Building a Database Query

The Query Builder opens when Composer is successfully able to connect to the database specified in
your connection profile. Any schemas, tables (and table synonyms) and columns of the database
accessible from the specified user account are shown in hierarchical format in the Database Structure
pane of the Query Builder. In the example below, EMPLOYEESSYNONYM is a table synonym.

Composer Help 503

Using Voice Blocks

Database Structure

Iise the bres to select the kables and colurnns that vou would like to
include in the query.
=200 =« -
B[& cTesys
6 [& DBSHMP
=[] FLOWS_020100
-] FLOWS_FILES
-0 iR
- = [coUNTRIES
[] 7] DEPARTMENTS
=-[] = empLOYEES
[= E @1 EMPLOYEESSYMNOMYM
00 B * (Al columns)
“[J 8 MANAGER_ID : DECIMAL
] ¥ DEPARTMENT IO : DECIMAL
----- g salLary : DECIMAL
| HIRE_DATE : DATE
g FIRST_MAME : YARCHAR
8 COMMISSION_PCT : DECIMAL
B
H
g

EMAIL : YARCZHAR,
EMPLOYEE _ID - DECIMAL
J0E_ID : YARCHAR x|

TableSyn.gif

Note: MSSQLServer table synonyms are read from the system table sys.synonyms. Oracle table
synonyms are read from the system table user_synonyms. To build a query:

1. Specify which table columns are returned as query results.

e Select the tables and columns to include in your query by checking appropriate items in the
Database Structure pane. Expand table entries to see the columns. To select all columns
in a table, select the appropriate (All columns) check box under the appropriate table.

e Selected columns and tables appear in the Selected Columns pane. To alter the order in
which selected columns are returned in query results, use the Up and Down buttons to
reorder columns within the list.

* To specify the order in which query results should be sorted, click on the Sort Order field for
a column and select a Sort option (ascending or descending). This will automatically fill in
the Sort Order, which indicates the sequence in which multiple sort criteria will be applied. It
is possible to sort by multiple columns and you can change the sorting sequence by clicking
on the Sort Priority column. For example, you might sort a query of names by last name
and then sort by first name for those people with the same last name. In that case, last
name has Sort Order 1, and first name has Sort Order 2.

Note: The order in which columns appear in the Selected Columns list does not affect the sort order.

¢ To specify the variables into which the column values need to be copied, click on the
Variable Mapping field for a column and select a variable. If a variable is specified for a
column, DB Data block execution will result in the column values of the first record being
copied into the specified variable. If more than one record is returned by the query, then use

Composer Help 504

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock

Using Voice Blocks

the Looping block along with the DB Data block to iterate over records and populate the
variables specified for the columns.

2. Specify filter criteria. In the Conditions pane, you build the search or filter criteria to identify the data
you want to retrieve from the database. You can can specify multiple conditions.

e Click Add to create a new condition. A new row will be added to the Conditions list. Click on
the Condition column, and then click the =] to open the Condition Builder.

¢ Select a column from the Select Column drop-down list which the search condition will
operate on.

¢ Select the operator (=, <>, <, >, and so on) from the Operator drop-down list. This
operator will be used to compare the specified column with the value specified in the next
step.

* In the Value field, type or select your value for the condition depending on the value type
option:

e Column Reference: a table column that you can select from a drop-down list.
This option will compare the two selected columns based on the specified
operator.

* Application Variable: a variable defined in your application that can be
selected from a drop-down list. At runtime the current value of the selected
variable will be used for comparing the column’s value based on the specified
operator.

¢ Custom Value: a value that is not validated by the query builder and is added
directly to the query. It can be used to specify SQL functions or more complex
expression.

¢ Literal: a value that is interpreted as a string or a number. Type in the literal
value. The value will be enclosed in quotes automatically if it is a string. If the
literal value represents a number, you will need to enclose it in quotes
depending on the data type of the selected column. This option will compare
the selected column’s value to the specified literal using the specified operator.

¢ Click OK to complete the condition.

¢ Using the above steps, you can define multiple conditions. These conditions can be
combined using logical operators to further refine your search criteria. You can select AND
or OR in the Boolean field to specify the logical operator.

3. Test your query.

» To test the query, you can click the Preview Data button. This executes the query against
the appropriate database. If the database tables contain data and if any records match the
specified conditions, they will be displayed in the Query Results Preview pane. A message
will also show the number of records returned as a result of the query.

¢ If you expect that the number of matching records will be large and want to preview a subset
of returned data, click the Limit Rows check box and enter a numeric value to limit the
number of returned results.

Note: The message will now show the number of records displayed rather than the actual number of
matching records. The query results preview is shown in the Query Result pane.

Composer Help 505

https://docs.genesys.com/Documentation/IW/8.1.3/Help/LoopingCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/EntryBlock#Variables_Property

Using Voice Blocks

4. Click OK to save your query and update the DB Data block with the new query. If you click Cancel, all
changes are discarded and no changes are made to the DB Data block.

Specifying Custom Queries

The DB Data block can use queries specified in a SQL (.sql) file in your Project instead of a query
created using the Query Builder. To use a custom query:

e Create a .sql file in your db folder and specify the filename in the Query File property of the DB Data
block. Make sure that the operation type is SQLScriptFile. Composer will read this file at runtime and
use it to query the specified database.

The ability to use custom queries is useful in cases where the SQL query is already created using
other tools, or if the query uses features not supported by the Visual Query Builder. The next topic
describes limitations of the query builder.

Application Variables

You can use Application variables in custom query files as part of the SQL statement. To use a
variable, include its name within curly braces without the AppState. prefix. For example, the following
statement uses varnamel and varname?2. Their values will be substituted at the time the DB Data
block queries the database. SELECT name_of function({varnamel}, {varname2}) from dual
Results of the query are stored in a variable as a two-dimensional JSON array. This data can then be
accessed via a Looping block or via scripting in the Assign or ECMAScript block. For example, if the
database result set looks like this in tabular form:

Vegetables Animals
lettuce chicken
broccoli lion

The JSON for the result will look like this: {"db_result":[["lettuce", "chicken"], ["broccoli",
"lion"]1],"db result columns":["vegetables", "animals"]} Note: An example of custom
queries is in the Database Stocks Template application.

Stored Procedure Helper

If you select StoredProcedure for the Query Type property in the DB Data Block, you can click the

EZ1 button on the property row to open the Stored Procedure Helper dialog box. Here you can
select a stored procedure, execute it, and get query results. A completed example is shown below.

Composer Help 506

https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Using_the_Query_Builder
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Query_File_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Limitations_and_Workarounds
https://docs.genesys.com/Documentation/IW/8.1.3/Help/LoopingBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/AssignCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScriptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock#Query_Type_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock

Using Voice Blocks

irnrm‘l Procedure Helper BEE

Stored Procedures Parameters
Use the tree ko select the: stared pracedure you would liks to The selected columns can be reordered in this table, Sort ade; of the returned data can alsa be defined
invake, here.
=[O0 compossraoz é Parameter Hame | Type | pstaType | value I
= O dbo ! RETLRK_MaLLE RETLIRN INTEGER
. 2EAE gerstockprice skock_quot Hiour DECIMAL
B O s ock_guote

ILD [sp_ActiveDiractary Ok
- O E sp_activeDirectory_SCP
#-[J E] sp_ActiveDirectory_Start
F=-O E sp_iHSerpxid«rle

B[O E sp_HSerickSchFile
#-[OE sp_tHvaldaterowFiker
B[] E sp_IHxactSetIoh

-] sp_IH_LR_GetCacheDista
®- 5 sp_Hadd_sync_command
ILD [E] sp_IHartickecolumn

I -1 e THnak bwnehack detacky _rvl
‘ i ,

Stored Procedure Call

The: 501 statement to call the sslected procedure is dsplayved here, You can also execute the procedure to get the results,
E{P = call dbo,getStackPrice(?, 7)- -

Query Result Parameters Query Result Preview

Resuk parameters after stored procedure execution, 0 Shored procedure did not reburn resulk set,

Parameter bane I Yalug | [I
stack_quabe null
RETURM_WALUE]

(7 (o3 Cancel

Setting up a Stored Procedure Call

The Stored Procedure Helper opens when Composer is successfully able to connect to the database
specified in your connection profile. Any stored procedures in the database accessible from the
specified user account are shown in hierarchical format in the Database Structure pane of the Stored
Procedure Helper. To set up a stored procedure call:

1. Specify which stored procedure should be executed.
2. Select the stored procedure to execute by checking appropriate item in the Database Structure pane.

3. Parameters and Return Value appear in the Parameters pane. Specify the value (application variable) for
each of the parameter into which the output value is stored after the stored procedure has executed.

Composer Help 507

Using Voice Blocks

4. To test the stored procedure, click the Execute button. This executes the stored procedure in the
appropriate database. If the stored procedure returns any records, they are displayed in the Query
Results Preview pane. Any output values are displayed in the Query Result Parameters pane. A
message shows the number of records returned as a result of the query.

5. Click OK to save your query and update the DB Data block with the new query. If you click Cancel, all
changes are discarded and no changes are made to the DB Data block.

Note: Composer does not support the REF CURSOR return type in a stored procedure.

Password Encryption

Composer can now encrypt the database connection profile passwords so that they are not written in
the clear to the connection.properties file.

Encryption Key

In order to enable encryption, you must first create an encryption key. Composer requires a 128-bit
(16 bytes) key, in hex-encoded format. This can be randomly generated by the OpenSSL tool, using
the following command line:

$ openssl rand -hex 16 75b8ec9a3ce60a21c4f94236alb55fh2

Any random source will do. Another example is http://www.random.org/cgi-bin/
randbyte?nbytes=16&format=h (With this example, you will have to remove the spaces in the
output.)

Save the encryption key to a text file. Note that this file should be securely stored, so that it can only
be read by the Composer process and the backend Tomcat/IIS processes.

Configuring Composer Preferences

In the Composer > Security preference page, set the Encryption Key Location preference to point
to the encryption key file created in the previous step.

Encrypting the Database Connection Profile Password

In the Connection Profile Editor, next to the Password field, enable the Encrypt checkbox. Now, when
you save the Connection Profile, the password will be scrambled in the connection.properties file.

Enabling Decryption in the Backend

When the application runs, the application server will need to be able to decrypt the password so that
it can connect to the database. For this, the application needs to be configured with the location of
the encryption key file.

Composer Help 508

Using Voice Blocks

Java Composer Projects

If it doesn't already exist, create the file WEB-INF/composer.properties inside the project. Inside the
file, enter the following line:

composerEncryptionKey=C:\\secrets\\encryption-key.txt

(Note that the backslashes here must be escaped.)

.NET Composer Projects
Edit the web.config file's appSettings entry:
<appSettings>

<add key="composerEncryptionKey" value="C:\secrets\encryption-key.txt" />

</appSettings>

(Backslashes here are fine.)

Limitations and Workarounds

The Query Builder supports creating SELECT statements. The following is a list of limitations along
with suggested workarounds:

¢ INSERT, UPDATE, and DELETE statements cannot be created using the Query Builder. Advanced SQL
features, such as outer joins, subqueries, and unions are also not supported. A custom query can be
used to overcome these limitations.

e if you rename a DB Data block, its corresponding SQL statement file in the db folder will not be updated
and will not be valid until you generate code again.

e For details on SQL datatypes supported by Composer, see Supported SQL Datatypes.

Oracle Client Setup for IIS

To set up an Oracle client for Internet Information Services:

1. Install the Oracle client components on the application server.

2. Create a tnsnames.ora file in the C:\oracle\ora81l\network\ADMIN folder where C:\oracle is the
installation folder of Oracle client components.

3. Add the following lines to tnsnames.ora where COMPDBL1 is any alias of choice, XYZ is the Oracle
server, COMPOSER is the Service Name as configured on the Oracle listener (server). After doing this,
you should be able to connect to Oracle using sqlplus user/pwd@COMPDB1 as the command at the
command prompt.

Composer Help 509

https://docs.genesys.com/Documentation/IW/8.1.3/Help/WorkingwithDatabaseBlocks#Specifying_Custom_Queries
https://docs.genesys.com/Documentation/IW/8.1.3/Help/DBDataCommonBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/SupportedSQLDatatypes

Using Voice Blocks

COMPDB1 = (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST =
XYZ.us.int.genesyslab.com)(PORT = 1521))) (CONNECT_DATA = (SERVICE_NAME =
COMPOSER)))

4. Create a System DSN using the Data Sources (ODBC) under Administrative Tools.

5. Make sure that Data Source Name specified above is exactly same as the Database Name specified
in the Composer database connection profile and TNS Service Name is the same as the alias in step
3.

6. Click on Test Connection in the database connection profile. The connection should be successful and
the Composer VXML application should be able to connect to the database.

Steps 4, 5 and 6 can be avoided if the alias used in the tnsnames.ora file is same as the database
name specified in Composer.

Composer Help 510

Using Voice Blocks

User Data

To work with User Data in Composer, you can use:
e The Interaction Data block for voice applications.

e The User Data property of the External Service block if you wish to pass User Data to an external
service (routing and voice).

e The Entry block to access User Data (routing and voice).
For routing applications, you can use:
e The User Data block.
* The Create Email block, which lets you pick up standard response text from User Data.
¢ The Create SMS block, which lets you pick up message text from User Data.

¢ The Identify Contact block, which provides an option to update the interaction’s User Data with the
parameters returned by Universal Contact Server (Contact attribute data).

e The Create Interaction block, which lets you create a new interaction record in UCS database based on
User Data.

e The ECMAScript block. The Script property lets you use Universal Routing Server User Data functions.
Open Expression Builder. Select URS Functions and then _genesys.ixn.deleteuData (to add a User
Data property or delete all properties) or _genesys.ixn.setuData (to add new or update existing User
Data).

Composer Help 511

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExternalServiceBlock#User_Data_Property
https://docs.genesys.com/Documentation/IW/8.1.3/Help/UserDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreateEmail
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreateSMS
https://docs.genesys.com/Documentation/IW/8.1.3/Help/IdentifyContactBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/CreateInteraction
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ECMAScriptBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ExpressionBuilder

Using Voice Blocks

BN Expression Builder

Expression Builder

Buibd an expressian inthe Expression field by selecting the operator(s) and data element(s) From the categaries and subcategories below,
Yiou ey also bype an expression diectly into the Expression Fiskd,

B+ & X = =

Copy Cut Paske Delete Undo Redo Validabe

Expression field

1 =]

f off

Rowe: 1 Columnil
Expression Builder Data I
[Operabors |
| Aaithmatic + | - | * | I |Aﬁsignmnt = |wai'-=m “| "| < | 2 |L°4°9‘ I |&&| ! | :
|l_~r..= Fillier bexk IThi= Function adds new or updates existing udata For an
nkerackion. This function wil mot affect existing udata values that
@ _genesys,ixn.deleteuDatalstring, strirg) ; void ;l dia nok mabch the property names defined in the input parameter
@ _genesys xn.getMedialntyalos{string) : integer pbject.
= B _genesys.in.mediaType — hearighle - inpuk
& _genesys.ban.nPAfstring) @ string kkring = tn

@ _genesys, n.nPAMNCYstring) © string
=03 _genesys, n.overwriteTyvpe

@ _genesys. bon setDNISE_genesys.izn.ovenariteType, string, string

5 genesvs.aueus o=
1| | 3

'C?; lTl Cancel

Hints
* A specific variable ‘xyz’ can be accessed directly; for example: _genesys.ixn.interactions[0].udata.xyz

e To write to User Data, use the setuData() function in an ECMAScript snippet. Usage is similar to the
example below.

var input new Object();

InputValuel; // Specify a value for the key ‘xyz’.

input.xyz

input[‘my-key-nname’] = ‘value’; // Use this notation if the key or property name has
a hyphen in it. Note that’‘my-key-nname’has hyphens.

Composer Help 512

Using Voice Blocks

_genesys.ixn.setuData(input);

e Reading User Data is easier using the Assign block than with the ECMAScript block.

Mandatory Data for UCS Blocks

When working with the Update Contact and Render Message blocks (which map to Universal Contact
Server services), certain properties must exist in the interaction User Data.

For the Update Contact block, Contactld must exist.

For the Render Message block, Contactld (if some contact-related Field Codes (as described in the
eServices 8.1 User's Guide) are used in the text to render). Also Interactionld (if some interaction-
related Field Codes are used in the text to render)and OwnerEmployeeld (if some agent-related Field
Codes are used in the text to render).

As is the case with IRD, these properties are not set in the blocks themselves. Instead, the properties
are assumed to be put in the interaction's User Data by some other block earlier in the workflow,
such as the Identify Contact block or Create Interaction block with the Update User Data property set
to true. In case no other block does this, the User Data block may be used for this purpose.

If these properties are not available, an explicit UCS error message (missing parameter) shows in the
Orchestration Server log.

Callflow User Data

Also see the following blocks used for callflows:

¢ Interaction Data

* Route Request

Composer Help 513

https://docs.genesys.com/Documentation/IW/8.1.3/Help/InteractionDataBlock
https://docs.genesys.com/Documentation/IW/8.1.3/Help/RouteRequestBlock

Using Voice Blocks

Connection Pooling

When defining a database connection profile, you can use connection pooling, which maintains a set
of database connections that can be reused for requests to databases. This feature can enhance
performance by avoiding time-consuming re-establishment of connections to databases. While
Composer does not support specific application servers, this topic presents information on
configuring Tomcat, JBoss, and Websphere application servers to expose a pooled data source as a
JNDI resource. This topic also contains information on creating a JDBC provider for an Oracle
database.

Connection Pooling for Tomcat Application Servers

For Tomcat, a JNDI resource is defined in a Context configuration. Do this in the global scope, at

$TOMCAT _HOME/conf/context.xml. Here is a sample: <Context> ... <Resource

name="jdbc/pooledDS" auth="Container"
type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming. factory.BeanFactory"
driverClass="com.microsoft.sqlserver.jdbc.SQLServerDriver"
user="john" password="doel23"
jdbcUrl="jdbc:sqlserver://dbserverl:1433;databaseName=composerl" />

<Resource name="jdbc/oraclePooled" auth="Container"

type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming. factory.BeanFactory"
driverClass="oracle.jdbc.driver.OracleDriver" user="jane"
password="doe456"
jdbcUrl="jdbc:oracle:thin:@dbserver2:1521:composer2" /> ... </Context>

Important Items

* name--should match the Connection Pool Name parameter given in the Connection Profile in Composer.
e user, password--these are the login credentials to the database.

¢ jdbcUrl--specifies the host, port and database name. Can be copied from the Connection Profile editor
in Composer. The JDBC URL can also use advanced options that might not be otherwise exposed by
Composer. For example, to enable Transparent Application Failover for a connection to an Oracle
database, the URL can be given as:

jdbcUrl="jdbc:oracle:oci:@(DESCRIPTION=(LOAD BALANCE=on) (FAILOVER=o0n) (ADDRESS=(PROTOCOL=tcp) (HO¢
(ADDRESS=(PROTOCOL=tcp) (HOST=host2) (PORT=1521)) (CONNECT DATA=(SERVICE NAME=dbcluster)
(FAILOVER MODE=(TYPE=session) (METHOD=basic))))"

Additional Pooling Parameters

Additional pooling parameters can be customized here as well, for example: <Resource name="jdbc/
pooledDS" auth="Container" type="com.mchange.v2.c3p0.ComboPooledDataSource"
factory="org.apache.naming.factory.BeanFactory"

Composer Help 514

https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling#Connection_Pooling_for_Tomcat_Application_Servers
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling#Connection_Pooling_for_JBoss_Application_Servers
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling#Connection_Pooling_for_WebSphere_Application_Servers
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling#Creating_a_JDBC_Provider_for_an_Oracle_Database
https://docs.genesys.com/Documentation/IW/8.1.3/Help/ConnectionPooling#Creating_a_JDBC_Provider_for_an_Oracle_Database

Using Voice Blocks

driverClass="com.microsoft.sqlserver.jdbc.SQLServerDriver"

user="john" password="doel23"
jdbcUrl="jdbc:sqlserver://dbserverl:1433;databaseName=composerl"
maxPoolSize="20" acquireRetryAttempts="0" / For a full list of available

settings, refer to the c3p0 documentation, which is the third-party connection pooling library used by
Composer (http://www.mchange.com/projects/c3p0/index.html).

Connection Pooling for JBoss Application Servers

To define connection pooling for JBoss:

1. Add the c3p0 and JDBC driver JARs to JBoss's global lib directory ($JBOSS HOME/
server/<instance>/1ib). This is because JBoss will initialize the connection pool upon startup
regardless of what applications are deployed. This is in contrast to Tomcat, which creates the
connections on demand.

2. Next, define the JNDI resources in a file called c3p0-service.xml. Copy the file into $JB0SS_HOME/
server/<instance>/deploy.

Sample:

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE server> <server> <mbean
code="com.mchange.v2.c3p0.jboss.C3POPooledDataSource"

name="jboss:server=5QLServerDS"> <attribute name="JndiName">java:jdbc/

pooledDS</attribute> <attribute

name="JdbcUrl">jdbc:sqlserver://dbserverl:1433;databaseName=composerl</attribute>
<attribute

name="DriverClass">com.microsoft.sqlserver.jdbc.SQLServerDriver</attribute>
<attribute name="User">john</attribute> <attribute

name="Password">doel23</attribute> </mbean> <mbean
code="com.mchange.v2.c3p0.jboss.C3POPooledDataSource" name="jboss:server=0racleDS">

<attribute name="JndiName">java:jdbc/oraclePooled</attribute> <attribute
name="JdbcUrl">jdbc:oracle:thin:@dbserver2:1521:Composer2</attribute> <attribute
name="DriverClass">oracle. jdbc.driver.OracleDriver</attribute> <attribute
name="User">jane</attribute> <attribute name="Password">doe456</attribute>

</mbean> </server>

Pooling Parameters

Specify pooling parameters are specified by adding more <attribute> elements, e.g., <mbean

code="com.mchange.v2.c3p0.jboss.C3POPooledDataSource" name="jboss:server=0racleDS">
<attribute name="JndiName">java:jdbc/oraclePooled</attribute> <attribute

name="JdbcUrl">jdbc:oracle:thin:@dev dbserver2:1521:Composer2</attribute>
<attribute name="DriverClass">oracle.jdbc.driver.OracleDriver</attribute>

<attribute name="User">jane</attribute> <attribute
name="Password">doe456</attribute> <!-- note that the attribute names must be
capitalized --> <attribute name="MaxPoolSize">20</attribute> <attribute

name="AcquireRetryAttempts">0</attribute> </mbean> For a full list of available settings, refer to
the c3p0 documentation, which is the third-party connection pooling library used by Composer
(http://www.mchange.com/projects/c3p0/index.html).

Composer Help 515

Using Voice Blocks

Configuration Files

The following configuration files are automatically generated by Composer's WAR export functionality
and do not require any user action: web.xml and jboss-web.xm| web.xml In the web application
itself, the deployment descriptor (WEB-INF/web.xml) needs to specify a resource reference:
<resource-ref> <res-ref-name>jdbc/pooledDS</res-ref-name> <res-
type>javax.sql.DataSource</res-type> <res-auth>Container</res-auth>
</resource-ref> jboss-web.xml This special JBoss-specific configuration file (WEB-INF/jboss-
web.xml) is required to map the resource-ref to the globally defined resource. <?xml version="1.0"

encoding="UTF-8"?> <jboss-web> <resource-ref> <res-ref-name>jdbc/
pooledDS</res-ref-name> <res-type>javax.sql.DataSource</res-type>
<jndi-name>java:jdbc/pooledDS</jndi-name> </resource-ref></jboss-web>

Connection Pooling for WebLogic Application Servers

When the application Server is WebLogic, there must be an extra configuration file in WEB-INF called
weblogic.xml. First, though, confirm that the following is present in web.xml in the exported .war
file: <resource-ref> <res-ref-name>jdbc/poolDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type> <res-

auth>Container</res-auth> </resource-ref> res-ref-name should match the pool name in the
connection.properties file, and it should be prefixed by jdbc/. weblogic.xml File The weblogic.xml
can be added to the Composer Project in WEB-INF. Afterwards, you will have to export the .war file
from Composer again and redeploy. The weblogic.xml should contain: <?xml version="1.0"
encoding="UTF-8"7?> <wls:weblogic-web-app xmlns:wls="http://xmlns.oracle.com/weblogic/
weblogic-web-app"; xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance";
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/ejb-jar 3 0.xsd http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1l.2/weblogic-web-app.xsd";>

<wls:resource-description> <wls:res-ref-name>jdbc/poolDS</wls:res-ref-
name> <wls:jndi-name>poolDS</wls:jndi-name> </wls:resource-des