
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

CX Contact Current

CX Contact Deployment Guide

12/30/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
CX Contact Deployment Guide 3
Introduction 5
Using Docker Compose to Deploy CX Contact 7

Prerequisites 8
Deploying with Docker Compose 10
Post Deployment Procedures 22

Using Kubernetes to Deploy CX Contact 24
Prerequisites 25
Recommendations 27
Deploying with Kubernetes 29

Common Deployment Procedures 41
Optional Functionality 43

PGP Encryption 44
Integrating CX Contact with Genesys Historical Reporting 46

CX Contact Deployment Guide
Welcome to the CX Contact 9.0 Deployment Guide!

Important
CX Contact is being released to pre-approved customers as part of the Early Adopter
Program. This means that both the product and the documentation are still under
development. As a result, documentation sections might require revision as the
product develops. We advise that you use this documentation with care. Before you
make changes that could affect the success of your deployment, verify them with your
Genesys representatives.

CX Contact contains a set of components that enable you to create, run, and manage outbound
voice, SMS, and email campaigns. Some of its key principles and capabilities include the following:

• Has state-of-the-art user interface (UI) and middleware components.
• Is set of microservices that run in Docker containers, each scalable in N+1 horizontal mode.
• Uses Genesys servers on the back end, such as Configuration Server, Outbound Contact Server (OCS),

and Stat Server.
• Has Genesys Web Services (GWS) as a prerequisite.

You can deploy CX Contact on premises using one of two methods:

• Docker Compose—Suitable for lab or demo environments only, where no product traffic exists. A Docker
Compose deployment is easier than a Kubernetes deployment because all CX Contact and GWS
components are deployed using a single docker-compose file on a single VM. There are also fewer
prerequisites with a Docker Compose deployment because components such as External Load
Balancer, Enterprise Redis, and Network File System are excluded from a Docker Compose deployment.

• Kubernetes—Suitable for production environments but is considerably more complicated because it
deploys CX Contact across multiple VMs and presumes availability of all third-party prerequisites, such
as External Load Balancer, Enterprise Redis, and Elasticsearch cluster.

Other Considerations

Before deciding on the deployment method you'll use, consider the following additional information
about CX Contact:

• Currently, CX Contact supports single region deployments.
• Only a Helm v3 deployment method is supported.

CX Contact Deployment Guide

CX Contact Deployment Guide 3

• High Availability (HA) is provided through N+1 architecture.
• Information about Disaster Recovery (DR) is provided through your Genesys representative. Contact the

Architecture team for guidance about recommended DR designs.
• CX Contact Compliance Data. Contact your Genesys representative to ensure coverage is provided for

your desired calling region.
• Check with your Genesys representative for supported container orchestration technologies.
• Genesys does not deploy and operate databases in on-premises deployments. It is the responsibility of

the end user. In a production deployment, data store components (PostgreSQL, Redis, Elasticsearch)
must be deployed outside of the Kubernetes cluster and managed by the end user's DBA team. The
end user's DBA team is also responsible for ensuring that the data store components are configured
with the appropriate scalability, resiliency, and data protection (backups, and so on).

CX Contact Deployment Guide

CX Contact Deployment Guide 4

Introduction
All CX Contact components are represented as individual microservices, each executed in Docker
containers under N+1 horizontal scaling model principles and running behind internal Elastic Load
Balancer.

CX Contact Core Components

The following is an overview of the CX Contact core components:

CX Contact Component Description

List Builder

• Responsible for importing and exporting contact
lists and suppression lists.

• Works in conjunction with Outbound Database,
which stores the contact lists and suppression
lists.

• Works in conjunction with REDIS, which stores
suppression entries.

• Uses compliance data to process records on
import.

List Manager • Responsible for operations related to lists.

Introduction

CX Contact Deployment Guide 5

CX Contact Component Description

• Creates contact lists and suppression lists in
Configuration Manager.

• Reads Compliance data from a compliance data
provider.

• Copies files from FTP to NFS for List Builder
consumption.

Compliance Manager
• Responsible for dynamic compliance rules

validation.
• Reads suppression entries from Redis and

responds to OCS pre-validation requests.

Campaign Manager
• Responsible for operations related to

campaigns.
• Executes pre-loading of campaigns. Processing

is done in Outbound Database.

Job Scheduler
• Responsible for creating and invoking jobs at

the right time, providing for automation of
tasks.

Dial Manager
• Responsible for managing SMS and email

interactions with Genesys Message
Aggregation.

API Aggregator
• This is the entry point of APIs to CX Contact.

Ensures APIs stay invariant when internal
implementation changes.

User Interface (UI) • A set of static HTML5 pages served by Nginx.

Introduction

CX Contact Deployment Guide 6

Using Docker Compose to Deploy CX
Contact
This topic and its related subtopics describe everything you need to know about using Docker
Compose to deploy CX Contact.

Before you Begin

• Prepare a single VM or set of VMs for the CX Contact deployment.
• Install Docker Engine CE on the VM(s) running RHEL 7.0.
• Pull CX Contact and GWS Docker images from an FTP directory and import them into an internal Docker

registry. Your Genesys representative will provide you with access information to the FTP directory.
• Install Docker Compose according to the instructions on the Docker documentation site.
• Obtain Docker-compose files (available for CX Contact and GWS).

Once you've completed these mandatory procedures, return to this manual to learn how to complete
an on-premise deployment of CX Contact. Start by reviewing the Prerequisites.

Using Docker Compose to Deploy CX Contact

CX Contact Deployment Guide 7

Prerequisites

The table below outlines all prerequisites for a CX Contact deployment using Docker Compose.

Component Description Mandatory or Optional

CDP NG Access Credentials

As of CX Contact 9.0.025,
Compliance Data Provider Next
Generation (CDP NG) is used as a
CDP by default. Obtain the
necessary access credentials (ID
and Secret) before attempting to
connect to CDP NG. Request
these credentials from Genesys
Customer Care.

Mandatory

VM

A single VM running RHEL 7.0 64-bit, 8
CPU cores; 16 GB RAM minimum, 32 GB
RAM recommended; at least 100 GB HDD
When RHEL/CentOS 7.8 is used, the
Kernel must be upgraded to
3.10.0-1160.15.2.el7.x86_64 or later.

Mandatory

Docker Docker 17.03.2-ce or newer
stable Mandatory

Chrome The latest version of Chrome
must be used as the UI browser. Mandatory

Container orchestration Docker Compose and Portainer Mandatory

Network/DNS

All VMs running CX Contact
components should belong to the
same local network segment and
be interconnected so that all
components can communicate
over the network. DNS must be
present in the network and allow
for names resolution. CX Contact
components always use FQDNs
(not IP addresses) to establish
communication to each other.

Mandatory

PostgreSQL

PostgreSQL 9.5+
CX contact supports non-standard Postgre
SQL ports for the Data Access Point (DAP)
to assist in Disaster Recovery. List
Manager, List Builder, and Campaign
Manager can all communicate with
Postgre SQL via non-standard ports.

Mandatory

SFTP Server Use when automation
capabilities are required Optional

Genesys Web Services (GWS) v.9.0. GWS9 is an integral part of
the CX Contact Docker Compose Mandatory

Using Docker Compose to Deploy CX Contact Prerequisites

CX Contact Deployment Guide 8

Component Description Mandatory or Optional
deployment. For this reason, you
do not need to deploy GWS9
separately.
You must push these images to the local
Docker registry.

Genesys core components

v.8.5 or v.8.1
CX Contact components operate with
Genesys core services on the back end.
It's expected that all voice-processing
components (Voice VM and shared
services such as GVP) are deployed and
running. CX Contact requires a Multi
Tenant Configuration Server.

Mandatory

Using Docker Compose to Deploy CX Contact Prerequisites

CX Contact Deployment Guide 9

Deploying with Docker Compose
To deploy CX Contact by using Docker Compose, complete the following deployment procedures. The
first three procedures are common to both deployment methods. Click the link for the appropriate
topic:

Summary of deployment procedures
1. Ensure the Prerequisites are met
2. Create the Outbound Database
3. Create the Outbound Database Access Point
4. Start Outbound Contact Server (OCS)
5. Deploy with Docker Compose

Deploy with Docker Compose
Summary of procedures: Deploy with Docker Compose

1. Obtain the Docker Compose scripts

• Use common CX Contact commands
• Obtain images in disconnected environments

2. Set up the environment:

• Use automatic setup (Genesys strongly recommends that you use this method to set up the
environment.)

• Use manual setup

3. Log in to CX Contact

Important
Contact Genesys Customer Care regarding downloading CX Contact and GWS Docker
images. These images should be pushed to the local registry. Refer to
https://docs.docker.com/registry/deploying/ for details. Make note of the GWS
Components versions. You may need to enter these versions when performing the
initial setup.

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 10

Docker Compose scripts
To receive all of the latest files required for the Docker Compose deployment, you must first copy the
Docker Compose scripts.

To obtain the Docker Compose scripts:

1. Execute the following Bash commands in the order that they appear here:
• $ export DEPLOY_CXCONTACT_IMAGE=<deploy_cx_contact_image>

• $ echo "docker run --rm -it -u $(id -u ${USER}):$(id -g ${USER}) -e init=true -v
"$(pwd)":/env:rw $DEPLOY_CXCONTACT_IMAGE" > cxc-app.sh

• $ bash cxc-app.sh

When asked if you would like to replace with updates found for the cxc-app.sh script select 2 to
replace.
• The old file is moved to the /backup/MMDDYY-hhmm folder.

Note: Each update is saved in a new directory. The name of the new directory is the date
on which the update was performed and completed.

2. Once you obtain the Docker Compose script make it executable by running the following command:
$ chmod +x cxc-app.sh

Then, execute the following Help command to obtain all of the available commands:

$./cxc-app.sh help

Help Output

Welcome to CXContact deployment service. Following commands are available:

init <deploy_cx_contact image> - Initial setup
start - Start CXContact docker-compose environment
stop - Stop CXContact docker-compose environment
restart - Restart CXContact docker-compose environment
status - Get status of all running containers
provision <deploy_cx_contact image> - Provisioning CXContact
cxc-only [on/off] - Switch between cxc-only deployment and
single node (with GWS services) deployment

save <optional parameters> - Save docker images in archive
Available optional parameters for save:
--only <tag> for e.g cxcontact. - Will save only specific images
-o,--output <name> - Output names for archive with images and
import script
-t,--tag <tag> - Will apply new tag to images, for internal
registries

Note! <deploy_cx_contact image> parameter is optional. Default - will be used latest
local image
If no image found - you will be asked to prompt image name to pull.

3. Execute the following command to obtain the CX Contact Docker Compose .yaml files:
$./cxc-app.sh init

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 11

At this point, the following occurs:

• You will be prompted for a CX Contact Deployment Service image (if it is not present locally).
Note: The Docker Compose script uses the latest deploy_cx_contact image. To use a specific image run ./cxc-app.sh init
<image_name>.

• The Docker Compose script pulls the Deployment Service image and verifies which deployment
should be initialized (that is, Docker or Kubernetes).

• The .yaml files are copied to the Docker or Kubernetes folder in the same directory in which the
Docker Compose script is located.

• You ae asked to configure CX Contact. The default values are suggested for each environment
variable. You can replace the default values with values applicable for your environment.

Note: If you are using the local Docker registry, specify it as the value of CXC_DOCKER_REPOSITORY and
GWS_DOCKER_REPOSITORY variables. Change default values of GWS components versions to the actual versions of GWS
Components images pushed to the local registry.

4. Start the CX Contact Docker Compose Environment by running the following command:
$./cxc-app.sh start

5. By default, as of CX Contact 9.0.025, the Docker Compose .env file is configured for CDP NG
connectivity. The following default values show how CDP NG is used.
COMPLIANCE DATA SETTINGS
List Builder embedded CDP_NG Compliance Data
EMBEDDED_COMPLIANCE_DATA_BASEPATH="/list_builder/data/ng_init_data"
OPTIONAL: List Builder embedded LEGACY CDP Compliance Data
#EMBEDDED_COMPLIANCE_DATA_BASEPATH="/list_builder/init_data"
Compliance data rule sets:
AREACODE_RULE_SET="AU,CA,GB,NZ,US"
GEO_RULE_SET="AU,CA,GB,NZ,US"
POSTAL_RULE_SET="CA,GB,US"
DNC_RULE_SET="GB,US"
In order to switch to Legacy CPD, change CDP_NG_URL and CDP_NG_GCLOUD_AUTH to empty
values
CDP_NG_URL="https://api.usw2.pure.cloud/api/v2/outbound/compliancedata"
CDP_NG_GCLOUD_AUTH="https://login.usw2.pure.cloud/oauth/token"

• CDP_NG_GCLOUD_ID and CDP_NG_GCLOUD_SECRET are required parameters and do not have a
default value.

• These parameters must be requested by creating a CLOUDCON ticket before attempting to upgrade
to CX Contact 9.0.025+ or before deploying CX Contact 9.0.025+ for the first time.

• The new CLOUDCON ticket must include the customer name and the name of the person who will
receive the keys in the Jira ticket. CDP_NG_GCLOUD_ID=<Must be provided>
CDP_NG_GCLOUD_SECRET=<Must be provided>

• To return to CDP Legacy, use the following configuration parameters:
EMBEDDED_COMPLIANCE_DATA_BASEPATH="/list_builder/init_data"
CDP_NG_URL=
CDP_NG_GCLOUD_AUTH=
CDP_NG_GCLOUD_ID=
CDP_NG_GCLOUD_SECRET=

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 12

Common CX Contact commands

CX Contact Procedure Command
Start CX Contact $./cxc-app.sh start
Stop CX Contact $./cxc-app.sh stop
Restart CX Contact $./cxc-app.sh restart
View current CX Contact status and uptime. $./cxc-app.sh status
Switch between single host deployment and multi
host deployment
(that is, when GWS and CX Contact are deployed on different
hosts).

$./cxc-app.sh cxc-only [on/off]

Provision CX Contact
$./cxc-app.sh provison
Note: Provisioning can be executed multiple times.

Revalidate the configuration when provisioning
fails. $./cxc-app.sh init

Pull images in a disconnected environment.

$./cxc-app.sh init
$./cxc-app.sh save <optional parameters>
Note: The images are archived and an be transferred to a
Docker
host that does not have an internet connection.

Obtain Images in Disconnected Environments
Deployments that are not connected to the Internet must obtain images from the Genesys Engage
Docker Repository and archive them. The archived images are then transferred to a Docker host that
is not connected to the Internet.

To obtain images from the Genesys Engage Docker Repository run the following command on a
computer with access to the Internet and save the images in an archive location.

$./cxc-app.sh init
$./cxc-app.sh save <optional>

The archived images must then be transferred to a destination host and used for deployment.

Important
To store the images in your own Docker registry (only required for Kubernetes
deployments or your own Docker registry), you can add the --tag parameter with your
docker-registry. The archived images must be transferred to a destination host and
used for deployment.

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 13

Set up the environment

Set up the environment either automatically (recommended) or manually. Procedures for each option
are provided below.

Set up the environment automatically (Recommended)
If you have already deployed CX Contact using Docker Compose, start at step 1 below. If not, see
Docker Compose scripts for details.

1. Obtain the CX Contact Docker Compose .yaml files by executing the following command:
$./cxc-app.sh init

2. While executing $./cxc-app init.sh, select the Docker deployment and select y when asked if you
would like to configure CX Contact.

3. In the directory containing cxc-app.sh, execute the following:
./cxc-app.sh provision

Provisioning will take approximately 1 to 2 minutes.

Set up the environment manually

Important
Genesys recommends this option for advanced users only.

To set up the environment manually, you'll make API requests to GWS. Requests should point to the
host name or IP address of the external load balancer for GWS or CX Contact. In Docker Compose
deployments, this is the VM where Docker runs.

Complete the procedures in the summary below.

Summary of procedures: Set up environment manually
1. Verify successful start of gws-postgres
2. Check gws-core-environment
3. Check gws-core-auth
4. Create the environment
5. Create the contact center
6. Create the authentication client
7. Create the external_api_client
8. Get the access token for cx_contact

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 14

Summary of procedures: Set up environment manually
9. Verify authentication (Optional)
10. Verify clients
11. Create the tenant in api-aggregator
12. Configure session profile
13. Add location in CloudCluser Application

Verify successful start of gws-postgres
To verify the successful start of gws-postgres:

docker-compose logs gws-postgres

This is the expected response:

gws-postgres_1 | LOG: database system is ready to accept connections
gws-postgres_1 | LOG: autovacuum launcher started

Check gws-core-environment
To check gws-core-environment:

curl http://localhost:8091/environment/v3/version

Check gws-core-auth
To check gws-core-auth:

curl 'http://localhost:8095/auth/v3/oauth/
authorize?response_type=code&client_id=cx_contact&redirect_uri=http://localhost/api-
aggregator/v2/login-callback'

Check that there is a reply. It will be an error, but it must be received.

Create the environment in GWS
Send a POST request to GWS.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value

username The super administrator account name for
Configuration Server.

appName Cloud
password Use the password for the super administrator

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 15

Property Value
account name.

connectionProtocol addp
localTimeout 7
remoteTimeout 11
traceMode CFGTMBoth
tlsEnabled false
primaryPort Configuration Server's TCP Listener port.
readOnly false
primaryAddress Configuration Server's host name or IP address
locations /USW1
tenant Environment

Code sample
curl --user ops:ops -H "Content-Type: application/json" -X POST http://localhost:8091/
environment/v3/environments -d '
{

"data": {
"username": "default",
"appName": "Cloud",
"password": "password",
"connectionProtocol": "addp",
"localTimeout": 7,
"remoteTimeout": 11,
"traceMode": "CFGTMBoth",
"tlsEnabled": false,
"configServers": [

{
"primaryPort": 8888,
"readOnly": false,
"primaryAddress": "10.51.30.154",
"locations": "/USW1"

}
],
"tenant": "Environment"

}
}
'

Expected response
{"status":{"code":0},"path":"/environments/bf032640-9073-435d-9447-718b7cc7dc43"}

Important
Take note of the environment ID parameter in the response
(bf032640-9073-435d-9447-718b7cc7dc43) – it is required for subsequent
requests.

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 16

Create the contact center
Send a POST request to GWS.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value
environmentid bf032640-9073-435d-9447-718b7cc7dc43
auth configServer

Code sample
curl --user ops:ops -H "Content-Type: application/json" -X POST http://localhost:8091/
environment/v3/contact-centers -d '
{

"data": {
"environmentId": "bf032640-9073-435d-9447-718b7cc7dc43",
"domains": ["domain.com"],
"auth": "configServer"

}
}
'

Expected response

This produces the following result:

{"status":{"code":0},"path":"/contact-centers/3952ccd2-a34a-46c1-b51e-8917628554c9"}

Create the authentication client
To create the authentication client, send a POST request to GWS.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value
clientType *
internalClient true

authorizedGrantTypes refresh_token, implicit, password,
client_credentials, authorization_code

redirectURIs http://10.11.64.16
authorities ROLE_INTERNAL_CLIENT
description cx_contact
accessTokenExpirationTimeout 43200
refreshTokenExpirationTimeout 2592000
name cx_contact
client_id cx_contact
client_secret <client secret token>

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 17

Code sample
curl --user ops:ops -X POST http://localhost:8095/auth/v3/ops/clients/ -H 'Cache-Control:
no-cache' -H 'Content-Type: application/json' -d '
{"data": {

"clientType": "CONFIDENTIAL",
"scope": [

"*"
],
"internalClient": true,
"authorizedGrantTypes": [

"refresh_token",
"implicit",
"password",
"client_credentials",
"authorization_code"

],
"redirectURIs": [

"http://10.11.64.16"
],

"authorities": [
"ROLE_INTERNAL_CLIENT"

],
"description": "cx_contact",
"accessTokenExpirationTimeout": 43200,
"refreshTokenExpirationTimeout": 2592000,
"name": "cx_contact",
"client_id": "cx_contact",
"client_secret" : "<client secret token>"

}
}'

Expected response

The expected response is 200 OK.

Create external_api_client
To create the external_api_client for communication with GWS services, send a POST request.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value
clientType CONFIDENTIAL
scope *
internalClient true

authoraizationGrantTypes refresh_token, implicit, client_credentials,
password, authorization_code

authorities ROLE_INTERNAL_CLIENT
description external_api_client
accessTokenExpirationTimeout 43200
refreshTokenExpirationTimeout 2592000

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 18

Property Value
name external_api_client"
client_id external_api_client"
client_secret client secret token

Code sample
curl --user ops:ops -H "Content-Type: application/json" -X POST http://localhost:8095/
auth/v3/ops/clients -d '
{

"data":
{

"clientType": "CONFIDENTIAL",
"scope": ["*"],
"internalClient": true,
"authorizedGrantTypes": [

"refresh_token", "implicit", "client_credentials",
"password", "authorization_code"

],
"authorities": ["ROLE_INTERNAL_CLIENT"],
"description": "external_api_client",
"accessTokenExpirationTimeout": 43200,
"refreshTokenExpirationTimeout": 2592000,
"name": "external_api_client",
"client_id": "external_api_client",
"client_secret": "client secret token"

}
}
'

Expected response

The expected response is 200 OK.

Get access token for cx_contact
To get the access token for cx_contact, send a POST request to GWS:

curl --user cx_contact:<client secret token> -H "Content-Type: application/json" -X POST
'http://localhost:8095/auth/v3/oauth/
token?grant_type=client_credentials≻ope=*&client_id=cx_contact&client_secret=<client secret
token>'

This is the response:

{"access_token":"<bearer token>","token_type":"bearer","expires_in":43199,"scope":"*"}

Verify authentication (optional step)
To verify that authentication was successful, send a POST request to GWS:

curl --user external_api_client:secret -H "Content-Type: application/json" -X POST
'http://localhost:8095/auth/v3/oauth/

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 19

token?grant_type=client_credentials≻ope=*&client_id=external_api_client&client_secret=<client
secret token>'

Verify clients
To verify that clients were created successfull, send a POST request to GWS

curl --user ops:ops http://localhost:8095/auth/v3/ops/clients | python -m json.tool

Create tenant in api-aggregator
To create the tenant in api-aggregator, send a POST request.

Pass a body parameter in JSON format, called data, with the following properties:

Parameter Value
envrionmentid bf032640-9073-435d-9447-718b7cc7dc43
shortTenantName The short tenant name (for example 22-06).
customerName The short tenant name (for example 22-06).

contactCenterId
The unique ID generated when a request is sent to
GWS to create an Environment/Contact Center (for
example
3952ccd2-a34a-46c1-b51e-8917628554c9).

Sample code
curl -X POST -H "Authorization: Bearer <bearer token>" -H "Content-Type: application/
json" -H 'Cache-Control: no-cache' http://localhost:8102/api-aggregator/v2/tenants -d '
{

"data":
{

"domains": ["domain.com"],
"environmentId": "bf032640-9073-435d-9447-718b7cc7dc43",
"shortTenantName": "22-06",
"customerName": "tenant_22-06",
"contactCenterId": "3952ccd2-a34a-46c1-b51e-8917628554c9"

}
}
'

Expected response

The expected response is 200 OK.

Configure session profile
During CX Contact provisioning a set of objects is created in the Configuration Server.

Configure the Annex of the DefaultSessionProfile object (type=script), by replacing all -1 with the
following correct DBIDs:

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 20

• Voice Transfer Destination DN (origDNDBID)
• Trunk Group DBID (trunkGroupDNDBID)
• Statistics Server DBID (statServerDBID)
• Remove -1 from "serverDBIDs"

For example:

"data": {
"interactionQueueDBID": 0,
"origDNDBID": -1,
"trunkGroupDNDBID": -1,
"operationMode": 1,
"statServerDBID": -1,
"serverDBIDs": [

-1
],
"IVRProfileDBID": 0,
"numOfChannels": 10

},
"isDefault": true

Add location in the CloudCluster Application

1. In the CloudCluster application, open the properties of the Connection to the OCS application.
2. In Advanced -> Application Parameters, enter the location using its short region name—for

example: locations=/USW1

Log in to CX Contact

Log in to the CX Contact user interface with the URL http://<your-docker-hostname>/ui/
cxcontact/

Important
You must include the backslash (/) after cxcontact (cxcontact/)

Using Docker Compose to Deploy CX Contact Deploying with Docker Compose

CX Contact Deployment Guide 21

Post Deployment Procedures
After you've deployed CX Contact, you'll want to monitor the status of containers, access logs,
upgrade CX Contact components, and so on. This topic describes the post deployment procedures
you'll use if you deployed CX Contact using Docker Compose.

Upgrading CX Contact Components

This topic outlines the steps required to upgrade CX Contact components.

1. Ensure the CX Contact Docker images included in the upgrade are tagged with the proper version
number and are available in the Docker registry.

2. Edit the Container Versions section of the .env file to specify one or more versions of the CX Contact
components that you're upgrading to. For example, if you're upgrading the List Builder component of
CX Contact to version 9.0.000.07.1616, specify the following: CCSListBuilderTag=9.0.000.07.1616

3. Execute the following command:
./cxc-app-deploy.sh

Tip
When upgrading, ensure that old containers are stopped and new containers are started. This means that the
CX Contact solution is not available during the upgrade.

Using Portainer

Genesys recommends you use Portainer to view the status of all containers and to access logs.

1. To start Portainer on the same VM where all containers are started, execute the following command:
docker volume create portainer_data

docker run --restart=always -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock
-v portainer_data:/data portainer/portainer --no-auth

2. Go to http://<your-vm-ip>:9000. The user interface displays the state of all containers. Open each
container and click logs to see the stdout / stderr logs.

Using Docker Compose to Deploy CX Contact Post Deployment Procedures

CX Contact Deployment Guide 22

Ports

Warning
CX Contact components must use the Docker host network mode. The components
must not use Docker bridge networks or swarms, which severely impact performance
of the production systems.

CX Contact components use the following ports:

Service Ports used
User Interface (UI) 8101 - Nignx listener port (static content served)

API Aggregator
• 8102 - API main
• 9102 - API management

List Builder
• 3004 - API main
• 3101 - API management

Compliance Manager
• 3007 - API main
• 3107 - API management

List Manager
• 3005 - API main
• 3105 - API management

Using Docker Compose to Deploy CX Contact Post Deployment Procedures

CX Contact Deployment Guide 23

Using Kubernetes to Deploy CX Contact
This topic and its related subtopics describe everything you need to know to deploy CX Contact using
Kubernetes.

Before you Begin

• Prepare a single VM or set of VMs for the CX Contact deployment.
• Install Docker Engine CE on the VM(s) running RHEL 7.0.
• Pull CX Contact and GWS Docker images from an FTP directory and import them into an internal Docker

registry. Your Genesys representative will provide you with access information to the FTP directory.
• Install Kubernetes according to the installation instructions on the Kubernetes documentation site. You

can also refer to the Genesys Docker Deployment Guide for information about Kubernetes and High
Availability.

• Install Helm according to the instructions outlined on the Helm documentation site.

Once you've completed these mandatory procedures, return to this manual to learn how to complete
an on-premise deployment of CX Contact. Start by reviewing the Prerequisites.

Using Kubernetes to Deploy CX Contact Post Deployment Procedures

CX Contact Deployment Guide 24

https://docs.genesys.com/Documentation/System/8.5.x/DDG/Welcome

Prerequisites

The table below outlines all prerequisites for a CX Contact deployment using Kubernetes.

Important
Genesys does not deploy and operate databases in on-premise deployments. It is the
responsibility of the end user. In a production deployment, data store components
(PostgreSQL, Redis, Elasticsearch) must be deployed outside of the Kubernetes cluster
and managed by the end user's DBA team. The end user's DBA team is also
responsible for ensuring that these data store components are configured with the
appropriate scalability, resiliency, and data protection (backups, and so on).

Component Description Mandatory or Optional

CDP NG Access Credentials

As of CX Contact 9.0.025,
Compliance Data Provider Next
Generation (CDP NG) is used as a
CDP by default. Obtain the
necessary access credentials (ID
and Secret) before attempting to
connect to CDP NG. Request
these credentials from Genesys
Customer Care.

Mandatory

VMs

• Set of VMs running RHEL 7.0
64-bit

• Each machine should run Red
Hat Enterprise Linux 7.0
64-bit as a guest OS and
have at least 8 CPU cores and
16 GB RAM minimum (32 GB
RAM recommended), 100 GB
HDD minimum.

• When RHEL/CentOS 7.8 is
used, the Kernel must be
upgraded to
3.10.0-1160.15.2.el7.x86_64
or later.

Mandatory

Docker
Docker 17.03.2-ce, with CX
Contact Docker images stored in
the Docker registry.

Mandatory

Chrome The latest version of Chrome
must be used as the UI browser. Mandatory

Container orchestration Any certified K8s platform Mandatory

Using Kubernetes to Deploy CX Contact Prerequisites

CX Contact Deployment Guide 25

Component Description Mandatory or Optional

Network/DNS

All VMs running CX Contact
components should belong to the
same local network segment and
be interconnected so that all
components can communicate
over the network. DNS must be
present in the network and allow
for names resolution. CX Contact
components always use FQDNs
(not IP addresses) to establish
communication to each other.

Mandatory

Load Balancers

F5 or functionally comparable
hardware or software load
balancer.
The load balancer must be configured to
ensure that internal CX Contact
components cannot be accessed via load
balancer. Only API Aggregator should be
accessible.

Mandatory

Shared file system (NFS) NFS Mandatory

PostgreSQL

PostgreSQL 9.5+
CX contact supports non-standard Postgre
SQL ports for the Data Access Point (DAP)
to assist in Disaster Recovery. List
Manager, List Builder, and Campaign
Manager can all communicate with
Postgre SQL via non-standard ports.

Mandatory

Redis
Redis 5.x cluster, Enterprise
Redis with persistence is
recommended

Mandatory

Elasticsearch ES Cluster 6.3x Mandatory

SFTP Server Use when automation
capabilities are required Optional

Genesys Web Services (GWS)
v.9.0
Note: You will need to push these images
to the local Docker registry.

Mandatory (Deployed using
Docker Compose)

Genesys core components

v.8.5 or v.8.1
CX Contact components operate with
Genesys core services on the back end.
It's expected that all voice-processing
components (Voice VM and shared
services such as GVP) are deployed and
running. CX Contact requires a multi
tenant Configuration Server.

Mandatory

Using Kubernetes to Deploy CX Contact Prerequisites

CX Contact Deployment Guide 26

Recommendations
The recommendations in this topic apply only to Kubernetes.

Ingress

CX Contact UI requires Session Stickiness. Use ingress-nginx as the ingress controller
(https://github.com/kubernetes/ingress-nginx).

Important
CX Contact helm chart contains default annotations for session stickiness only for
ingress-nginx. If you are using a different ingress controller, refer to its
documentation for session stickiness configuration.

Ingress SSL

Starting from Chrome 80, the SameSite cookie must have the Secure flag
(https://blog.chromium.org/2020/02/samesite-cookie-changes-in-february.html). Therefore, it is highly
recommended that you configure a valid SSL certificate on ingress.

Logging

Log rotation is required so that logs do not consume all of the available storage on the node.

Kubernetes is currently not responsible for rotating logs. Log rotation can be handled by the docker
json-file log driver by setting the max-file and max-size options.

For effective troubleshooting, the engineering team should provide stdout logs of the pods (using
the command kubectl logs). As a result, log retention will not be very aggressive
(https://docs.docker.com/config/containers/logging/json-file/#examples). For example:

{
“log-driver”: “json-file”,
“log-opts”: {

“max-size”: “100m”,
“max-file”: “3”

}
}

For on-site debugging purposes, CX Contact logs can be collected and stored in Elasticsearch. (For

Using Kubernetes to Deploy CX Contact Recommendations

CX Contact Deployment Guide 27

example, EFK stack https://medium.com/avmconsulting-blog/how-to-deploy-an-efk-stack-to-
kubernetes-ebc1b539d063).

Monitoring

CX Contact provides metrics that can be consumed by Prometheus and Grafana. It is
recommended to have the Prometheus Operator (https://github.com/prometheus-operator/
prometheus-operator) installed in the cluster. CX Contact helm chart supports the creation of
CustomResourceDefinitions that can be consumed by the Prometheus Operator.

Shared Filesystem

The Kubernetes cluster must support ReadWriteMany Persistent Volumes. To support
ReadWriteMany Persistent Volumes, use the NFS server configured outside the cluster or via
container (https://github.com/kubernetes/examples/tree/master/staging/volumes/nfs). Containers run
as a Genesys user (uid:gid 500:500). Therefore, shared volume must have permissions that allow
write access to uid:gid 500:500.

Using Kubernetes to Deploy CX Contact Recommendations

CX Contact Deployment Guide 28

Deploying with Kubernetes
To deploy CX Contact by using Kubernetes, complete the following deployment procedures. The first
three procedures are common to both deployment methods. Click the link to go to that topic:

Summary of deployment procedures
1. Ensure the Prerequisites are met
2. Review the Recommendations
3. Create the Outbound Database
4. Create the Outbound Database Access Point
5. Start Outbound Contact Server (OCS)
6. Deploy with Kubernetes

Deploy with Kubernetes
Summary of Procedures: Deploy with Kubernetes

1. Deploy CX Contact using Kubernetes and Helm charts. (CX Contact deployment with Kubernetes using
shell scripts is obsolete.)

• Complete the Prerequisites (for using Helm Charts)
• Install CX Contact using Helm Charts
• Upgrade CX Contact using Helm Charts
• Configure the Helm Charts

2. Enable TLS Termination at Ingress Controller
3. Set Connectivity to the Compliance Data Provider
4. Log in to CX Contact

Deploy CX Contact using Helm Charts

Prerequisites

To begin, ensure your system contains the following prerequisite software:

• Helm 2.8+ client (without Tiller) or Helm 3
• GWS Services installed:

• gws-core-auth
• gws-core-environment

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 29

• gws-platform-configuration
• gws-platform-ocs
• gws-platform-voice
• gws-platform-statistics
• gws-platform-setting

• Local Docker Repository (the location of the stored CX Contact Docker images and Helm Charts).

Install CX Contact using Helm Charts

1. Select one of the following options to obtain the CX Contact Helm chart:
• If you have access to the local Docker Repository: Access the Helm charts repository and run

the following two commands:
helm repo add <repo_name> <helm_charts_repo>

helm fetch <repo_name>/cxcontact

As a result, the cxcontact-<version>.tgz archive file is added to the current working
directory.

• If you do not have access to the local Docker Repository: Obtain the cxcontact-
<version>.tgz archive file and save the file in your current working directory.

2. Obtain the yaml default values from the following location and file:
helm inspect values cxcontact-<version>.tgz > overrides.yaml

3. Edit overrides.yaml and change the default parameter values to values that match your environment.
See Configure the Helm Charts table for the parameters, their description and default values.

4. Using one of the following commands, install CX Contact:
• Helm 2: helm template cxc cxcontact-<version>.tgz -f overrides.yaml | kubectl -n

<namespace> apply -f -

• Helm 3: helm -n <namespace> install cxc cxcontact-<version>.tgz -f overrides.yaml

Upgrade CX Contact using Helm Charts

1. Select one of the following options to obtain the CX Contact Helm chart:
• Access the Helm charts repo and run the following two commands:

helm repo update

helm fetch <repo_name>/cxcontact

As a result, the cxcontact-<new_version>.tgz archive file is added to the current working
directory.

• From the FTP Server, obtain the .tgz archive file.

2. Obtain the files used for the previous deployment:
• When working with Helmp 2, obtain the overrides.yaml file used for the initial deployment.

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 30

• When working with Helm 3, access helm -n <namespace> get values cxc -o yaml >
overrides.yaml to obtain the parameters used for the initial deployment.

3. Upgrade the Helm deployment:
• When working with Helm 2, perform the following command:

helm template cxc cxcontact-<new_version>.tgz -f overrides.yaml | kubectl -n
<namespace> apply -f -

• When working with Helm 3, perform the following command:
helm -n <namespace> upgrade cxc cxcontact-<new_version>.tgz -f overrides.yaml

Configure the Helm Charts

Parameter Description Default Value

image.registry
The Docker registry base-path,
where CX Contact images are
stored.

pureengage-docker-
staging.jfrog.io/cxcontact

image.imagePullSecrets Kubernetes imagePullSecrets
image.pullPolicy Kubernetes imagePullPolicy IfNotPresent

configserver.user_name
The Configuration Server user
name. This user name should be
created during provisioning and
stored in Users Secret.

cloudcon

configserver.user_password
The Configuration Server user
password in plain text. This
password should be stored in
Users Secret.

configserver.DAP_name
Database access point
application. The DAP_name
should be used to connect from
CX Contact.

OCSDAP_usw1

configserver.OCS_name The Outbound Contact Server
application name. OCS_usw1

configserver.tenant_dbid The Configuration Server Tenant
DBID. 1

configserver.gws_server_app_name The server application name that
is used by GWS Services. CloudCluster

cxcontact.replicas
The number of pod replicas that
should be deployed. The
recommended amount is N+1.

2

cxcontact.environment
Changes the log level of errors
displayed in the UI. The
environment can be either
"development" or "prod".

prod

cxcontact.region

The CX Contact region. Region
can be used for the deployment
of multiple CX Contact
installations with the same GWS
Services and Redis.

g0-usw0

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 31

Parameter Description Default Value

cxcontact.existingPGPSecretName

The name of the existing
Kubernetes Secret with PGP.
existingPGPSecretName should
contain the following data:

• cxc_pgp_private_key
• cxc_pgp_public_key
• passphrase
• user_id

cxcontact.existingUsersSecretName

The name of the existing
Kubernetes Secret with user
credentials.
existingUsersSecretName should
contain the following data:

• gws_client_id
• gws_client_secret
• configserver_user
• configserver_user_pass
• dial_manager_dial_api_key

(optional)

cxcontact.rbac.enabled Configures Role Based Access
Control for CX Contact. false

cxcontact.pgp.enabled text Configures PGP encryption.

cxcontact.pgp.passphrase The passphrase for the private
key.

cxcontact.pgp.user_id The user_id for the private key. customercare@genesys.com

cxcontact.pgp.create_k8s_secret

When set to true, CX Contact
creates a new Secret in
kubernets with pgp keys.
When set to false, CX Contact uses the
Secret from existingPGPSecretName.

false

cxcontact.pgp.private_key The contents of the PGP private
key.

cxcontact.pgp.public_key The contents of the PGP public
key.

cxcontact.log.level

Configures the log level for all CX
Contact pods. Permitted values:

• trace
• debug
• info

info

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 32

Parameter Description Default Value

• error
• fatal

cxcontact.log.log_to_file Configures writing logs to log
files located in /mnt/log/cxc-*. false

cxcontact.override.amark-
app.replicas

Overrides the number of pod
replicas for a specific micro-
service.

2

cxcontact.override.amark-
app.env

Extra environment variables that
will be appended for the
container env: definition. Env can
be specified as: VAR_NAME:
VAR_VAL

{}

cxcontact.override.amark-
app.resources

Overrides the resources for a
specific micro-service. {}

override.amark-
app.readinessProbe Enables/Disables readinessProbe true

cxcontact.override.amark-
app.livenessProbe livenessProbe true

cxcontact.override.job-
scheduler.replicas

Overrides the number of pod
replicas for a specific micro-
service.

2

cxcontact.override.job-
scheduler.env

Extra environment variables that
will be appended for the
container env: definition. Env can
be specified as: VAR_NAME:
VAR_VAL

{}

cxcontact.override.job-
scheduler.resources

Overrides the resources for a
specific micro-service. {}

cxcontact.override.job-
scheduler.readinessProbe Enables/Disables readinessProbe true

cxcontact.override.job-
scheduler.livenessProbe livenessProbe true

cxcontact.override.campaign-
manager.replicas

Overrides the number of pod
replicas for a specific micro-
service.

2

cxcontact.override.campaign-
manager.env

Extra environment variables that
will be appended for the
container env: definition. Env can
be specified as: VAR_NAME:
VAR_VAL

{}

cxcontact.override.campaign-
manager.resources

Overrides the resources for a
specific micro-service. {}

cxcontact.override.campaign-
manager.readinessProbe Enables/Disables readinessProbe true

cxcontact.override.campaign- livenessProbe true

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 33

Parameter Description Default Value
manager.livenessProbe

cxcontact.override.list-
manager.replicas

Overrides the number of pod
replicas for a specific micro-
service.

2

cxcontact.override.list-
manager.env

Extra environment variables that
will be appended for the
container env: definition. Env can
be specified as: VAR_NAME:
VAR_VAL

{}

cxcontact.override.list-
manager.resources

Overrides the resources for a
specific micro-service. {}

cxcontact.override.list-
manager.readinessProbe Enables/Disables readinessProbe true

cxcontact.override.list-
manager.livenessProbe livenessProbe true

cxcontact.override.complaince.replicas
Overrides the number of pod
replicas for a specific micro-
service.

2

cxcontact.override.complaince.env

Extra environment variables that
will be appended for the
container env: definition. Env can
be specified as: VAR_NAME:
VAR_VAL

{}

cxcontact.
override.complaince.resources

Overrides the resources for a
specific micro-service. {}

cxcontact.override.complaince.readinessProbeEnables/Disables readinessProbe true
cxcontact.override.complaince.livenessProbelivenessProbe true

cxcontact.override.amark-
ui.replicas

Overrides the number of pod
replicas for a specific micro-
service.

2

cxcontact.override.amark-ui.env

Extra environment variables that
will be appended for the
container env: definition. Env can
be specified as: VAR_NAME:
VAR_VAL

{}

cxcontact.override.amark-
ui.resources

Overrides the resources for a
specific micro-service. {}

cxcontact.override.amark-
ui.readinessProbe Enables/Disables readinessProbe true

cxcontact.override.amark-
ui.livenessProbe livenessProbe true

cxcontact.override.list
builder.replicas

Overrides the number of pod
replicas for a specific micro-
service.

2

cxcontact.override.list
builder.env

Extra environment variables that
will be appended for the
container env: definition. Env can

{}

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 34

Parameter Description Default Value
be specified as: VAR_NAME:
VAR_VAL

cxcontact.override.list
builder.resources

Overrides the resources for a
specific micro-service. {}

cxcontact.override.list
builder.readinessProbe Enables/Disables readinessProbe true

cxcontact.override.list
builder.livenessProbe livenessProbe true

cxcontact.override.dial-
manager.enabled

Enables/Disables Dial Manager
service deployment. false

cxcontact.override.dial-
manager.nexus.host

Configures the Nexus service
host.

cxcontact.override.dial-
manager.nexus.port

Configures the Nexus service
port.

cxcontact.override.dial-
manager.api_key

The API key used to access
Nexus. The api_key should be in
plain text and will be stored in
Users Secret.

cxcontact.compliance_data.cdp_url
When configured cdp_url
overrides the compliance data
provider URL.

false

cxcontact.compliance_data.proxy Configures the proxy connection
to CDP. Disabled if false. false

cxcontact.compliance_data.list_builder_test_files_mode
Configures List Builder
Compliance Data Mode for debug
purposes only.

false

cxcontact.compliance_data.list_builder_test_dnc_mode
Configures List Builder
Compliance Data Mode for debug
purposes only.

false

cxcontact.initContainers
Enables the configuration of
extra initContainers for CX
Contact pods.

[]

cxcontact.deployDefaultInitContainer
Allows you to disable the default
InitContainer if you mount
Storage with uid:guid – 500:500.

true

k8s_optional.podSecurityContext Enables you to set the
securityContext for the pod. {}

k8s_optional.securityContext Enables you to set the
securityContext for the container. {}

k8s_optional.nodeSelector
Enables you to configure
nodeSeclector to target specific nodes. {}

k8s_optional.tolerations
Enables you to configure
tolerations. []

k8s_optional.affinity Enables you to configure []

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 35

Parameter Description Default Value

affinity.

k8s_optional.strategy
Enables you to configure
strategy.

type: RollingUpdate

rollingUpdate:
maxSurge: 1
maxUnavailable: 25%

redis.enabled Enables/Disables the Reddis
connection. true

redis.cluster Enables you to configure Redis. true
redis.nodes The Redis node URL. redis://redis-cluster:6379

elasticsearch.enable Enables/Disables the
Elasticsearch Cluster connection. true

elasticsearch.host Elasticsearch host http://elasticsearch
elasticsearch.port Elasticsearch port 9200

gws.client_id
The client_id is created by the CX
Contact provisioning service and
is stored in the Users Secret.

cx_contact

gws.client_secret
The client_secret is created by
the CX Contact provisioning
service and is stored in the Users
Secret.

gws.frontend_host
Represents the GWS front end
http/https URL. frontend_host is
used for browser user
authentication.

http://active.gke.local

gws.frontend_port The GWS front end port. 80

loadbalander.host GWS backend Load balacer host
(optional).

loadbalander.port GWS backend Load balacer host
(optional).

loadbalander.core.auth.host GWS Core Auth host http://gws-core-auth-srv
loadbalander.core.auth.port GWS Core Auth port 80
loadbalander.core.environment.hostGWS Core Environment host http://gws-core-environment-srv
loadbalander.core.environment.port GWS Core Environment port 80

loadbalander.platform.ocs.host GWS Platform OCS host http://gws-platform-configuration
-srv

loadbalander.platform.ocs.port GWS Platform OCS port 80

loadbalander.platform.configuration.hostGWS Platform Configuration host http://gws-platform-
configuration-srv

loadbalander.platform.configuration.portGWS Platform Configuration port 80
loadbalander.platform.statistics.hostGWS Platform Statistics host http://gws-platform-statistics -srv
loadbalander.platform.statistics.portGWS Platform Statistics port 80

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 36

Parameter Description Default Value
loadbalander.platform.setting.host GWS Platform Setting host http://gws-platform-setting-srv
loadbalander.platform.setting.port GWS Platform Setting port 80
loadbalander.platform.voice.host GWS Platform Voice host http://gws-platform-voice-srv
loadbalander.platform.voice.port GWS Platform Voice port 80

ingress.enabled Enables/Disables the deployment
of the built-in ingress resource. true

ingress.tls_enabled HTTPS false

ingress.cxc_frontend The host used by ingress for all
inbound traffic. cxcontact.gke.local

ingress.annotations The ingress resource
annotations.

• nginx.ingress.kubernetes.io/
affinity: cookie

• nginx.ingress.kubernetes.io/
session-cookie-samesite:
"Strict"

• nginx.ingress.kubernetes.io/
session-cookie-name: "cxc-
session-cookie"

• nginx.ingress.kubernetes.io/
proxy-body-size: "0"

ingress.tls TLS configuration. When enabled
TLS is True. []

internal_ingress.enabled

Enables/Disables the deployment
of the built-in ingress resource
for back-end services. When
false, all endpoints are exposed
on ingress with cxc_frontend.

false

internal_ingress.tls_enabled HTTPS false

internal_ingress.cxc_backend The host used by ingress for all
inbound traffic. cxcontact-int.gke.local

internal_ingress.annotations The ingress resource
annotations.

• nginx.ingress.kubernetes.io/
proxy-body-size: "0"

• nginx.ingress.kubernetes.io/
ssl-redirect: 'false'

internal_ingress.tls TLS configuration. When enabled
TLS is True. []

storage.pvc.enabled Enables/Disables storage
mounts. true

storage.pvc.create Enable pvc deployment. true
storage.pvc.size The size of the deployed pvc. 100Gi
storage.pvc.name The name of the deployed pvc. cxc-claim

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 37

Parameter Description Default Value

storage.pvc.storageClassName

The storageClass name that
should be used when creating
pvc. If storageClassName is
empty it will not be used.
storageClassName should be
assigned accessModes:
ReadWriteMany.

files-standard-zrs

storage.pv.create Enables the creation of pv. false

storage.pv.name The pv name that should be
created and used by pvc. cxc-volume

storage.pv.spec PV specification.

capacity:
storage: 100Gi

accessModes:
- ReadWriteMany

persistentVolumeReclaimPolicy:
Retain
nfs:

path: /data
server: 10.128.0.42

amark-app docker image tag Dependent on the CX Contact
release.

job-scheduler docker image tag Dependent on the CX Contact
release.

campaign-manager docker image tag Dependent on the CX Contact
release.

list-manager docker image tag Dependent on the CX Contact
release.

compliance docker image tag Dependent on the CX Contact
release.

amark-ui docker image tag Dependent on the CX Contact
release.

list-builder docker image tag Dependent on the CX Contact
release.

dial-manager docker image tag Dependent on the CX Contact
release.

Enable TLS Termination at Ingress Controller

1. Prepare the k8s secret with the SSL Certificate using the following code: kubectl create secret cxc-
tls ${CERT_NAME} --key ${KEY_FILE} --cert ${CERT_FILE}

Note: Skip this step if the kubernetes cluster has a cert-manager installed.

2. Update overrides.yaml that is used for the CX Contact installation as follows:
ingress:

enabled: true
tls_enabled: true

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 38

cxc_frontend: <fqdn>
if kubernetes cluster has a cert-manager installed:
annotations:

cert-manager.io/cluster-issuer: <name of cert-manager>
tls:

- hosts:
- <fqdn>
secretName: cxc-tls

Note: The same configuration can be applied to internal_ingress. If the configuration is applied
to internal_ingress, you must add the CX Contact FQDN and a certificate of the host where
Configuration Server runs.

3. Prepare the k8s secret with the SSL Certificate as follows: kubectl create secret cxc-int-tls
${CERT_NAME} --key ${KEY_FILE} --cert ${CERT_FILE}

internal_ingress:
enabled: true
cxc_backend: <int_fqdn>

if kubernetes cluster has a cert-manager installed:
annotations:

cert-manager.io/cluster-issuer: <name of cert-manager>
tls:

- hosts:
- <int_fqdn>
secretName: cxc-int-tls

4. Apply the following new configuration:
helm -n <namespace> upgrade cxc cxc -f overrides.yaml

5. Whitelist a new <fqdn> on the auth service using one of the following methods:
• Manually via the REST API:

curl -u <GWS_BASIC_AUTH_USER>:<GWS_BASIC_AUTH_PASSWORD> -L -X PUT
'<GWS_LB_HOST>/auth/v3/ops/clients/<GWS_CLIENT_ID>' \

-H 'Content-Type: application/json' \
-d '{

"data": {
"redirectURIs": [

"https://<fqdn>/cx-contact/v3/login-callback",
"http://<fqdn>/cx-contact/v3/login-callback"

]
}

}'

• Using the cxcontact provisioning service (cxc-app.sh), update CXC_EXTERNAL_URL in the
.env file and execute: ./cxc-app.sh provision

Set Connectivity to the Compliance Data Provider
As of CX Contact 9.0.025.xx, CDP NG is used by default. The following Helm Chart settings control the
CDP NG connectivity:

cxcontact:
compliance_data:

cdp_ng:
url: "https://api.usw2.pure.cloud/api/v2/outbound/compliancedata"
gcloud_auth: "https://login.usw2.pure.cloud/oauth/token"
gcloud_id:

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 39

gcloud_secret:
LIST_BUILDER_DATA_EMBEDDED_BASEPATH
embedded_basepath: "/list_builder/data/ng_init_data"
rule_set:

areacode: "AU,CA,GB,NZ,US"
geo: "AU,CA,GB,NZ,US"
postal: "CA,GB,US"
dnc: "GB,US"

Important
The gcloud_id and gcloud_secret parameters are required and do not have default
values.

The following parameters can be used to switch to legacy CDP:

cxcontact:
compliance_data:

cdp_ng:
url: false
gcloud_auth: false
gcloud_id: false
gcloud_secret: false

LIST_BUILDER_DATA_EMBEDDED_BASEPATH
embedded_basepath: "/list_builder/data/init_data"

Log in to CX Contact

Log in to the CX Contact user interface with the URL http://<your-docker-hostname>/ui/
cxcontact/

Important
You must include the backslash (/) after cxcontact (cxcontact/)

Using Kubernetes to Deploy CX Contact Deploying with Kubernetes

CX Contact Deployment Guide 40

Common Deployment Procedures
This topic contains the deployment procedures that are common to both CX Contact deployment
methods (Docker Composer and Kubernetes).

Creating the Outbound Database

1. To store calling and suppression lists, create the Outbound Database manually on the PostgreSQL server
that will be used with CX Contact.

2. Log in to PostgreSQL as the administrator and execute the following set of SQL statements to create the
Outbound Database and a user.

Important
• Take note of the database name, username, and password because you will need

them when you create the Outbound Database Access Point.
• CX Contact functionality depends on the following database settings. The calling and

suppression lists will not be stored correctly if these SQL statements are not
executed as documented in this section.

CREATE DATABASE cc_outbound;
ALTER DATABASE cc_outbound SET bytea_output TO 'escape';
ALTER DATABASE cc_outbound SET standard_conforming_strings TO 'off';
CREATE USER cc_outbound WITH PASSWORD 'cc_outbound';
GRANT ALL PRIVILEGES ON DATABASE cc_outbound TO cc_outbound;
ALTER DATABASE cc_outbound OWNER TO cc_outbound;

3. Switch to the new database cc_outbound as the administrative user and issue the following command:
CREATE EXTENSION tablefunc;

Creating the Outbound Database Access Point

Log in to the configuration environment and create a Database Access Point (DAP) object that
points to the newly-created database.

The DAP must reference the DB Server so that OCS can work with the database. We recommend you
name the DAP object OCSDAP.

Use the database connection information, database name, username, and password from the

Common Deployment Procedures Deploying with Kubernetes

CX Contact Deployment Guide 41

previous step.

Starting Outbound Contact Server

Start the Outbound Contact Server (OCS) application with the Management Layer or GAX, as you
usually do in your environment.

Common Deployment Procedures Deploying with Kubernetes

CX Contact Deployment Guide 42

Optional Functionality
In some deployments optional functionality is required for applications, scripts, services, and so on.
Genesys recommends the following optional functionality for some familiar deployment issues:

• PGP Encrytion
• Integrating CX Contact with Genesys Historical Reporting

Optional Functionality Deploying with Kubernetes

CX Contact Deployment Guide 43

PGP Encryption
In a Kubernetes deployment encryption is disabled by default.

Important
PGP Encryption is supported only in Kubernetes deployments.

Enable PGP encryption in Kubernetes deployments

1. Generate a pair of PGP keys to be used for encryption/decryption (private and public keys).
2. Store each generated key in the file on the host, so that these files are accessible by the deployment

script.
3. Configure the following environment variables in the cxc.env file.

CXC Contact encryption configuration.
CXC_PGP_ENABLED: false
Host path(absolute) to the PGP Public Key
CXC_PGP_PUBLIC_KEY_PATH: ""
Host path(absolute) to the PGP Private Key
CXC_PGP_PRIVATE_KEY_PATH: ""
Passphrase for PGP Private Key
CXC_PGP_PASSPHRASE: ""
CXC_PGP_USER_ID: "customercare@genesys.com"

4. Verify that the CXC_PGP_ENABLED variable is set to true.
5. Verify that the CXC_PGP_PUBLIC_KEY_PATH variable is set to the absolute path to the file that stores

the public key.
6. Verify that the CXC_PGP_PRIVATE_KEY_PATH variable is set to the absolute path to the file that stores

the private key.
7. Verify that the CXC_PGP_PASSPHRASE variable (optional) is configured when the passphrase is

present in CX Contact PGP keys.
8. Verify that the CXC_PGP_USER_ID variable is associated with the correct Private key user ID.
9. Save and close the file. The saved file is then used as input for the cxc-app-deploy.sh script.

Important
The host is used to create a Kubernetes secret (cxc-pgp-storage). During deployment,
CXC_PGP_PUBLIC_KEY_PATH and CXC_PGP_PRIVATE_KEY_PATH data is stored in the
Kubernetes secure storage. When the system is started, CX Contact components

Optional Functionality PGP Encryption

CX Contact Deployment Guide 44

collect key data from the Kubernetes secure storage. For more information about
Kubernetes secrets, see Kubernetes Documentation.

Optional Functionality PGP Encryption

CX Contact Deployment Guide 45

Integrating CX Contact with Genesys
Historical Reporting
This page describes the component and configuration requirements to enable historical reporting on
unattempted records.

Overview: Historical Reporting on Unattempted Records

While Outbound Contact Server (OCS) reports on the outcome of all attempted records and records
failed pre-dial validation checks, it does not report on records belonging to a contact suppression list
for the campaign group. This comes from CX Contact. The process is as follows:

1. When the campaign group is activated, CX Contact writes all information related to unattempted
records to an Elasticsearch index (it writes one Elasticsearch document for each suppressed record).

2. As part of the regular ETL cycle, Genesys Info Mart extracts the data from Elasticsearch and transforms
it into Genesys Info Mart LDR_* tables, which you can join with OCS-sourced data on that campaign
group's attempted records.

For more information about the Genesys Info Mart database tables, see the Genesys Info Mart
Physical Data Model for your RDBMS. For more information about managing the Genesys Info Mart
ETL jobs, see the Genesys Info Mart Operations Guide.

Defining Unattempted Records
In this context, an unattempted record refers to a record belonging to a contact suppression list.
Records excluded from a campaign because of defined filtering criteria or compliance rules are not
considered unattempted records in this context.

The following table summarizes the ways in which records are reported on:

Record Type Reporting Source
Dialed/attempted records OCS > ICON > Genesys Info Mart
Records belonging to a contact suppression list
(unattempted records) CX Contact > Elasticsearch > Genesys Info Mart

Records that failed pre-dial validation checks
(unattempted records) OCS > ICON > Genesys Info Mart

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 46

https://docs.genesys.com/Documentation/GIM/latest/Ops/Welcome

Enabling Historical Reporting on Unattempted Records

Prerequisites
The following table summarizes the minimum release requirements for the Genesys and third-party
components that enable CX Contact historical reporting.

Component Minimum release
CX Contact 9.0.000.09
Elasticsearch 6.3.1
Genesys Info Mart 8.5.012.15

ICON 8.1.514.11 (Recommended minimum for Genesys
Info Mart; Required for OCS historical reporting)

Setting up Historical Reporting
To set up historical reporting of unattempted records:

1. Deploy Elasticsearch version 6.3.1. Once this is successfully deployed, CX Contact can write all required
indexes to Elasticsearch. No explicit CX Contact configuration is required.

Important
There are index properties that contain personally identifiable information (PII) and therefore need to be
considered for the EU General Data Protection Regulation (GDPR). Ensure you configure the Elasticsearch
data-retention settings so that indexes are purged before 30 days.

2. Configure Genesys Info Mart to extract the CX Contact reporting data from Elasticsearch, as follows:
1. On the Options tab of the Genesys Info Mart application object, create a new configuration section,

called elasticsearch-ldr0.
2. Add the client option. For example: elasticsearch-ldr0/client=rest(host.domain.com)
3. Add the g:tenant-prefix option. For example: elasticsearch-ldr0/g:tenant-prefix=-2115

Important
Genesys expects that CX Contact reporting on unattempted records will be used to supplement existing
Outbound Contact reporting sourced from OCS. Ensure that your deployment has been configured as required
for Genesys Info Mart to support Outbound Contact reporting. For more information, see Enabling Reporting
on Outbound Contact Activity in the Genesys Info Mart Deployment Guide.

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 47

https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMDepOCSSummary
https://docs.genesys.com/Documentation/GIM/latest/Dep/GIMDepOCSSummary

Elasticsearch Index Properties

The following table describes the Elasticsearch index properties, in which CX Contact stores the data
about unattempted records. Note the following:

• The Index property column represents the XPath term Genesys Info Mart uses to extract and map the
data.

• The Info Mart Database Target column indicates the Info Mart database table and column to which
the property is mapped.

Index property Description Info Mart Database Target

campaignGroupId
The DBID of the campaign group
as assigned by Configuration
Server.

LDR_CAMPAIGN.CAMPAIGN_GROUP_ID
(referenced through
LDR_FACT.LDR_CAMPAIGN_KEY)

campaignGroupName The name of the campaign
group.

LDR_CAMPAIGN.CAMPAIGN_GROUP_NAME
(referenced through
LDR_FACT.LDR_CAMPAIGN_KEY)

campaignTemplateName
The name of the campaign
template on which the campaign
group is based.

LDR_CAMPAIGN.CAMPAIGN_TEMPLATE_NAME
(referenced through
LDR_FACT.LDR_CAMPAIGN_KEY)

chainId The chain identifier of the record
from the contact list. LDR_FACT.CHAIN_ID

chainN The order of the contact list
record within the chain. LDR_FACT.CHAIN_NUMBER

clientId The unique client identifier of the
contact from the contact list. LDR_FACT.CLIENT_ID

contact_info
The contact information (device)
for the contact from the contact
list.

LDR_FACT.CONTACT_INFO

contact_info_type

The type of the contact device.
This field is set to one of the
following values:
Valid values:

• No Contact Type
• Home Phone
• Direct Business Phone
• Business With Extension
• Mobile
• Vacation Phone
• Pager
• Modem

LDR_RECORD.CONTACT_INFO_TYPE
(referenced through
LDR_FACT.LDR_RECORD_KEY)

Index property Description Info Mart Database Target

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 48

Index property Description Info Mart Database Target

• Voice Mail
• Pin Pager
• E-Mail Address
• Instant Messaging

deviceAreaCode The area code of the record from
the contact list.

LDR_DEVICE.DEVICE_AREA_CODE
(referenced through
LDR_FACT.LDR_DEVICE_KEY)

deviceCountryCode The country code of the record
from the contact list.

LDR_DEVICE.DEVICE_COUNTRY_CODE
(referenced through
LDR_FACT.LDR_DEVICE_KEY)

deviceMask The bit mask of the record from
the contact list. LDR_FACT.DEVICE_MASK

deviceStateCode
The state code (or country code)
of the record from the contact
list.

LDR_DEVICE.DEVICE_STATE_CODE
(referenced through
LDR_FACT.LDR_DEVICE_KEY)

deviceTimezone The time zone indicated in the
record from the contact list.

LDR_DEVICE.DEVICE_TIMEZONE
(referenced through
LDR_FACT.LDR_DEVICE_KEY)

disposition
The reason for filtering out the
record from the campaign during
the pre-loading phase, as
reported by CX Contact.

LDR_RECORD.DISPOSITION
(referenced through
LDR_FACT.LDR_RECORD_KEY)

groupName The name of the agent group or
place group.

LDR_GROUP.GROUP_NAME
(referenced through
LDR_FACT.LDR_GROUP_KEY)

id
An identifier Genesys Info Mart
generates based on the long
UUID timestamp reported by CX
Contact.

LDR_FACT.ID

listId DBID of the contact list as
assigned by Configuration Server.

LDR_LIST.LIST_ID (referenced
through LDR_FACT.LDR_LIST_KEY)

listName The name of the contact list. LDR_LIST.LIST_NAME (referenced
through LDR_FACT.LDR_LIST_KEY)

postalCode The postal code of the record
from the contact list.

LDR_POSTAL_CODE.POSTAL_CODE
(referenced through
LDR_FACT.LDR_POSTAL_CODE_KEY)

recordId The identifier of the record from
the contact list. LDR_FACT.RECORD_ID

recordStatus
The status of the record from the
contact list. This field is set to
one of the following values:
Valid values:

LDR_RECORD.RECORD_STATUS
(referenced through
LDR_FACT.LDR_RECORD_KEY)

Index property Description Info Mart Database Target

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 49

Index property Description Info Mart Database Target

• No Record Status
• Ready
• Retrieved
• Updated
• Stale
• Cancelled
• Agent Error
• Chain Updated
• Missed Callback
• Chain Ready

recordType

The type of the record from the
contact list. This field is set to
one of the following values:
Valid values:

• No Record Status
• Ready
• Retrieved
• Updated
• Stale
• Cancelled
• Agent Error
• Chain Updated
• Missed Callback
• Chain Ready

LDR_RECORD.RECORD_TYPE
(referenced through
LDR_FACT.LDR_RECORD_KEY)

timestamp_iso8601
The timestamp when the event
regarding the suppressed contact
list records was generated by CX
Contact.

LDR_FACT.START_DATE_TIME_KEY

Index property Description Info Mart Database Target

Elasticsearch Index Fields

The following seven sections describe the seven types of Elasticsearch index fields. Each record

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 50

represents the Elasticsearch data shown in the corresponding CX Contact Analytics Reporting panel.

Job Record

Call List Loading Record

Preloading Record

Campaign Group Event Record

Call Result Record

Contact History Record

SMS/EMAIL Record

User Actions Record

Job Record (cxc-job-*)
Field Type

id keyword
parentid keyword
@timestamp date
@endtime date
ccid keyword
type keyword
name keyword
state keyword
result keyword
created date
started date
finished date
duration integer
error text
errorCode integer
trace keyword
component keyword

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 51

Field Type
version keyword
hostname keyword
address keyword

Call List Loading Record (cxc-didr-*)
Field Type

id keyword
@timestamp date
type keyword
jobid keyword
jobts date
importfile keyword
line integer
mappingfile keyword
ccid keyword
listid integer
listTableName keyword
listName keyword
customTZMap boolean
chain_id integer
chain_n integer
contact_info keyword
deviceDigits text
defaultRegion keyword
deviceIndex short
accepted byte
error keyword
e164 keyword
countryCode keyword
areaCode keyword
exchange keyword
restOfNumber keyword
maskValue long
tzuid integer
state_code keyword
country_code_iso keyword

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 52

Field Type
mask object

Preloading Record (cxc-contact-*)
Field Type

id keyword
@timestamp date
ccid keyword
calluuid keyword
contact_info keyword
contact_info_type keyword
contact_id keyword
chain_id integer
chain_n integer
callTime date
callResult keyword
dialingMode keyword
optimizationGoal integer
optimizationMethod keyword
listName keyword
listid integer
campaignName keyword
campaignGroupName keyword
sessionuuid keyword
campaignTemplateName keyword
groupName keyword
agentLoginId keyword
disposition keyword
successful boolean
userData object

Campaign Group Event Record (cxc-cgevent-*)
Field Type

id keyword
@timestamp date
ccid keyword

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 53

Field Type
sessionuuid keyword
action keyword
state keyword
dialingMode keyword
optimizationParameter integer
optimizationType keyword
campaignName keyword
campaignGroupName keyword
campaignGroupDBID keyword
campaignTemplateName keyword
groupName keyword
actualBusyFactor float
actualHitRatio float
actualOverdialRate Float
actualTimeToComplete integer
lists object

Call Result Record (cxc-crr-*)
Field Type

id keyword
@timestamp date
@endtime date
ccid keyword
calluuid keyword
contact_info keyword
contact_info_type keyword
blockingRuleName keyword
duration integer
durationCall integer
durationACW integer
durationCPD integer
durationQueue integer
timeDialing date
timeClientRinging date
timeBadCallReleased date
timeClientPickedUp date

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 54

Field Type
timeCPDFinished date
timeQueued date
timeAgentRinging date
timeAgentEstablished date
timeAMDiverted date
timeAbandoned date
timeAgentCallReleased date
callTime date
callResult keyword
dialingMode keyword
optimizationGoal integer
optimizationMethod keyword
listName keyword
campaignName keyword
campaignGroupName keyword
sessionuuid keyword
campaignTemplateName keyword
groupName keyword
timezoneName keyword
timezoneNameCME keyword
timezoneOffset integer
agentLoginId keyword
scheduledTime date
recordType keyword
recordStatus keyword
voiceTransferDestination keyword
countryCode keyword
clientCountryCode keyword
areaCode keyword
deviceTimezone keyword
disposition keyword
postalCode keyword
userData object

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 55

Contact History Record (cxc-ldr-*)
Field Type

id keyword
@timestamp date
ccid keyword
campaignName keyword
campaignId integer
campaignGroupName keyword
campaignGroupId integer
campaignTemplateName keyword
campaignTemplateId integer
groupName keyword
groupId integer
blockingRuleName keyword
blockingRuleId integer
listName keyword
listId integer
recordId integer
clientId keyword
chainId integer
chainN integer
contact_info keyword
contact_info_type keyword
recordType keyword
recordStatus keyword
deviceCountryCode keyword
deviceAreaCode keyword
deviceStateCode keyword
deviceTimezone keyword
deviceMask integer
postalCode keyword
disposition keyword
reason keyword
customFields object
timestamp_iso8601 date

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 56

SMS/EMAIL Record (cxc-nexdr-*)
Field Type

id keyword
@timestamp date
ccid keyword
mediaType keyword
calluuid keyword
contact_info keyword
clientId keyword
chainId integer
chainN integer
from keyword
subject keyword
listName keyword
campaignName keyword
groupName keyword
campaignGroupName keyword
campaignTemplateName keyword
sessionuuid keyword
messageID keyword
batchID keyword
status keyword
deliveryReceipt keyword
disposition keyword
callResult keyword
errorCode integer
errorMessage keyword
timeReceivedFromOCS date
timeSubmittedToNexus date
timeResponseReceived date
timeOCSNotified date
timeConsumerResponded date
optout boolean
userData object

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 57

User Actions Record (cxc-audit-*)
Field Type

id keyword
requestID keyword
@timestamp date
userName keyword
@endtime date
duration integer
action Keyword
actionDetails keyword
objectType keyword
objectSubtype keyword
objectName keyword
objectID integer
apicall boolean
successful boolean
errorMessage text
details text
endPoint text
changeSet object

Elasticsearch Maintenance Recommendations

To help you better manage your indexes and snapshots and to prevent too many indexes from
creating an overflow of shards, it is recommended that you set up a scheduled execution of
Elasticsearch Curator with the following two actions.

1. Delete indexes older than 60 days according to the index name and mask.
• cxc-job-*
• cxc-audit-*
• cxc-crr-*
• cxc-didr-*
• cxc-ldr-*
• cxc-nexdr-*
• cxc-cgevent-*
• cxc-contact-*

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 58

2. Make a snapshot of each index.
• cxc-analytics-*

Important
cxc-analytics-* indexes do not have a timestamp in their name and must not be
deleted. Deleting a cxc-analytics-* index will result in the loss of all CX Contact
Analytics Dashboard customizations.

Optional Functionality Integrating CX Contact with Genesys Historical Reporting

CX Contact Deployment Guide 59

	CX Contact Deployment Guide
	Table of Contents
	CX Contact Deployment Guide
	Introduction
	Using Docker Compose to Deploy CX Contact
	Prerequisites
	Deploying with Docker Compose
	Post Deployment Procedures

	Using Kubernetes to Deploy CX Contact
	Prerequisites
	Recommendations
	Deploying with Kubernetes

	Common Deployment Procedures
	Optional Functionality
	PGP Encryption
	Integrating CX Contact with Genesys Historical Reporting

