
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Deploying with Docker Compose

CX Contact Deployment Guide

4/13/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Deploying with Docker Compose
• 1.1 Deploy with Docker Compose
• 1.2 Set up the environment
• 1.3 Log in to CX Contact

CX Contact Deployment Guide 2

Deploying with Docker Compose
To deploy CX Contact by using Docker Compose, complete the following deployment procedures. The
first three procedures are common to both deployment methods. Click the link for the appropriate
topic:

Summary of deployment procedures
1. Ensure the Prerequisites are met
2. Create the Outbound Database
3. Create the Outbound Database Access Point
4. Start Outbound Contact Server (OCS)
5. Deploy with Docker Compose

Deploy with Docker Compose
Summary of procedures: Deploy with Docker Compose

1. Obtain the Docker Compose scripts

• Use common CX Contact commands
• Obtain images in disconnected environments

2. Set up the environment:

• Use automatic setup (Genesys strongly recommends that you use this method to set up the
environment.)

• Use manual setup

3. Log in to CX Contact

Important
Contact Genesys Customer Care regarding downloading CX Contact and GWS Docker
images. These images should be pushed to the local registry. Refer to
https://docs.docker.com/registry/deploying/ for details. Make note of the GWS
Components versions. You may need to enter these versions when performing the
initial setup.

Deploying with Docker Compose

CX Contact Deployment Guide 3

Docker Compose scripts
To receive all of the latest files required for the Docker Compose deployment, you must first copy the
Docker Compose scripts.

To obtain the Docker Compose scripts:

1. Execute the following Bash commands in the order that they appear here:
• $ export DEPLOY_CXCONTACT_IMAGE=<deploy_cx_contact_image>

• $ echo "docker run --rm -it -u $(id -u ${USER}):$(id -g ${USER}) -e init=true -v
"$(pwd)":/env:rw $DEPLOY_CXCONTACT_IMAGE" > cxc-app.sh

• $ bash cxc-app.sh

When asked if you would like to replace with updates found for the cxc-app.sh script select 2 to
replace.
• The old file is moved to the /backup/MMDDYY-hhmm folder.

Note: Each update is saved in a new directory. The name of the new directory is the date
on which the update was performed and completed.

2. Once you obtain the Docker Compose script make it executable by running the following command:
$ chmod +x cxc-app.sh

Then, execute the following Help command to obtain all of the available commands:

$./cxc-app.sh help

Help Output

Welcome to CXContact deployment service. Following commands are available:

init <deploy_cx_contact image> - Initial setup
start - Start CXContact docker-compose environment
stop - Stop CXContact docker-compose environment
restart - Restart CXContact docker-compose environment
status - Get status of all running containers
provision <deploy_cx_contact image> - Provisioning CXContact
cxc-only [on/off] - Switch between cxc-only deployment and
single node (with GWS services) deployment

save <optional parameters> - Save docker images in archive
Available optional parameters for save:
--only <tag> for e.g cxcontact. - Will save only specific images
-o,--output <name> - Output names for archive with images and
import script
-t,--tag <tag> - Will apply new tag to images, for internal
registries

Note! <deploy_cx_contact image> parameter is optional. Default - will be used latest
local image
If no image found - you will be asked to prompt image name to pull.

3. Execute the following command to obtain the CX Contact Docker Compose .yaml files:
$./cxc-app.sh init

Deploying with Docker Compose

CX Contact Deployment Guide 4

At this point, the following occurs:

• You will be prompted for a CX Contact Deployment Service image (if it is not present locally).
Note: The Docker Compose script uses the latest deploy_cx_contact image. To use a specific image run ./cxc-app.sh init
<image_name>.

• The Docker Compose script pulls the Deployment Service image and verifies which deployment
should be initialized (that is, Docker or Kubernetes).

• The .yaml files are copied to the Docker or Kubernetes folder in the same directory in which the
Docker Compose script is located.

• You ae asked to configure CX Contact. The default values are suggested for each environment
variable. You can replace the default values with values applicable for your environment.

Note: If you are using the local Docker registry, specify it as the value of CXC_DOCKER_REPOSITORY and
GWS_DOCKER_REPOSITORY variables. Change default values of GWS components versions to the actual versions of GWS
Components images pushed to the local registry.

4. Start the CX Contact Docker Compose Environment by running the following command:
$./cxc-app.sh start

5. By default, as of CX Contact 9.0.025, the Docker Compose .env file is configured for CDP NG
connectivity. The following default values show how CDP NG is used.
COMPLIANCE DATA SETTINGS
List Builder embedded CDP_NG Compliance Data
EMBEDDED_COMPLIANCE_DATA_BASEPATH="/list_builder/data/ng_init_data"
OPTIONAL: List Builder embedded LEGACY CDP Compliance Data
#EMBEDDED_COMPLIANCE_DATA_BASEPATH="/list_builder/init_data"
Compliance data rule sets:
AREACODE_RULE_SET="AU,CA,GB,NZ,US"
GEO_RULE_SET="AU,CA,GB,NZ,US"
POSTAL_RULE_SET="CA,GB,US"
DNC_RULE_SET="GB,US"
In order to switch to Legacy CPD, change CDP_NG_URL and CDP_NG_GCLOUD_AUTH to empty
values
CDP_NG_URL="https://api.usw2.pure.cloud/api/v2/outbound/compliancedata"
CDP_NG_GCLOUD_AUTH="https://login.usw2.pure.cloud/oauth/token"

• CDP_NG_GCLOUD_ID and CDP_NG_GCLOUD_SECRET are required parameters and do not have a
default value.

• These parameters must be requested by creating a CLOUDCON ticket before attempting to upgrade
to CX Contact 9.0.025+ or before deploying CX Contact 9.0.025+ for the first time.

• The new CLOUDCON ticket must include the customer name and the name of the person who will
receive the keys in the Jira ticket. CDP_NG_GCLOUD_ID=<Must be provided>
CDP_NG_GCLOUD_SECRET=<Must be provided>

• To return to CDP Legacy, use the following configuration parameters:
EMBEDDED_COMPLIANCE_DATA_BASEPATH="/list_builder/init_data"
CDP_NG_URL=
CDP_NG_GCLOUD_AUTH=
CDP_NG_GCLOUD_ID=
CDP_NG_GCLOUD_SECRET=

Deploying with Docker Compose

CX Contact Deployment Guide 5

Common CX Contact commands

CX Contact Procedure Command
Start CX Contact $./cxc-app.sh start
Stop CX Contact $./cxc-app.sh stop
Restart CX Contact $./cxc-app.sh restart
View current CX Contact status and uptime. $./cxc-app.sh status
Switch between single host deployment and multi
host deployment
(that is, when GWS and CX Contact are deployed on different
hosts).

$./cxc-app.sh cxc-only [on/off]

Provision CX Contact
$./cxc-app.sh provison
Note: Provisioning can be executed multiple times.

Revalidate the configuration when provisioning
fails. $./cxc-app.sh init

Pull images in a disconnected environment.

$./cxc-app.sh init
$./cxc-app.sh save <optional parameters>
Note: The images are archived and an be transferred to a
Docker
host that does not have an internet connection.

Obtain Images in Disconnected Environments
Deployments that are not connected to the Internet must obtain images from the Genesys Engage
Docker Repository and archive them. The archived images are then transferred to a Docker host that
is not connected to the Internet.

To obtain images from the Genesys Engage Docker Repository run the following command on a
computer with access to the Internet and save the images in an archive location.

$./cxc-app.sh init
$./cxc-app.sh save <optional>

The archived images must then be transferred to a destination host and used for deployment.

Important
To store the images in your own Docker registry (only required for Kubernetes
deployments or your own Docker registry), you can add the --tag parameter with your
docker-registry. The archived images must be transferred to a destination host and
used for deployment.

Deploying with Docker Compose

CX Contact Deployment Guide 6

Set up the environment

Set up the environment either automatically (recommended) or manually. Procedures for each option
are provided below.

Set up the environment automatically (Recommended)
If you have already deployed CX Contact using Docker Compose, start at step 1 below. If not, see
Docker Compose scripts for details.

1. Obtain the CX Contact Docker Compose .yaml files by executing the following command:
$./cxc-app.sh init

2. While executing $./cxc-app init.sh, select the Docker deployment and select y when asked if you
would like to configure CX Contact.

3. In the directory containing cxc-app.sh, execute the following:
./cxc-app.sh provision

Provisioning will take approximately 1 to 2 minutes.

Set up the environment manually

Important
Genesys recommends this option for advanced users only.

To set up the environment manually, you'll make API requests to GWS. Requests should point to the
host name or IP address of the external load balancer for GWS or CX Contact. In Docker Compose
deployments, this is the VM where Docker runs.

Complete the procedures in the summary below.

Summary of procedures: Set up environment manually
1. Verify successful start of gws-postgres
2. Check gws-core-environment
3. Check gws-core-auth
4. Create the environment
5. Create the contact center
6. Create the authentication client
7. Create the external_api_client
8. Get the access token for cx_contact

Deploying with Docker Compose

CX Contact Deployment Guide 7

Summary of procedures: Set up environment manually
9. Verify authentication (Optional)
10. Verify clients
11. Create the tenant in api-aggregator
12. Configure session profile
13. Add location in CloudCluser Application

Verify successful start of gws-postgres
To verify the successful start of gws-postgres:

docker-compose logs gws-postgres

This is the expected response:

gws-postgres_1 | LOG: database system is ready to accept connections
gws-postgres_1 | LOG: autovacuum launcher started

Check gws-core-environment
To check gws-core-environment:

curl http://localhost:8091/environment/v3/version

Check gws-core-auth
To check gws-core-auth:

curl 'http://localhost:8095/auth/v3/oauth/
authorize?response_type=code&client_id=cx_contact&redirect_uri=http://localhost/api-
aggregator/v2/login-callback'

Check that there is a reply. It will be an error, but it must be received.

Create the environment in GWS
Send a POST request to GWS.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value

username The super administrator account name for
Configuration Server.

appName Cloud
password Use the password for the super administrator

Deploying with Docker Compose

CX Contact Deployment Guide 8

Property Value
account name.

connectionProtocol addp
localTimeout 7
remoteTimeout 11
traceMode CFGTMBoth
tlsEnabled false
primaryPort Configuration Server's TCP Listener port.
readOnly false
primaryAddress Configuration Server's host name or IP address
locations /USW1
tenant Environment

Code sample
curl --user ops:ops -H "Content-Type: application/json" -X POST http://localhost:8091/
environment/v3/environments -d '
{

"data": {
"username": "default",
"appName": "Cloud",
"password": "password",
"connectionProtocol": "addp",
"localTimeout": 7,
"remoteTimeout": 11,
"traceMode": "CFGTMBoth",
"tlsEnabled": false,
"configServers": [

{
"primaryPort": 8888,
"readOnly": false,
"primaryAddress": "10.51.30.154",
"locations": "/USW1"

}
],
"tenant": "Environment"

}
}
'

Expected response
{"status":{"code":0},"path":"/environments/bf032640-9073-435d-9447-718b7cc7dc43"}

Important
Take note of the environment ID parameter in the response
(bf032640-9073-435d-9447-718b7cc7dc43) – it is required for subsequent
requests.

Deploying with Docker Compose

CX Contact Deployment Guide 9

Create the contact center
Send a POST request to GWS.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value
environmentid bf032640-9073-435d-9447-718b7cc7dc43
auth configServer

Code sample
curl --user ops:ops -H "Content-Type: application/json" -X POST http://localhost:8091/
environment/v3/contact-centers -d '
{

"data": {
"environmentId": "bf032640-9073-435d-9447-718b7cc7dc43",
"domains": ["domain.com"],
"auth": "configServer"

}
}
'

Expected response

This produces the following result:

{"status":{"code":0},"path":"/contact-centers/3952ccd2-a34a-46c1-b51e-8917628554c9"}

Create the authentication client
To create the authentication client, send a POST request to GWS.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value
clientType *
internalClient true

authorizedGrantTypes refresh_token, implicit, password,
client_credentials, authorization_code

redirectURIs http://10.11.64.16
authorities ROLE_INTERNAL_CLIENT
description cx_contact
accessTokenExpirationTimeout 43200
refreshTokenExpirationTimeout 2592000
name cx_contact
client_id cx_contact
client_secret <client secret token>

Deploying with Docker Compose

CX Contact Deployment Guide 10

Code sample
curl --user ops:ops -X POST http://localhost:8095/auth/v3/ops/clients/ -H 'Cache-Control:
no-cache' -H 'Content-Type: application/json' -d '
{"data": {

"clientType": "CONFIDENTIAL",
"scope": [

"*"
],
"internalClient": true,
"authorizedGrantTypes": [

"refresh_token",
"implicit",
"password",
"client_credentials",
"authorization_code"

],
"redirectURIs": [

"http://10.11.64.16"
],

"authorities": [
"ROLE_INTERNAL_CLIENT"

],
"description": "cx_contact",
"accessTokenExpirationTimeout": 43200,
"refreshTokenExpirationTimeout": 2592000,
"name": "cx_contact",
"client_id": "cx_contact",
"client_secret" : "<client secret token>"

}
}'

Expected response

The expected response is 200 OK.

Create external_api_client
To create the external_api_client for communication with GWS services, send a POST request.

Pass a body parameter in JSON format, called data, with the following properties:

Property Value
clientType CONFIDENTIAL
scope *
internalClient true

authoraizationGrantTypes refresh_token, implicit, client_credentials,
password, authorization_code

authorities ROLE_INTERNAL_CLIENT
description external_api_client
accessTokenExpirationTimeout 43200
refreshTokenExpirationTimeout 2592000

Deploying with Docker Compose

CX Contact Deployment Guide 11

Property Value
name external_api_client"
client_id external_api_client"
client_secret client secret token

Code sample
curl --user ops:ops -H "Content-Type: application/json" -X POST http://localhost:8095/
auth/v3/ops/clients -d '
{

"data":
{

"clientType": "CONFIDENTIAL",
"scope": ["*"],
"internalClient": true,
"authorizedGrantTypes": [

"refresh_token", "implicit", "client_credentials",
"password", "authorization_code"

],
"authorities": ["ROLE_INTERNAL_CLIENT"],
"description": "external_api_client",
"accessTokenExpirationTimeout": 43200,
"refreshTokenExpirationTimeout": 2592000,
"name": "external_api_client",
"client_id": "external_api_client",
"client_secret": "client secret token"

}
}
'

Expected response

The expected response is 200 OK.

Get access token for cx_contact
To get the access token for cx_contact, send a POST request to GWS:

curl --user cx_contact:<client secret token> -H "Content-Type: application/json" -X POST
'http://localhost:8095/auth/v3/oauth/
token?grant_type=client_credentials≻ope=*&client_id=cx_contact&client_secret=<client secret
token>'

This is the response:

{"access_token":"<bearer token>","token_type":"bearer","expires_in":43199,"scope":"*"}

Verify authentication (optional step)
To verify that authentication was successful, send a POST request to GWS:

curl --user external_api_client:secret -H "Content-Type: application/json" -X POST
'http://localhost:8095/auth/v3/oauth/

Deploying with Docker Compose

CX Contact Deployment Guide 12

token?grant_type=client_credentials≻ope=*&client_id=external_api_client&client_secret=<client
secret token>'

Verify clients
To verify that clients were created successfull, send a POST request to GWS

curl --user ops:ops http://localhost:8095/auth/v3/ops/clients | python -m json.tool

Create tenant in api-aggregator
To create the tenant in api-aggregator, send a POST request.

Pass a body parameter in JSON format, called data, with the following properties:

Parameter Value
envrionmentid bf032640-9073-435d-9447-718b7cc7dc43
shortTenantName The short tenant name (for example 22-06).
customerName The short tenant name (for example 22-06).

contactCenterId
The unique ID generated when a request is sent to
GWS to create an Environment/Contact Center (for
example
3952ccd2-a34a-46c1-b51e-8917628554c9).

Sample code
curl -X POST -H "Authorization: Bearer <bearer token>" -H "Content-Type: application/
json" -H 'Cache-Control: no-cache' http://localhost:8102/api-aggregator/v2/tenants -d '
{

"data":
{

"domains": ["domain.com"],
"environmentId": "bf032640-9073-435d-9447-718b7cc7dc43",
"shortTenantName": "22-06",
"customerName": "tenant_22-06",
"contactCenterId": "3952ccd2-a34a-46c1-b51e-8917628554c9"

}
}
'

Expected response

The expected response is 200 OK.

Configure session profile
During CX Contact provisioning a set of objects is created in the Configuration Server.

Configure the Annex of the DefaultSessionProfile object (type=script), by replacing all -1 with the
following correct DBIDs:

Deploying with Docker Compose

CX Contact Deployment Guide 13

• Voice Transfer Destination DN (origDNDBID)
• Trunk Group DBID (trunkGroupDNDBID)
• Statistics Server DBID (statServerDBID)
• Remove -1 from "serverDBIDs"

For example:

"data": {
"interactionQueueDBID": 0,
"origDNDBID": -1,
"trunkGroupDNDBID": -1,
"operationMode": 1,
"statServerDBID": -1,
"serverDBIDs": [

-1
],
"IVRProfileDBID": 0,
"numOfChannels": 10

},
"isDefault": true

Add location in the CloudCluster Application

1. In the CloudCluster application, open the properties of the Connection to the OCS application.
2. In Advanced -> Application Parameters, enter the location using its short region name—for

example: locations=/USW1

Log in to CX Contact

Log in to the CX Contact user interface with the URL http://<your-docker-hostname>/ui/
cxcontact/

Important
You must include the backslash (/) after cxcontact (cxcontact/)

Deploying with Docker Compose

CX Contact Deployment Guide 14

	CX Contact Deployment Guide
	Deploying with Docker Compose

